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Fast Calculation of Singular Values for MIMO
Wireless Systems

Glenn Dickins and Leif W. Hanlen

Abstract— The standard (point-wise) linear channel model for
MIMO wireless systems provides a simplistic mapping from an-
tenna elements to continuous (operator) view point of wireless
channels. Low-rank, high-dimension sampling matrices generated
by Ray-Tracing may be used to estimate (with error) the “true”
operator channel. In order to achieve reasonable estimation er-
ror bounds, intractably large dimension matrices must be used for
Ray Tracing.

We consider an algorithm for estimating the singular values of
the large dimensional matrix via application of Power Factori- ) ] i ] ] o
sation. We show there is no preferential basis choice for pre- Fig. 1. Continuous solid regiorigr (transmit) andVr (receive) containing

P : ; ; - _ t andr discrete antenna elements respectively. Two particular elements are
co_ndltlomng and. prowd_e a simple algorithm for high-speed evalu highlighted, with the corresponding channel matrix erdity; shown.
ation of the dominant singular values.

Index Terms—MIMO Systems, Operators, Antenna arrays

This paper is arranged as follows: in section Il we de-
scribe the channel model involved, and discuss decomposi-
tion of functions into particular choices of bases. Section llI

o ) resents numerical comparisons of the ray tracing technique in-
less communications has promoted the concept of high barg P Y g d

idith wirel ¢ loving | b fant 1ding computational complexity for both direct (point wise)
width wireless systems employing fargeé nNumbers of an enna_‘ggtimation, and using the power factorisation method. We draw
ements at the transmit and receive ends of the wireless li

. lf)‘nclusions in section IV.
Much interest [1] has been devoted to closely spaced array (Lﬁe—

ments and the effects of correlation for small wireless devices. Il CHANNEL MODEL
Much of the wireless communication literature models antenna '
elements as points in space. We refer to such modgisias-  Consider the physical arrangement shown in Figure 1. We
wise models. have shown two regiongr andVy in space. The regiofry
Recent work [2-5] has shown that spatially diverse wirele§&nerates signals which are transmitipover a given channel.
systems may be more appropriately modelled usiogtinu- The regionV containst sources (transmit elements) which
ousspatial techniques, which focus on the continuous natureRypduce a field withif/z, andVx containsr receive elements
space, rather than the individual antenna elements. In parti¥¢hich sample the field withifrg. We have superimposed “dis-
lar, these techniques consider the channel aspamator, [6], ~Crete” antenna elements contained within each region, shown as
rather than a collection of discrete points. In [7] it was show@lack spots in Figure 1. Each (transmit/receive) element may
that antenna elements may be seen as “samples” of the corfii@-considered as the centroid of a given sub-region. iThe
uous channel. transmit element is located at a popt; € Vr and may be
We shall focus on simple models of the form given in [g8]considered as being contained by the small sub-regidf;
where the antenna elements are assumed to be “dense.” Itaashown. Each sub-regiahVr; is assumed to be disjoint
been shown [4] that the point-wise approximation of the co@nd the collection of sub-regions occupy the wholelaf,
tinuous channel may be interpreted as a particular choicei®, Vr = >, AVr;. Similarly, the receive elements are con-
orthonormal expansion, which miss-estimates the continud@éed within small disjoint sub-regionsV; whose collective
mode connection strengths and requires a large number of s@grupies all of’z. The enclosing regiongr andVy are sep-
ple points to provide reasonable accuracy. The size of the sa¥f@ted by a distanch (centre-to-centre). We shall assume that
pling matrix generated for estimating the operator channel miige channel is finite-frequency, has no inter-symbol interference
be extremely large and this gives a channel matrix of large @nd is time-invariant.

mension and low rank, with large computational complexity to We shall collect the transmit _and recei.ve signals in vectors
calculate the channel singular values. x € C** andy e C'*" respectively, to give the well-known
MIMO linear channel model
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I. INTRODUCTION
The advent of multiple-input multiple-output (MIMO) wire-
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r 2) The error associated with the estimﬁtgivenH is un-
S bounded. In particular, the trace of the estimate matrix
' ; remains fixed, which prevents a natural measure of con-
B A vergence.
. I We shall address both issues below. Our first step is to de-
Y x velop a means to reduce the computational complexity of the
singular value estimation, given that the dimension of the ma-
Fig. 2. Duality between discrete and continuous domains in noise free envirx 7 is much larger than the number of non-negligible singu-
ronment. Reversibility of arcs is dependent upon “sufficiently” dense samplirpg | Wi . h h . f
criterion [7] and equal-norm sampling functions. rvalues. We next examine the convergence c aracterls'qcs 0
the algorithm, and show that the convergence is monotonically
increasing.

If we consider the (transmit) signal(rr) generated byt
in Vr, and the (receive) signal(rr) which is produced in
Vg and sampled to givg we may writey)(ry) and¢(rg) in I1l. REDUCING COMPUTATIONAL COMPLEXITY
terms of complete, orthonormal sequendes(rr)};-, and

{9,(rr)}°,. We have A singular value decomposition (SVD) is required to esti-
J j=1"

mate the channel singular values and decompose the continuous
B A channel into independent parallel channels. Where the trans-
Y(ry) = Z aipi(rr) a; = ((rr),@i(rr))  (2)  ission function has been appropriately sampled, there will be

! R a large number of points over the transmit and receive volumes,
¢(rr) = z bjU;(rr) b; = (¢(rr),V;(rr)) (3) thus requiring a large matrix SVD. Given an equal number of

J transmitter and receiver sample points,computation of the
. .. _ SVD requiresO(n?) [10]. From an estimation view-point, it
and we n;)ax C(b)llect th:nglewtim$ andb; in vectors: a = is desirable to ensure thatis sufficiently large to capture all
{ay,...hb={by,.. } write- degrees of freedom from the channel. In most cases the number
b —Ta 4) of non-negligible singular values will be much less thanhus

we know that the transmission matrix may be approximated by

If we assume that each transmit antenna elenjdrds an or- & low rank matrix.
thonormal spatial signatukg-; then we may write the transmit
vector in terms of a sampling matrix [7, 9, ) o
A. Truncated Basis Approximation

U(rr) = Az Aj; = (s1j, pi(rT)) 5) An natural method to generate a low dimension mafbix
whose singular values are equal to the largesihgular values
of I' is to apply the transformation of Figure 2: If we choose
the basis for the channel, and apply the basis functions to our
sampling points in the form of matrice$ and B, a lower di-
mension approximation of the matrixmay be formed. Such

and similarly, for the receive signé(rr), we may assume each
receive antenna elemejhas an orthonormal spatial sigsal;
and use a sampling matri® to givey

= B* Bj; = Y 6 : . : :
Y orr)  Bji = (s, Vi(rr)) © a basis would well approximate the most likely channel eigen-
Combining (1), (4), (5) and (6) we have: functions using only a truncated subset of the basis. To approx-
imate the channel singular values, it is then sufficient to calcu-
y=B*TAx +w (7) late the singular values of the truncated basis projection of the

transmission matrix.
Given unitaryn x r matrices for the transmitter volunig;,

Figure 2 describes the duality of the continuous and discreted receiver volumé  ther x » channel matrix approximation
models given by (7). The emphasis of previous work [7] was iwould be Br*GBr. To calculate this matrix and determine
generatingd givenT'. In this paper we shall not be interestedts singular values would requiren?r + 43 operations. This
in noise or the capacity of the channel: our motivation is tapproach would become more computationally efficient when
examine the properties &f andI". n/r 7 1.46 andO(n?) for n > r.

It has been shown [9] that the transfer mafFiis inherently  This approach relies on the existence and invariance of such a
finite rank, and this rank is given by the parameters of the miasis function set. For simple geometries, where the regions are
tipath channel. Further, it has been shown [4] that in order flat and parallel, it can be shown that a low order Prolate type
accurately estimate the chanfidrom H using point-like sam- basis function set across the region gives a good approximation
pling the number of points required is largeoint-like sam- for the channel singular values. In this case, a monotonically
pling (without any prior channel preconditioning) suffers fronincreasing approximation of the singular values is obtained pro-
two serious flaws: viding a more stable estimate than a sparsely sampled transmis-

1) The number of points is extremely large (giving a highsion matrix. Similar properties hold for other simple geometric

dimension matrixH) while the rank of the channel is fi- arrangements: such as using Spherical Harmonics for commu-
nite (the rank offf is small) nication between concentric spherical shells.
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Fig. 3. Approximation of singular values via SVD on reduced point set arfdg. 4.  Approximation of singular values via SVD on reduced point set and
SVD on basis projection. SVD on basis projection for 10 reflective scattering bodies.

However, for unknown channels without a natural geontetr sult can be shown for other basis functions such as a Fourier
there is no guarantee that a particular basis may used inde£?‘§-'s’ scaled spherical harmonics, and Gabor wavelets.
dently of the channel. Figure 3 compares the estimates of sinfAlthough this shows that some general basis types are not
gular values with truncated basis approximation. Figure 3(@pPropriate, it does not eliminate the existence of a suitable ba-
shows the overestimated singular values when reduced pdift T0 investigate this we calculated the dominant eigen-modes
sets are used. Figure 3(b) demonstrates the monotonic con{@r-2 sample of channel configurations. Principle component
gence to the actual singular values when a truncated basi€f@lysis, also known as Karhunendwe expansion, was then
applied to the large sampled channel matrix. This figure is f§s€d to search for the presence of common eigen modes which
a configuration of two flat planes of 20 wavelengths separaté@u!d provide a suitable basis for general truncation. The 10
by a distance of 100 wavelengths. dominant modes from each of 100 conﬂgu_rayons of the cha_n-
When the system is perturbed by angular rotation, or by iRel were obtained. The channels were statistically created with

troducing several scattering objects, it can be seen that the bgsgauls&_an angul;w d'V?]rS'tY abc|>ut a lperpe][ldr:cular direction of
functions are no longer appropriate for estimating the singuf@val- Figure 5 shows the singular values of the matrix consist-
values. Figure 4 introduces to the configuration 10 scatterdid Of these 1000 channel transmission modes. It can be seen

having a 45 standard deviation in angle. Figure 4(a) provide@'at as the angular diversity increases the singular value spec-

the truncated point method result while Figure 4(b) shows thigm becomes flat. Thus there is no common eigen-modes and

the prolate basis now provides a poor approximation. SimilgPnseduently no preferred basis for the possible channel eigen-
modes as the arrival angle becomes uncertain. A reduced order

LIf we are reduced to estimating the channel, it is unrealistic to imaginel?tasIs is only f_easﬂ_ale with a preferred dlrectlon of E_lrrlval and
will have a simple geometric arrangement! low angular diversity. Although the dominant amplitude pat-
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1 TABLE |
— Odegrees Computational complexity of Power Factorisation method
0.9 5 degrees
10 degrees . -
08 20 degrees Iteration Complexity
45 degrees G*Ap_1 wn’r
S 0.7 Gram-SchmidtV,, 2nr?
_fé‘ 0.6 GBy, 2n?r
2 05 SVD(A) 2nr? + 2r3
é . TOTAL Akn’r + 2(k + 1)m"2 +2r3
£ 04+
= 0.3 . C. Convergence
0.2 Given the optimal rank approximation of\/ asM then the
- SR approximationd B* will converge as
0.1
0 L 1 L ] 0’ 2k
0 50 100 150 200 HM —AB*|| <C (T’q) 9)
singular value number ¢ F O

Fig. 5. Demonstration of lack of invariant basis function. As the scatterif@r some constant’. Due to the compact nature of the channel
diversity increases, the span of eigenfunctions increases - there can be no BfferatorT”, the singular values off are bounded [6]. Further
ferred basis with high angular diversity the singular values may be ordered such that oy > -+ >
o, > --- > 0. For any value: > 0, there is a numbel, such

terns across the region remain largely unchanged, the differithgit for: > N, o; < € [6]. Convergence would be slow for an
directions of arrival introduce a variable phase offset across thied. channel matrix, however this is unlikely given sufficiently
receiver volume. In a rich scattering environment, the dimedense sampling. Figure 7 shows the convergence of the norm
sionality of this potential variation approaches critical samplingpmpared with the bound for = 20. The most significant
of the region and no basis would offer any computational advareduction in the norm is obtained in the first few iterations.
tage. Unless a single dominant direction of arrival is identified Figure 7 also shows the average relative error in the singular
and compensated for, truncated basis approximation does vaities calculated as,
offer any benefits over simply sampling at high density. . )
B. Power Factorisation r ; o; (10)

In general we know that the spectrum of the channel matrix
will be concentrated, with few large singular values comparaeheres;,, is the estimate of thé” singular value from thé*"
to the number of samples required for critical sampling of thteration. The average relative error in the singular values is less
receive and transmit volumes. We desire a method to extrélaz@n 2% in both cases after only four iterations. Since the larger
the significant singular values from a critically sampled chasingular values converge fastexrq.,Figure 6), the absolute er-
nel matrix without incurring the expense of a complete singul&er is quite small after only a few iterations.
value decomposition. To achieve this we introduce the procesConsider the expansion of the second step in the iteration,
of power factorisation [11, 12] based on the method of orthog4th
onal iteration for determining dominant eigenvalues [10]. G=UDV* (11)

Given then x n channel matrix, G, and an estimate for the ) )
critical number of singular values, we first construct an initial €., U, D andV represent the true singular value decomposi-

random matrixA, of sizen x r and then iterate tion of G. Then we may write

B = G*A;,_1 Ny, (8) A, =GB, =UDV By (12)

A =GBy Since ther largest singular values @, reside in the upper

where N, is a matrix selected at each step to ensure that quadrant ofD and (/' By) is necessarily unitary, the singular
remains unitary (Gram-Schmidt or QR decomposition). Thialue estimates increase monotonicallyas;, ultimately con-
provides a rank factorisation that converges to the global minverges to an upper identify This avoids the problem of over-
imum of || M — AB*||,, [11] under the Frobenius norm. Afterestimating singular values as seen when the receive and trans-
several iterations, the significant singular values of G can be &t volumes are under sampled. The span of B converges to
timated from a SVD ofd,. The computational requirementscover the truncated span of the true channel excitation modes.
for the k iterations and the SVD are given in Table I. Although complete convergence can be slower, the energy in

It can be shown that fon/r > 1, the Power Factorisation the actual dominant eigen-modes orthogonal to the spah of
method is more efficient than direct SVDkif< n/(2r). Figure quickly converges to zero.
6 shows that convergence of the singular values-fer 20 is o _ , L
achieved in three to four iterations. In this case: 900, thusa ., Convergence to the upper identity requires a unique solutiendistinct

’ singular values. If some values are repeated, the iterations will converge so that

significant computational saving is possible. singular vectors remain within the same singular space.
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Fig. 6. Demonstration of power factorisation. The approximated singular

values 62-@) rapidly and monotonically converge to the actual singular Va'“?ig. 7. Convergence of power factorisation. The actual Frobenius norm error
(94)- In this example- = 20. is well within the bound for the early iterations. The RMS error in singular
values rapidly decreases as the larger singular values are quickly approximated.

D. Implementation and Performance

IV. CONCLUSION
Table Il shows the cpu time requirements for calculating and

estimating the singular values for various size channel matri-We have shown that there is no preferential pre-conditioning
ces. The estimates are computed using the direct singular vadaepling basis which preserves the singular values and guar-
decomposition, along with 2, 5 and 10 iterations of the powantees a low-dimension representation of the channel in gen-
factorisation method for a rank 20 approximation. The simul&+al. If we restrict ourselves to particular geometries, then pre-
tion was implemented in MrLAB !™and run on a Pentium—IV conditioning may be of assistance.
tm For large numbers of points, the proposed approach offersie have described a simple Ray Tracing algorithm, Power
an order of magnitude improvement in time even allowing fdfactorisation, for estimating the singular values of a continuous
10 iterations of the power factorisation. spatial channel. This technique allows us to exploit the simplic-
Note that further investigation is proposed to compare thiyy of the point-wise modelling approach while overcoming the
computational efficiency to other methods of selective singul@rge number of samples required for point-wise modelling.
value calculation as outlined in [13—15] and implemented in the The power factorisation method has been shown to converge
SVDPack library [16]. It may also be possible to improve thenonotonically to the correct singular values, and is significantly
convergence of the power series method by using a technidegs computationally expensive than direct SVD on the large
similar to Ritz acceleration for orthogonal iteration [10]. point-wise channel matrix.



TABLE Il

CPU time using Pentium—I4" processor, and MrLAB t™. Fixed number of
points comparing SVD and 2, 5 and 10 iterations of the Power Factorisation.

(1

Points| SVD | 21ltns | 51tns | 10 Itns
1225 175.2 5.7 7.8 11.6
900 | 64.4 3.9 4.2 6.1
625| 19.3 15 2.1 3.1
400 4.0 0.6 0.9 1.3
225 0.8 0.2 0.3 0.5
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