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On the Capacity of Operator Channels
Leif W. Hanlen and Alex J. Grant and Rodney A. Kennedy

Abstract— We examine linear, bounded, fixed operators as
channels between continuous input functions and continuous
output functions. The time-frequency waveform channel and
continuous space channel are both related to an abstract operator
viewpoint of communication channels. The properties of the
operator required in order to allow valid capacity estimation
are examined, and the modelling of noise in a continuous
setting is discussed. We outline the procedure for calculating the
information theoretic capacity for this restricted class of operator
channels and provide an example of operator channels in the
form of a power constrained input signal.

Index Terms— Operators, Capacity, Continuous Channels,
Waveform Channels, Sobolev Spaces

I. I NTRODUCTION

Recently, there has been great interest in the wireless theo-
retic research community concerning the use of “continuous”
channels as a means of describing wireless communication
channels with spatial diversity [1]–[7]. This interest is mo-
tivated by an understanding that the capacity of a spatially
constrained channel is determined by the continuous nature of
space, rather than the number of antenna elements used in a
MIMO system [8], [9].

This approach represents a novel application of the “wave-
form channel” of [10, ch.8], and the “continuous channel”
of [11, sec.24]. In both the spatial case, and the time-frequency
case, functions which are continuous in a parameter act as
inputs for the channel. Through the action of the channel, these
continuousinputs then producecontinuousoutputs which are
corrupted by noise.

The waveform channel [10], for example, takes a power
constrained function as its input, and has a function as its
output. The output is then corrupted by additive Gaussian
noise which has a given spectral density function. Typically,
the Gaussian noise is assumed to be white, although this need
not be the case, and the work of [10] is sufficiently general to
accommodate coloured noise. The capacity results of [2], [4],
[6], provide similar continuous channel results for a spatially
diverse channel.

It is particularly interesting to note that the (time-frequency)
channel described in [10], [11] and the (spatial) channel
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Fig. 1. Transmitting in Hilbert Spaces

described in [3], [6] both correspond to particular forms of
operators, acting as linear channels. Operators take functions
as inputs, to produce functions as outputs. In this sense
operators represent a natural abstraction of the spatial and
time-frequency channels. Moreover, an operator viewpoint
of channels leads us to examine the fundamental aspects
of communication channels which areindependent of the
particular channel instantiation.

We shall describe an additive Gaussian linear operator
(AGLO) channel asa channelΥ which takes functionsx from
an Hilbert spaceHt and generates new functionsy in an
Hilbert spaceHr, such thaty is corrupted by noise in the
spaceHr. In this way the operator “channel” is an abstraction
of the well known linear channel [11] from communication
theory. We shall restrict our investigation to those operators
which produce bounded outputs, given bounded inputs1.

In this paper we provide the framework necessary to initiate
investigation into a general operator channel between two
function spaces. In section II we outline the channel model
for a bounded operator, and discuss the modelling of noise
in III. Section V provides an example of the use the operator
techniques and we draw conclusions in section VI.

II. T RANSMITTING BETWEEN SPACES

Consider transmitting over a channel where the inputx(r)
is a function taken from a Hilbert spaceHt, and the output
y(r) is a function taken from a Hilbert spaceHr, corrupted
by noises(r) ∈ Hr. This scenario is described in Fig. 1. We
use the parameter of the continuous input and output functions
as r. In the work of [3], r corresponds to the 3-dimensional
spatial vector{r, θ, φ}, while in [10], [11], the parameterr
corresponds to timet.

We note that the noise process has been deliberately placed
outside the spaceHr in Fig. 1. This is to emphasize that
the noise experienced by the receiver, withinHr, cannot

1These are known asboundedoperators [12], and the “bound” is given by
the appropriate norm.
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completely characterize the true noise function. We write the
linear channel as:

y(r) = Υx(r) + s(r) (1)

whereΥ is an operator taking functions inHt to functions in
Hr:

Υ : {v(r) ∈ Ht 7→ u(r) ∈ Hr : u(r) = Υv(r)} (2)

We shall considerℵ0 dimensional separable Hilbert Spaces
over multi-variable functions with complex fields. We assume
familiarity with Hilbert Spaces, separability and completeness.
The interested reader is referred to [12], or any standard
Hilbert Space reference.

We wish to calculate the capacity of the channel (1), under
the restriction that the communication channel operatorΥ is
fixed and bounded. This work follows the form of [10, ch.8],
applying the waveform channel to more general Hilbert spaces.
We shall be interested in bounded linear operators which admit
a bounded self-adjoint representation. Recall [12], a bounded
operatorΥ : Ht 7→ Hr satisfies

‖Υx‖ ≤ c ‖x‖ (3)

for some constantc, independent ofx, and may be represented
by an infinite dimensional matrix2,

−→
Υ[−→

Υ
]
ji

, 〈Υϑi, ϕj〉 (4)

where {ϕi}∞i=1 and {ϑj}∞j=1 are complete, orthonormal se-
quences inHt andHr respectively. The norm‖·‖, on the left
hand side of (3) is overHt while the norm on the right hand
side is overHr.

We shall assume that the noise corruptingy is Gaussian in
L2. This ensures that our capacity result may rely on the stan-
dard Gaussian noise results [10], [11]. We shall assume that
the input spaceHt allows averaging on one dimension. This
dimension replaces the “time”t in the standard continuous
channel [11] capacity derivation. We may then consider our
input parameterx as

r = {t, r̂}, t ∈ [0, T ] ⊂ R (5)

wheret is necessarily a dummy variable over which we shall
average to produce a capacity result3. We may write cf. [10]

CT =
1
‖T‖

[sup I(x; y)] (6)

and
C = lim

‖T‖→∞
CT (7)

where I(x; y) is the mutual information between input and
output, cf. [10]. Equations (6) and (7) do not imply that the
channel (1) must have a temporal dimension, simply that there
is one “excess” dimension, which we may ameliorate in our
analysis. We shall also assume that the operatorΥ is known at

2We shall use the notationΥ to denote an operator, and
−→
Υ to denote its

matrix representation.
3As part of the “average” we allowT → ∞ so that the dimension must

be reasonably well behaved.

the transmitter and receiver ends of the communication link.
This removes the need to account for non-ergodic channels.

Our method of calculating the capacity is summarized as
follows:

A. Operator Capacity

1) Provide an isomorphismΓ : L2 7→ Hr to ensure noise
in Hr is related to (possibly correlated) Gaussian noise.

2) Write y = Υx+ Γz wherez ∈ L2

3) Write ŷ = Γ−1y whereŷ ∈ L2

4) Find capacity of “operator channel”

ŷ = Υ̂x+ z (8)

where
Υ̂ = Γ−1Υ (9)

a) decompose the self-adjoint operatorH = Υ̂Υ̂∗ into
parallel, independent discrete AWGN channels

b) choose the inputx to be zero mean, Gaussian
random variables with variances chosen according
to the water-filling [10] algorithm.

Of the above steps, 2 and 4a require most attention. We
shall detail the noise isomorphism, and the decomposition of
the channel below:

III. N OISE

In order to develop a result for the capacity of the operator
channel, we must define a noise model. The model for
noise that we adopt must be consistent for different operator
channels. This ensures that we do not develop a capacity result
which is dependent upon the space in which it was developed.
It is natural to relate any noise in an abstract Hilbert space
to the well known independent Gaussian noise. Fortunately,
the work of [10] allows us to define white Gaussian noise
as a random processprojected into L2. We note that white
Gaussian noise is not anL2 function.

DEFINITION 1 (WHITE GAUSSIAN NOISE IN L2). White
Gaussian noise, in L2(Ω) is given by a random process z(r) for
r ∈ Ω ⊆ RN , such that for any function ψ(r) ∈ L2(Ω) the
complex scalar z

zi ,
∫

Ω

z(r)ψi(r) dr = 〈z, ψ〉L2 (10)

is a zero mean, Gaussian random variable, with variance

E
{
|zi|2

}
=
N0

2

∫
Ω

|ψi(r)|2 dr =
N0

2
(
‖ψ‖L2

)2
(11)

for constant N0 independent of ψi(r). cf. [10, eqn. 8.1.35]

In Definition 1 we have allowed the output parameter of
the channelr to vary over an arbitrary number of dimensions
i.e.,RN . We note that the standard waveform channel [10] has
r ∈ R and the continuous space channel [6] hasr ∈ R3.

If the functionsψi(r) are orthonormal, then we may write
z = {zi}∞i=1 as a vector ofi.i.d. Gaussian random variables,
with zero mean and varianceN0/2. It is important to recognise
that by (10), the white noise “function” inL2 has infinite
power. In turn, this means we cannot use Bessel’s inequality
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Fig. 2. Mapping from Gaussian Process (notL2) to Gaussian noisez ∈ L2

and to equivalent noises ∈ H

to determine the accuracy of the representation. Intuitively,
we may take this as meaning that a white noise process has
unbounded information, and consequently, any representation
of the form (10) is necessarily incomplete. We shall shortly
see that this does not present a problem within the arena of
separable Hilbert spaces.

L EMMA 1 (ISOMORPHISM BETWEEN H ILBERT SPACES).
Given a separable Hilbert space Ha with inner product 〈·, ·〉a
we may define an isomorphism Γ

Γ : Ha 7→ `2 (12)

and the adjoint of Γ

Γ∗ : `2 7→ Ha (13)

if, and only if, the dimension of Ha is ℵ0.

The proof of Lemma 1 is given in [12, Thm 3.6-5]. If we
define {αi}∞i=1 as a complete orthonormal sequence inHa

and {θj}∞j=1 is a complete orthonormal sequence in`2 then
the isomorphismΓ is given by the construction:

−→
Γ =


〈α1, θ1〉`2 · · · 〈αi, θ1〉`2 · · ·

...
...

〈α1, θj〉`2 · · · 〈αi, θj〉`2 · · ·
...

...

 (14)

L EMMA 2 (EQUIVALENT GAUSSIAN NOISE).
Let n be a Gaussian process and let H be a separable Hilbert
space, of dimension ℵ0. Let z be the projection of n onto L2,
then the equivalent noise s in H is given by

s = Γnz (15)

where Γn is the isomorphism Γn : L2 7→ H.

Proof: From Lemma 1 we may defineΓn as the
concatenation ofΓ1 : L2 7→ `2 andΓ2

∗ : `2 7→ H.
The value of Lemma 2 is that we only need to define a

Gaussian process in terms of its effect on the integral of a
function – corresponding to the inner product inL2 – to give
the noise in an arbitrary Hilbert spaceH even though the noise
may not be defined in terms of the inner product inH.

We may use the definition (10) directly to give a vectorz
of noise “samples” inL2, and then apply an isomorphismΓn
to move fromL2 to the “new” spaceH. This arrangement
is shown in Figure 2 where we have emphasized the com-
position Γn = Γ1Γ2

∗. The effect ofΓn may be interpreted

as a colouring of the noise, as given by changing from one
space to another. Mapping fromL2 to an arbitrary (equal
dimension) spaceH corresponds to a change of coordinates
in L2. As such, the entropy of the “channel” may change,
although the capacity will remain independent of the change
in coordinates [11, sec.20].

IV. D ECOMPOSITION OFOPERATOR

In similar manner as for the eigen-decomposition of a matrix
channel, we decompose the operator channel (1) into a set of
parallel, independent additive white Gaussian noise channels.
Given the equivalent channel operatorΥ̂ we note that we do
not use the eigen-channels of̂Υ directly, rather we choose
independent channelsunder the constraint that each channel
will have maximum mutual information. Maximising mutual
information is equivalent to maximising the received signal
power, which leads to solutions of the problem:

PROBLEM 1. Given an operator

Υ̂ : φ = Υ̂ψ (16)

find the function(s) ψ which solve:

ν = max
‖ψ‖=1

‖φ‖2 = max
‖ψ‖=1

∥∥∥Υ̂ψ
∥∥∥2

(17)

From Parseval’s theorem [12, pp.170] the value of‖φ‖2 is
fixed, independent of the definition of the inner product, for
all ℵ0 dimension, complete separable Hilbert Spaces. Equation
(17) represents an eigenvalue decomposition of the self-adjoint
operatorΥ̂Υ̂∗.

L EMMA 3 (CAPACITY OF BOUNDED L INEAR I NVARIANT

OPERATOR).
Consider the operator channel (8), with eigenvalues λi, eigen-
functions ϕi(r, t) and input power constraint

‖x‖2 = P ‖T‖ (18)

The capacity of the channel (8) is given parametrically by

CB = lim
‖T‖→∞

1
‖T‖

∑
i∈ZB

1
2

log2 (λi(‖T‖)B) (19)

PB = lim
‖T‖→∞

1
‖T‖

∑
i∈ZB

(
B − 1

λi(‖T‖)

)
(20)

and ZB is the set of integers associated with the eigenvalues λi,
such that B ≥ λi, and the parameter B is chosen to maximise
(19).

The capacity C is achieved by setting xi = 〈x, ϕi〉 to be zero
mean, independent Gaussian random variables with variance

E
{
|xi|2

}
= max

(
0, B − 1

λi

)
(21)

Proof: The operator channel is bounded, so thatΓ̂ may

be written in matrix form
−→
Γ̂ . Sinceϕi are eigenfunctions,

−→
Γ̂

is diagonal and we use the parallel channel result of [10].
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V. EXAMPLE L2 TO SOBOLEV

At this point we have outlined the methodology for calcu-
lating the capacity of a single user, linear operator channel.
This analysis may be directly applied to that given in [10].
However, we now seek to show that such analysis is not
restricted to the standard time-frequency continuous channel,
nor the continuous space channel.

Consider Fig. 1, where we place a restriction on the in-
put signals: that all input signals that must satisfy a more
restrictive norm-constraint than the average power constraint.
In particular, we shall define a constraint which encourages
smooth input functions, and penalises input functions with
higher order derivatives. The constraint is the norm associated
with the mth order Sobolev space. This example may be
viewed in terms of an antenna constraint within a volumetric
region,i.e., that we cannot allow the antenna signal to change
arbitrarily quickly across the region of space.

The Sobolev space of order 1, onΩ is denotedH1(Ω) for
complex functions inRN :

H1(Ω) =
{
u(r) ∈ L2(Ω) :

∂u(r)
∂r

∈ L2(Ω)
}

(22)

and is clearly a sub-space ofL2(Ω), i.e., H1(Ω) ⊂ L2(Ω).
The spaceH1(Ω) is equipped with the inner product [13]:

〈f, h〉H1 ,
∫
r∈Ω

f(r)h(r) dr +
∫
r∈Ω

f (1)(r)h(1)(r) dr (23)

where f (i)(r) denotes theith partial derivative off with
respect tor. and since the Sobolev spaceH1 is a Hilbert space,
the norm‖·‖H1 is given by:

‖x‖H1 ,
√
〈x, x〉H1 (24)

Consider the channel

y = x+ z (25)

with x, y ∈ L2, and z ∈ L2 is white Gaussian noise. The
signalx is constrained to a power limit, subject to (24)

‖x‖2
H1 ≤ PT (26)

with the norm given by (24). This places a more restrictive
constraint onx than the usual average power constraint. We
may consider the channel (25) as acting over all functions in
L2, with white noise applied, or we may consider the subspace
of input functions which satisfy the norm constraint. In the
second case, we may define an equivalent channel:

ŷ = x̂+ s (27)

where now we consider̂y, x̂, s ∈ H1. The noises is equivalent
to the noisez, projected into the new spaceH1. This provides a
starting point on which to define the equivalentSobolev space
noises using (14):

s = Γnz (28)

Note, the Sobolev inner product (23) may be written in
terms of theL2 inner product:

〈f, h〉H1 = 〈f, g〉L2 +
〈
f (1), g(1)

〉
L2

(29)

SinceH1 ⊂ L2, any orthonormal sequence{ϕi}∞i=1 which is
complete inL2 is also complete inH1, although the sequence
may not remain orthonormal. To generate an orthonormal
sequence{ϕ′i}

∞
i=1 we perform a Gram-Schmidt orthonormal-

isation on the original sequence{ϕi}∞i=1 using the new inner
product (29).

The Fourier functions are known to be complete and
orthonormal [14] inL2(Ω), and are their own derivatives
(scaled). The form of (29) suggests using the Fourier functions
as our choice of basis forL2,

ϕk(r) ,
1√
‖Ω‖

exp
{
ι2πkr
‖Ω‖

}
(30)

c.f. [10, eqn. 8.1.18]. We may define a complete orthonormal
sequence overH1:

ϕ′k(r) = ϕk(r) ·
1√

1 +
(

2πk
‖Ω‖

)2
(31)

From (14), substitutingϕ for θ andϕ′ for α, the isomor-
phism

−→
Γn is diagonal, with entries:[−→

Γn
]
kk

=

√
1 +

(
2πk
‖Ω‖

)2

(32)

and the noise variance for channelk is given by (Γn)2kk.
By definition we have chosen the orthonormal functions to
diagonalize the channel.This is described in Figure 2. We
may therefore use the discrete, parallel channel model of
[10], to calculate the capacity of the channel. We note that
Γn is an unbounded operator, since the eigenvalues (diagonal
entries) are unbounded – they increase indefinitely. However,
we shall shortly considerΓ−1

n which is clearly also diagonal,
and bounded. Having an unboundednoiseoperator does not
present significant problems for the capacity calculation. If the
transmitter has full channel knowledge, it will simply avoid
putting any signal power on those channels with excessively
large noise power. However, the unbounded growth in noise
power does imply that we are doomed to have negligible
capacity if we blindly insist on transmitting equal power
signals across all channels.

We write the capacity of the channel in terms of a parametric
optimisation:

P =
∫
B≥N (µ)

B −N (µ) dµ (33)

C =
∫
B≥N (µ)

1
2

log2

(
B

N (µ)

)
dr (34)

where
N (µ) =

√
1 + (2πµ)2 (35)

From Fig. 3 we see that the noise function is convex and
symmetric, and hence we can findµ0 which solvesB =
N (µ0) for B. Solving forB in (33) and (34), we have:

C =
1
2

∫ µ0

−µ0

log2

(
µ2

0 + 1
1 + (2πµ)2

)
dµ (36)

≈ cP 1/3 log2(1 + P ) (37)
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water-filling (37).

for constantc. We have used [15, 2.731] for the simplification
in (37). We have plotted the capacity of the channel using
water-filling, for increasing signal to noise ratio in Fig. 4. We
note, for theL2 power constraintH0, the capacity increases
linearly with P .

C(W ) = lim
W→∞

W log2

(
1 +

P

W

)
= P log2 e (38)

The variableW is a “dummy” parameter, and may be asso-
ciated with the equivalent “bandwidth” of the input signal. It
can be seen that the capacity of the first-order Sobolev power
constraint signalx ∈ H1 is significantly smaller than theL2

case.

VI. CONCLUSION

We have shown how to calculate the capacity of a linear
bounded invariant operator channel, and related the operator
viewpoint to the well known waveform, and continuous space
channels. We have shown where input constraints may be
represented as a norm, we may use an effective change-
of-coordinate to solve the channel capacity problem in an

alternate space. We have shown how this “new” space has
effectively coloured noise, determined by the relation between
the norm constraint and theL2 norm.

We have provided an example of a channel where a norm
constraint leads us to consider the input-output channel in
terms of a Sobolev space of order 1, and we have provided
solutions for the capacity under this constraint. The details
provided in this paper form a generalisation of the work of
several seemingly disjoint aspects of wireless communication
theory, and provide a starting point for the consideration of
more general operators as communication channels.
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