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Abstract— Capacity results for Gaussian matrix channels are There are several categories of channels (1) that have been
investigated where the receiver has knowledge of the channghvestigated in the literature:
realization and the transmitter has knowledge only of the channel . . . a4 .
statistics. We extend beamforming results and examine arbitrary 1) Ergodic channels in which théf[i], i = 1,2,... are
ergodic random vector channels, under the condition that the random matrices, selected independently of each other
transmit covariance is independent of the channel. and independently of the[i], according to some matrix

Index Terms— Capacity, Gaussian Channels, Multiple-Input probability density functionp(H), which is known at
Multiple-Output Channels the transmitter. The specific channel realizations are
unknown at the transmitter, but are known at the receiver.
2) Non-ergodic channels in whicH[i] = H,i=1,2,...
l. INTRODUCTION andH is selected once for all time according to a density
Multiple-input multiple-output (MIMO) channels have be-  p(H). The transmitter knows only(H) and the receiver
come a significant topic of theoretical research. In particular ~ knows the realizatiorf{.
the capacity results obtained in [1,2] have motivated many3) Deterministic channels, in whict[i] = H, i =
theoretical generalizations and have also spawned incredible 1,2,... with H known at both the transmitter and
research and development activity in practical methods (i.e. receiver.
space-time coding strategies) of attaining these capacities.In this paper, we focus on case 1). For this ergodic (ayer
From an information theoretic point of view, the mairchannel, whose realizations are known only at the receiver,
problem is to find the maximum possible rate of transmissia@apacity is the solution to the following optimization prob-
over additive white Gaussian noise channels of the form lem [1]

yli] = VPH[i]x[i] + nli] (1) C= . r(%%ﬁlEH{logdet (I, + PHQHT)}, (3)

wherey[i] € C™! is a complex column vector of matched @=q'

filter outputs at symbol time, H[i] € C"** is the corre- where(@ is at x ¢t hermitian matrix and the expectation is
sponding matrix of complex channel coefficients. The vectower the random matri¥y. In the i.i.d. Gaussian case with
z[i] € C™*! is the vector of input signals, andi] € C"** H ~ N;,.(0,1) and H independent of, Telatar showed that
is a complex, circularly symmetric Gaussian vector witthe optimizingQ = I, /t,

Edn[ilnfi]'} = I,. Let n = max(t,r) and m = min(t,r). p
The channel has an average power constraint C= E{log det (IT + tHHT> }, (4)
E{tr (z2%)} = tr (E{aa’}) <1 (2) and gave an expression for computation of (4).

and accordingly, the signal-to-noise ratio is defined ras Development of the theory beyond [1’2.] has, b.y and large,
. . focused on extending these results to increasingly general
Throughout this paper we will usg,{f(a)} to denote ex- . : .
- ) ) ! assumptions regarding the channel statistid$). These well-
pectation of a function of variable, with respect tax. Where . :
known and oft-cited results have however suffered widespread

the independent variable is clear, we drop the subscript, we SR .
mis-application in recent literature.

assume familiarity with expectation with respect to random . S :
. y b P One common mis-quotation is to refer to (3) as the capacity
matrices. .
when the transmitter has no channel knowledge. However

_ i . .
e oot " 1t =67 (9 15 lar it he optmal vans covrancs
. b IS"a (possibly trivial) function of the statistics(H) of a

power received from the coIIect.|0n qf transm'|t signals at andom channel. Thus the transmitter is required by (3) to have
point in space (eg. at some imaginary point close to the

. e ; S . lﬁnowledge of the statistics of the channel. If the transmitter
transmitter) is given by the summation of the individual Slgn?ruly knew nothing at all about the channel, the underlying
powers, ie. zero mutual coupling. '

information theoretic problem is completely different and (3)
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properties resulting in the sub-optimality of (4). The result of; = --- = A\ > A1+ > A > 0. For low SNR,P)\; < 1
(4) arises from [1, Theorem 1] and holdsly for independent, the capacity achieving distribution i9 = UQU' whereQ is
identically distributed, circularly symmetric Gaussian channdiagonal and

matrix H, independent of transmit symbols (as stated in
that paper). In generaly) = I/t is not the optimal input Q :diag{l,...,l,o,...,O}
distribution, and thus provides only a lower bound to capacity. L,_’f,

In general, the mutual information on the right hand side k terms
of (4) is an achievable rate rather than capacity. To stress this

point, the following lemma expresses mutual information asand C' = PkA;.

function of the covariance matrix. Theorem 1 states that to first order, beamforming in the

Lemma 1. Consider the channg(ll), with the matricesH[i] ~direction of the largest eigenvector 8f{ HH'} is optimal.
chosen independently of each other and independently of s is intuitively satisfying and aligns with well known
transmitted data at each timieaccording to the matrix prob- results [4,5]. This result must be taken with care: the ap-
ability density functionp(H). The transmitter sends signalsproximation is forPA; < 1 so that large channel gains will
with input covarianceE {zz'} = Q. The mutual information necessitate a correspondingly smaller valuePobefore the
I(z;y|H) = 1(Q) for this channel is given by: expansion of (9) is valid. From a waterfilling perspective,

Theorem 1 corresponds to placirajl water on the best
(5) eigenmode. Although this result is well known, we use it as a

generalization of several MIMO results, and extend it to higher
The purpose of this paper we investigate the optimizati@ider terms shortly.

problem (3) for general( H). This is approached from several . . .
different perspectives. First, in Sections Il and Il we consid%<arnple 1 (Line-of-Sight Correlated Channel). Consider

I1(Q) = / logdet (I + PHQH") p(H)dH

the low- and high-SNR regimes and review the asymptot e chann_el(l) with H - Ni (M,R®T) (in the notation
forms for the optimal@ in these cases (which are alread)9 [61) which may be written as

reasonably well known). In the low SNR regime, we also
find the second-order optimg). Next, in Section IV we give

a fixed-point equation for the optima) at arbitrary SNR, WhereX ~ Ni.(0,1). _ _ _
which leads directly to an iterative method for numericall¥ This model corresponds to correlated Rayleigh fading with a
solving (3). Proofs of all results are omitted. ine (_)f Slg_ht (LOS) componeit. R andT are respecnvely th_e
receive-side and transmit-side channel covariance matrices.
The matricesM, R andT" are known to the transmitter, while
the particular realizations off is known only to the receiver.

0). Consider the matrix channel (1) and defifie= HQH. diagonalisable. From [6, pp. 251]5 = HH' is a quadratic
By Taylor series expansion, (5) may be approximated nes$rmal form and

H =M+ RY2XT"/?

II. Low SIGNAL-TO-NOISE RATIO

P =0 by
pn E{HH"} = Ttr(R) + M'M.
~ _1\n—12 n
Q= Z_:l( DB (ST} ©) From Theorem 1
Of particular interest are the first and second order approxi- C(P)p_g =P\ (11)
mations, where )\, is the largest eigenvalue df tr(R) + MTM. This
I(Q) ~ Ptr (QE{HTH}) (7) makes it clear that the most fortuitous arrangement’oénd

M is when they share a common largest eigenvector.
There are several special cases that result in simpler forms
for A;.
1) In the case of identity transmit covarian@e= I;, A\ =
tr(R) + A\ (MTM).

~Ptr (QE{H'H}) - P;tr (Q*E{(H'H)?*}) (8)

Theorem 1 (Low SNR First Order Approximation). Con-
sider a matrix channe{l), with E{HH'} = UAUT, with U

unitary andA = diag{\1,..., A}, A1 > Ao >0 > A > 0.

For low SNR,PX; < 1 the capacity achieving distribution is
Q = uiui T wherew; is the first column of/. The resulting

capacity is
C(P) ~ max Pr (Ex{HQH'}) 9)
tr =
= PX\ (10)

Corollary 1 (Low SNR First Order, Equal Eigenvalues).
Consider a matrix channdll), with E{ HH} = UAUT, with
U unitary and A diagonal with A = diag{\,...,\:} and

2) M = al. Then\; = a? + tr(R)A(T).

3) Weak LOS componerif; tr(R) >> MTM. Then\; =
tr(R)A1(T) + ¢, where|e| < A\ (MTM). Obviously if
M =0,e=0.

4) Strong LOS componend/TM >> T'tr R. Then\; =
A (MTM) + 6, where|§| < tr(R)\(T).

5) Forr =t = 2itis easy to obtain a closed form solution
for ;.

Considering now the second-order approximation (8), the
optimal @ is in general no longer diagonal, sints{ H'H }



andE{(HTH)2 may not be simultateously diagonalizableloss or gain over this parallel channel scenario, depending on

However if H ~ Ny, (0, R® T), then the statistics of the channel.
; In the case of Wishart matriced] ~ N, (0,R® I) (14)
E{H'H} = tr(R)T and has a known closed-form solution [7]. For numerical purposes,

E{ (HTH)Q} = tr(R?) tr(T)T + tr2(R)T? + tr(R?)T?  E{logdet(HHT)} may be obtained by Monte-Carlo methods.

which are simultaneously diagonalizable. Using Lagrange IV. ARBITRARY SIGNAL-TO-NOISE RATIO
multipliers and the Kuhn-Tucker condition, the second-order |, this section we consider conditions for optimality of a

optimal covariance is given as follows. covariance matrix in the maximization (3). In general, this is

Theorem 2 (Low SNR, Second Order).Consider the chan- & semidefinite program, since the maximization is over the

nel (1) with H ~ N,,(0,R®T), where wlo.g., 7 = cone of positive semidefinite hermitian matric@s> 0. In
diag(r1, ..., ) andQ = diag(q1, . . ., ¢ ), and optimizel (Q) certain cases however, the problem simplifies, and we can
over theg; (i.€. ¢; is the power transmitted in the direction ofobtain convenient conditions for optimality from the Kuhn-
eigenvector; of T'). The second-order optim#) satisfies Tucker conditions.
Consider the channel (1) withl[i] ~ Ny, (M, R®T),
2 2 2 ; ’
Th — QuTh (tr(R ) (), O7(R) + (R )> - i.e. the correlated Rayleigh LOS channel introduced earlier. It
tr(R) tr(R) is know that in the casé/ = 0 that the optimalQ has the
if g >0 (LHS < pif g, = 0). form
In the caseH ~ N, (M,R®T), terms involving M Q=UQuUt (15)
prevent simultaneous diagonalization (except in the case that O = diag (@1, G2, - - Gt) (16)

T and M are simultaneously diagonalizable).

) ) where U diagonalizesT. This means that for zero-mean
Example 2 (Line-of-Sight Correlated Channel). Let I/ ~  channels, the optimization problem reduces to finding the best
Nip (0, R@T) where R = I, and T' = diag(7,2 — 7). FOr - g)10cation of power to each eigenvector Bf
the second order approximation, the optimal input covariance |, this case. the conditio) > 0 — Q > 0, together

IS 1 3_3; with tr(Q) = tr(Q) = 1 allow the application of the Kuhn-
© =5 + 813 (2477 (12)  Tucker condition for maximization of a convex function over
the space of probability vectors [3, p. 87] to yield the following
andgs =1—qi. lemma.
I1l. HIGH SIGNAL-TO-NOISE RATIO Lemma 2. Consider the channel (1) withH[i] ~

Nipm (M, R® T). The optimizingl) from max,g)—1 1(Q)

For largez, log(1 + 2) — log(z), and hence at high SNR, has the form(15) and satisfies the Khun-Tucker conditions [3,

I(Q) — tlog P + logdet Q + log det(H T H). (13) p. 87]
Care must be taken in the definition of “high” SNR. The o1(Q) _ Lo >0
approximation (13) is only valid whe#Q;; > Ay, i€. the 0g;
high SNR, is based on higleceivedSNR over all modes, not 9I(@) _ 0
necessarily high transmit power. g Boq =

Theorem 3 (High SNR capacity). Consider a matrix channel Where . is a constant independent of.

(1) with [ a random variable, independent ¢J. Then the  \we emphasize that in general, the capacity achieving input
capacity achieving distribution i§) = /,/t and the resulting covarianceq from Lemma 2 is not the identity, is not even

capacity is diagonal and may have no particular structure, other than being
P ; hermitian. The following theorem is a result of Lemma 2,
C —tlog s E{logdet(HH")} (14)  obtained via differentiation of (Q).

Theorem 3 holds for any probability density functipff7), Theorem 4 (Optimal Covariance). Consider the channel,
provided thatH is independent ofQ. Regardless of the with (1) with H[i] ~ Ny, ., (M, R ® T') where bothR and T
characteristics of the channel, the optimal transmit strateg§e known at the transmitter, and power linitt A necessary
at high SNR is equal power, independent white signals. TH&d sufficient condition for the optimality 6 in (15) is

is not surprising when it is seen that fdarge received =1

power, the variation in channel strength is meaningless. From ES{ <(I + SQ) S) } =p q >0 17)

a waterfilling perspective, we have a very deep pool, with tiny . Kk

pebbles on the bottom: allocation of power is irrelevant. ES{ <(I + SQ) S) } < g =0 (18)
Note also that at high SNRJog(P/t) is asymptotic to the kk

capacity resulting from transmitting independent data acrosfor k£ = 1,2,...,¢t and some constani. The expectation is

non-interfering AWGN channels (each channel gettityg of with respect to the random matri§ = U'HTHU, H ~
the available power). The remaining term is either a capacity,; (0, R ® T')



In the casel) > 0, the condition (17) may be re-written asExample 3 (Ricean Example).Consider a MIMO system
a fixed-point equation with ¢ = r = n transmit and receive elements in Rician fading.

1 Let
A A—1
Q‘”ES{(Q +S) S}’ H= M| ——RU2X.
k+1 Kk+1

which suggests the following iterative procedure for numerj- . .
cally finding the optimal@. Starting from an initial diagonal |':r0m (22), create an approximate correlated Rayleigh model,

O > 0, compute for an approximation to capacity:

; ] . —1 1 1/2 K
L (CURRD I Vi () ¢
kk

selecting ») at each step to keeprO®) — P. Al The optimal input covariance may be found from Theorem

though there is no exisiting closed form solution fo?" with appropriate substitutions.

(19)

~
~

. -1
ES{ (Q*l + S) S}, it may be accurately estimated using V. CONCLUSION

monte-carlo techniques. We have given methods for determining the optimal input
The conditions (17), (18) may be compared with the cokovariance for a variety of ergodic multiple-input multiple-
responding condition for parallel Gaussian channels. Supp@sfiput channels. In particular we considered low and high
y = Sz+n whereS is a deterministic diagonal matrix knownsjgnal-to-noise ratio limits for arbitrary channel statistics. For
to both the transmitter and receiver, then the condition feero-mean correlated Rayleigh channels we gave a fixed point
optimality of the input covariance is equation that characterizes the optimal transmit covariance.
((I+ SQ)—l S) — This pa_rticu_lar chare_u_:terization revegl; a close link between
kk the optimality condition for deterministic channels (water
((1 +5Q) s)kk <u

filling) and that for ergodic channels. The fixed point equation

also yields an iterative method for performing this optimization
Thus Theorem 4 can be recognised as a direct generalizatigat is also applicable to channels with non-central, non-
of the classical water-pouring result for parallel channels. Gaussian statistics. We also described a method of approximat-

qr >0

qr = 0.

How may this result be extended to non-zero mean chang

line of sight channels to zero-mean correlated channels,

nels? In the general case, we cannot restrict attention ifich aids in computation of capacity.

optimization over a probability vectar, ..., ¢ and the cone
of positive semidefinite matrices must be considered.

One approach is to relax the positive semidefinite conditiogl]
and to apply the fixed-point equation (19) anyway, since
covariance matrix that satisfies this equation will result in a
stationary point. Note also that starting from a p.s.d. hermitiaff!
Q) the iteration

_ -1
QUFY = (D) EH{ ((Q(“) T HTH> HTH},

(20)
will remain in the p.s.d. cone. Hence we may use (20) fos]
optimization of channels with arbitrany(H).
Another approach is to approximate a non-zero mean ran-
dom variable with a correlated zero-mean random variable. [6]

(3]
(4]

Theorem 5 (Wishart Approximation). Consider a chan-
nel (1), where the density off is known at both transmitter [7]
and receiver, and is independent of the transmit signal, with

T and M arbitrary and R = I. ThenS = HQH' may be g
approximated by aentralWishart matrix [6, p. 125]
1
Y =TY2QT? + “MtM (22)
n

Then the optimal input distribution is given by Theorem 4101
with S given by(21).

The relation between correlation and line-of-sight (non-zero
mean) has been heuristically established in MIMO channel
measurement literature [8—10].
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