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On Entropy Measures for Dynamic Network
Topologies: Limits to MANET

Roy Timo, Kim Blackmore and Leif Hanlen

Abstract—What are the fundamental limits on the communica-
tions potential of wireless networks? We contend that quantifying
topological dynamics resulting from node movement enables one
to: find the minimum overhead required by the network to main-
tain connectivity and, calculate the communication potential of the
network.

A mobility metric is proposed for the unbiased comparison of
networks. This is an entropy measure based on the uncertainty of
change in the topology of the network, and is referred to as topo-
logical uncertainty. Topological uncertainty determines the min-
imum overhead required by the network to correctly identify the
topology and hence, provide node connectivity. We use topological
uncertainty to derive fundamental bounds on the maximum bit
rate available within a Mobile Ad-Hoc Networking environment.

Our work demonstrates the potential of entropy measures to
describe the complexities of node connectivity within wireless net-
works.

Index Terms— Entropy, Mobile Ad-Hoc Networks (MANET),
Routing, Mobility Metrics, Throughput Capacity and Wireless
Communications.

I. I NTRODUCTION

Mobile Ad-Hoc Networking has evolved as a paradigm for
the creation of robust “self-describing”, “self-healing” net-
works [1–3]. Much mobile Ad-Hoc Networking literature [3–
7] has focussed on the development of techniques for rout-
ing data through resource-constrained wireless environments.
There has been little attention focussed on the causation of
unavoidable routing overhead in dynamic topologies [8]. In-
particular, knowledge of the fundamental limits to communica-
tion potential are necessary to determine what can be achieved,
what is a reasonable achievement, and how an optimal design
solution should be approached.

MANET research today is typically conducted using empir-
ical studies, for example [9], to estimate the abilities of pro-
posed network connectivity schemes1. The performance of

Kim Blackmore is with the Department of Engineering, Faculty of Engineer-
ing and Information Technology, The Australian National University, Canberra
ACT 0200, Australia. e-mail:Kim.Blackmore@anu.edu.au

Roy Timo is an undergraduate student with the Department of Engineering,
Faculty of Engineering and Information Technology, Australian National Uni-
versity, Canberra ACT 0200, Australia. Part of this work was completed while
visiting NICTA Canberra Laboratory. The remainder was completed as part
of an honours undergraduate thesis for the Australian National University. e-
mail:u3310099@anu.edu.au.

Leif Hanlen is with National ICT Australia, Locked Bag 8001, Canberra
ACT 2601 Australia, and affiliated with The Australian National University,
Canberra ACT 0200, Australia. National ICT Australia is funded through the
Australian Government’sBacking Australia’s Ability initiative, in part through
the Australian Research Council. e-mail:Leif.Hanlen@nicta.com.au .

1Network connectivity schemes refer to networking infrastructure, in partic-
ular network layers 2 and 3.

these schemes is evaluated via the use of the following parame-
ters [10]:packet delivery ratio, end-to-end delay, path optimal-
ity, and throughput.

Designing connectivity schemes to optimize one or more
of these parameters has shown to be a difficult task owing to
the complex relationship between node movement, topological
change, traffic patterns, multiple access and optimal route selec-
tion [11]. To reduce complexity, most researchers have adopted
the Open System Interconnection (OSI) framework for network
design [11, 12].

Conceived in the early 1970’s, the OSI framework allows
developers to divide network construction into isolated layers.
Provided inter-layer dependency remains small2, this approach
is very effective in isolating specific problems for rapid reso-
lution [12]. However, when applied to more hostile network-
ing environments, where inter-layer dependencies are much
higher and capacity bounds much lower, this design principle
has shown to be inadequate [4].

Motivated by this, MANET research is focussed on devel-
oping protocols specifically for the mobile wireless environ-
ment [3, 4]. The theme of this research is retaining the OSI
framework and developing MANET protocols within the ex-
isting structure. In particular, network layer routing proto-
cols have received much attention. However, all MANET de-
signs have exhibited increased overhead requirements associ-
ated with highly dynamic topologies [13]. When combined
with the much tighter constraints of the wireless channel, this
overhead introduces a situation where certain movement pat-
terns may render a MANET infeasible. In other cases, the
MANET may only be feasible for particularly efficient network
designs.

In the present work, we argue that the sole unavoidable con-
sequence of node mobility is a minimum overhead require-
ment necessary for the identification of the network’s topology.
Specifically, we contend that uncertainty in how the topology
changes over time is a natural way to compare mobile networks
and to quantify the identification process. Improved knowl-
edge, or predictability of future topological change enables data
to be routed more efficiently, potentially improving quality of
service (QoS), and increases the spectral efficiency of the net-
work.

The improvements to QoS and spectral efficiency available
from the predictability of topological change have been demon-
strated in recent work by Suet al. in [14, 15]. In [14] an es-
timate of route failure time was derived from the likely future
trajectory of each node calculated from their recent movements.

2A trait exhibited by many applications on static networks.
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This estimate was then used to optimally predict the time at
which each route should be re-calculated. Such knowledge re-
duced the number of protocol control packets, and improved
seamless route transitions across the dynamic topology required
for realtime applications3. Additionally, [15] used mobility pre-
diction to calculate the optimum refresh rate of a multicast rout-
ing protocol and hence minimize control packets. The routing
protocols implemented in [14, 15] are “statistically” aware; that
is to say, they exploit the statistical properties of the network
to reduce the uncertainty of link changes, and hence improve
performance.

From [14, 15] it is clear that many aspects of node move-
ment are irrelevant when defining the complexity of network-
ing within a mobile environment—if all nodes move very fast,
but at the same speed and in the same direction, the topology
does not change and static networking techniques would suf-
fice. Hence, a measure of network mobility4, should be based
on some aspect of topological change.

Currently, some MANET performance limitations result
from imposing artificial structures – for example OSI – and are
not indicative of fundamental communications potential of the
mobile wireless environment. However, uncertainty in topo-
logical change promotes the need for network overhead that is
fundamental to the MANET environment.

To improve network performance, we need to understand the
limiting communications potential of MANETs.
• What is the maximum data a network can send?
• What is the minimum overhead required to describe the

network over time?
The difference between these two values offers insight into the
scalability and throughput characteristics of MANETs.

This paper is organized as follows. Section II explains the
MANET operation and design environment. In section III we
present a model that quantifies network change based on the
work of Crutchfieldet al. in [16]. This model is applied
to a MANET operating over a Random Walk Mobility Model
(RWMM) in section IV, which demonstrates that a Markov Pro-
cess is an appropriate stochastic model for viewing topologi-
cal change. Section V applies results developed in section III
to evaluate the maximum available throughput for a RWMM
MANET. Finally, section VI concludes and discusses future
work.

II. T HE MANET ENVIRONMENT, SIMULATION & THE

RANDOM WALK MOBILITY MODEL

A. Connectivity in MANETs

MANETs are decentralized, self-organizing, rapidly deploy-
able, wireless networks, providing connectivity for a wide array
of electronic devices. In their purest form, MANETs consist
of a collection of mobile nodes which are distributed over a
geographical area, who communicate discrete blocks of data,
called packets, via radio links according to a set of predefined
protocols. The uniqueness of MANETs is found in that each
node has packet-switching capabilities and may simultaneously

3Real time applications have tight requirements on the maximum packet end-
to-end delay.

4A mobility metric.

represent a transmitter, receiver and a relay station [11]. Each
node may use these capabilities to actively participate in the re-
laying of packets to destinations beyond the transmission range
of the sender. As a result, packets may “relay” through sev-
eral intermediate nodes along source-destination (S-D) routes.
Additionally, as nodes are mobile, the stability of the wireless
links interconnecting nodes can fluctuate substantially. Conse-
quently, the topology of the network is dynamic, and to some
degree unpredictable.

The connectivity service of the network needs to react to the
random dynamic topology by identifying important topological
change and accordingly adjust S-D routes. Under high traf-
fic conditions it becomes increasingly important that route se-
lection is optimized to efficiently use the available bandwidth.
That is, route choices will inevitably need to exploit all facets
of the changing node connectivity. To achieve this, the con-
nectivity service requires accurate knowledge of the changing
topology. If node movement contains some uncertainty, then
topological change will necessarily exhibit uncertainty. The
quantity or degree of uncertainty in topological change,topo-
logical uncertainty, refers to the extent to which connectivity
patterns can be predicted.

If there is no uncertainty in node movement, the connectivity
service can determine how the node connectivity will change,
and therefore may devise optimalspace-time[17] routes for
each communication task. If however the connectivity service
does not know with certainty what the future topologies will be,
there is a need for additional data to be sent across the network.
This additional data constitutes network overhead.

B. Simulation

As MANETs are yet to be realized, the vast majority of their
development has been conducted within the simulation environ-
ment. Within this environment, proposed protocols are tested in
hypothetical networks, with various signal attenuation schemes
and traffic patterns. Node movement within these networks is
typically defined according to a syntheticmobility model[18].

The primary distinction between MANETs and fixed wire-
less networks are the topological changes resulting from node
movement. During simulation, it is typical to define a distance
R, the node’s transmission range, to represent the maximum
distance at which an acceptable BER is achieved to allow for
the signal to be understood. In this circumstance, topologi-
cal change is a direct result of node movement. Characteriz-
ing topological change is therefore equivalent to characterizing
node mobility.

C. Mobility Metric

A current open area of research belongs to the problem of
defining amobility metric to characterize the complexity of
routing in the presence of node mobility. If defined, this met-
ric would allow for the unbiased comparison of connectivity
services across mobility models, and present an opportunity to
design protocols to adapt to mobility changes. Proposed solu-
tions include [1, 20, 21]. Such measures however, do not readily
quantify the consequences of mobility in a manner that is re-
flected in the “best” performance available toanyconnectivity
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service. The best performance relates to theminimumtransmit-
ted information required by the connectivity service to describe
the network, and naturally stems from theminimuminforma-
tion required to describe topological change. Thus, the entropy
of topological change is a natural quantification of the effect of
node mobility on network’s connectivity service.

D. Mobility Model

The Random Walk Mobility Model (RWMM) is one of the
simplest and most commonly used of the synthetic mobility
models. In the RWMM, time is divided into a series of equal
duration epochs [19], so that movement is discrete in time. At
the start of an epoch each node moves from its current loca-
tion to a new location, in a randomly selected directionφ, at a
randomly selected speedv.

After each movement phase, a pause time of durationp oc-
curs. To simplify calculation of the network throughput capac-
ity, we only allow nodes to transmit during the pause time. All
nodes are assumed to be identical, with identical communica-
tions abilities.

The use of the RWMM here is not intended to provide a real-
istic representation of mobility patterns expected in real-world
applications. Rather it provides an opportunity to explore the
limits on network performance under the most challenging sit-
uations where there is no discernable structure in the mobility
patterns of nodes.

III. D YNAMIC NETWORKS, TOPOLOGICAL MOBILITY &
TOPOLOGICAL UNCERTAINTY

Let Γt
i,j be an indicator function representing the adjacency

of nodej to nodei at timet.

Γt
i,j =

{
1 link i → j exists:D(i, j) ≤ R

0 otherwise
(1)

whereD(i, j) indicates the distance between nodesi andj.
A network of N nodes can be described by the set of indi-

cator variablesΓt
i,j for i, j ∈ 1, 2, . . . , N . We note that a node

cannot be adjacent to itself5 and accordingly defineΓt
i,j ≡ 0

for all i = j. We let the set of indicator variablesΓt
i,j form an

N×N adjacency matrixAt, whereAt
i,j ≡ Γt

i,j . The adjacency
matrixAt represents the entire topology of the network at time
t. Each node has identical transmission power, and hence trans-
mission range, so each link is bi-directional withΓt

i,j = Γt
j,i.

ThusAt is a binary symmetric matrix.
The set of allowable configurations ofAt forms a state space

S ≡ s1, s2, s3, . . . , sγ , where

γ = 2
N(N−1)

2 (2)

At any one time the network must assume exactly one of these
states; that is,At = sk for some0 ≤ k ≤ N .

Let X be a random process denoting the trajectory of the
networks topology through the state spaceS, and letx denote a
particular instance ofX. The changes occur at discrete points
in time, soX is a discrete random process. A causal network
connectivity service may gain an understanding of topological
change by considering the past history of topological change.

5cannot transmit a message to itself

A. Fundamental Randomness

Fundamental randomness of topological change quantifies
the non-deterministic aspect of a network’s topology, and pro-
vides an estimate of the likelihood of a particular topology oc-
curring at a future time, given the topological history.

Let
ζt := {ζt

0, ζ
t
1, ζ

t
2, . . . , ζ

t
γ−1} (3)

represent the probability distribution across the state spaceS, at
time t whereζt

i ≡ P (xt = si). The probability of a particular
state occurring at the(t+1)th epoch is conditionally dependent
on the entire past:

ζt+1
i = P (xt+1 = si|x−∞, . . . , xt)P (x−∞, . . . , xt) (4)

Equation 4 implies, if there is some relationship between the
past and the future, then there is potential in using knowledge
of the past to improve prediction of the future. If we assume that
the network connectivity service is limited to considering only
a finite number of statesk, in its prediction of future states, we
may view topological change as ak-step Markov Process. In
section IV, we demonstrate that the majority of this past-future
dependance under the RWMM is described by a1-step Markov
process. Furthermore, fork ≥ 2 we find diminishing reduc-
tions in uncertainty and thus contend there is limited benefit in
pursuing increasing complex models for state change.

Given the state spaceS, and probability distributionζ, the
average information gained when a state is revealed to the con-
nectivity service is given byShannon’s entropy[22]:

H(x) = −
∑
si∈S

P (si) log2 P (si)

= −
γ−1∑
i=0

ζi log2 ζi (5)

B. Notation

Definition 1—L-Block Sequence:Let

−→x L = xt, xt+1, . . . , xt+L−1

denote a block ofL consecutive states which the network visits
starting after thetth epoch, where eachxt is selected from the
networks state spaceS with probability distributionζt.

We shall shortly consider the limit of an L-Block sequence,
asL becomes countably infinite.

Definition 2—Probability of L-Block Sequence:Let
P (−→x L) = P (xt, xt+1, . . . , xt+L−1) denote the joint
probability of L consecutive states starting after thetth

epoch.
Definition 3—Uncertainty of L-Block Sequence:The uncer-

tainty of the sequence ofL states is given byShannon’s block
entropy:

H(−→x L) ≡ −
∑
xt∈S

. . .
∑

xt+L−1∈S

P (−→x L) log2 P (−→x L) (6)

The entropy of all possible sequences of topologies, for the
networkX over all time, is determined by evaluatingH(−→x L)
for L →∞.
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We assume that there is some non-zero message traffic across
the entire topology of the network during the pause time af-
ter each epoch; that is to say, each node in the network en-
gages in one or more of the following tasks: transmission, for-
warding or receiving of messages. It is therefore necessary for
the network to completely resolve the topological uncertainty
introduced from the last epoch, prior to communications tak-
ing place. This incremental increase in entropy from epoch to
epoch, quantifies the non-deterministic aspects of topological
change resulting from node movement. We view the entropy
rate of the network as afundamental randomnessmeasure, or
mobility noise floorthat is a quantifiable characteristic of the
network’s mobility model. For example, we will see in Figure
1 that as node speed in the RWMM is increased, the mobility
noise floor or entropy rate of the network also has a correspond-
ing increase.

The entropy ratehµ of the network is:

hµ = lim
L→∞

H(−→x L)
L

(7)

It is not possible for the network connectivity service to im-
prove topological state predictability beyondhµ by analyzing
topological data alone. Thus we may say,hµ represents an op-
timal level of state predictability.

C. Topological Uncertainty

An optimally predictive connectivity service requires com-
plete past state information: either by direct measurement, ora
priori knowledge of a stochastic process model for the topolog-
ical change. Sub-optimal arrangements are possible by neglect-
ing model aspects.

For example, a connectivity service that ignores all statistical
properties of state sequences, assumes that each of theγ states
from Equation 2 are equally likely, and thus faces the maxi-
mum uncertaintylog2(γ) when topological change occurs with
each epoch. On the other hand, a connectivity service that hasa
priori knowledge of the stochastic process governing topolog-
ical change will experience the minimum uncertaintyhµ from
epoch to epoch. We are interested in how this uncertainty con-
verges fromlog2(γ) to hµ as the stochastic model used by the
connectivity service improves. Crutchfield dealt with such is-
sues in a unifying paper on entropy convergence [16]. In what
follows, we analyze topological change using the same mathe-
matical framework developed in [16], and for the sake of clarity
and uniformity, adopt the same notation.

Practical connectivity services cannot derive infinite block
length statistics, they must employ a finite-L approximation to
hµ, such as thetopological uncertaintŷhµ:

ĥµ ≡ H(−→x L)−H(−→x L−1). (8)

Note that the topological uncertainty converges faster tohµ than
H(−→x L)

L does [16]. It is for this reason we adopt Equation 8 as
our definition of topological uncertainty.

D. Predictability Gain

The predictability gain in going from lengthL statistics, to
lengthL + 1 statistics is:

∆ĥµ(L) ≡ ĥµ(L)− ĥµ(L− 1) (9)

where the total predictabilityG, of the dynamic topology is:

G ≡
∞∑

i=1

∆ĥµ(L) = −(log2(γ)− hµ) (10)

Predictability gain quantifies (in bits) the predicability improve-
ment in going from lengthL statistics to lengthL+1 statistics.
It also offers a way to quantify the spectral efficiency benefit
made possible by improving the statistical model of the network
against the increased computational load of the more complex
model. In the following section we estimate the predictability
of a network by counting the relative frequency ofL states over
a large number of epochs6.

IV. M ARKOVIAN NATURE OF TOPOLOGICAL CHANGE

UNDER THE RWMM

This simulation demonstrates that RWMM defines a Marko-
vian dynamic topology process with transition matrixT and
steady state distributionπ. The topology of a network connect-
ing 3 nodes moving according to the RWMM was calculated
after each epoch for105 epochs. This gave a trajectory of105

states. All 3 nodes were assumed to have the same transmission
rangeR, and velocityv. The terrain for the network as a square
of unit area, whose edges were folded over to form a torus. This
avoided the introduction of additional “boundary conditions”,
such as bouncing off terrain boundaries to the RWMM profile.

Figure 1 illustrates the rapid decrease of̂hµ for four node
speeds,v = 0.1, 0.05, 0.01, 0.005 as the complexity of the sta-
tistical model is increased (increasing block lengthsL). A 1-
step Markov Process has the property thatĥµ converges tohµ

at a block length 2 [16]. We observe that beyond a block length
of 2 ĥµ continues to decrease slowly. We conjecture thatĥµ

will not converge to an asymptotic valuehµ at block length 2.

The rapid decrease of̂hµ up to block length 2 and slow de-
crease thereafter strongly suggest a1-step Markov Model is a
simple and accurate stochastic model for topological change
for a RWMM. Thus we sethµ equal to the entropy rate of the
corresponding1-step Markov Process and absorb any further
dependencies as apparent randomness. This simplification al-
lows us to estimate the entropy ratehµ (mobility noise floor) of
the network by considering state transitions only; that is, block
lengthsL = 2. Intuitively, we can think of this outcome as
resulting from the movement of each node being independent
from epoch to epoch and therefore network connectivity be-
ing largely independent beyond that of the connectivity of the
epoch. As node speed is increased, we see a corresponding in-
crease in the networkmobility noise floor(hµ), and thus an in-
crease in the minimum overhead required by the network. This
result is expected to be characteristic of mobility models where
there is no movement correlation between nodes.

V. FUNDAMENTAL L IMITS ON COMMUNICATION

The topological uncertaintŷhµ is the uncertainty experi-
enced by a real connectivity service employing finite length

6We assume that there are no cyclic structures in topological change with
period greater than that of the largest block length tested.
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Fig. 1. Convergence of topological uncertaintychµ to entropy ratehµ.

statistics. In this section we consdier the fundamental bounds
ĥµ places on the total network throughput for the RWMM. The
topological uncertainty is the information that must be mea-
sured by the connectivity service via some measurement chan-
nel after each epoch to correctly identify the topology of the net-
work. So at least̂hµ bits must be transmitted after each epoch
to account for the randomness introduced by node movement.

A. Throughput Capacity

Let c bits sec denote the maximum transmission rate possible
over the wireless channel from any nodei to any adjacent node
j. That is to say, each node can either transmit or receivec
bits sec to or from any adjacent node respectively. Thus, the
uppermost limit on throughput available to the network is given
by the total number of transmitting-receiving node pairs; that
is:

C≤c
N

2

bits

sec
(11)

whereN is the number of nodes in the network.

B. Available Throughput

If N is increased, the amount of information a routing proto-
col needs to describe the network can be expected to increase.
If communication is allowed only during the pause timep, the
minimum overheadOmin in bits sec is:

Omin =
ĥµ

p

bits

sec
(12)

The average available space for useful (higher layer) data is
found by subtracting the minimum network overheadOmin

from the network throughput capacityC.

Cavail = C −Omin
bits

sec
(13)

For example, consider a network connectivity service that
does not consider statistical data when identifying topological

change. Such a service willonly be optimal if allγ states are
in fact equally likely. The service implicitly assumes that allγ
states are equally likely, and thus the topological uncertainty ex-
perienced by the service is always a maximum (no matter what
the underlying distribution of states actually is):

ĥµ = log2(γ)

=
N(N − 1)

2
(14)

From Equations 13 and 14 the average network available net-
work throughput capacity for such a service no more than

Cavail = c
N

2
− N(N − 1)

2p
(15)

Equation 15 implies that the maximum number of nodes that
can be supported by a MANET without statistical topology
awareness is

Nmax = cp + 1. (16)

This result is analogous to the well known maximal entropy for
equi-probable events in discrete entropy.

C. Scaling of a RWMM MANET

A MANET with zero topological uncertainty has a minimum
network overhead of0 bits sec for allN . On the other hand, a
MANET with maximum topological uncertainty, has a mini-
mum network overhead requirement that grows with respect to
N at a rate greater than the maximum network throughput ca-
pacity.

We demonstrate that , for a MANET whose nodes move ac-
cording to a RWMM, the minimum overhead imposes an upper
bound on the uncertainty in state transitions.

From Section IV, we know that the topology of the network is
a Markov Process. Therefore the topological uncertainty is

ĥµ =
γ−1∑
i=0

γ−1∑
j=0

πiTi,j log2

1
Ti,j

, (17)

whereπ is the steady state vector andT is the transition ma-
trix respectively associated with the Markov Process. Let the
smallest uncertainty for each of the possible state transitions be

εmin = min
0≤i,j≤γ−1

{
πiTi,j log2

1
Ti,j

}
0 ≤ i, j ≤ γ − 1.

Then the topological uncertainty is bounded by

ĥµ ≥ γ2εmin.

Comparing with 12, this gives a lower bound on the minimum
overhead.

From equation 13, we obtain an upper bound on the available
throughput for the network

Cavail ≤ c
N

2
− 1

p
γ2εmin

bits

sec
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This upper bound is negative when

εmin >
cpN

2γ2
(18)

Using equation 2, equation 18 becomes:

εmin >
cpN

(2)2N2−N
(19)

That is, the available throughput is zero if all of the state tran-
sitions exhibit uncertainty greater than cpN

(2)2N2−N
. This limit

tends to 0 asN →∞.
So for anyε0, there exists some numberN0 such that a net-

work with more thanN0 nodes and minimum state transition
uncertaintyε0, has available throughput zero. This indicates
that the RWMM MANET cannot support infinitely large net-
works.

VI. CONCLUSION

A mobility metric based on the topological uncertainty of the
network was proposed. This metric is an application of the fi-
nite L-block approximation to the entropy rate of the topology
considering topological change as a random process. This mea-
sure provided the minimum information required to describe
topological change from epoch to epoch and thus constituted
a minimum overhead to quantify node mobility. The mobility
metric was used to describe scaling properties of MANETs un-
der the random walk mobility model. We demonstrated that
topological change resulting from the random walk mobility
model is accurately described by a Markov process. These re-
sults suggest potential benefits in exploring statistically aware
network designs. Future work will develop models for non
stationary (statistically) topologies and explore the use of pre-
dictability gain measures as justification for increasing compu-
tational load.
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