
1

On Capacity of Ergodic Multiple-Input
Multiple-Output Channels

Leif Hanlen and Alex Grant

Abstract— Capacity results for Gaussian matrix channels are
investigated where the receiver has knowledge of the channel
realization and the transmitter has knowledge only of the channel
statistics. We extend beamforming results and examine arbitrary
ergodic random vector channels, under the condition that the
transmit covariance is independent of the channel.

Index Terms— Capacity, Gaussian Channels, Multiple-Input
Multiple-Output Channels

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) channels have be-
come a significant topic of theoretical research. In particular
the capacity results obtained in [1, 2] have motivated many
theoretical generalizations and have also spawned incredible
research and development activity in practical methods (i.e.
space-time coding strategies) of attaining these capacities.

From an information theoretic point of view, the main
problem is to find the maximum possible rate of transmission
over additive white Gaussian noise channels of the form

y[i] =
√

PH[i]x[i] + n[i] (1)

wherey[i] ∈ Cr×1 is a complex column vector of matched
filter outputs at symbol timei, H[i] ∈ Cr×t is the corre-
sponding matrix of complex channel coefficients. The vector
x[i] ∈ Ct×1 is the vector of input signals, andn[i] ∈ Cr×t

is a complex, circularly symmetric Gaussian vector with
E

{
n[i]n[i]†

}
= Ir. Let n = max(t, r) and m = min(t, r).

The channel has an average power constraint

E
{
tr

(
xx†

)}
= tr

(
E

{
xx†

})
≤ 1 (2)

and accordingly, the signal-to-noise ratio is defined asP .
Throughout this paper we will useEa{f(a)} to denote ex-
pectation of a function of variablea, with respect toa. Where
the independent variable is clear, we drop the subscript, we
assume familiarity with expectation with respect to random
matrices.

Henceforth, letQ = E
{
xx†

}
denote the input signal

covariance [3]. The power constraint (2) assumes that the
power received from the collection of transmit signals at any
point in space (eg. at some imaginary point close to the
transmitter) is given by the summation of the individual signal
powers, ie. zero mutual coupling.
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There are several categories of channels (1) that have been
investigated in the literature:

1) Ergodic channels in which theH[i], i = 1, 2, . . . are
random matrices, selected independently of each other
and independently of thex[i], according to some matrix
probability density functionp(H), which is known at
the transmitter. The specific channel realizations are
unknown at the transmitter, but are known at the receiver.

2) Non-ergodic channels in whichH[i] = H, i = 1, 2, . . .
andH is selected once for all time according to a density
p(H). The transmitter knows onlyp(H) and the receiver
knows the realizationH.

3) Deterministic channels, in whichH[i] = H, i =
1, 2, . . . with H known at both the transmitter and
receiver.

In this paper, we focus on case 1). For this ergodic (overi)
channel, whose realizations are known only at the receiver,
capacity is the solution to the following optimization prob-
lem [1]

C = max
tr(Q)≤1

Q=Q†

EH

{
log det

(
Ir + PHQH†)}, (3)

where Q is a t × t hermitian matrix and the expectation is
over the random matrixH. In the i.i.d. Gaussian case with
H ∼ Nt,r (0, I) andH independent ofx, Telatar showed that
the optimizingQ = It/t,

C = E
{

log det
(

Ir +
P

t
HH†

)}
, (4)

and gave an expression for computation of (4).
Development of the theory beyond [1, 2] has, by and large,

focused on extending these results to increasingly general
assumptions regarding the channel statisticsp(H). These well-
known and oft-cited results have however suffered widespread
mis-application in recent literature.

One common mis-quotation is to refer to (3) as the capacity
when the transmitter has no channel knowledge. However
from (3), it is clear that the optimal transmit covarianceQ
is a (possibly trivial) function of the statisticsp(H) of a
random channel. Thus the transmitter is required by (3) to have
knowledge of the statistics of the channel. If the transmitter
truly knew nothing at all about the channel, the underlying
information theoretic problem is completely different and (3)
does not apply. In fact, even properly setting up such a problem
has difficulties beyond the MIMO nature of the channel.

The most frequent abuse of the literature however, is the
application of (4) to various channels in which the elements
of H are correlated, are non-central or have other statistical
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properties resulting in the sub-optimality of (4). The result of
(4) arises from [1, Theorem 1] and holdsonly for independent,
identically distributed, circularly symmetric Gaussian channel
matrix H, independent of transmit symbols (as stated in
that paper). In general,Q = It/t is not the optimal input
distribution, and thus provides only a lower bound to capacity.
In general, the mutual information on the right hand side
of (4) is an achievable rate rather than capacity. To stress this
point, the following lemma expresses mutual information as a
function of the covariance matrix.

Lemma 1. Consider the channel(1), with the matricesH[i]
chosen independently of each other and independently of the
transmitted data at each timei according to the matrix prob-
ability density functionp(H). The transmitter sends signals
with input covarianceE

{
xx†

}
= Q. The mutual information

I(x; y|H) = I(Q) for this channel is given by:

I(Q) =
∫

log det
(
I + PHQH†) p(H) dH (5)

The purpose of this paper we investigate the optimization
problem (3) for generalp(H). This is approached from several
different perspectives. First, in Sections II and III we consider
the low- and high-SNR regimes and review the asymptotic
forms for the optimalQ in these cases (which are already
reasonably well known). In the low SNR regime, we also
find the second-order optimalQ. Next, in Section IV we give
a fixed-point equation for the optimalQ at arbitrary SNR,
which leads directly to an iterative method for numerically
solving (3). Proofs of all results are omitted.

II. L OW SIGNAL -TO-NOISE RATIO

This section reviews some known results for low SNR (P →
0). Consider the matrix channel (1) and defineS = HQH†.
By Taylor series expansion, (5) may be approximated near
P = 0 by

I(Q) ≈
∑
n=1

(−1)n−1 Pn

n
E{tr(Sn)}. (6)

Of particular interest are the first and second order approxi-
mations,

I(Q) ≈ P tr
(
QE

{
H†H

})
(7)

≈ P tr
(
QE

{
H†H

})
− P 2

2
tr

(
Q2E

{
(H†H)2

})
(8)

Theorem 1 (Low SNR First Order Approximation). Con-
sider a matrix channel(1), with E

{
HH†} = UΛU†, with U

unitary andΛ = diag{λ1, . . . , λt}, λ1 > λ2 > · · · > λt > 0.
For low SNR,Pλ1 � 1 the capacity achieving distribution is
Q = u1u1

† whereu1 is the first column ofU . The resulting
capacity is

C(P ) ≈ max
tr(Q)=1

P tr
(
EH

{
HQH†})

(9)

= Pλ1 (10)

Corollary 1 (Low SNR First Order, Equal Eigenvalues).
Consider a matrix channel(1), with E

{
HH†} = UΛU†, with

U unitary and Λ diagonal with Λ = diag{λ1, . . . , λt} and

λ1 = · · · = λk > λk+1 · · · > λt > 0. For low SNR,Pλ1 � 1
the capacity achieving distribution isQ = UQ̂U† whereQ̂ is
diagonal and

Q̂ = diag

{
1
k

, . . . ,
1
k︸ ︷︷ ︸, 0, . . . , 0

}
k terms

and C = Pkλ1.

Theorem 1 states that to first order, beamforming in the
direction of the largest eigenvector ofE

{
HH†} is optimal.

This is intuitively satisfying and aligns with well known
results [4, 5]. This result must be taken with care: the ap-
proximation is forPλ1 � 1 so that large channel gains will
necessitate a correspondingly smaller value ofP before the
expansion of (9) is valid. From a waterfilling perspective,
Theorem 1 corresponds to placingall water on the best
eigenmode. Although this result is well known, we use it as a
generalization of several MIMO results, and extend it to higher
order terms shortly.

Example 1 (Line-of-Sight Correlated Channel). Consider
the channel(1) with H ∼ Nt,r (M,R⊗ T ) (in the notation
of [6]) which may be written as

H = M + R1/2XT 1/2

whereX ∼ Nt,r (0, I).
This model corresponds to correlated Rayleigh fading with a

line of sight (LOS) componentM . R andT are respectively the
receive-side and transmit-side channel covariance matrices.
The matricesM , R andT are known to the transmitter, while
the particular realizations ofH is known only to the receiver.
None ofM , R or T are assumed to be diagonal, or jointly
diagonalisable. From [6, pp. 251],S = HH† is a quadratic
normal form and

E
{
HH†} = T tr(R) + M†M.

From Theorem 1

C(P )|P→0 = Pλ1 (11)

whereλ1 is the largest eigenvalue ofT tr(R) + M†M . This
makes it clear that the most fortuitous arrangement ofT and
M is when they share a common largest eigenvector.

There are several special cases that result in simpler forms
for λ1.

1) In the case of identity transmit covarianceT = It, λ1 =
tr(R) + λ1(M†M).

2) M = αI. Thenλ1 = α2 + tr(R)λ1(T ).
3) Weak LOS component,T tr(R) >> M†M . Thenλ1 =

tr(R)λ1(T ) + ε, where |ε| ≤ λ1(M†M). Obviously if
M = 0, ε = 0.

4) Strong LOS component,M†M >> T trR. Thenλ1 =
λ1(M†M) + δ, where|δ| ≤ tr(R)λ1(T ).

5) For r = t = 2 it is easy to obtain a closed form solution
for λ1.

Considering now the second-order approximation (8), the
optimal Q is in general no longer diagonal, sinceE

{
H†H

}
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andE
{(

H†H
)2

}
may not be simultateously diagonalizable.

However if H ∼ Nt,r (0, R⊗ T ), then

E
{
H†H

}
= tr(R)T and

E
{(

H†H
)2

}
= tr(R2) tr(T )T + tr2(R)T 2 + tr(R2)T 2

which are simultaneously diagonalizable. Using Lagrange
multipliers and the Kuhn-Tucker condition, the second-order
optimal covariance is given as follows.

Theorem 2 (Low SNR, Second Order).Consider the chan-
nel (1) with H ∼ Nt,r (0, R⊗ T ), where w.l.o.g.,T =
diag(τ1, . . . , τt) andQ = diag(q1, . . . , qt), and optimizeI(Q)
over theqi (i.e. qi is the power transmitted in the direction of
eigenvectori of T ). The second-order optimalQ satisfies

τk − qkτk

(
tr(R2) tr(T )

tr(R)
+ τk

tr2(R) + tr(R2)
tr(R)

)
= µ

if qk > 0 (LHS≤ µ if qk = 0).

In the caseH ∼ Nt,r (M,R⊗ T ), terms involving M
prevent simultaneous diagonalization (except in the case that
T andM are simultaneously diagonalizable).

Example 2 (Line-of-Sight Correlated Channel). Let H ∼
Nt,r (0, R⊗ T ) whereR = I2 and T = diag(τ, 2 − τ). For
the second order approximation, the optimal input covariance
is

q1 =
1
2

+
3− 3 τ

8 + 3 (−2 + τ) τ
(12)

and q2 = 1− q1.

III. H IGH SIGNAL -TO-NOISE RATIO

For largez, log(1 + z) → log(z), and hence at high SNR,

I(Q) → t log P + log det Q + log det(H†H). (13)

Care must be taken in the definition of “high” SNR. The
approximation (13) is only valid whenPQii � λmin, ie. the
high SNR, is based on highreceivedSNR over all modes, not
necessarily high transmit power.

Theorem 3 (High SNR capacity).Consider a matrix channel
(1) with H a random variable, independent ofQ. Then the
capacity achieving distribution isQ = It/t and the resulting
capacity is

C → t log
(

P

t

)
+ E

{
log det(HH†)

}
(14)

Theorem 3 holds for any probability density functionp(H),
provided thatH is independent ofQ. Regardless of the
characteristics of the channel, the optimal transmit strategy
at high SNR is equal power, independent white signals. This
is not surprising when it is seen that forlarge received
power, the variation in channel strength is meaningless. From
a waterfilling perspective, we have a very deep pool, with tiny
pebbles on the bottom: allocation of power is irrelevant.

Note also that at high SNR,t log(P/t) is asymptotic to the
capacity resulting from transmitting independent data acrosst
non-interfering AWGN channels (each channel gettingP/t of
the available power). The remaining term is either a capacity

loss or gain over this parallel channel scenario, depending on
the statistics of the channel.

In the case of Wishart matrices,H ∼ Nt,r (0, R⊗ I) (14)
has a known closed-form solution [7]. For numerical purposes,
E

{
log det(HH†)

}
may be obtained by Monte-Carlo methods.

IV. A RBITRARY SIGNAL -TO-NOISE RATIO

In this section we consider conditions for optimality of a
covariance matrix in the maximization (3). In general, this is
a semidefinite program, since the maximization is over the
cone of positive semidefinite hermitian matricesQ ≥ 0. In
certain cases however, the problem simplifies, and we can
obtain convenient conditions for optimality from the Kuhn-
Tucker conditions.

Consider the channel (1) withH[i] ∼ Nm,m (M,R⊗ T ),
i.e. the correlated Rayleigh LOS channel introduced earlier. It
is know that in the caseM = 0 that the optimalQ has the
form

Q = UQ̂U† (15)

Q̂ = diag (q1, q2, . . . , qt) (16)

where U diagonalizesT . This means that for zero-mean
channels, the optimization problem reduces to finding the best
allocation of power to each eigenvector ofT .

In this case, the conditionQ > 0 =⇒ Q̂ > 0, together
with tr(Q) = tr(Q̂) = 1 allow the application of the Kuhn-
Tucker condition for maximization of a convex function over
the space of probability vectors [3, p. 87] to yield the following
lemma.

Lemma 2. Consider the channel (1) withH[i] ∼
Nm,m (M,R⊗ T ). The optimizingQ from maxtr(Q)=1 I(Q)
has the form(15) and satisfies the Khun-Tucker conditions [3,
p. 87]

∂I(Q)
∂qi

= µ qi > 0

∂I(Q)
∂qi

≤ µ qi = 0

whereµ is a constant independent ofqi.

We emphasize that in general, the capacity achieving input
covarianceQ from Lemma 2 is not the identity, is not even
diagonal and may have no particular structure, other than being
hermitian. The following theorem is a result of Lemma 2,
obtained via differentiation ofI(Q).

Theorem 4 (Optimal Covariance). Consider the channel,
with (1) with H[i] ∼ Nm,m (M,R⊗ T ) where bothR and T
are known at the transmitter, and power limitP . A necessary
and sufficient condition for the optimality of̂Q in (15) is

ES

{((
I + SQ̂

)−1

S

)
kk

}
= µ qk > 0 (17)

ES

{((
I + SQ̂

)−1

S

)
kk

}
< µ qk = 0 (18)

for k = 1, 2, . . . , t and some constantµ. The expectation is
with respect to the random matrixS = U†H†HU , H ∼
Nr,t (0, R⊗ T )
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In the caseQ > 0, the condition (17) may be re-written as
a fixed-point equation

Q̂ = ν ES

{(
Q̂−1 + S

)−1

S

}
, (19)

which suggests the following iterative procedure for numeri-
cally finding the optimalQ̂. Starting from an initial diagonal
Q̂(0) > 0, compute

q
(i+1)
k = ν(i+1)

[
ES

{(
(Q̂(i))−1 + S

)−1

S

}]
kk

,

selecting ν(i) at each step to keeptr Q̂(i) = P . Al-
though there is no exisiting closed form solution for

ES

{(
Q̂−1 + S

)−1

S

}
, it may be accurately estimated using

monte-carlo techniques.
The conditions (17), (18) may be compared with the cor-

responding condition for parallel Gaussian channels. Suppose
y = Sx+n whereS is a deterministic diagonal matrix known
to both the transmitter and receiver, then the condition for
optimality of the input covariance is(

(I + SQ)−1
S

)
kk

= µ qk > 0(
(I + SQ)−1

S
)

kk
< µ qk = 0.

Thus Theorem 4 can be recognised as a direct generalization
of the classical water-pouring result for parallel channels.

How may this result be extended to non-zero mean chan-
nels? In the general case, we cannot restrict attention to
optimization over a probability vectorq1, . . . , qt and the cone
of positive semidefinite matrices must be considered.

One approach is to relax the positive semidefinite condition
and to apply the fixed-point equation (19) anyway, since a
covariance matrix that satisfies this equation will result in a
stationary point. Note also that starting from a p.s.d. hermitian
Q(0) the iteration

Q(i+1) = ν(i+1) EH

{((
Q(i)

)−1

+ H†H

)−1

H†H

}
,

(20)
will remain in the p.s.d. cone. Hence we may use (20) for
optimization of channels with arbitraryp(H).

Another approach is to approximate a non-zero mean ran-
dom variable with a correlated zero-mean random variable.

Theorem 5 (Wishart Approximation). Consider a chan-
nel (1), where the density ofH is known at both transmitter
and receiver, and is independent of the transmit signal, with
T and M arbitrary and R = I. ThenS = HQH† may be
approximated by acentralWishart matrix [6, p. 125]

S ∼ Wn (0,Σ) (21)

Σ = T 1/2QT 1/2 +
1
n

M†M (22)

Then the optimal input distribution is given by Theorem 4,
with S given by(21).

The relation between correlation and line-of-sight (non-zero
mean) has been heuristically established in MIMO channel
measurement literature [8–10].

Example 3 (Ricean Example).Consider a MIMO system
with t = r = n transmit and receive elements in Rician fading.

Let

H =
√

κ

κ + 1
M +

√
1

κ + 1
R1/2X.

From (22), create an approximate correlated Rayleigh model,
for an approximation to capacity:

H ≈
√

1
κ + 1

(
R1/2 +

√
κ

n2
I

)
X

The optimal input covariance may be found from Theorem
4, with appropriate substitutions.

V. CONCLUSION

We have given methods for determining the optimal input
covariance for a variety of ergodic multiple-input multiple-
output channels. In particular we considered low and high
signal-to-noise ratio limits for arbitrary channel statistics. For
zero-mean correlated Rayleigh channels we gave a fixed point
equation that characterizes the optimal transmit covariance.
This particular characterization reveals a close link between
the optimality condition for deterministic channels (water
filling) and that for ergodic channels. The fixed point equation
also yields an iterative method for performing this optimization
that is also applicable to channels with non-central, non-
Gaussian statistics. We also described a method of approximat-
ing line of sight channels to zero-mean correlated channels,
which aids in computation of capacity.
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