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Neural Network Prediction of Radio Propagation
Lei Qiu, Danchi Jiang and Leif Hanlen

Abstract— Preliminary work for predicting signal distributions
in a local area, using a feature-based neural network is presented.
The neural network is trained by radio signal measurements at
known positions. After appropriately setting the parameters of
nodes of the neural network, a corresponding virtual propagation
environment is built, which reasonably represents the actual
environment. Radio signal strength distribution is predicted
by the virtual environment. A new method for radio signal
measurement is introduced which mitigates the effect of small
scale fading when determining the fingerprint of a position.

Index Terms— radio propagation, neural networks, radio mea-
surement, IEEE 802.11b

I. I NTRODUCTION

Prediction of radio propagation in indoor environments is
known to be a difficult problem, due to reflection, diffraction
and scattering of radio waves. Numerous statistical and deter-
ministic radio propagation models are available for predicting
wireless signal spatial and temporal distributions [1–4]. The
performance of these models is unsatisfactory due to their
accuracy and/or computational complexity, especially in prop-
agation environments with dense multi-path such as indoor
scenarios.

Many predictive methods use ray-tracing as a founda-
tion [5]. Ray-tracing is a well known, and widely used radio
propagation model, based upon the approximation of wireless
signals as linear rays emanating from a point-like source.
The rays are straight lines, perpendicular to the wavefront,
possibly augmented with reflections and/or scattering [5, 6].
The model has been used in several scenarios, for example [1,
7] and takes its intuition from physical optics. Although ray-
tracing is an effective theoretical tool for indoor wireless
environments [8], a fine spatial resolution is required for
accurate prediction. The cost of computation increases with
increasing sample resolution and the details of structures along
radio propagation path are critical to final prediction results.
At high resolution, ray-tracing typically incorporates so-called
“small scale” fading which varies on the order of a few
wavelengths. However, for point-like receivers small scale
fading is essentially not predictable for ranges beyond half-
wavelength [11]. Moreover, including small-scale fading does
not provide useful predictive information.

For these reasons, we develop a ray-tracing like model
which attempts to accurately matchlarge-scalefading effects
in the channel. We define large-scale fading as variations
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which are temporally and spatially coherent over a non-
negligible range. Specfically, for a “position” in space-time
{r, t}, we expect that the fading at a “nearby” position
{r + δ, t} will have similar characteristics, forδ � λ.

We apply a feature-based neural network learning algorithm
to predict the received radio signal distribution as a function
of position r based on off-line measurements. We produce a
“virtual environment model” where dominant features such
as reflective walls and scattering bodies are provided as
model parameters. We set up a neural network to “learn” this
environment based on the wireless signal strength measured
at particular (stochastic) positions. We use the trained neural
network to predict the radio signal strength. Experimental
results demonstrate the effectiveness of this algorithm.

The remainder of this paper is arranged as follows. In
section II two radio propagation models are given as pre-
liminaries. We outline the characteristics and efficacy of the
models. In section III provides an introduction to feature-based
neural networks. The neural network learning algorithm is
discussed in section IV. Section V shows how to set up the ex-
periment and measurement examples. The “stochastic method”
is compared with common static measurement approaches.
The measured radio signal distribution and the learned signal
distribution are compared in section VI and the prediction
performance based on the two propagation models is analyzed.
The last section is devoted to the conclusion and discussion
of future work.

II. RADIO PROPAGATION MODELS

Consider a frequency-flat fading environment, where the
channel is given by

y = ax + n

and y is the receive symbol,x is the transmit symbol with
(complex scalar) channel gaina and AWGN samplen. The
channel comprisesL paths, and the signal received is a
weighted sum of signals from each path without ISI. This
is the well-known discrete model for multipath channels [9,
10], such that

a =
L∑

i=1

|αi| e−jφi

For any channel model, we must trade off prediction relia-
bility with computation expense, and measurement resolution.
In our case, we are limited to signal strength (real power)
measurements. We consider two simple models for the power
received at a particular pointr in space.

• Model 1: thesignal received is a phasor sum of com-
plex signals, which result in a particular real power. In
this way, the common phasor model for electric signals
provides a hidden model for the received power.
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• Model 2: all received power is assumed to be a weighted
sum of coherent power blocks (no phasor component)
– so the underlying electrical source of the power mea-
surement is ignored. The name “coherent power” reminds
the reader that the underlying signals are effectively all
in phase.

A. Propagation Model 1: electric signal

Consider a single path, of a multi-path environment. An
electric signal arrives at the receiver with phase (and ampli-
tude) determined by path length and reflection characteristics.
The electric field with distancedi to transmitter at timet is
given by [5]

Ei(di, t) = Γi
E0d0

di
cos
(

2πdi

λ

)
x(t) (1)

whereE0 is the electric field (V/m) at a reference point with
distanced0 to transmitter,λ is the wavelength of the radio
wave. The constantΓi is the reflected field strength, in the case
that the wave is reflected. For multiple waves the total electric
field at a position is the scalar sum of all the components (LOS
and/or NLOS) given by

E(r) =
∑

i

Ei(r) (2)

The corresponding received signal power at the positionr
is [5]

P (r) =
|E(r)|2Grλ

2

480π2
Watts (3)

This model includes small scale fading, as is typically used
for scattering models. Note that the powerP is the “model
parameter” which will be measured, notE.

B. Propagation Model 2: coherent power

Prediction of small-scale fading statistics is known to be
an ill-posed problem [11]. Given the power measurements
available at the receiver, we wish to estimate the value of a
“large-scale” fading process: ie, one which may be modelled
without recourse to phase information.For a multi-path signal,
each path contributes to the power at receive locationr . The
power contributed by thekth path is [8]

Pk(r) =
αP0

lk(r)2
∏

i

σi (4)

wherePk(r) is given directly from signal-strength measure-
ments. Hereα is a constant, related to the antenna pattern,
carrier frequency and initial path direction,P0 is the trans-
mitter power,lk(r) is the length of the unfolded path from
transmitter to locationr via path k, σi is the transmission
or reflection coefficient of theith wall along the path. We
assume only a single reflection per path in this paper, so the
total power at a position is given by

P (r) =
L∑
k

Pk(r) =
L∑

k=1

αP0

lk(r)2
σk (5)

Model 2 assumes no phasor effects in the field received: all
signals arrive at the receiver coherently. We conjecture model 2

may be arranged to perform equally well with the full phasor
sum of model 1, under the relaxation thatσ may take on
negative values.

III. N EURAL NETWORKS AND LEARNING ALGORITHMS

Artificial neural networks are well-developed for learning
functional relationships [12] and comprehensive reviews exist,
such as [13]. Artificial neural networks arise from imitations
of biological neural systems, providing a simple application of
parallel computation and have been extended to solve system
learning and optimization problems [14, 15].

Any function may be approximated by a piece-wise linear
function, which we shall denote as a “basis function”. Let
φ(k, ρ) be the general basis function used for approximation,
wherek is the index of the function andρ is the state. We
may consider the state in terms of function samples, where the
function is evaluated at a finite set of “states”ρi, i = 1, 2, . . ..
Where there is no ambiguity, we shall interchange the state
ρi and in indexi. A function J(ρ) can be approximated by a
basis:

J̃(i, r) =
K∑

k=0

rkφk(i), (6)

where r = {r1, . . . rK} are the weights associated with the
basis set{φ0(i), ..., φK(i)}. The best approximation, in an
MMSE sense, for a given set of basis functions may be
obtained via solving:

r = arg min
r∈RK+1

∑
i

∣∣∣J(i)− J̃(i, r)
∣∣∣2 . (7)

Equation (6) represents asingle layerneural network. For
more complex (or higher dimensional) functions, multiple
layers may be used. Such multi-layer neural networks are said
to contain “hidden layers” which are composites of two or
more single layer networks such as:

J̃(i, r) =
K∑

k=1

r(k)σ

(
L∑

l=1

r(k, l)xl(i)

)
, (8)

where the base functionσ(s) is a smooth monotonic function
taking values in(0, 1) or such a function taking values in
(−1, 1). i.e., 1

1+e−s or tanh(s).
Sometimes, there are functions of the state known to be

important or useful in the prediction. In these cases, interme-
diate functions, called features, are introduced to capture the
important aspects of the current state. Let the feature vector
associated with statei be denoted asf(i), the single layer
network now can be written as̃J(i, r) =

∑
k r(k)φk(f(i)).

Features can be obtained by prior-knowledge of the network or
heuristic policies. In this paper, the radio propagation models
are used as feature functions.

IV. FEATURE-BASED NETWORK DESIGN

Both generic and kernel-based neural networks have been
applied to the study of signal strength measurement and
prediction issues, see for example [16, 17]. However, previous
work has focussed on the application of generic learning
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methods to the special class of the signal strength of wire-
less communication. In this paper, we use the feature-based
learning method, which incorporates the special feature of the
signal strength model under consideration. Rather than choose
the usual sigmoidal function, as the basis, we use either radio
propagation model 1 or model 2 instead. As such, the neural
network itself has a strong physical meaning. In addition,
because the neural network basis is selected closely with the
real model, it is expected the resulted method can be more
efficient and effective.

At the off-line stage we measure the received signal at
given positions and use this data to train the feature weights
of the neural network, which are in the the hidden layer.
The features are the position and reflection coefficient of
reflectors (walls) or scatters. The output layer is the Neural
Network cost functionJ , the difference between the measured
power distribution and the estimated power distribution. The
parameters of walls are adjusted according to the given power
distribution map of a certain area, which has a certain grid size.
In the one dimensional case,P (m) is the power at position
rm where m = 1, 2, . . . ,M . There areM known positions
stored in database, and eachrm is a labeling of a physical
location. Sincem uniquely specifiesrm we may considerP
as a function ofm. We assume we know the position and
reflection coefficient ofN ideal walls, either from an iteration
or an initial guess.

Each wall will reflect its incident wave and contribute a
signal component to a certain positionrm. We either use
propagation model 1 or model 2 to calculate the estimated
power distributionP̄ (m,R) at the positionrm. HereR is the
array of the parameters of theN walls. The cost functionJ
is defined as

J =
1
2

M∑
m=1

∣∣P (m)− P̄ (m,R)
∣∣2 (9)

and minimized by the fixed point equation:

Rk+1 = Rk − γ
∂J

∂Rk
(10)

We set a thresholdε for the cost functionJ , and forJ < ε
the fixed point iterations are terminated.

V. EXPERIMENTAL MEASUREMENTSETUP

For field measurements the Compaq N800V installed with
Lucent ORiNOCO Gold 802.11b WLAN adaptor [18] was
used as a measurement device. A single Lucent ORiNOCO
AP-1000 Access Point (AP) was deployed as the transmitter.
The Operating System (OS) for the laptop was Redhat 9.0
with kernel updated to 2.4.27. The adaptor driver version is
0.13-d [19] patched the scanning patch by Pavel Roskin [20,
21], Wireless Extensionand Wireless tools[22] provide the
received signal strength from different APs. The laptop uses
Wireless Tools v.26 and Wireless Extensions v.16. The field
measurements were taken at the National ICT Australia office
in Canberra, Australia, shown in Figure 1. The transmitter was
located at the end of a corridor and measurements were taken
along the length of the corridor.

Fig. 1. NICTA Building, at Northborne Ave, Canberra. Line of measurements
along corridor shown at left-hand edge. North is at top of page.

A. Static Method

The receiver was placed at a position and the distance
between receiver and transmitter measured. Then we ran a
TCL/TK script to scan all the available APs in the neighbor-
hood and store their signal strengths in database. After one
second, we repeated the scanning again until the Maximum
Scanning Number (MSN) is reached. The mean and maximum
values of the MSN signal strengths at each position was stored.
During the measurement cycle, the receiver position was held
fixed.

In the static measurement experiment small scale fading
is observed. In Figure 2 we takeMSN = 20 samples at
a position. T/R distance means the distance between the
transmitter and receiver. The unit of received signal power
at the receiver isdBm. The measurement step size within
distance from380cm to 550cm is 5cm. Experiment results
show the signal strength is stable in the temporal scale while
suffering severe (and unpredictable) fading in the spatial scale.
This is because small scale fading is typically due to phase
effects and occurs on spatial scales smaller than a wavelength
(λ ≈ 12cm). In dense multi-path, prediction of the fading
characteristics is ineffective for extrapolation beyond approx-
imately one wavelengthλ [11], under the experimental setup
used. Similar observations have been made in the temporal
case [23]

B. Fuzzy sampling method

Given only simple power measurements, a metric is desir-
able which estimates thelarge scalefading characteristics of
the field, without inappropriate emphasis on the small scale,
local effects. A natural (statistical) approach would be to take
a number of samples within a nearby region and to perform an
averaging over the samples. We may ask“Why ignore small
scale fading?” the answer to this comes from well known
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Fig. 2. Small scale fading, from measured data along corridor. Note scale
is in cm. λ ≈ 12cm

TABLE I

MODEL COMBINATIONS

Small scale Large scale
model 1 model 2
(static) (fuzzy)

Reflective walls Ia IIa
Scattering bodies Ib IIb

results in extrapolation of functions, such as the Nyquist
sampling result, and [11]: if we wish to predict small scale
fading, we must sample at well above the maximum rate of
change in the fade, which requiresknown callibration points
at a sampling density greater thanλ/2. However, large scale
fading is dominated by the free-space distance loss in power,
and thus has a much lower rate of change over a local area, by
comparison,|E(r)| is (approximately) wavelength invariant,
and varies at a rate of−2d−3.

For each callibration positionr, we measure the received
signal strength at a set of positions in the near neighborhood
by simply moving the receiver within a nearby region during
the MSN scanning process. We use the area-averaged signal
strength as the fingerprint of the position. This method is called
“stochastic” method. Here the position is not a point but a
small area.

VI. EXPERIMENT RESULTS AND ANALYSIS

Our objective in this section is to evaluate several model
combinations, toward providing a robust and sufficiently accu-
rate modelling procedure. We have four combinations, which
we summarise in Table I. In each case the neural network was
trained with measurement data at a collection of data points,
and the resulting prediction compared with additional points.

A. Model 1 results

Firstly we use reflectors as the neural network nodes in the
hidden layer. The statically measured signal is shown in Fig-
ure 3. The transmitter is deployed at the origin. The measure-
ments are performed at distances of1m, 1.5m, 2m, . . . , 16m
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Fig. 3. 8 Reflectors with Propagation Model 1. Crosses denote measurements,
circled crosses mark training points.

from the transmitter, among which the step size is0.5m. We
use the first radio propagation model with eight reflectors.
The circles are the training signal strength at known positions,
namely at positions with distances of1m, 2m, . . . , 16m from
the transmitter.

The position of theith reflector is represented byaiX +
biY +ci = 0. Including the reflection coefficientσi, the weight
vector of theith reflector is defined as[ai bi ci σi]. All weight
vectors constitute the weight matrix for the neural network.
With knowledge of position of the reflector, we can calculate
the unfolded length from the transmitter to the receiver, based
on image theory. Here we only consider simple one-bounce
scenario.

In the training process, the converging is rather slow when
the cost function is approximately equal to650. The cost
function is bounded above640 as shown in Figure 7. It is
shown in Figure 3 that the final estimated power distribution
doesn’t match the measured power well. It differs little with
the initial estimated power distribution.

Given the same measured signal power distribution, we
use sixteen scatterers as the hidden nodes. For each node
the weight vector is[ai bi σi], where (ai, bi) is the X-Y
axis of the scatter andσi is the reflection coefficient of the
scatter. With phase term included in propagation model, this
neural network is efficient in decreasing cost function, which
demonstrates the first propagation model has strong capability
in fitting the training data. In order to prevent overfitting, the
cost function in Figure 4 is18, though this neural network
can converge its cost function close to zero. This figure shows
that while the phasor addition model can be easily matched to
the trained data, it suffers from wild fluctuations away from
the measured data when used to predict signal strength. The
reason is simple: small scale fading is highly reliant on local
channel parameters, and thus samplingmustbe performed at
or above the Nyquist sampling rate. Sadly, the sampling rate is
bounded from above byλ/2 which requires a sampling density
of greater than 3 samples per wavelength.
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Fig. 4. 16 Scatterers with Propagation Model 1. Crosses denote measure-
ments, circled crosses mark training points. Note dominance of small-scale
fading.

Based on the learned features of the wireless propagation
environment, it is possible to predict signal strength at other
positions. We use measured signal strength distribution at
0.5m, 1.5m, . . . , 15.5m to validate the predicted values. The
prediction result matches the measured data well within a
distance of4 meters from transmitter as shown in Figure 4.

B. Model 2 results

The prediction accuracy with the second radio propagation
model can be improved by using a “stochastic” measurement
method. We apply the radio propagation model 2 in our
algorithm to train the neural network until the cost functionJ
is relatively small. Once the training process is finished, we
apply the weight matrix to calculate signal strength distribution
at unknown positions.

In Figure 5 four ideal reflectors are acting as the neural
network hidden nodes with a final value of cost function
around17. Training signal strength is measured at positions
with distances of1m, 2m, . . . , 17m to the transmitter. The
signal fluctuates smoothly, comparing with Figure 4 and
Figure 3. We estimate signal distribution at positions of
1.5m, 2.5m, . . . , 15.5m. The error between predicted values
and measured values is reasonably small.

With the same training signal strength distribution, we used
eight scatters as the hidden layer in Figure 6 giving eight
nodes. In this figure the final value of cost function is around
14. The prediction can achieve the same level of accuracy as
that by reflectors.

In Figure 7 the computation complexity for the above
four neural networks are given. Entry “Ia” in Table I suffers
from the convergence bound of the cost function. “IIa” has
similar problems but its bound is much smaller. “Ib” has good
performance in converging to the training data but it is poor in
signal prediction. “IIb” demonstrates its ability in predicting
signal distribution with reasonable computation cost.
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Fig. 5. 4 Reflectors with Propagation Model 2. Crosses denote measurements,
circled crosses mark training points.
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Fig. 6. 8 Scatterers with Propagation Model 2. Crosses denote measurements,
circled crosses mark training points.

VII. SUMMARY AND FUTURE WORK

A new algorithm to predict wireless signal propagation en-
vironment, using feature-based neural network was presented.
The neural network constructed a virtual propagation environ-
ment which reasonably represented the real environment. We
apply a new method – “stochastic position” method – in field
signal strength measurement. This method mitigates the effect
of small scale fading when examining signal strength values.
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