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On Entropy Measures for Dynamic Network
Topologies: Limits to MANET

Roy Timo, Kim Blackmore and Leif Hanlen

Abstract—What are the fundamental limits on the communica- these schemes is evaluated via the use of the following parame-
tions potential of wireless networks? We contend that quantifying - ters [10]: packet delivery ratio, end-to-end delay, path optimal-
topological dynamics resulting from node movement enables one ity, and throughput

to: find the minimum overhead required by the network to main- L . .

tain connectivity and, calculate the communication potential ofthe ~ D€Signing connectivity schemes to optimize one or more

network. of these parameters has shown to be a difficult task owing to
A mobility metric is proposed for the unbiased comparison of the complex relationship between node movement, topological

networks. This is an entropy measure based on the uncertainty of change, traffic patterns, multiple access and optimal route selec-

change in the topology of the network, and is referred to as topo- tjnn [11]. To reduce complexity, most researchers have adopted

logical uncertainty. Topological uncertainty determines the min- ;
imum overhead required by the network to correctly identify the the Open System Interconnection (OSI) framework for network

topology and hence, provide node connectivity. We use topological design [11,12].
uncertainty to derive fundamental bounds on the maximum bit Conceived in the early 1970’s, the OSI framework allows

rate available within a Mobile Ad-Hoc Networking environment.  developers to divide network construction into isolated layers.
Our work demonstrates the potential of entropy measures 10 pyqyiged inter-layer dependency remains sfodis approach
describe the complexities of node connectivity within wireless net- . ffective in isolati ii bl f id
Works. is very effective in isolating specific problems for rapid reso-
) lution [12]. However, when applied to more hostile network-
Index Terms— Entropy, Mobile Ad-Hoc Networks (MANET),  ing environments, where inter-layer dependencies are much
Routing, Mobility Metrics, Throughput Capacity and Wireless higher and capacity bounds much lower, this design principle
Communications. 9 p - y ! gnp p
has shown to be inadequate [4].
Motivated by this, MANET research is focussed on devel-
|. INTRODUCTION oping protocols specifically f(_)r the mobil_e Wirel_egs environ-
) ) ) ment [3,4]. The theme of this research is retaining the OSI
Mobile Ad-Hoc Networking has evolved as a paradigm foframework and developing MANET protocols within the ex-
the creation of robust “self-describing”, “self-healing” netisting structure. In particular, network layer routing proto-
works [1-3]. Much mobile Ad-Hoc Networking literature [3—cols have received much attention. However, all MANET de-
7] has focussed on the development of techniques for rogfgns have exhibited increased overhead requirements associ-
ing data through resource-constrained wireless environmeniged with highly dynamic topologies [13]. When combined
There has been little attention focussed on the causationy@fh the much tighter constraints of the wireless channel, this
unavoidable routing overhead in dynamic topologies [8]. Iverhead introduces a situation where certain movement pat-
particular, knowledge of the fundamental limits to communicgerns may render a MANET infeasible. In other cases, the
tion potential are necessary to determine what can be achievgNET may only be feasible for particularly efficient network
what is a reasonable achievement, and how an optimal desigigns.
solution should be approached. _ ~ Inthe present work, we argue that the sole unavoidable con-
~ MANET research today is typically conducted using empikequence of node mobility is a minimum overhead require-
ical studies, for example [9], to estimate the abilities of pranent necessary for the identification of the network’s topology.
posed network connectivity schemesThe performance of specifically, we contend that uncertainty in how the topology
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This estimate was then used to optimally predict the time @present a transmitter, receiver and a relay station [11]. Each
which each route should be re-calculated. Such knowledge nede may use these capabilities to actively participate in the re-
duced the number of protocol control packets, and improvéad/ing of packets to destinations beyond the transmission range
seamless route transitions across the dynamic topology requioédhe sender. As a result, packets may “relay” through sev-
for realtime application’s Additionally, [15] used mobility pre- eral intermediate nodes along source-destination (S-D) routes.
diction to calculate the optimum refresh rate of a multicast rouddditionally, as nodes are mobile, the stability of the wireless
ing protocol and hence minimize control packets. The routidimks interconnecting nodes can fluctuate substantially. Conse-
protocols implemented in [14, 15] are “statistically” aware; thajuently, the topology of the network is dynamic, and to some
is to say, they exploit the statistical properties of the netwodegree unpredictable.
to reduce the uncertainty of link changes, and hence improveThe connectivity service of the network needs to react to the
performance. random dynamic topology by identifying important topological
From [14,15] it is clear that many aspects of hode movehange and accordingly adjust S-D routes. Under high traf-
ment are irrelevant when defining the complexity of networlic conditions it becomes increasingly important that route se-
ing within a mobile environment—if all nodes move very fastection is optimized to efficiently use the available bandwidth.
but at the same speed and in the same direction, the topolddpat is, route choices will inevitably need to exploit all facets
does not change and static networking techniques would saf-the changing node connectivity. To achieve this, the con-
fice. Hence, a measure of network mobilitghould be based nectivity service requires accurate knowledge of the changing
on some aspect of topological change. topology. If node movement contains some uncertainty, then
Currently, some MANET performance limitations resultopological change will necessarily exhibit uncertainty. The
from imposing artificial structures — for example OSI — and aiguantity or degree of uncertainty in topological changg@o-
not indicative of fundamental communications potential of tHegical uncertainty refers to the extent to which connectivity
mobile wireless environment. However, uncertainty in topgatterns can be predicted.
logical change promotes the need for network overhead that idf there is no uncertainty in node movement, the connectivity

fundamental to the MANET environment. service can determine how the node connectivity will change,
To improve network performance, we need to understand taed therefore may devise optimgpace-timeg17] routes for

limiting communications potential of MANETS. each communication task. If however the connectivity service
« What is the maximum data a network can send? does not know with certainty what the future topologies will be,
« What is the minimum overhead required to describe tfibere is a need for additional data to be sent across the network.

network over time? This additional data constitutes network overhead.
The difference between these two values offers insight into the
scalability and throughput characteristics of MANETS. B. Simulation

This paper is. organized as fO”OWS' Section Il explains the As MANETS are yet to be realized, the vast majority of their
MANET operation and design environment. In section Il W%evelopment has been conducted within the simulation environ-

present a model that quantifies network change based on the. \yithin this environment, proposed protocols are tested in

work of Crutchfieldgt al. in [16]. This mIEdeI igllapplied Ihypothetical networks, with various signal attenuation schemes
to a MANET operating over a Random Walk Mobility Model, 4 raffic patterns. Node movement within these networks is

(RWMM) in section IV, which demonstrates that a Markov Prog ica)1y defined according to a synthetiwbility mode[18].
cess is an appropriate stochastic model for viewing topologitq himary distinction between MANETS and fixed wire-
cal change. Section V applies results developed in section il aryorks are the topological changes resulting from node

to evaluate the maximum available throughput for a RWMM,  ement. During simulation, it is typical to define a distance
MANET. Finally, section VI concludes and discusses futurjeﬁ the node’s transmission range, to represent the maximum

work. distance at which an acceptable BER is achieved to allow for
the signal to be understood. In this circumstance, topologi-

II. THE MANET ENVIRONMENT, SIMULATION & THE cal change is a direct result of node movement. Characteriz-
RANDOM WALK MOBILITY MODEL ing topological change is therefore equivalent to characterizing

A. Connectivity in MANETS node mobility.

MANETSs are decentralized, self-organizing, rapidly deploy-
able, wireless networks, providing connectivity for a wide arraj. Mobility Metric
of electronic devices. In their purest form, MANETS consist A current open area of research belongs to the problem of
of a collection of mobile nodes which are distributed over @efining amobility metricto characterize the complexity of
geographical area, who communicate discrete blocks of da@uting in the presence of node mobility. If defined, this met-
called packets, via radio links according to a set of predefingig would allow for the unbiased comparison of connectivity
protocols. The uniqueness of MANETS is found in that eadfervices across mobility models, and present an opportunity to
node has packet-switching capabilities and may simultaneoughsign protocols to adapt to mobility changes. Proposed solu-
3Real time applicat . . _ t@_ns include [1, 20, 21]. Such measures however, do not readily
pplications have tight requirements on the maximum packet en . e .
to-end delay. quantify the consequences of mobility in a manner that is re-
4A mobility metric. flected in the “best” performance availableaoy connectivity
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service. The best performance relates tortfi@imumtransmit- A. Fundamental Randomness

ted information required by the connectivity service to describe pyngamental randomness of topological change quantifies
the network, and naturally stems from thenimuminforma-  the non-deterministic aspect of a network’s topology, and pro-
tion required to describe topological change. Thus, the entrofyjes an estimate of the likelinood of a particular topology oc-

of topological change is a natural quantification of the effect %Drring at a future time, given the topological history.
node mobility on network’s connectivity service. Let

D. Mobility Model ¢ ={¢ ¢, G, ) A3)
The Random Walk Mobility Model (RWMM) is one of the represent the probability distribution across the state sfaat

simplest and most commonly used of the synthetic mobilifimet where¢} = P(z* :5;-)- The probability of a particular
models. In the RWMM, time is divided into a series of equaitate occurring at thg +1)™ epoch is conditionally dependent
duration epochs [19], so that movement is discrete in time. &P the entire past:

the start of an epoch each node moves from its current loca- i1 oo ; oo ‘

tion to a new location, in a randomly selected direciigrat a GU =P =sile™™, 2 PET, ) (@)

randomly selected speed Equation 4 implies, if there is some relationship between the

ffte_lt eaicr:: ?ovel]nerl‘\ttiphnas?',[ha p;]al::ve rtl'(r?ﬁrOf d# rap:on- é)ast and the future, then there is potential in using knowledge
curs. To simplify calculation of the netwo oughput capaca i, past to improve prediction of the future. If we assume that

iy, dwe only allow nc(;jdtesbto '_t(rjanst_mltl duqr;]g_(;[he tpalfse time. A[Le network connectivity service is limited to considering only
nodes are assumed 1o be identical, with identical CommMUNICA e number of statéls, in its prediction of future states, we

. I a
tions abilities. may view topological change askastep Markov Process. In

The use of the RWMM here is not intended to provide a real-_~. o .
- . L . ction IV, we demonstrate that the majority of this past-future
istic representation of mobility patterns expected in real-wor . ;
. . . ; ependance under the RWMM is described lysiep Markov
applications. Rather it provides an opportunity to explore the . T
o . focess. Furthermore, far > 2 we find diminishing reduc-
limits on network performance under the most challenging sfi-

: . . . -tons in uncertainty and thus contend there is limited benefit in
uations where there is no discernable structure in the mobili L :
pursuing increasing complex models for state change.
patterns of nodes.

Given the state spacg, and probability distributiorg, the

IIl. DYNAMIC NETWORKS TOPOLOGICAL MOBILITY & average information gained when a state is revealed to the con-

ToPOLOGICAL UNCERTAINTY nectivity service is given bghannon’s entrofg2):
LetI'¢ . be an indicator function representing the adjacency
i.j : H = - P(s;)logy P(s;
of nodej to nodei at timet. () SZE;S (si) logy P(s:)
1 linki— jexists:D(i,7) < R iy
o W= 1 _ ‘ ‘
" {0 otherwise @) = =) Glogy ¢ 5)
=0

whereD(i, j) indicates the distance between nodesd;.

A network of N nodes can be described by the set of indB. Notation
catorvariables?ﬁ’j fori,j € 1,2,..., N. We note that a node
cannot be adjacent to itsélfand accordingly definEi ;=0
forall i = j. We let the set of indicator variabl&¥ ; form an T =gttt
N x N adjacency matrixi’, whereA! ; = T} ;. The adjacency
matrix A represents the entire topology of the network at tim@enote a block of. consecutive states which the network visits
t. Each node has identical transmission power, and hence tratgsting after the'" epoch, where each is selected from the
mission range, so each link is bi-directional with, = I'% ;. networks state spacewith probability distribution".

Definition 1—L-Block Sequencéet

ThusA! is a binary symmetric matrix. We shall shortly consider the limit of an L-Block sequence,
The set of allowable configurations df forms a state space asL becomes countably infinite.
S = s1,592,83,...,5y, Where Definition 2—Probability of L-Block Sequencket
NY-1) P(Tt) = Pt 2ttt 2t denote the joint
Y= 2 (2) probability of L consecutive states starting after thé

At any one time the network must assume exactly one of thedoch- _
states; that isd? = s, for some0 < k < N. Definition 3—Uncertainty of L-Block SequencEhe uncer-

Let X be a random process denoting the trajectory of tiginty of the sequence df states is given bjhannon’s block

networks topology through the state spacend letr denote a €NtrOPY

particular instance oK. The changes occur at discrete points e

in time, soX is a discrete random process. A causal network H(7") =~ Z Z
connectivity service may gain an understanding of topological zES  zriboles

S . . The entropy of all possible sequences of topologies, for the
change by considering the past history of topological ChangeﬁetworkX over all time, is determined by evaluatirif( 7 ©)

5cannot transmit a message to itself for L — oo.

P(7*)log, P(T*)  (6)
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We assume that there is some non-zero message traffic acvassre the total predictabilitgz, of the dynamic topology is:
the entire topology of the network during the pause time af-
ter each epoch; that is to say, each node in the network en-
gages in one or more of the following tasks: transmission, for-
warding or receiving of messages. It is therefore necessary for
the network to completely resolve the topological uncertainBredictability gain quantifies (in bits) the predicability improve-
introduced from the last epoch, prior to communications takaent in going from lengtli statistics to lengtiL + 1 statistics.
ing place. This incremental increase in entropy from epoch koalso offers a way to quantify the spectral efficiency benefit
epoch, quantifies the non-deterministic aspects of topologieahde possible by improving the statistical model of the network
change resulting from node movement. We view the entropgainst the increased computational load of the more complex
rate of the network as fundamental randomnesseasure, or model. In the following section we estimate the predictability
mobility noise floorthat is a quantifiable characteristic of theof a network by counting the relative frequencylo$tates over
network’s mobility model. For example, we will see in Figure large number of epochs
1 that as node speed in the RWMM is increased, the mobility
noise floor or entropy rate of the network also has a corre:spond-I

G=3 Ah(L) = ~(log(z) ~h,)  (10)

V. M ARKOVIAN NATURE OF TOPOLOGICAL CHANGE

ing increase.
The entropy raté,, of the network is: o ] UNDER THERWMM ]
N This simulation demonstrates that RWMM defines a Marko-
h, = lim H(Z'") 7) vian dynamic topology process with transition matfixand

L—oo L steady state distribution. The topology of a network connect-
It is not possible for the network connectivity service to iming 3 nodes moving according to the RWMM was calculated
prove topological state predictability beyong by analyzing after each epoch far0® epochs. This gave a trajectory td®
topological data alone. Thus we may shy,represents an op- states. All 3 nodes were assumed to have the same transmission
timal level of state predictability. rangeR, and velocityv. The terrain for the network as a square
) ) of unit area, whose edges were folded over to form a torus. This

C. Topological Uncertainty avoided the introduction of additional “boundary conditions”,

An optimally predictive connectivity service requires comsuych as bouncing off terrain boundaries to the RWMM profile.
plete past state information: either by direct measuremeiat, or Figure 1 illustrates the rapid decrease@f for four node
priori knowledge of a stochastic process model for the t°p°|°9peedsv — 0.1,0.05,0.01,0.005 as the complexity of the sta-
ical change. Sub-optimal arrangements are possible by neglggtical model is increased (increasing block lengis A 1-

ing model aspects. step Markov Process has the property thatonverges tdi
For example, a connectivity service that ignores all statisti tI P property g 9 '

c
properties of state sequences, assumes that each pftates &a blAOCk length 2 [16]. We observe that beyond a blocklangth

from Equation 2 are equally likely, and thus faces the max! 2 /1 continues to decrease slowly. We conjecture that

mum uncertaintyog, () when topological change occurs withW'” not converge to an asymptotic valug, at block length 2.

each epoch. On the other hand, a connectivity service that has 1he rapid decrease &f, up to block length 2 and slow de-
priori knowledge of the stochastic process governing topolog€ase thereafter strongly suggesit-step Markov Model is a
ical change will experience the minimum uncertaihfyfrom simple and accurate stochastic model for topological change
epoch to epoch. We are interested in how this uncertainty cdAt @ RWMM. Thus we seb,, equal to the entropy rate of the
verges fromlog, (7) to &, as the stochastic model used by th€orresponding-step Markov Process and absorb any further
connectivity service improves. Crutchfield dealt with such iglependencies as apparent randomness. This simplification al-
sues in a unifying paper on entropy convergence [16]. In wh&Ws s to estimate the entropy rdig (mobility noise floor) of
follows, we analyze topological change using the same matt{@e network by considering state transitions only; that is, block
matical framework developed in [16], and for the sake of claritgngths = 2. Intuitively, we can think of this outcome as
and uniformity, adopt the same notation. resulting from the movement of each node being independent
Practical connectivity services cannot derive infinite blockom epoch to epoch and therefore network connectivity be-
length statistics, they must employ a finite-L approximation #9 largely independent beyond that of the connectivity of the

h,., such as theopological uncertainty:,: epoch. As node speed is increased, we see a corresponding in-
: e : crease in the networnkiobility noise floor(h,,), and thus an in-
hy=H(Z") - H(Z" ). (8) crease in the minimum overhead required by the network. This

Note that the topological uncertainty converges fastéy,tthan result is expected to be characteristic of mobility models where

=z . . . there is no movement correlation between nodes.
H(+L) does [16]. It is for this reason we adopt Equation 8 as

our definition of topological uncertainty.
V. FUNDAMENTAL LIMITS ON COMMUNICATION

D. Predicta_bility.(_zain o _ o The topological uncertaintﬁ; is the uncertainty experi-
The predictability gain in going from length statistics, to enced by a real connectivity service employing finite length
length L + 1 statistics is:

—~ —~ — SWe assume that there are no cyclic structures in topological change with
Ah, (L) =h,(L) — hy(L —1) (9) period greater than that of the largest block length tested.
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change. Such a service wihly be optimal if ally states are

in fact equally likely. The service implicitly assumes thatall
states are equally likely, and thus the topological uncertainty ex-
perienced by the service is always a maximum (no matter what
the underlying distribution of states actually is):

—~

h, = logy(7)
N(N -1
_ NN-D (14)
2
From Equations 13 and 14 the average network available net-
work throughput capacity for such a service no more than

N N(N-1
Cavail =C5 — g
2 2p

(15)
Equation 15 implies that the maximum number of nodes that
can be supported by a MANET without statistical topology

Fig. 1. Convergence of topological uncertaihty to entropy rateh,,. awareness is
Nz = cp+ 1. (16)

statistics. In this section we consdier the fundamental bounbiis result is analogous to the well known maximal entropy for
h,, places on the total network throughput for the RWMM. Thequi-probable events in discrete entropy.

topological uncertainty is the information that must be mea-
sured by the connectivity service via some measurement ch
nel after each epoch to correctly identify the topology of the net-
work. So at least,, bits must be transmitted after each epoch A MANET with zero topological uncertainty has a minimum

to account for the randomness introduced by node movemertétwork overhead df bits sec for allV. On the other hand, a
MANET with maximum topological uncertainty, has a mini-

mum network overhead requirement that grows with respect to

A. Throughput Capacit :
_g P pacity ) o N at a rate greater than the maximum network throughput ca-
Let ¢ bits sec denote the maximum transmission rate possnagcity_

over the wireless channel from any node any adjacent node ' \yie demonstrate that . for a MANET whose nodes move ac-

j- That is to say, each node can either transmit or receive,,rging to a RWMM, the minimum overhead imposes an upper
bits sec to or from any adjacent node respectively. Thus, t§8,nd on the uncertainty in state transitions.

uppermost limit on throughput available to the network is given grom section 1V, we know that the topology of the network is
by the total number of transmitting-receiving node pairs; thatyjarkoy Process. Therefore the topological uncertainty is

. Scaling of a RWMM MANET

is:
C< N b'ltS (ll) y—1~—1
2 sec hy = Z Z m; 15 j logy T 17)
whereN is the number of nodes in the network. i=0 j=0 bJ

wherer is the steady state vector affdis the transition ma-
trix respectively associated with the Markov Process. Let the

If Nis increased, the amount of information a routing protQsma)iest uncertainty for each of the possible state transitions be
col needs to describe the network can be expected to increase.

B. Available Throughput

If communication is allowed only during the pause timehe ) 1 o
minimum overhead),;,, in bits sec is: €min = M w15 51ogy T, 0<i,j<vy—-1
O . _ hy  bits (12) Then the topological uncertainty is bounded by
mwn T
P sec

. . . By > V2 emin.
The average available space for useful (higher layer) data is h 2 7 €min

found by subtracting the minimum network overhe@g,;,

Comparing with 12, this gives a lower bound on the minimum
from the network throughput capacity. paring wi 'S gV W a nimu

overhead.
bits From equation 13, we obtain an upper bound on the available

Cavait = C = Omin (13)  throughput for the network

SEec

For example, consider a network connectivity service that N 1, bits

does not consider statistical data when identifying topological Cavail < €7 — p ) fmin e
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This upper bound is negative when [11] M. Subbarao, “On Optimizing Performance in Mobile Packet Radio Net-
works.” PhD Thesis, The John Hopkins University, 1998.
cpN [12] A. Ephremides and B. Hajek, “Information Theory and Communication
€min > Pl (18) Networks: An Unconsummated UnionEEE Transactions on Informa-
2y tion Theory vol. 44, no. 6, pp. 2416—2434, 1998.
. . . [13] L. Viennot, P. Jacquet and T. Clausen, “Analyzing control traffic over-
Using equation 2, equation 18 becomes: head versus mobility and data traffic activity in mobile Ad-Hoc network

protocols,"Wireless Networksvol. 10, no. 4, pp. 447-455, July 2004

cpN [14] S. Lee, W. Su and M. Gerla, “Mobility Prediction and Routing in Ad
€min > W (19) Hoc Wireless Networks fechnical report Wireless Adaptive Mobility Lab-

oratory, Deptartment of Computer Science, University of California, Los

. . . . Angeles, CA

T_hat IS, the. qvallable thrOUthUt IS zero 'f]\?” of thel St?-te. rafs) s Lee, W. Su and M Gerla, “Wireless Ad-Hoc Multicast Routing with

sitions exhibit uncertainty greater tha{n)c”T. This limit Mobility Prediction,”Mobile Networking Applications, 6(4), pp. 351-360
2)2N =N 2001.
tends to 0 asV — co. [16] J. Crutchfield and D. Feldman, “Regularities Unseen, Randomness Ob-

So for anyeg, there exists some numbaf, such that a net- served: Levels of Entropy ConvergencBdnta Fe Institute Working Paper

work with more thanN, nodes and minimum state transition, _ 01-02-012, arXiv.org/abs/cond-mat/01021&&bruary 2001. o
. - L ] P. Jacqueta and D Voluceau, “Space-Time Information Propagation in
uncertaintye,, has available throughput zero. This indicateS "mobile Ad-Hoc Wireless Networks,proc. 2004 IEEE INFORMATION
that the RWMM MANET cannot support infinitely large net- THEORY WORKSHOBan Antonio, October, 2004. N
works [18] T. Camp and J. Boleng and V. Davies, “A Survey of Mobility Models for
: Ad Hoc Network Research{Vireless Communication& Mobile Com-
puting (WCMC): Special issue on Mobile Ad Hoc Networking: Research,
Trends and Applicationsol. 2, no. 5, pp 483-502, 2002.
VI. CONCLUSION [19] S. Xu, K. Blackmore and H. Jones, “Movement and Link Analysis of
A mobility metric based on the topological uncertainty of the Mobile Node in Ad Hoc Networks technical report Deptartment of Engi-

: P PR . neering, Australian National Universitieburary 2004.
network was proposed. This metric is an application of the 50] J. Tsumochiy, K. Masayamayy, H. Ueharay and M. Yokoyama, “Impact

nite L-block approximation to the entropy rate of the topology of Mobility Metric on Routing Protocols for Mobile Ad Hoc Networks,”
considering topological change as a random process. This meafroc. IEEE Pacific Rim Conference on Communications, Computers and

. . . . . . Signal Processing (PACRIMO3)p. 322-325, August 2003.
sure provided the minimum information required to deSC”QSl X. Perez-Costa, C. Bettstetter and H. Hartenstein, “Towards a mobility

topological change from epoch to epoch and thus constituted metric for comparablé: reproducible results in ad hoc networks research
a minimum overhead to quantify node mobility. The mobility ~ (Poster abstract) ACM Mobile Computing and Communications Review

. . . . (MC2R) vol. 7, no. 4, October 2003.
metric was used to describe scaling properties of MANETS Upy] ¢ E. Shannon, “A Mathematical Theory of Communicatid®)l System

der the random walk mobility model. We demonstrated that Tech. J,vol. 27, pp. 379-423 623-656, 1948.
topological change resulting from the random walk mobility

model is accurately described by a Markov process. These re-

sults suggest potential benefits in exploring statistically aware

network designs. Future work will develop models for non

stationary (statistically) topologies and explore the use of pre-

dictability gain measures as justification for increasing compu-

tational load.
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