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Neural Network Prediction of Radio Propagation

Lei Qiu, Danchi Jiang and Leif Hanlen

Abstract— Preliminary work for predicting signal distributions ~ which are temporally and spatially coherent over a non-
in a local area, using a feature-based neural network is presented. negligible range. Specfically, for a “position” in space-time

The neural network is trained by radio signal measurements at {r,t}, we expect that the fading at a “nearby” position
known positions. After appropriately setting the parameters_of {r’_'_(’s t} will have similar characteristics, faf > A
nodes of the neural network, a corresponding virtual propagation ’ ! :

environment is built, which reasonably represents the actual e apply a feature-based neural network learning algorithm
environment. Radio signal strength distribution is predicted to predict the received radio signal distribution as a function

by the virtual environment. A new method for radio signal of positionr based on off-line measurements. We produce a
measurement is introduced which mitigates the effect of small w31 environment model” where dominant features such
scale fading when determining the fingerprint of a position. . - . .
as reflective walls and scattering bodies are provided as
Index Terms—radio propagation, neural networks, radio mea- model parameters. We set up a neural network to “learn” this
surement, |EEE 802.11b environment based on the wireless signal strength measured
at particular (stochastic) positions. We use the trained neural
I. INTRODUCTION network to predict the radio signal strength. Experimental
Prediction of radio propagation in indoor environments sults demonstrate the effectiveness of this algorithm.
known to be a difficult problem, due to reflection, diffraction The remainder of this paper is arranged as follows. In
and scattering of radio waves. Numerous statistical and detg®ction Il two radio propagation models are given as pre-
ministic radio propagation models are available for predictifninaries. We outline the characteristics and efficacy of the
wireless Signa| Spa’[ia| and tempora| distributions [1_4] TH’@OdGlS. In section IlI provides an introduction to feature-based
performance of these models is unsatisfactory due to thBgural networks. The neural network learning algorithm is
accuracy and/or Computationa| Comp|exity, especia”y in progiSCUSSGd in section V. Section V shows how to set up the ex-
agation environments with dense mu|t|-path such as inddwriment and measurement examples. The “stochastic method”
scenarios. is compared with common static measurement approaches.
Many predictive methods use ray-tracing as a founddhe measured radio signal distribution and the learned signal
tion [5]. Ray-tracing is a well known, and widely used radiglistribution are compared in section VI and the prediction
propagation model, based upon the approximation of wirelgggrformance based on the two propagation models is analyzed.
signals as linear rays emanating from a point-like Sourc-éhe last section is devoted to the conclusion and discussion
The rays are straight lines, perpendicular to the wavefrof, future work.
possibly augmented with reflections and/or scattering [5, 6].
The model has been used in several scenarios, for example [1, Il. RADIO PROPAGATION MODELS
7] and takes its intuition from physical optics. Although ray- consider a frequency-flat fading environment, where the
tracing is an effective theoretical tool for indoor wirelesghannel is given by
environments [8], a fine spatial resolution is required for
accurate prediction. The cost of computation increases with
increasing sample resolution and the details of structures aldiifl ¥ is the receive symboly is the transmit symbol with
radio propagation path are critical to final prediction resultécomplex scalar) channel gainand AWGN samplen. The
At high resolution, ray-tracing typically incorporates so-calleghannel comprises. paths, and the signal received is a
“small scale” fading which varies on the order of a feWwveighted sum of signals from each path without ISI. This
wavelengths. However, for point-like receivers small scaié the well-known discrete model for multipath channels [9,
fading is essentially not predictable for ranges beyond hal0], such that :
wavelength [11]. Moreover, including small-scale fading does o — Z o] 9%
not provide useful predictive information. _ !
For these reasons, we develop a ray-tracing like model =t o )
which attempts to accurately mattirge-scalefading effects For any channel model, we must trade off prediction relia-

in the channel. We define large-scale fading as variatioRility with computation expense, and measurement resolution.
In our case, we are limited to signal strength (real power)
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« Model 2: all received power is assumed to be a weighteday be arranged to perform equally well with the full phasor
sum of coherent power blocks (no phasor componergym of model 1, under the relaxation thatmay take on
— so the underlying electrical source of the power meaegative values.
surement is ignored. The name “coherent power” reminds

the reader that the underlying signals are effectively allj||. N EURAL NETWORKS AND LEARNING ALGORITHMS

in phase. - .
P Artificial neural networks are well-developed for learning

functional relationships [12] and comprehensive reviews exist,
such as [13]. Artificial neural networks arise from imitations

Consider a single path, of a multi-path environment. Agf biological neural systems, providing a simple application of
electric signal arrives at the receiver with phase (and ampbarallel computation and have been extended to solve system
tude) determined by path length and reflection characteristigsarning and optimization problems [14, 15].

The electric field with distancd; to transmitter at time is Any function may be approximated by a piece-wise linear

A. Propagation Model 1: electric signal

given by [9] function, which we shall denote as a “basis function”. Let
Eodo 2md; o(k, p) be the general basis function used for approximation,
Ei(dit) =T;——c ( 3 ) (t) (1) wherek is the index of the function and is the state. We

) o _ . may consider the state in terms of function samples, where the
where Ej is the electric field (V/m) at a reference point with,\+iq1 is evaluated at a finite set of *

distanced, to transmitter,\ is the wavelength of the radio\yhere there is no ambiguity, we shall interchange the state
wave. The constari; is the reflected field strength, in the caseb_ and in indexi. A function .J(p) can be approximated by a
that the wave is reflected. For multiple waves the total electiig,qjs-

states) i =1,2,....

field at a position is the scalar sum of all the components (LOS _ K
and/or NLOS) given by J(i,r) =Y (i), (6)
E(r) = 3 Ei(r) (2) -
r) = i\r . . .
- wherer = {r1,...rg} are the weights associated with the

basis set{¢o (i), ..., px(7)}. The best approximation, in an

The corresponding received signal power at the posmonMMSE sense, for a given set of basis functions may be

is [5] : : .
|E(r)[2G, 22 obtained via solving:
P(r) = —~2—""— Watts 3)
. . 48072 . . . r =arg min Z ’J(z) — j(i,r) ’ . (7
This model includes small scale fading, as is typically used reRE+1 £
for scattering models. Note that the powEris the “model , ,
parameter” which will be measured, nbt Equation (6) represents single layerneural network. For

more complex (or higher dimensional) functions, multiple
layers may be used. Such multi-layer neural networks are said

o . o to contain “hidden layers” which are composites of two or
Prediction of small-scale fading statistics is known to bgore single layer networks such as:

an ill-posed problem [11]. Given the power measurements

available at the receiver, we wish to estimate the value of a s = - ,

“large-scale” fading process: ie, one which may be modelled J(i,r) = r(k)o Zr(k’l)xl(z) ’

without recourse to phase informatidfor a multi-path signal, k=1 =t

each path contributes to the power at receive locatiofhe where the base function(s) is a smooth monotonic function
)

B. Propagation Model 2: coherent power

)

power contributed by thé™ path is [8] taking values in(0,1) or such a function taking values in
P (=1,1). i.e,, == or tanh(s).
alg : +e X
Pi(r) = Hai (4) Sometimes, there are functions of the state known to be

Ii(r)? important or useful in the prediction. In these cases, interme-
where Pk(r) is given direcﬂy from Signa|-5trength measurediate functions, called features, are introduced to capture the
ments. Heren is a constant, related to the antenna pattertifportant aspects of the current state. Let the feature vector
carrier frequency and initial path directio, is the trans- associated with staté be denoted ag(i), the single layer
mitter power,,(r) is the length of the unfolded path fromnetwork now can be written as(i,r) = >, r(k)¢x(f(7)).
transmitter to locatiorr via path k, o; is the transmission Features can be obtained by prior-knowledge of the network or
or reflection coefficient of theth wall along the path. We heuristic policies. In this paper, the radio propagation models
assume only a single reflection per path in this paper, so @€ used as feature functions.
total power at a position is given by

L L P IV. FEATURE-BASED NETWORK DESIGN
aPy
P(r)=) P(r)=> ——s0k (5)  Both generic and kernel-based neural networks have been
k = ()

applied to the study of signal strength measurement and
Model 2 assumes no phasor effects in the field received: ptiediction issues, see for example [16, 17]. However, previous
signals arrive at the receiver coherently. We conjecture modeh®rk has focussed on the application of generic learning
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methods to the special class of the signal strength of wire 7. \L
less communication. In this paper, we use the feature-base 2 AN
learning method, which incorporates the special feature of th /@ Dﬁw e R kR \
signal strength model under consideration. Rather than choo: | |[* <2>Q e | -

the usua[ sigmoidal function, as the basis, we use either rad —— §DED i — S
propagation model 1 or model 2 instead. As such, the neur: LI i n E

network itself has a strong physical meaning. In addition B =
because the neural network basis is selected closely with tt ic
real model, it is expected the resulted method can be moi o
efficient and effective.

At the off-line stage we measure the received signal a
given positions and use this data to train the feature weighi | ] :
of the neural network, which are in the the hidden layer. i
The features are the position and reflection coefficient o "
reflectors (walls) or scatters. The output layer is the Neura g
Network cost function/, the difference between the measured [
power distribution and the estimated power distribution. The
parameters of walls are adjusted according to the given pow: N
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distribution map of a certain area, which has a certain grid size B ~ 74
In the one dimensional casé&,(m) is the power at position
r,, wherem = 1,2,..., M. There areM known positions Fig. 1. NICTA Building, at Northborne Ave, Canberra. Line of measurements

stored in database, and each is a Iabeling of a physical along corridor shown at left-hand edge. North is at top of page.

location. Sincem uniquely specifies,,, we may considerP
as a function ofm. We assume we know the position an%_ Static Method
reflection coefficient ofV ideal walls, either from an iteration
or an initial guess.

Each wall will reflect its incident wave and contribute
signal component to a certain positiat),. We either use
propagation model 1 or model 2 to calculate the estimat
power distributionP(m, R) at the positiorr,,,. HereR . is the
array of the parameters of th€ walls. The cost function/

The receiver was placed at a position and the distance
apetween receiver and transmitter measured. Then we ran a
TCL/TK script to scan all the available APs in the neighbor-
and and store their signal strengths in database. After one
second, we repeated the scanning again until the Maximum
Scanning Number (MSN) is reached. The mean and maximum
values of the MSN signal strengths at each position was stored.

is defined as . . o
u ]L)ur:jng the measurement cycle, the receiver position was held
1 . 2 ixed.
J = 9 Z ‘P(m) - P(m’R)| ©) In the static measurement experiment small scale fading
m=1 is observed. In Figure 2 we tak®/ SN = 20 samples at
and minimized by the fixed point equation: a position. T/R distance means the distance between the
o] transmitter and receiver. The unit of received signal power
Ri+1 =Ry — WTR;.C (10) at the receiver isiBm. The measurement step size within

i distance from380cm to 550cm is 5em. Experiment results
We set a threshold for the cost function/, and for.J < e ghow the signal strength is stable in the temporal scale while

the fixed point iterations are terminated. suffering severe (and unpredictable) fading in the spatial scale.
This is because small scale fading is typically due to phase
V. EXPERIMENTAL MEASUREMENT SETUP effects and occurs on spatial scales smaller than a wavelength

For field measurements the Compaq N800V installed Wi‘ﬁ\ ~ 120_m)_‘ In_ d_ense multl-path, pred|cf[|on of the fading
Lucent ORINOCO Gold 802.11b WLAN adaptor [18] Wa§haracter|st|cs is ineffective for extrapolation peyond approx-
used as a measurement device. A single Lucent ORINOGBAtEly one wavelengthh [11], under the experimental setup
AP-1000 Access Point (AP) was deployed as the transmittHF.Ed' Similar observations have been made in the temporal
The Operating System (OS) for the laptop was Redhat 4:85¢ [23]
with kernel updated to 2.4.27. The adaptor driver version is .

0.13-d [19] patched the scanning patch by Pavel Roskin [28, Fuzzy sampling method

21], Wireless Extensiomnd Wireless tools[22] provide the Given only simple power measurements, a metric is desir-
received signal strength from different APs. The laptop usable which estimates tharge scalefading characteristics of
Wireless Tools v.26 and Wireless Extensions v.16. The fielde field, without inappropriate emphasis on the small scale,
measurements were taken at the National ICT Australia offitral effects. A natural (statistical) approach would be to take
in Canberra, Australia, shown in Figure 1. The transmitter wasnumber of samples within a nearby region and to perform an
located at the end of a corridor and measurements were takeeraging over the samples. We may aékhy ignore small
along the length of the corridor. scale fading?”the answer to this comes from well known
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Fig. 2. Small scale fading, from measured data along corridor. Note schilg- 3. 8 Reflectors with Propagation Model 1. Crosses denote measurements,

isin cm. )\ &~ 12cm circled crosses mark training points.

TABLE |
MODEL COMBINATIONS

from the transmitter, among which the step sizé®.ien. We

Smﬁgeslcfle L?;%Z,jcg‘ © use the first radio propagation model with eight reflectors.
(static) (fuzzy) The circles are the training signal strength at known positions,
Reflective walls la lla namely at positions with distances bfn, 2m, ..., 16m from
Scattering bodieg Ib IIb the transmitter.

The position of theith reflector is represented by X +
b;Y +¢; = 0. Including the reflection coefficient;, the weight
results in extrapolation of functions, such as the Nyqui§kctor of theith reflector is defined ds; b; c; o). All weight
sampling result, and [11]: if we wish to predict small scalgectors constitute the weight matrix for the neural network.
fading, we must sample at well above the maximum rate 9fith knowledge of position of the reflector, we can calculate
change in the fade, which requiresown callibration points the ynfolded length from the transmitter to the receiver, based
at a sampling density greater thaxy2. However, large scale on jmage theory. Here we only consider simple one-bounce
fading is dominated by the free-space distance loss in powgkenario.
and thus has a much lower rate of change over a local area, by, yhe training process, the converging is rather slow when
comparison,| E(r)| is (approximately) wavelength invariant.y,e cost function is approximately equal 650. The cost

; -3
anI(:j varleshat a”.rgue_omd . h , dfunction is bounded abové40 as shown in Figure 7. It is
or-each callibration positiom, we measure the receivedgy,q ., jn Figure 3 that the final estimated power distribution

signal strength at a set of positions in the near neighborho&&esn,t match the measured power well. It differs little with
by simply moving the receiver within a nearby region duringne initial estimated power distribution
the MSN scanning process. We use the area-averaged sign '

ftrength e_ls”theflngerprmt of the pOS!t!On.ThIS methoq IS Ca”%%e sixteen scatterers as the hidden nodes. For each node
stochastic” method. Here the position is not a point but

small area t%g weight vector is[a; b_i ails where'(ai,bi) i; 'the X-Y
' axis of the scatter and; is the reflection coefficient of the
scatter. With phase term included in propagation model, this
o ) . neural network is efficient in decreasing cost function, which
Our objective in this section is to evaluate several modglyonstrates the first propagation model has strong capability
combinations, toward providing a robust and sufficiently acCy fiting the training data. In order to prevent overfitting, the
rate modelll_ng procedure. We have four combinations, whigh«t fnction in Figure 4 g8, though this neural network
we summarise in Table 1. In each case the neural network converge its cost function close to zero. This figure shows

trained with measurement data at a collgction Of data pc,)infﬁat while the phasor addition model can be easily matched to
and the resulting prediction compared with additional pointgne trained data, it suffers from wild fluctuations away from

the measured data when used to predict signal strength. The
A. Model 1 results reason is simple: small scale fading is highly reliant on local
Firstly we use reflectors as the neural network nodes in theannel parameters, and thus samplimgstbe performed at
hidden layer. The statically measured signal is shown in Figr above the Nyquist sampling rate. Sadly, the sampling rate is
ure 3. The transmitter is deployed at the origin. The measut®unded from above by/2 which requires a sampling density
ments are performed at distanceslof, 1.5m,2m,...,16m of greater than 3 samples per wavelength.

ﬂiven the same measured signal power distribution, we

V1. EXPERIMENT RESULTS AND ANALYSIS
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Fig. 4. 16 Scatterers with Propagation Model 1. Crosses denote measiig- 5 4 Reflectors with Propagation Model 2. Crosses denote measurements,
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fading.
-10
Based on the learned features of the wireless propagation © '""ia'jgmmwef
environment, it is possible to predict signal strength at other —20r g0 ¢ |
positions. We use measured signal strength distribution at Ooo
0.5m,1.5m,...,15.5m to validate the predicted values. The __ -30F: ¢ .
prediction result matches the measured data well within a5 ® %y L °
distance of4 meters from transmitter as shown in Figure 4. 1:’_40, ¢ o
() ® o ®
% & * Lroxdxex® o
o o & *x @
_507 4
B. Model 2 results °
¢
The prediction accuracy with the second radio propagation _gglL o i
model can be improved by using a “stochastic” measurement 000 ©
method. We apply the radio propagation model 2 in our 7ot ‘ ‘ ‘ ‘ ‘ ‘ ‘
algorithm to train the neural network until the cost functidn 2 4 6 8 100 12 14 16

is relatively small. Once the training process is finished, we T/R Distance (m)

apply the weight matrix to calculate signal strength distribution

at unknown positions. Fig. 6. 8 Scatterers with Propagation Model 2. Crosses denote measurements,
In Figure 5 four ideal reflectors are acting as the neurgcled crosses mark training points.

network hidden nodes with a final value of cost function

around17. Training signal strength is measured at positions

with distances oflm,2m,...,17m to the transmitter. The

signal fluctuates smoothly, comparing with Figure 4 and A new algo_rithm to predict wireless signal propagation en-
Figure 3. We estimate signal distribution at positions gfironment, using feature-based neural network was presented.

1.5m,2.5m, ...,15.5m. The error between predicted valued he neural network constructed a virtual propagation environ-
and measured values is reasonably small. ment which reasonably represented the real environment. We

With the same training signal strength distribution, we uséPPly & new method — “stochastic position” method — in field
eight scatters as the hidden layer in Figure 6 giving eigﬁignal strength measurement. This method mitigates the effect
n(H small scale fading when examining signal strength values.

VIl. SUMMARY AND FUTURE WORK

nodes. In this figure the final value of cost function is arou
14. The prediction can achieve the same level of accuracy as
that by reflectors. ACKNOWLEDGEMENTS
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