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Abstract — We present a limiting function for
the capacity of a sparsely scattered, outdoor
MIMO channel. We use a result from random
matrices to show that the capacity of the chan-
nel will diminish logarithmically with a parame-
ter η. The parameter is inversely dependent on
the distance between the transmitter array and
the receiver array. This loss is in addition to any
free-space losses. We show that below a given
value of this parameter, the capacity of the chan-
nel is significantly reduced and that the benefits
of additional receive or transmit elements do not
eventuate. Monte Carlo simulations are used to
compare the theoretical results with the physical
model.

I. Introduction
The work of [1] and [2] predicted a remarkable capacity

increase for multiple transmit, multiple receive wireless
systems in the presence of multi-path scattering. In [2]
a linear growth in capacity is predicted, proportional to
the minimum number of transmit and receive antennas
in the MIMO system. The predicted increase was shown
for a practical indoor environment, where scatterers are
dense and no line-of-sight component is present, in [3].

Fundamental to this work is the assumption that the
wireless channel may be modelled by an independent ran-
dom N × M transfer matrix, where N and M are the
numbers of the transmit and receive elements respec-
tively. That is, the entries of the transfer matrix are
assumed to be independent, complex random variables.
The assumption of independence guarantees a (statisti-
cally) well-conditioned transfer matrix and prevents a loss
of capacity due to correlations between the channels.

The work of [4] suggested that a limit to the linear
capacity growth of [2] will exist in outdoor environments
where the scattering is sparse. In [5] a non-line of sight
(NLOS) MIMO channel was developed and was shown
to exhibit a loss in capacity dependent on wavelength λ,
scatter cloud radius R and distance between transmitters
and receivers D. It was suggested that the capacity of an
outdoor, sparsely scattered MIMO channel is dependent
on a parameter η:

η =
2πR2

Dλ
(1)

However, the authors were unable to give a closed form
of the channel capacity.
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Figure 1: Scatter arrangement

This paper provides a bound for the capacity of a
MIMO channel, which allows us to show a direct depen-
dence on the parameter η for the case where η is suffi-
ciently small. As seen from (1) this is when the sepa-
ration of the transmitters from the receivers is large, in
comparison with the extent of local scattering. We show
that there is a transition from the “rich scattering en-
vironment” which models indoor NLOS channels [3] to
a highly correlated channel “pin-hole” channel, and that
this transition is dependent on η.

This paper is arranged as follows: The configuration
of the MIMO channel is developed in section II. The
channel configuration is used to expose the underlying
structure of the transfer matrices in section III. Using
results from the theory of random matrices, we derive a
formula for the capacity of the MIMO channel in section
IV. Monte Carlo simulations of the channel model are
presented in section V and compared with the theoretical
results. Section VI provides a summary of our work.

II. Configuration

Consider the two ring scattering model shown in fig-
ure 1. Scatterers are modelled as small, spherical, mem-
oryless reflectors. We allow the scatterers to be lossy -
resulting in random gains. We consider only scatterers
which are close to either the transmit or receive array.
All signals are assumed to be narrowband, high frequency
so that plane wave assumptions hold and the channel is
assumed to exhibit frequency-flat fading.

This is the well known non-line of sight, local scat-
tering model for outdoor transmission. Scatterers are
placed randomly within the local rings. The arrange-
ment of scatterers is assumed to be quasi-static - there-
fore the random arrangement will change at certain inter-
vals. Each transmit local scatterer x is placed at location
(R × tx, αx) where R is the local ring radius, tx ∈ (0, 1]



and αx ∈ [0, 2π) selected uniformly at random. Similarly
each receive scatterer x is placed at (R × rx, βx) with
appropriate translation of origin. We assume that there
are Sr scatterers in the receive ring, and St scatterers
in the transmit ring, with Sr and St both being large:
St

Sr
→ c ≈ 1, Sr, St → ∞
For transmit signal vector x and receive signal vector

y we have a MIMO transfer function of the form:

y = Hx = HrHsHtx (2)

Where Hr is the MIMO transfer function from the re-
ceive local scatterers to the receiver elements. Hs is the
MIMO transfer function between the two rings. Ht is the
transfer function from the transmitter elements to the
transmit local scatterers.

For a uniform linear array with array element spacing
of µr, we may write Hr as follows:

Hr =
1√
Sr

HrvHrd (3)

Hrd
def= diag

{
1

Rx,r0
e−j 2π

λ Rx,r0

}
(4)

[
Hrv

]
y,x

= e−j 2π
λ µr sin(βx) (5)

Where Rx,r0 is the distance from scatterer x to the first
receive element r0. For the case where the array ele-
ments are placed at a half-wavelength spacing or greater
µr ≥ λ

2 , we may assume the array elements are uncorre-
lated. Consequently the entries in Hrv will be indepen-
dent identically distributed random variables:

[
Hrv

]
y,x

≈ e−jφx,y φx,y ∈ [0, 2π) (6)

Likewise we may write Ht as a product of a diagonal
(gain) matrix and a random (phase) matrix:

Ht =
1√
St

HtdHtv (7)

Hrd
def= diag

{
1

Rx,t0
e−j 2π

λ Rx,t0

}
(8)

[
Htv

]
y,x

= e−j 2π
λ µt sin(αx) ≈ e−jθx,y θx,y ∈ [0, 2π) (9)

As both Hr and Ht are iid matrices, we may consider
that Rayleigh fading is present within both local scatter-
ing rings. This may be interpreted as having dense local
scattering at the transmit and receive arrays. Such a sit-
uation may result when transmitting from a room in one
building to a room in another building, a large (greater
than the size of the room) distance away. We may also see
such an arrangement in the case of a mobile (hand-held)
transmitter where the holder moves between buildings.

The matrix Hs is the transfer between the two clouds
of scatterers. Each element of Hs will consist of a gain
g(y, x) which incorporates free-space losses, and a phase
due to the distance between transmit scatterer x and re-
ceive scatterer y. This distance is given by R2(y, x). We
write Hs below:

[
Hs

]
y,x

= g(y, x)e−j 2π
λ R2(y,x) (10)

III. Analysis

Hs is dominated by the phase offset due to the dis-
tance between the two scattering clouds. This can be
seen through a Taylor series on on R2 using R

D → 0

R2(y, x) =

√√√√ [D + R(tx cos αx − ry cos βy)]2

+ R2 (tx sin αx − ry sin βy)2

R2(y, x) ≈ D + Ra(y, x) +
R2

2D
b(y, x) (12)

The functions a(y, x) and b(y, x) are defined by:

a(y, x) def= tx cos αx − rx cos βy (13)

b(y, x) def= (tx sin αx − ry sin βy)2 (14)

Using (12) we write:

Hs = D3ΩD2D1 (15)

D3, D1 and D2 are diagonal matrices. Only D3 has
elements a non-unitary magnitude. Ω is then defined as:

[
Ω

]
y,x

def= e−jηω(y,x) (16)

ω(y, x) def= txry sin αx sin βy (17)

From (17) we may interpret the function ω(y, x) as a
random variable, chosen over the range ω ∈ [−1, 1], with
density function [7]:

f(ω) =
1

4π2

1
(1 − ω2)

(18)

We may see that that the elements of Ω are correlated
only by the value of η. We may expand (16) via a Taylor
series, to write:

Ω ≈ uSr
u∗

St
+ ηG (19)

u∗
Sr

def=
[
1 1 1 · · · 1

]
Where uk is a vector of length k and G is an Sr × St

Gaussian random matrix, with i.i.d. entries. Equation
(19) allows us to re-write the original transfer function
H:

HH∗ = HrHsHtH
∗
t H∗

s H∗
r

= HruSr
u∗

srHtH
∗
t uSr

u∗
srH

∗
r + η2HrGHtH

∗
t G∗H∗

r

=
Θ

SrSt
+ η2HrGHtH

∗
t G∗H∗

r (20)

Θ is a rank one matrix.



IV. Capacity

We wish to determine the capacity of the MIMO chan-
nel. For fixed transmit power we may use the result of
[2] for a SNR of ρ dB:

C = E
[
log2 det

(
IM +

ρ

N
HH∗

)]

= E
[
log2 det

(
IM +

ρ

N

Θ
SrSt

+
ρη2

N
HrGHtH

∗
t G∗H∗

r

)]

(21)

C = E
[

M∑
k=1

log2

(
1 +

ρ

N
ξk

{
Θ

SrSt
+ HrGHtH

∗
t G∗H∗

r

})]

(22)

Where ξk gives the kth largest eigenvalue. We may use
the following result from eg. [8]: For Hermitian matrices
A and B, where A has rank r

ξk(A + B) ≤
{

ξ1(A) k ≤ 2r
ξk−r(B) k > 2r

We may then write (22) as:

C ≤

2 log2(1 + ρ̂M)
+

E
[

M∑
k=3

log2

[
1 + ξk

{
η2ρ

N
HrGHtH

∗
t G∗H∗

r

]}]

<

2 log2(1 + ρ̂M)
+

E
[

M∑
k=1

log2

[
1 + ξk

{
η2ρ

N
HrGHtH

∗
t G∗H∗

r

]}] (24)

C < 2 log2(1 + ρ̂M) + Clog (25)

We may approximate Clog with a strong law of large
numbers argument as follows:

We use the following identities:

ξk {MM∗} = ξk {M∗M} k ≤ rank {M}
≤ ξk {M∗} ξk {M}

det(I + AB) = det(I + BA)

This allows us to re-arrange Clog:

Clog < E
M∑

k=1

log2

[
1 +

η2ρ

N
ξk {HrH

∗
r } ξk {GG∗} ξk {HtH

∗
t }

]

(26)

By the strong law of large numbers a matrix X ∈ Mn,m

with elements [X]m,n = e−jφm,n , φm,n chosen at random
with identical distribution, exhibits the following prop-
erty:

lim
m→∞

1
m

XX∗ → 1
m
E [XX∗] ≈ In

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

η

C
ap

ac
ity

 b
it/

s

Theory for 17tx 17rx    
Simulation for 17tx 17rx

Figure 2: Capacity vs η for 15 transmit and 15 receive elements

As St becomes large, we have 1
St

GG∗ → ISr
. Similarly,

given (3) and (6) we may write:

HrH
∗
r → hrIM (28)

hr
def= HrdH

∗
rd = E

[
1

Rx,r0

]

Using these approximations we may write:

Clog < E
[

M∑
k=1

log2

[
1 + η2 ρ

N
ξk {HtH

∗
t }

]]

C < log2(1 + ρ̂M) + E
[
log2 det

(
IN + η2 ρ

N
HtH

∗
t

)]
(29)

We may remove the expectation in (24) by noting that
each matrix in HrGHt is random. Hr and Ht have ele-
ments chosen i.i.d from the distribution N (0, 1). There-
fore, we apply the modified distribution function of (18)
(for Hs and adjust the variable of integration ν by 1

2π to
accommodate for the increased variance due to the use
of the matrices Hr and Ht. This allows us to immitate
the Gaussian matrix requirements of [9]. We may use
equation (13) of [2] to calculate the capacity of the chan-
nel, substituting the value η. Define m = min{N,M}.
For the maximum transfer case of m = M = N we have
ν− = 0 ν+ = 4 from [9]:

Clog → M

∫ 4

0

log2

(
1 + η2ρ ν

2π

)
(
1 − ν

4

)2

1
4π2

√(
1
ν
− 1

4

)
dν (30)

This is clearly logarithmic in terms of η. It can be
seen that for large η, the expected linear growth in ca-
pacity will occur, however, for small η equation (30) is
dominated by η.

We may combined (25) and (30) to give a general case
bound on the capacity, for outdoor MIMO channels:

C < log2 (1 + ρM) + Mκ log2

(
1 + ρη2

)
(31)
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Figure 3: Capacity vs η for differing numbers of transmit and
receive antennae

Where κ is a constant due to the integration. In fig-
ure 2 we have plotted equation (30) for the case where
M = N = 15 and ρ = 10dB. This is compared to a
simulated case. It can be seen that for η ≤ 20 we have
close correlation between the approximate (solid) curve
and the simulated curve (asterisks). For large η the up-
per bound is not tight. This is due to inaccuracies in the
original Taylor expansion, and also over-simplification of
the random matrices.

V. Simulation

We have generated Monte-Carlo simulations of the
channel model, at various array separations D, with in-
creasing numbers of transmit and receive antennae. A
transmit frequency of 2.0GHz (λ = 0.15m) was used, with
a ring radius of R = 10m. A fixed value of Sr = St = 100
scatterers were used, in each ring. A signal to noise ra-
tio of ρ̂ = 10dB was assumed. For each Monte Carlo
iteration a new (random) arrangement of scatterers was
produced, with the given parameters, and the channel
was assumed known to the receiver. This provided an
approximation to the expectation of the capacity.

Figure 3 shows the capacity of the channel for increas-
ing η and for different numbers of transmit and receive
antennae. In each case, N = M to ensure a maximum
capacity of the channel. It can be seen that in all cases
the MIMO channel capacity diminishes for small values
of η. It can also be seen that for large η increasing the
numbers of transmitters and receivers linearly increases
the capacity of the channel.

VI. Conclusion

In this paper we have analyzed the NLOS channel de-
veloped in [5]. We have shown that an upper bound exists
on the capacity of the MIMO channel, which is dependent
on a factor η. We have shown, using random matrix the-
ory, that for small values of η, the channel capacity grows
logarithmically with respect to η.

For large values of η we the channel becomes the nom-
inal i.i.d. Rayleigh channel, as used in [2]. In this case
we can expect a linear growth in capacity for increasing

numbers of transmit and receive antennas. For small η
this growth does not occur. Instead, the capacity is dom-
inated by the factor η. It has been shown that the loss
in capacity occurs even if both transmitter and receiver
have local Rayleigh fading present.

The benefit of additional transmit and receive elements
is significantly reduced once the scattering environment is
no longer “dense” over the entire length of the multi-path
channel.
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