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Abstract— We present a general channel capacity
model for a random A.W.G.N. channel in the presence
of spatially correlated interference. We consider the
case where the channel is random, and full rank and the
number of receive elements is allowed to increase indef-
initely within a given volume. We show that capacity
of the channel does not increase indefinitely for densely
packed elements. Moreover, the limit is governed by the
correlation properties of the noise and the channel and
as such, a power constraint on the receive elements is
unnecessary. We examine two cases: the i.i.d. noise
case and the spatially correlated noise case and show
that bounds exist on the capacity in each case. Monte
Carlo simulations are used to verify the results.

I. INTRODUCTION

The work of [1], [2] has lead to the concept of
a high capacity MIMO wireless channel, where ca-
pacity increases linearly in proportion to the mini-
mum number of transmit and receive elements. The
assumptions required for this remarkable capacity
growth are that the MIMO channel is independent.

More recently, there has been some work suggest-
ing that the linear growth is bounded. The work of
[3] and [4] has shown that for specific scattering ge-
ometries, the linear growth diminishes as the channel
becomes correlated. This has placed limits on point-
to-point MIMO channel capacity when the channel is
over a large distance.

Further work [5] has shown that an intuitive limit
on the channel capacity growth must exist, even in
the presence of so-called “rich scattering” as depicted
in [6]. The intuitive limit is developed from the con-
cept that for a (small) fixed volume, the total power
received by an antenna array cannot increase beyond
some finite limit. This observation seems to contra-
dict normal array signal processing theory where the
received power for a linear array is allowed to in-
crease proportionally with the number of receive el-
ements, even for a finite transmit power [7]. Other
authors [8], [9] have also addressed the problem of
“dense” receiver elements, however the results suffer
from an assumption that as receiver elements become
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close, the noise signals received will remain indepen-
dent.

We present an antenna model which includes the
effective receive area of the antenna. Following clas-
sic electromagnetic theory we show that the received
power is proportional to this effective area [10] The
area model is piece-wise linear. We also conjecture
that as many receivers are added, interference sources
will have a spatial arrangement. As such, a compo-
nent of noise will be passed through a transfer func-
tion dependent on the array.

This paper is organized as follows: Section II
presents an antenna model based on the effective area
of the receiver. This provides a piecewise linear
model of total power received. Section III develops
the capacity model of the channel, given the power
limit and the correlation of the received signal and
interference. Section IV provides Monte-Carlo simu-
lation results, and V summarizes our results.

II. SCATTERING MODEL

Consider the physical arrangement described in
figure 1. A group of NR receivers, arranged in a lin-
ear array receive signals from a group of NT transmit-
ters, passed through a set of randomly arranged local
scatterers SR.

Additionally, the receivers experience interference
from a set of distant white sources e. This model re-
flects the case for densely packed receivers, where the
continuous nature of the electromagnetic field means
that noise sources will begin to exhibit a spatial cor-
relation. The interference signals pass through a set
of local scatterers SN , where SN may be different
from SR. Both sets of scatterers are assumed to be



randomly placed, near the receive elements, within a
radius Dr. This is a “local scatter” model, and cor-
responds to scatterers having small reflection coef-
ficients. It is assumed that the transmit signals will
have passed through other (non-local) scattering be-
fore reaching SR. In this case we may assume that
the transfer matrix between transmitters and receivers
is Rayleigh distributed.

If we denote the received signal vector over all re-
ceivers as y, the transmit signal vector as x and the
interference signal as e we may write:

y = HT x + HNe + w (1)

where w represents the independent noise at each re-
ceiver element. Since both e and w are i.i.d. random
gaussian noise, we shall use a scale k to adjust the
dominant noise between independent gaussian, and
spatially correlated noise. We will use the channel
model:

y = HT x + [(1 − k)HN + kINR
] e (2)

Where 0 ≤ k ≤ 1.
With the above assumptions on the scattering chan-

nel, we may consider HT in terms two components:
HT1 which models the random effects of the scatter-
ers and HT2 which models the correlation caused by
the closely spaced receive elements. We can see that
HT1 and HT2 are independent. Similarly, we may
decompose the interference transfer matrix HN into
components HN1 and HN2. It remains to show how
the elements of these four matrices are formed.

An antenna receives power proportional to its ef-
fective area Aeff, and the distance between itself and
the source D. [10]

Preceive

Ptransmit
=

Aeff

4πD2
(3)

If we assume the receiver is a half-wave antenna
then we may write the effective area (for spatially in-
dependent elements) in terms of its wavelength λ as:

A0 =
α

2
λ2 α ≈ 0.26 (4)

For some scalar constant α. We may use the con-
cept of effective area for both the scatterers and the
receive elements. Each scatterer will have an effec-
tive area which is a fraction of the total area covered
by the scatter “cloud” [3], [4]. We may assume that
each scatterer occupies an equal area within the cloud
(receives equal power).

If we denote the area of the cloud as Acloud then
for each scatter s within a particular scattering cloud,
we may write a transfer function of the received sig-
nal, from a transmit element τ to scatterer s as Hs.
We will denote (·)∗ as the Hermitian (conjugate trans-

pose) of a matrix.

[
HS1

]
s,τ

=

√
Acloud

NS4πD2
s,τ

gs,t exp (−ιφs,t)

(5)

E {HS1H
∗

S1
} = α(Ds,τ )2I (6)

α(Ds,τ ) ∝
√

Acloud

4πD2
s,τ

gs,t ∈ [0, 1] , φs,τ ∈ [0, 2π)

where we have used ι =
√
−1. The variables g and

φ are chosen uniformly at random, and Ds,τ ≈ Ds

is the mean distance from scatterer s to transmitter τ .
We may now interpret each interferer n as a transmit-
ter sending white signals. We may then apply (6) to
write HT1 and HN1:

[
HT1

]
s,t

≈ α(Ds,t)
1√
NS

gs,t exp (−ιφs,t) (7)

gs,t ∈ [0, 1] φs,t ∈ [0, 2π]

Similarly for HN1:

[
HN1

]
s,n

≈ α(Ds,n)
1√
NS

gs,nexp (−ιφs,n) (8)

gs,n ∈ [0, 1] φs,n ∈ [0, 2π]

We wish to consider the case NR → ∞. We as-
sume that the receiver array is constrained to fit within
a given length L. Given the assumed geometry of the
receive array, the inter-element spacing µR will be a
function of the number of receive antennae NR and
the length of the array L. In this case µR = µ0

NR
.

The inter-element spacing will also dictate the ef-
fective area Aeff of each antenna. As the elements of
the receive array become closer, their effective areas
will tend to shadow one another:

Ar ≤ λ

2
µR =

λµ0

2NR

;NR → ∞ (9)

Clearly, the effective area will be constrained by
the upper limits of (4) and (9). We may make the
following piecewise linear simplification:

Aeff =





α
2
λ2 if L

NR
≥ αλ

λµ0

2NR
otherwise

(10)

Combining (3) and (10) we have:

Prec(λ,NR) =





α
2
λ2 P

4πD2 if L
NR

≥ αλ

λµ0

2NR

P
4πD2 otherwise

(11)

Where D is the distance from source to receiver,
and P is the transmit power.



Consider the transfer from the each scatter sr in the
scattering cloud SR to the each receiver element r.
We can see that there are no multi-path components
in this transfer, as such the signal at r will be given
by the power received, the phase of the signal at the
first element in the array and a phase shift due to the
position of r in the array. We may therefore write
HT2, as :

[
HT2

]
r,sr

≈Prec(λ,NR)
1

2 exp

(
−ιDsr

2π

λ

)

· exp

(
−ιµR

2π

λ
r sin φsr

) (12)

where Dsr is the mean distance from the local scat-
terers to the first receiver in the array and φsr is the
broad-side angle from the array to the scatterer sr.
The values of φsr are selected from [0, α] uniformly
at random. The value α < 2π denotes the angular
spread of the scatterers as seen from the receive ar-
ray. If we write

βsr = exp

(
−ιµR

2π

λ
sinφsr

)
(13)

we may write (12) as:
[
HT2

]
r,sr

=Prec(λ,NR)
1

2

· exp

(
−ιDsr

2π

λ

)(
βsr

)r
(14)

Likewise for HN2 we may write:
[
HN2

]
r,sn

=Prec(λ,NR)
1

2

· exp

(
−ιDsn

2π

λ

) (
βsn

)r
(15)

where the definitions in (15) have the same meaning
as (14) with scatterer sr in SR replaced by scatterer
sn in SN .

Explicitly we now have:

y =HT2HT1x

+ [(1 − k)HN2HN1 + kINR
] e

(16)

We may note that the definition of (14) suggests a de-
composition of HT2 into two sub-components:

HT2 = VT ΛT (17)

where ΛT is a diagonal matrix, giving the signal gain
from each scatterer sr and VT is a Vandermonde ma-
trix accounting for the term (βsr)

r. We can see that
the correlation of the signal will be entirely deter-
mined by the properties of the matrix VT

[
VT

]
r,sr

= exp

(
−ι

2π

λ

L

NR

r sin φsr

)
(18)

which is valid for the approximation that 1

NR
→ 0.

If we assume that the D2 losses due to distance
from scatterer sr to receiver element r are approxi-
mately constant for all scatterers in the cloud SR we
may write ΛT as:

[
ΛT

]
sr,sr

= Prec(λ,NR)
1

2 exp

(
−ιDsr

2π

λ

)
(19)

By similar argument:

HN2 = VSΛS (20)

For completeness we write:

[
VT

]
r,sn

= exp

(
−ι

2π

λ

L

NR

r sin φsn

)

[
ΛT

]
sn,sn

= Prec(λ,NR)
1

2 exp

(
−ιDsn

2π

λ

)

We may rewrite (2) using (16), (17) and (20):

y =VT ΛT HT1x

+ [(1 − k)VNΛNHN1 + kINR
] e

(21)

Equation (21) provides a general formula for the
received signal at antenna elements, given both spa-
tially correlated and independent noise. The correla-
tion of the signal and spatial correlation of the noise
is given by the matrices VT and VN respectively.

We may assume that the receiver applies automatic
gain to the signal, such that the power received at each
element in the array remains constant. In this case, we
may normalise the distance losses and set

ΛT = ΛN = I (22)

This allows us to simplify (21) to:

y = VT HT1x + [(1 − k)VNHN1 + kINR
] e (23)

III. CAPACITY

We shall consider the case where the channel is un-
known at the transmitter. We assume that the transmit
signal has constant power output independent of NT ,
such that:

tr (E {xx∗}) = E {x∗x} = P (24)

We shall assume that NT ≥ NR so that any capacity
loss will be entirely due to receiver elements. For the
unknown channel case, a white transmit signal max-
imises the capacity. We may write:

Qx = E {xx∗} =
P

NT

INT
(25)

Let Ψ be the correlation matrix of the complete
transfer function for the noise signals e. Then we
write Ψ as:

Ψ = E
{[

(1 − k)HN + kI
][

(1 − k)HN + kI
]∗}

(26)



From (8) we can see that in the limit of large NR:

HN1H
∗

N1
→ INR

(27)

We may use this result and the fact that HN1 and VN

are independent to simplify (26)

Ψ =(1 − k)2E {VNV ∗

N} + k2E {INR
}

+ k(1 − k)E {VNHN + H∗

NV ∗

N}
(28)

We may interpret the third term in (28) as a cross-
correlation between the spatial transfer function and
the i.i.d. direct transfer function. We may view (28)
as an interpolation between the two extremes of i.i.d.
noise k = 1 and correlated noise k = 0.

Using Ψ we may “whiten” the signal y to give:

ŷ = Ψ−
1

2 y

= Ψ−
1

2 HT x + ĤNe (29)

where ĤN is white:

E
{

ĤN ĤN

∗
}

= INR

If we define C as the capacity of the channel, then

C = E
ĤN ,Ψ

−

1

2 HT

{
Ex,e [log det (ŷŷ∗)]

}

Since x and e are independent, we may use the stan-
dard form of [1]:

C = E
{

log2 det

(
P

NT

HT H∗

T Ψ−1 + INR

)}

(30)
We shall now consider the two extreme cases k = 0

and k = 1 for the noise sources. For other situations
where 0 < k < 1 we may evaluate (30) numerically.

A. Independent Identically Distributed Noise: k = 1

From (28) we may see that Ψ = INR
and we may

write (30) as:

C = E
{

log2 det

(
P

NT

HT H∗

T + INR

)}
(31)

which is the standard result from [1]. However, the
matrix HT is not i.i.d. However, from (7) and the
weak law of large numbers, we can see that:

1

NT

HT H∗

T → E
{
VT |ΛT |2V ∗

T

}
(32)

as NT becomes large (see appendix). Using the above
assumptions (22) we may then write:

1

NT

HT H∗

T → E {VT V ∗

T } (33)

We now wish to evaluate the expression E {VT V ∗
T }.

We may firstly note that by definition, any Vander-
monde matrix VT may be written as:

VT =




1
v

v ⊗ v
...

v⊗NR−1




where v is a row vector of independent elements, ⊗
denotes the element-wise product and (·)⊗k denotes
repeated application of ⊗. As the ordering of the scat-
terers in (18) is not important, without loss of gener-
ality we may assume that the values vi = βsr are
arranged in ascending order. Further, as the values
of φsr are uniformly distributed, we may assume that
as the NR becomes large, the element values will ex-
actly match their distribution - and become uniform
over the interval [0, 2π)

If we approximate the eigenvectors of the matrix
VT by the vectors v⊗k then the eigenvalues ξk {VT }
will be given by:

ξk {VT } ≤ E
{
v⊗kv∗⊗k

}

where the inequality becomes equality when the ap-
proximation of the eigenvectors becomes exact.

We may now write a limit for the eigenvalues of the
matrix VT V ∗

T :

ξk {VT V ∗

T } ≤
[
E

{
v⊗kv∗⊗k

}]2
(34)

From [4] we note that as NR becomes large we may
approximate (34) by:

0 < ξk {VT V ∗

T } < 2−k (35)

With the above simplifications we may remove the
expectation of (31) and write:

C < 2K log2(NR) +

NR∑

k=1

log2

(
1 + P2−k

)

< 2K log2(NR) + P

(
1

2

)NR−2

for a constant K. We can see that as NR increases, the
benefit of additional receivers will diminish without
requiring an artificial scaling factor. Any shadowing
effects will be in addition to the roll-off in capacity
due to correlation of input signals.

B. Correlated Noise: k = 0

Referring to (28) we have Ψ = E {VNV ∗
N}. For

the case of NS � NR we may approximate both HT

and Ψ as follows:

1

NT

HT H∗

T → T [f(α)] (36)

Ψ → T [f(β)]

where T [f(·)] is a Toeplitz matrix. The values α and
β are the respective angular spread of the scattering of
the transmit signal and the angular spread of the scat-
tering of the correlated noise respectively. We may
therefore write the term

HT H∗

T Ψ−1 ≈ T [f(α)]

T [f(β)]
= T [f(α) − f(β)] (37)
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Fig. 2. Capacity of channel with increasing numbers of receivers
and different values of k

where we have used a well known identity for
Toeplitz matrices [11]. For α = β we have equal scat-
tering angles for both noise and signal and we may
write:

HT H∗

T Ψ−1 = T [f(α) − f(β)] = T [0] = I

and so (30) simplifies to:

C = NR log2

(
1 + K

P

σ2
w

)
(38)

for a constant K. This provides linear growth in terms
of the number of receive elements. For the case where
the angular spread of the scattering regions is differ-
ent, we may bound the eigenvalues of (30) by the
eigenvalues of the Toeplitz matrix (37).

However, as NR becomes large, the approximation
(36) loses accuracy and so the inverse of Ψ becomes
highly dependent on the distribution of the scattering
placement - we may note the eigenvalue distribution
from (34). In this case the capacity growth will di-
minish.

This may be interpreted as follows:
When we have ‘densely” arranged receive ele-

ments the channel transmitters and receivers become
highly correlated. If we assume that the MIMO chan-
nel H was i.i.d. before we added additional receive
elements, then it is reasonable to expect that for inde-
pendent transmitting elements, the channel correla-
tion is entirely governed by the spacing of the receive
elements. Likewise, we may consider spatial corre-
lation of the noise (interference) as a product of the
correlation of receive elements.

It is well known [1] that the ideal MIMO chan-
nel is one with i.i.d. entries, and due to the convex-
ity of the capacity formula (30) any process which
moves H toward Ĥ (an i.i.d. channel) will improve
capacity. Since the interference is correlated by the
same process as the signal, and we expect the original
interference to be white, whitening the interference
consequently de-correlate the incoming signal. The
whitening matrix Ψ therefore ensures that the entries
of H becomes i.i.d.
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Fig. 3. Capacity of channel with increasing numbers of receivers
for k = 0 and k = 1

As NR increases, however, small errors in the esti-
mation of Ψ begin to have a significant impact on Ĥ .
Eventually VT and hence Ψ becomes very badly con-
ditioned, where the benefits of “whitening” are lost.

IV. SIMULATION

We have tested the channel capacity (30) using
Monte-Carlo simulations of a channel, for increas-
ing numbers of receivers. The frequency chosen was
3.0GHz, giving λ = 0.1m. We modelled the re-
ceivers as being equally spaced along a line L = 5m
- becoming progressively closer as the number NR

increased.
Scattering was modelled as being placed uniformly

at random over the interval [0, 2π) with different in-
stantiations used for the interference and signal paths.

Figure 2 shows the normalised capacity of the
channel plotted as NR is increased for various val-
ues of k. Of particular interest are the edges of the
surface, where k = 0 and k = 1. We note that the ca-
pacity of the correlated noise channel k ≈ 1 is much
larger than the capacity of the i.i.d. channel. This
agrees with intuition, as the noise for the correlated
channel case may be selectively “cancelled” by Ψ. So
that the noise power present in the correlated case is
effectively much lower than for the i.i.d. case.

In figure 3 we have plotted the extreme cases of
k = 0 and k = 1 for comparison. The i.i.d. case
is shown with asterisks. The predicted linear growth
for independent elements is shown dashed. We can
see that while the elements remain uncorrelated, the
linear growth of the channel continues proportional to
the number of elements. However, after the elements
become correlated, the capacity of the channel begins
to roll-off. This result is consistent with intuition and
with previous results [8].

V. CONCLUSION

We have presented a model for the MIMO channel
which accommodates spatially correlated noise. We
have shown that the capacity of the channel will roll-
off as the receive elements become densely spaced,



even if the transmitters are independent. This reduc-
tion is independent of the power model used for the
receive elements. As such, it is not necessary to con-
sider “shadowing” of receive antenna elements to find
an upper limit to capacity.

We have also shown that if the dominant noise is
spatially arranged - as is the case with interference,
then the capacity of the channel is significantly im-
prove through the use of the whitening matrix Ψ.
However, eventually the correlation effects of the
channel overcome the additional knowledge provided
by spatially correlated noise.

APPENDIX

Here we prove the identity for E {V DV ∗} where
V is a Vandermonde matrix of a random vector v, and
D is a diagonal matrix of a random vector d. V has
NR rows and N columns. We may argue that N ≥
NR as for increasing numbers of receivers, we can
expected to detect the presence of increasing numbers
of scatterers. Therefore we may write

lim
Nr→∞

N

Nr

= τ ≥ 1

Let v and d have N elements, denoted vk and(
1

dk

)2

respectively. V is of the form:

[
V

]
m,k

= (vk)
m

= e
−ι 2πmδ

λNR
sin φk

φk ∈ [0, α]

[
D

]
k,k

=

(
1

dk

)2

dk ∈ [1, R]

1

N

[
V DV ∗

]
m,n

=
1

N

N∑

k=1

(
1

dk

)2

e
i
(

n−m

NR

)
2πδ

λ
sin φk

(39)

It is clear that the random variables dk and vk are
independent. As such, the random variables Xk =(

1

dk

)2

e
i
(

m−n

NR

)
φk are identically distributed. There-

fore each element Xk in the sum of (39) may be con-
sidered to be the result of an independent experiment.
From the weak law of large numbers [12], we have:

lim
N→∞

1

N

N∑

k=1

Xk
−→pr

1

N

N∑

k=1

E {Xk} = E {X}

lim
N→∞

1

N

[
V DV ∗

]
m,n

= E
{(

1

dk

)2

e
i
(

n−m

NR

)
2πδ

λ
sin φk

}

= E
{(

1

dk

)2
}
E

{
e
i
(

n−m

NR

)
2πδ

λ
sin φk

}

E
{(

1

x

)2
}

=
1

R

∫ R

1

(
1

x

)2

dx

≈ 1

R
R � 1

E
{

e
i
(

n−m

NR

)
2πδ

λ
sin φk

}
=

1

α

∫ α

0

e
i
(

n−m

NR

)
2πδ

λ
sin φk dφ

Using an integration of products form we have:

E
{

e
i
(

n−m

NR

)
2πδ

λ
sin φk

}
≈ e

i
(

n−m

NR

)
2πδ

λ
sin α

= T [f(α)] (40)
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