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Abstract—We examine linear, bounded, fixed operators as

channels between continuous input functions and continuous RN
output functions. The time-frequency waveform channel and

continuous space channel are both related to an abstract operator

viewpoint of communication channels. The properties of the He |

operator required in order to allow valid capacity estimation

are examined, and the modelling of noise in a continuous

setting is discussed. We outline the procedure for calculating the x(r)
information theoretic capacity for this restricted class of operator N
channels and provide an example of operator channels in the

form of a power constrained input signal.

. . Fig. 1. Transmitting in Hilbert Spaces
Index Terms—Operators, Capacity, Continuous Channels,

Waveform Channels, Sobolev Spaces

described in [3], [6] both correspond to particular forms of
I. INTRODUCTION operators, acting as linear channels. Operators take functions

Recently, there has been great interest in the wireless th@8- inputs, to produce functions as outputs. In this sense
retic research community concerning the use of “continuougPerators represent a natural abstraction of the spatial and
channels as a means of describing wireless communicatf§Re-frequency channels. Moreover, an operator viewpoint
channels with spatial diversity [1]-[7]. This interest is moof channels leads us to examine the fundamental aspects
tivated by an understanding that the capacity of a spatia®y communication channels which aiadependent of the
constrained channel is determined by the continuous naturePgfticular channel instantiation.
space, rather than the number of antenna elements used in We shall describe an additive Gaussian linear operator
MIMO system [8], [9]. (AGLO) channel as channelY which takes functions from

This approach represents a novel application of the “wav@d Hilbert space; and generates new functionsin an
form channel” of [10, ch.8], and the “continuous channelMilbert space’,, such thaty is corrupted by noise in the
of [11, sec.24]. In both the spatial case, and the time-frequerfi§ac€™,.. In this way the operator “channel” is an abstraction
case, functions which are continuous in a parameter act®sthe well known linear channel [11] from communication
inputs for the channel. Through the action of the channel, the§gory. We shall restrict our investigation to those operators
continuousinputs then produceontinuousoutputs which are Which produce bounded outputs, given bounded irfputs
corrupted by noise. In this paper we provide the framework necessary to initiate

The waveform channel [10], for example, takes a powd#ivestigation into a general operator channel between two
constrained function as its input, and has a function as ftgiction spaces. In section Il we outline the channel model
output. The output is then corrupted by additive Gaussid@r a bounded operator, and discuss the modelling of noise
noise which has a given spectral density function. Typicallif} Ill. Section V provides an example of the use the operator
the Gaussian noise is assumed to be white, although this né&&ghniques and we draw conclusions in section VI.
not be the case, and the work of [10] is sufficiently general to
accommodate coloured noise. The capacity results of [2], [4],
[6], provide similar continuous channel results for a spatially
diverse channel. Consider transmitting over a channel where the inp)

It is particularly interesting to note that the (time-frequency$ a function taken from a Hilbert spadé,, and the output
channel described in [10], [11] and the (spatial) channg(r) is a function taken from a Hilbert spad¢,, corrupted

by noises(r) € H,. This scenario is described in Fig. 1. We

LoH o . . : . v
Bag 8 Ogg"e” Caﬁber"r";hA é\‘Ta“%g?(‘)'l '/SJS”EJIA”‘;?”?L% ;‘f’;‘"‘iga bv?t‘;]ke?hgse the parameter of the continuous input and output functions
Australian  National ~University, Canberra, ACT 0200, Australia@ST In the work of [3],r corresponds to the 3-dimensional

Email: Leif. Hanlen@nicta.com.au spatial vector{r, 0, ¢}, while in [10], [11], the parameter
A. Grant is with the Institute for Telecommunications Researcrborresponds to time.
Mawson Lakes Boulevard, Mawson Lakes, SA 5095 Australia . .
Email: Alex.Grant@unisa.edu.au We note that the noise process has been deliberately placed

R. Kennedy is with the Research School for Information Science amutside the spac@{, in Fig. 1. This is to emphasize that

Engineering, Australian National University, Canberra, ACT 0200, Austral i ; i i
and National ICT Australia Limited, Locked Bag 8001, Canberra ACT 260@e noise experienced by the receiver, witt#f}, cannot

Email: Rodney.Kennedy@anu.edu.au
A part of this work was carried out while Alex Grant visited NICTA in  1These are known asoundedoperators [12], and the “bound” is given by
RSISE at ANU the appropriate norm.

Il. TRANSMITTING BETWEEN SPACES



completely characterize the true noise function. We write thiee transmitter and receiver ends of the communication link.

linear channel as: This removes the need to account for non-ergodic channels.
Our method of calculating the capacity is summarized as
y(r) = Tl(l‘) + S(I‘) (1) follows:
whereY is an operator taking functions iH; to functions in
H,: A. Operator Capacity

. . _ 1) Provide an isomorphisi : L? — H, to ensure noise
T {or) € He = ulr) € My ulr) = Yo(r)} &) in H,. is related to (possibly correlated) Gaussian noise.
We shall consider, dimensional separable Hilbert Spaces 2) Write y = Y + 'z wherez € L?
over multi-variable functions with complex fields. We assume 3) Write ) = 'y whereg € L?
familiarity with Hilbert Spaces, separability and completeness.4) Find capacity of “operator channel”
The interested reader is referred to [12], or any standard .=
Hilbert Space reference. y=Totz ®)
We wish to calculate the capacity of the channel (1), under  where
the restriction that the communication channel operatas Y=r"'7 9
fixed and bounded. This work follows the form of [10, ch.8],
applying the waveform channel to more general Hilbert spaces.
We shall be interested in bounded linear operators which admit
a bounded self-adjoint representation. Recall [12], a bounded
operatorY : ‘H; — H, satisfies

a) decompose the self-adjoint operatbr= TY* into
parallel, independent discrete AWGN channels

b) choose the inputr to be zero mean, Gaussian
random variables with variances chosen according
to the water-filling [10] algorithm.

[Yz|| < cllz (3)  Of the above steps, 2 and 4a require most attention. We

dshaII detail the noise isomorphism, and the decomposition of

for some constant, independent of, and may be represente the channel below:

. . . . . =
by an infinite dimensional matrix Y

{?} ) 2 (19, ;) (4) I1l. NoIse
7 In order to develop a result for the capacity of the operator

where {¢;};2, and {ﬁj}j’;l are complete, orthonormal se-channel, we must define a noise model. The model for
quences ir; and™H, respectively. The nornj-||, on the left noise that we adopt must be consistent for different operator
hand side of (3) is ovet; while the norm on the right hand channels. This ensures that we do not develop a capacity result
side is overH,.. which is dependent upon the space in which it was developed.

We shall assume that the noise corrupting Gaussian in It is natural to relate any noise in an abstract Hilbert space
L?. This ensures that our capacity result may rely on the stao-the well known independent Gaussian noise. Fortunately,
dard Gaussian noise results [10], [11]. We shall assume tiia¢ work of [10] allows us to define white Gaussian noise
the input spacé+; allows averaging on one dimension. Thiss a random proceg®ojectedinto L?. We note that white
dimension replaces the “timef in the standard continuousGaussian noise is not af¥ function.
channel [11] capacity derivation. We may then consider o

. Yernimon 1 (WHITE GAUSSIAN NOISE IN L?). White
input parameter: as

Gaussian noise, in L?((2) is given by a random process z(r) for
r={t,t}, t€[0,T]CR 5) recC RY, such that for any function 1)(r) € L?(§)) the
) ) ] ) complex scalar z
wheret is necessarily a dummy variable over which we shall

average to produce a capacity resul/e may write cf. [10] 2 & / 2(r)i(r) dr = (2,9) 12 (10)
Q
1
Cr = m [sup I(z;y)] (6) is a zero mean, Gaussian random variable, with variance
N, N 2
and e{lal} =5 [ de =2 (1wl @
. Q
C= lim Cr (7
1Tl =00 for constant Ny independent of 1;(r). cf. [10, eqn. 8.1.35]

where I(z;y) is the mutual information between input and |n Definition 1 we have allowed the output parameter of
output, cf. [10]. Equations (6) and (7) do not imply that théne channet to vary over an arbitrary number of dimensions
channel (1) must have a temporal dimension, simply that thgf@ R~ . We note that the standard waveform channel [10] has
is one “excess” dimenSion, which we may ameliorate in O'c R and the continuous space channel [6] h&s]R3
anaIySiS. We shall also assume that the Opemt[ﬂ known at If the functionswi (I‘) are orthonormal, then we may write
_ z = {z};=, as a vector of.i.d. Gaussian random variables,
2We shall use the notatiolf to denote an operator, arif to denote its with zero mean and variandg, /2. It is important to recognise
matrix representation. . . . L Lo
3As part of the “average” we alloW’ — oo so that the dimension must that by (10), the. white noise “function” irL? has 'n.f'mte )
be reasonably well behaved. power. In turn, this means we cannot use Bessel's inequality



L? > n Gaussian as a colouring of the noise, as given by changing from one
\ space to another. Mapping froth? to an arbitrary (equal

Zi("f"’m dimension) spacé{ corresponds to a change of coordinates
1252 r, seH in L2. As such, the entropy of the “channel” may change,
: 4 although the capacity will remain independent of the change
N B in coordinates [11, sec.20].
T TIy”
> fe 2 -

IV. DECOMPOSITION OFOPERATOR

Fig. 2. Mapping from Gaussian Process (idf) to Gaussian noise € L2 - . " .
and to equivalent noise € H In similar manner as for the eigen-decomposition of a matrix

channel, we decompose the operator channel (1) into a set of
parallel, independent additive white Gaussian noise channels.
to determine the accuracy of the representation. Intuitivelgiven the equivalent channel operaffrwe note that we do
we may take this as meaning that a white noise process &t use the eigen-channels of directly, rather we choose
unbounded information, and consequently, any representatindependent channelsder the constraint that each channel
of the form (10) is necessarily incomplete. We shall shortlyill have maximum mutual informatioMaximising mutual
see that this does not present a problem within the arenainfbrmation is equivalent to maximising the received signal
separable Hilbert spaces. power, which leads to solutions of the problem:

LEMMA 1 (ISOMORPHISM BETWEEN HILBERT SPACES). PROBLEM 1. Given an operator
Given a separable Hilbert space H, with inner product (-, -)

we may define an isomorphism I" ‘ T:0=T¢ (16)
I:H, — 2 (12) find the tunction(s) v which solve:
.. 2
and the adjoint of I’ U max H¢||2 ~ max HTwH (17)
02— N (13) llpll=1 lpll=1
if, and only if, the dimension of H,, is Ny. From Parseval's theorem [12, pp.170] the valuq|¢ﬂ2 is

o ) fixed, independent of the definition of the inner product, for
The proof of Lemma 1 is given in [12, Thm 3.6-5]. If weg| | dimension, complete separable Hilbert Spaces. Equation

: o .
define {a;},—, as a complete orthonormal sequenceHn  (17) represents an eigenvalue decomposition of the self-adjoint
and{6;},_, is a complete orthonormal sequencelinthen operatorT T+,

the isomorphisni’ is given by the construction:

LEMMA 3 (CAPACITY OF BOUNDED LINEAR INVARIANT
<041;91>42 <ai791>[2

OPERATOR).
— : : Consider the operator channel (8), with eigenvalues \;, eigen-
L= (1,0,) e+ (i, 0)p (14) functions ¢;(r,t) and input power constraint

lz|* = P|T| (18)

LEMMA 2 (EQUIVALENT GAUSSIAN NOISE).

Th ity of the ch 1 (8) is gi trically b
Let n be a Gaussian process and let H be a separable Hilbert e capacity of the channel (8) is given parametrically by

space, of dimension Xg. Let z be the projection of n onto L2, - 1 1 ‘
then the equivalent noise s in H is given by Cp = HTIﬁTOO 7| vg 2 logy (Ai(|IT11)B) (19)
i€Lp
s=TI,z (15) . 1 1
Pgp= lim — Z (B — ) (20)
where I',, is the isomorphism I',, : L? — H. I7l=oc [T i€Zp ATl

Proof: From Lemma 1 we may defin€',, as the andZg is the set of integers associated with the eigenvalues \;,
concatenation of'; : L? — ¢2 andTy* : ¢? — H. B such that B > \;, and the parameter B is chosen to maximise
The value of Lemma 2 is that we only need to define @9).
Gaussian process in terms of its effect on the integral of aThe capacity C is achieved by setting x; = {(x, ;) to be zero
function — corresponding to the inner product/if — to give mean, independent Gaussian random variables with variance
the noise in an arbitrary Hilbert spagéeven though the noise
may not be defined in terms of the inner productn £ {\Ii\Q} — max (073 _ 1> (21)
We may use the definition (10) directly to give a vector Ai
of noise “samples” in.2, and then apply an isomorphish, ] —~
to move fromL? to the “new” spaceH. This arrangement Proof: The operator?ghannel is bounded, so tﬁa“gy
is shown in Figure 2 where we have emphasized the cofye written in matrix formI". Sinceyp; are eigenfunctionsl’
positionT,, = I''I'x*. The effect ofl',, may be interpreted is diagonal and we use the parallel channel result of [18].



V. EXAMPLE L? TO SOBOLEV SinceH! C L?, any orthonormal sequende; };-, which is
At this point we have outlined the methodology for calcucomplete inL? is also complete iff*, although the sequence
lating the capacity of a single user, linear operator chann8l&y not remain orthonormal. To generate an orthonormal
This analysis may be directly applied to that given in [L0f€duencgy;};”, we perform a Gram-Schmidt orthonormal-

However, we now seek to show that such analysis is H@tion on the original sequende; };=, using the new inner

restricted to the standard time-frequency continuous chanreduct (29). _
nor the continuous space channel. The Fourier functions are known to be complete and

Consider Fig. 1, where we place a restriction on the ifrthonormal [14] in L*(2), and are their own derivatives
put signals: that all input signals that must satisfy a mof&caled). The form of_(29) suggests using the Fourier functions
restrictive norm-constraint than the average power constraiié. ©ur choice of basis fak?,

In particular, we shall define a constraint which encourages A 1 (2mkr

smooth input functions, and penalises input functions with pi(r) = QHGXP{ Il } (30)
higher order derivatives. The constraint is the norm associated _

with the m* order Sobolev space. This example may pef. [10, egn. 8.1.18]. We may define a complete orthonormal

. . . ey . 1.
viewed in terms of an antenna constraint within a volumetrR€duence over:

region,i.e., that we cannot allow the antenna signal to change , 1
arbitrarily quickly across the region of space. i (r) = pr(r) - 2 (31)
The Sobolev space of order 1, éhis denotedH! () for 1+ (ﬁ)

complex functions irR":
From_>(14), substitutingy for # and ¢’ for «, the isomor-

HY(Q) = {u(r) e L*(0): agi(r) c L2(Q)} (22) phismT, is diagonal, with entries:
r
2
and is clearly a sub-space @F(), i.e, H'(Q) C L*(Q). [p_n’} — /14 (277]‘/) (32)
The spacdl’(9) is equipped with the inner product [13]: [1€2]]

N 1) N7 and the noise variance for channklis given by (I',)3,.
(F B = /rEQ F@)h(r) d]“L/rEQ fO@RO () dr (23) By definition we have chosen the orthonormal functions to
diagonalize the channelThis is described in Figure 2. We
may therefore use the discrete, parallel channel model of
[10], to calculate the capacity of the channel. We note that
T',, is an unbounded operator, since the eigenvalues (diagonal
entries) are unbounded — they increase indefinitely. However,

where f()(r) denotes thei’" partial derivative of f with
respect tar. and since the Sobolev spaké is a Hilbert space,
the norm||-|| ;. is given by:

A
2l = /(s 2)a (24) we shall shortly consider;;* which is clearly also diagonal,
Consider the channel and bounded. Having an unboundedise operator does not
present significant problems for the capacity calculation. If the
y=z+z (25)  transmitter has full channel knowledge, it will simply avoid

12 is white Gaussian noise. ThePutting any signal power on those channels with excessively
large noise power. However, the unbounded growth in noise
) power does imply that we are doomed to have negligible
|zl < PT (26) capacity if we blindly insist on transmitting equal power
with the norm given by (24). This places a more restrictivseIgnals across al chgnnels. . .
. . We write the capacity of the channel in terms of a parametric
constraint onz than the usual average power constraint. We . ~. " .~ *
. ; . olg)t|m|sat|on.

may consider the channel (25) as acting over all functions i
L2, with white noise applied, or we may consider the subspace /

i’ . i ” ) P= B—-N(u)d 33
of input functions which satisfy the norm constraint. In the B>N (1) (1) dp (33)

second case, we may define an equivalent channel:

with 2,y € L?, andz €
signalz is constrained to a power limit, subject to (24)

B
C= =1 —— ) d 34
j=d+s (27) Bsz?ng (N(u)) : (34)

where now we conside}, &, s € H'. The noises is equivalent Where
to the noisez, projected into the new spad&'. This provides a N(p) =1+ (2mp)? (35)

starting point on which to define the equival&dbolev space g, Fig. 3 we see that the noise function is convex and

noises using (14): symmetric, and hence we can find, which solvesB =
s =1Inz (28)  A7(u0) for B. Solving for B in (33) and (34), we have:
Note, the Sobolev inner product (23) may be written in 1 [Ho P2 +1
terms of theL? inner product: C=3 logy | 25— | @ (36)
: 2 J 14+ (2mp)?

(s = (o) + (F09V) | (29) ~ cP'/*logy(1+ P) (37)
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Fig. 3. Equivalent SNR for Soboled™, shown withm = 1. We have also
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Fig. 4. Capacity growth rate for input constrained to Sorbolev norm, usi

water-filling (37).

for constant. We have used [15, 2.731] for the simplificatiori12]
in (37). We have plotted the capacity of the channel usirﬂgﬂ

alternate space. We have shown how this “new” space has
effectively coloured noise, determined by the relation between
the norm constraint and th&?> norm.

We have provided an example of a channel where a norm
constraint leads us to consider the input-output channel in
terms of a Sobolev space of order 1, and we have provided
solutions for the capacity under this constraint. The details
provided in this paper form a generalisation of the work of
several seemingly disjoint aspects of wireless communication
theory, and provide a starting point for the consideration of
more general operators as communication channels.
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