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Fast Calculation of Singular Values for MIMO
Wireless Systems
Glenn Dickins and Leif W. Hanlen

Abstract— The standard (point-wise) linear channel model for
MIMO wireless systems provides a simplistic mapping from an-
tenna elements to continuous (operator) view point of wireless
channels. Low-rank, high-dimension sampling matrices generated
by Ray-Tracing may be used to estimate (with error) the “true”
operator channel. In order to achieve reasonable estimation er-
ror bounds, intractably large dimension matrices must be used for
Ray Tracing.

We consider an algorithm for estimating the singular values of
the large dimensional matrix via application of Power Factori-
sation. We show there is no preferential basis choice for pre-
conditioning and provide a simple algorithm for high-speed evalu-
ation of the dominant singular values.

Index Terms—MIMO Systems, Operators, Antenna arrays

I. I NTRODUCTION

The advent of multiple-input multiple-output (MIMO) wire-
less communications has promoted the concept of high band-
width wireless systems employing large numbers of antenna el-
ements at the transmit and receive ends of the wireless link.
Much interest [1] has been devoted to closely spaced array ele-
ments and the effects of correlation for small wireless devices.
Much of the wireless communication literature models antenna
elements as points in space. We refer to such models aspoint-
wise models.

Recent work [2–5] has shown that spatially diverse wireless
systems may be more appropriately modelled usingcontinu-
ousspatial techniques, which focus on the continuous nature of
space, rather than the individual antenna elements. In particu-
lar, these techniques consider the channel as anoperator, [6],
rather than a collection of discrete points. In [7] it was shown
that antenna elements may be seen as “samples” of the contin-
uous channel.

We shall focus on simple models of the form given in [8],
where the antenna elements are assumed to be “dense.” It has
been shown [4] that the point-wise approximation of the con-
tinuous channel may be interpreted as a particular choice of
orthonormal expansion, which miss-estimates the continuous
mode connection strengths and requires a large number of sam-
ple points to provide reasonable accuracy. The size of the sam-
pling matrix generated for estimating the operator channel must
be extremely large and this gives a channel matrix of large di-
mension and low rank, with large computational complexity to
calculate the channel singular values.
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Fig. 1. Continuous solid regionsVT (transmit) andVR (receive) containing
t and r discrete antenna elements respectively. Two particular elements are
highlighted, with the corresponding channel matrix entryGji shown.

This paper is arranged as follows: in section II we de-
scribe the channel model involved, and discuss decomposi-
tion of functions into particular choices of bases. Section III
presents numerical comparisons of the ray tracing technique in-
cluding computational complexity for both direct (point wise)
estimation, and using the power factorisation method. We draw
conclusions in section IV.

II. CHANNEL MODEL

Consider the physical arrangement shown in Figure 1. We
have shown two regionsVT andVR in space. The regionVT

generates signals which are transmit toVR over a given channel.
The regionVT containst sources (transmit elements) which
produce a field withinVR, andVR containsr receive elements
which sample the field withinVR. We have superimposed “dis-
crete” antenna elements contained within each region, shown as
black spots in Figure 1. Each (transmit/receive) element may
be considered as the centroid of a given sub-region. Theith

transmit element is located at a pointρTi ∈ VT and may be
considered as being contained by the small sub-region∆VTi

as shown. Each sub-region∆VTi is assumed to be disjoint
and the collection of sub-regions occupy the whole ofVT ,
i.e.,VT =

∑
i ∆VTi. Similarly, the receive elements are con-

tained within small disjoint sub-regions∆VRj whose collective
occupies all ofVR. The enclosing regionsVT andVR are sep-
arated by a distanceD (centre-to-centre). We shall assume that
the channel is finite-frequency, has no inter-symbol interference
and is time-invariant.

We shall collect the transmit and receive signals in vectors
x ∈ C1×t andy ∈ C1×r respectively, to give the well-known
MIMO linear channel model

y = Hx+ w (1)

where the transfer matrixH ∈ Ct×r gives the complex chan-
nel gain coefficients between points inVT and points inVR.
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Fig. 2. Duality between discrete and continuous domains in noise free envi-
ronment. Reversibility of arcs is dependent upon “sufficiently” dense sampling
criterion [7] and equal-norm sampling functions.

If we consider the (transmit) signalψ(rT ) generated byx
in VT , and the (receive) signalφ(rR) which is produced in
VR and sampled to givey we may writeψ(rT ) andφ(rR) in
terms of complete, orthonormal sequences{ϕi(rT )}∞i=1 and
{ϑj(rR)}∞j=1. We have

ψ(rT ) =
∑

i

aiϕi(rT ) ai , 〈ψ(rT ), ϕi(rT )〉 (2)

φ(rR) =
∑

j

bjϑj(rR) bj , 〈φ(rR), ϑj(rR)〉 (3)

and we may collect the elementsai and bj in vectors: a =
{a1, . . .}, b = {b1, . . .} and write:

b = Γa (4)

If we assume that each transmit antenna elementj has an or-
thonormal spatial signaturesTj then we may write the transmit
vector in terms of a sampling matrix [7,9]A,

ψ(rT ) = Ax Aji = 〈sTj , ϕi(rT )〉 (5)

and similarly, for the receive signalφ(rR), we may assume each
receive antenna elementj has an orthonormal spatial signalsRj

and use a sampling matrixB to givey

y = B∗φ(rT ) Bji = 〈sRj , ϑi(rR)〉 (6)

Combining (1), (4), (5) and (6) we have:

y = B∗ΓAx+ ŵ (7)

Figure 2 describes the duality of the continuous and discrete
models given by (7). The emphasis of previous work [7] was in
generatingH givenΓ. In this paper we shall not be interested
in noise or the capacity of the channel: our motivation is to
examine the properties ofH andΓ.

It has been shown [9] that the transfer matrixΓ is inherently
finite rank, and this rank is given by the parameters of the mul-
tipath channel. Further, it has been shown [4] that in order to
accurately estimate the channelΓ fromH using point-like sam-
pling the number of points required is large.Point-like sam-
pling (without any prior channel preconditioning) suffers from
two serious flaws:

1) The number of points is extremely large (giving a high-
dimension matrixH) while the rank of the channel is fi-
nite (the rank ofH is small)

2) The error associated with the estimateΓ̂ givenH is un-
bounded. In particular, the trace of the estimate matrixΓ̂
remains fixed, which prevents a natural measure of con-
vergence.

We shall address both issues below. Our first step is to de-
velop a means to reduce the computational complexity of the
singular value estimation, given that the dimension of the ma-
trix H is much larger than the number of non-negligible singu-
lar values. We next examine the convergence characteristics of
the algorithm, and show that the convergence is monotonically
increasing.

III. R EDUCING COMPUTATIONAL COMPLEXITY

A singular value decomposition (SVD) is required to esti-
mate the channel singular values and decompose the continuous
channel into independent parallel channels. Where the trans-
mission function has been appropriately sampled, there will be
a large number of points over the transmit and receive volumes,
thus requiring a large matrix SVD. Given an equal number of
transmitter and receiver sample points,n, computation of the
SVD requiresO(n3) [10]. From an estimation view-point, it
is desirable to ensure thatn is sufficiently large to capture all
degrees of freedom from the channel. In most cases the number
of non-negligible singular values will be much less thann, thus
we know that the transmission matrix may be approximated by
a low rank matrix.

A. Truncated Basis Approximation

An natural method to generate a low dimension matrixΓ̂k

whose singular values are equal to the largestk singular values
of Γ is to apply the transformation of Figure 2: If we choose
the basis for the channel, and apply the basis functions to our
sampling points in the form of matricesA andB, a lower di-
mension approximation of the matrixΓ may be formed. Such
a basis would well approximate the most likely channel eigen-
functions using only a truncated subset of the basis. To approx-
imate the channel singular values, it is then sufficient to calcu-
late the singular values of the truncated basis projection of the
transmission matrix.

Given unitaryn × r matrices for the transmitter volumeBT

and receiver volumeBR ther×r channel matrix approximation
would beBR

∗GBT . To calculate this matrix and determine
its singular values would require4n2r + 4r3 operations. This
approach would become more computationally efficient when
n/r % 1.46 andO(n2) for n� r.

This approach relies on the existence and invariance of such a
basis function set. For simple geometries, where the regions are
flat and parallel, it can be shown that a low order Prolate type
basis function set across the region gives a good approximation
for the channel singular values. In this case, a monotonically
increasing approximation of the singular values is obtained pro-
viding a more stable estimate than a sparsely sampled transmis-
sion matrix. Similar properties hold for other simple geometric
arrangements: such as using Spherical Harmonics for commu-
nication between concentric spherical shells.
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(a) Reduced point set (note over-estimation)
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(b) Truncated basis estimation (note monotone convergence)

Fig. 3. Approximation of singular values via SVD on reduced point set and
SVD on basis projection.

However, for unknown channels without a natural geometry1

there is no guarantee that a particular basis may used indepen-
dently of the channel. Figure 3 compares the estimates of sin-
gular values with truncated basis approximation. Figure 3(a)
shows the overestimated singular values when reduced point
sets are used. Figure 3(b) demonstrates the monotonic conver-
gence to the actual singular values when a truncated basis is
applied to the large sampled channel matrix. This figure is for
a configuration of two flat planes of 20 wavelengths separated
by a distance of 100 wavelengths.

When the system is perturbed by angular rotation, or by in-
troducing several scattering objects, it can be seen that the basis
functions are no longer appropriate for estimating the singular
values. Figure 4 introduces to the configuration 10 scatterers
having a 45◦ standard deviation in angle. Figure 4(a) provides
the truncated point method result while Figure 4(b) shows that
the prolate basis now provides a poor approximation. Similar

1If we are reduced to estimating the channel, it is unrealistic to imagine it
will have a simple geometric arrangement!
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(b) Truncated basis estimation (note poor convergence)

Fig. 4. Approximation of singular values via SVD on reduced point set and
SVD on basis projection for 10 reflective scattering bodies.

result can be shown for other basis functions such as a Fourier
basis, scaled spherical harmonics, and Gabor wavelets.

Although this shows that some general basis types are not
appropriate, it does not eliminate the existence of a suitable ba-
sis. To investigate this we calculated the dominant eigen-modes
for a sample of channel configurations. Principle component
analysis, also known as Karhunen-Loève expansion, was then
used to search for the presence of common eigen modes which
would provide a suitable basis for general truncation. The 10
dominant modes from each of 100 configurations of the chan-
nel were obtained. The channels were statistically created with
a Gaussian angular diversity about a perpendicular direction of
arrival. Figure 5 shows the singular values of the matrix consist-
ing of these 1000 channel transmission modes. It can be seen
that as the angular diversity increases the singular value spec-
trum becomes flat. Thus there is no common eigen-modes and
consequently no preferred basis for the possible channel eigen-
modes as the arrival angle becomes uncertain. A reduced order
basis is only feasible with a preferred direction of arrival and
low angular diversity. Although the dominant amplitude pat-
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Fig. 5. Demonstration of lack of invariant basis function. As the scattering
diversity increases, the span of eigenfunctions increases - there can be no pre-
ferred basis with high angular diversity

terns across the region remain largely unchanged, the differing
directions of arrival introduce a variable phase offset across the
receiver volume. In a rich scattering environment, the dimen-
sionality of this potential variation approaches critical sampling
of the region and no basis would offer any computational advan-
tage. Unless a single dominant direction of arrival is identified
and compensated for, truncated basis approximation does not
offer any benefits over simply sampling at high density.

B. Power Factorisation

In general we know that the spectrum of the channel matrix
will be concentrated, with few large singular values compared
to the number of samples required for critical sampling of the
receive and transmit volumes. We desire a method to extract
the significant singular values from a critically sampled chan-
nel matrix without incurring the expense of a complete singular
value decomposition. To achieve this we introduce the process
of power factorisation [11, 12] based on the method of orthog-
onal iteration for determining dominant eigenvalues [10].

Given then × n channel matrix, G, and an estimate for the
critical number of singular values,r, we first construct an initial
random matrixA0 of sizen× r and then iterate

Bk = G∗Ak−1Nk (8)

Ak = GBk

whereNk is a matrix selected at each step to ensure thatB
remains unitary (Gram-Schmidt or QR decomposition). This
provides a rankr factorisation that converges to the global min-
imum of ‖M −AB∗‖F [11] under the Frobenius norm. After
several iterations, the significant singular values of G can be es-
timated from a SVD ofAk. The computational requirements
for thek iterations and the SVD are given in Table I.

It can be shown that forn/r � 1, the Power Factorisation
method is more efficient than direct SVD ifk < n/(2r). Figure
6 shows that convergence of the singular values forr = 20 is
achieved in three to four iterations. In this casen = 900, thus a
significant computational saving is possible.

TABLE I
Computational complexity of Power Factorisation method

Iteration Complexity
G∗Ak−1 2n2r

Gram-SchmidtNk 2nr2

GBk 2n2r
SVD(A) 2nr2 + 2r3

TOTAL 4kn2r + 2(k + 1)nr2 + 2r3

C. Convergence

Given the optimal rankr approximation ofM asM̂ then the
approximationAB∗ will converge as

∥∥∥M̂ −AB∗
∥∥∥

F
≤ C

(
σr+1

σr

)2k

(9)

for some constantC. Due to the compact nature of the channel
operatorΓ, the singular values ofH are bounded [6]. Further
the singular values may be ordered such thatσ1 ≥ σ2 ≥ · · · ≥
σk ≥ · · · ≥ 0. For any valueε > 0, there is a numberNc such
that fori ≥ Nc, σi < ε [6]. Convergence would be slow for an
i.i.d. channel matrix, however this is unlikely given sufficiently
dense sampling. Figure 7 shows the convergence of the norm
compared with the bound forr = 20. The most significant
reduction in the norm is obtained in the first few iterations.

Figure 7 also shows the average relative error in the singular
values calculated as,

1
r

r∑
i=1

(σ̂ik − si)
2

σi
(10)

whereσ̂ik is the estimate of theith singular value from thekth

iteration. The average relative error in the singular values is less
than 2% in both cases after only four iterations. Since the larger
singular values converge faster (e.g.,Figure 6), the absolute er-
ror is quite small after only a few iterations.

Consider the expansion of the second step in the iteration,
with

G = UDV ∗ (11)

i.e.,U , D andV represent the true singular value decomposi-
tion ofG. Then we may write

Ak = GBk = UDV Bk (12)

Since ther largest singular values ofG, reside in the upperr
quadrant ofD and (V Bk) is necessarily unitary, the singular
value estimates increase monotonically asV Bk ultimately con-
verges to an upper identity2. This avoids the problem of over-
estimating singular values as seen when the receive and trans-
mit volumes are under sampled. The span of B converges to
cover the truncated span of the true channel excitation modes.
Although complete convergence can be slower, the energy in
the actual dominant eigen-modes orthogonal to the span ofB
quickly converges to zero.

2Convergence to the upper identity requires a unique solution,i.e., distinct
singular values. If some values are repeated, the iterations will converge so that
singular vectors remain within the same singular space.
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(a) Simple (direct) geometry
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Fig. 6. Demonstration of power factorisation. The approximated singular
values (̂σik) rapidly and monotonically converge to the actual singular value
(σi). In this exampler = 20.

D. Implementation and Performance

Table II shows the cpu time requirements for calculating and
estimating the singular values for various size channel matri-
ces. The estimates are computed using the direct singular value
decomposition, along with 2, 5 and 10 iterations of the power
factorisation method for a rank 20 approximation. The simula-
tion was implemented in MATLAB tmand run on a Pentium–IV
tm. For large numbers of points, the proposed approach offers
an order of magnitude improvement in time even allowing for
10 iterations of the power factorisation.

Note that further investigation is proposed to compare this
computational efficiency to other methods of selective singular
value calculation as outlined in [13–15] and implemented in the
SVDPack library [16]. It may also be possible to improve the
convergence of the power series method by using a technique
similar to Ritz acceleration for orthogonal iteration [10].
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Fig. 7. Convergence of power factorisation. The actual Frobenius norm error
is well within the bound for the early iterations. The RMS error in singular
values rapidly decreases as the larger singular values are quickly approximated.

IV. CONCLUSION

We have shown that there is no preferential pre-conditioning
sampling basis which preserves the singular values and guar-
antees a low-dimension representation of the channel in gen-
eral. If we restrict ourselves to particular geometries, then pre-
conditioning may be of assistance.

We have described a simple Ray Tracing algorithm, Power
Factorisation, for estimating the singular values of a continuous
spatial channel. This technique allows us to exploit the simplic-
ity of the point-wise modelling approach while overcoming the
large number of samples required for point-wise modelling.

The power factorisation method has been shown to converge
monotonically to the correct singular values, and is significantly
less computationally expensive than direct SVD on the large
point-wise channel matrix.
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TABLE II
CPU time using Pentium–IVtm processor, and MATLAB tm. Fixed number of

points comparing SVD and 2, 5 and 10 iterations of the Power Factorisation.

Points SVD 2 Itns 5 Itns 10 Itns
1225 175.2 5.7 7.8 11.6
900 64.4 3.9 4.2 6.1
625 19.3 1.5 2.1 3.1
400 4.0 0.6 0.9 1.3
225 0.8 0.2 0.3 0.5
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