Capacity Analysis of Correlated MIMO Channels

Leif Hanlen¹

Alex Grant²

Univ. of Newcastle, Australia

e-mail: leif@ee.newcastle.edu.au

The capacity of correlated finite-dimensions Abstract — MIMO channels, where the channel gains have a generalized Wishart distribution is found. Asymptotic expressions are given where one dimension is much larger than the other. For many transmitters, the asymptotic capacity can be divided into two components: one arising from the dominant eigenvalues of the correlation matrix, and the other from the remaining eigenvalues.

I. SUMMARY

The work of [1-3] has shown that under the assumption of an i.i.d. transfer matrix, the capacity of a MIMO channel grows in proportion to the minimum number of transmitters and receivers. Recently, [4] proposed the use of the Stieltjes' transform to estimate the capacity of a correlated channel, and suggested that the growth of the MIMO channel will remain linear under correlation, although the proportionality constant may change.

Consider a point-to-point communication link with t transmit antennas and r receive antennas. Define $m = \min\{r, t\}$ and n = $\max\{r, t\}$. At each symbol interval, $y \in \mathbb{C}^r$ depends on $x \in \mathbb{C}^t$,

$$y = Hx + w \tag{1}$$

Element y_j is the matched-filter output from antenna j, while x_i is the signal transmitted from antenna i, with the transmitter given a transmission power limit P. The matrix $H \in \mathbb{C}^{r \times t}$ has elements H_{ii} , which are the complex gains between transmit antenna *i* and receive antenna *j*. The vector $w \in \mathbb{C}^r$ contains i.i.d. circularly symmetric Gaussian noise samples $\mathsf{E}[ww^*] = \eta^2 I_r$. The H_{ii} are chosen from a complex Gaussian ensemble with zero mean and an $m \times m$ covariance matrix Σ . In the notation of [6], $H \sim N_{r,t} (0, \Sigma \otimes I_n)$. If $\Sigma = I_m$ we have the well known i.i.d. case [1].

Assume H is known at the receiver and that H, Σ are unknown at the transmitter. In this case, $\mathsf{E}[xx^*] = P \cdot I_t/t$ is optimal.

Theorem 1 (Correlated MIMO Capacity).

The capacity of the ergodic correlated MIMO channel (1) with $H \sim N_{r,t} (0, \Sigma \otimes I)$ is given by

$$C = \frac{n^{mn} \pi^{m(m-1)}}{2^{mn} \Gamma_m(n) \Gamma_m(m) \det(\Sigma)^n} \int_{\Lambda} {}_0 F_0\left(-\frac{1}{2}\Sigma^{-1}, n\Lambda\right)$$
$$\cdot \prod_{i=1}^m \lambda_i^{(n-m)} \prod_{i< j}^m (\lambda_i - \lambda_j)^2 \sum_{i=1}^m \log\left(I + \frac{P}{t}n\lambda_i\right) d\Lambda$$

where $\Gamma_m(a) = \pi^{m(m-1)/2} \prod_{i=1}^m \Gamma(a-i+1)$ is the complex multivariate gamma function, $\Lambda = diag(\lambda_1, \ldots, \lambda_m)$ and $_0F_0(\cdot)$ is a hypergeometric function of two matrix arguments [6, p. 34].

School of Elec. Engineering & Comp. Science Institute for Telecommunications Research Univ. of South Australia, Adelaide, Australia e-mail: alex.grant@unisa.edu.au

Theorem 2 (Asymptotic Correlated MIMO Capacity).

Consider (1) with $H \sim N_{r,t} (0, \Sigma \otimes I)$ such that Σ has eigenvalues $\sigma_1 > \cdots > \sigma_k > \sigma_{k+1} = \cdots = \sigma > 0.$ [5, Corrollary 9.5.7]. Then the asymptotic capacity C_{∞} , as $n \to \infty$ with finite m is

$$C_{\infty} \sim \sum_{i=1}^{k} \log\left(1 + \frac{P}{t}n\sigma_{i}\right) + \int_{-\infty}^{\infty} \log\left(1 + \frac{P}{t}n\sigma_{m}\left[z\left(\frac{n}{2}\right)^{-\frac{1}{2}} + 1\right]\right) \\ \cdot \sum_{j=1}^{m-k} \frac{\left[H_{j}\left(\frac{z}{\sqrt{2}}\right)\right]^{2}}{2^{j}j!\sqrt{2\pi}}e^{-z^{2}/2} dz$$

where $H_j(\cdot)$ is the *j*-th Hermite polynomial [7] and $A \sim B$ implies $A/B \rightarrow 1.$

When $r = n \rightarrow \infty$ and m = t, capacity grows logarithmically without bound. For r = m and $n = t \rightarrow \infty$, the right hand side above converges to a constant.

Corollary 1 (Large t).

Suppose $t \gg r$, i.e. $t = n \rightarrow \infty$ and r = m, then

$$\lim_{t=n\to\infty} C_{\infty} \approx \sum_{i=1}^{k} \log\left(1 + P\sigma_i\right) + (m-k)\log\left(1 + P\sigma_m\right)$$

where we have omitted constants of integration.

Corollary 1 presents two forms of growth for increasing r. The first term is given by the dominant eigenvalues of the covariance matrix and for $r \ge k$ is independent of r. The second term is linear in r - k and corresponds to "linear" capacity growth of the i.i.d. channel, with proportionality constant $\alpha = \log(1 + P\sigma_m)$. Over the class of equivalent covariance matrices $S_m = \{\Sigma_m \in S_m : tr(\Sigma_m) = m\}$ the i.i.d. channel has the largest rate of capacity growth $\alpha = \log(1 + P)$ for increasing r.

REFERENCES

- [1] I. E. Telatar, "Capacity of Multi-antenna Gaussian Channels," European Trans. Telecommun, vol. 10, no. 6, Nov, pp. 585-595, 1999.
- [2] G. J. Foschini and M. J. Gans, "On Limits of Wireless Communications in a Fading Environment when using Multiple Antennas," Wireless Personal Communications, vol. 6, pp. 311-335, 1998.
- [3] A. J. Grant, "Rayleigh Fading Multiple-antenna Channels," EURASIP Journal on Applied Signal Processing, Special Issue on Space-Time Coding, pt. I, no. 3, Mar, pp. 316 - 329, 2002.
- [4] C.-N. Chuah, D. N. C. Tse et.al,"Capacity Scaling in MIMO Systems Under Correlated Fading," IEEE Trans. Inform. Theory, vol. 48, no. 3, Mar, pp. 637-650, 2002.
- [5] R. J. Muirhead, Aspects of Multivariate Statistical Theory, John Wiley & Sons, Inc, New York, 1982.
- [6] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions, Chapman & Hall/CRC, Boca Raton, 2000.
- G. Szegö, Orthogonal Polynomials American Mathematical Society, [7] Providence, RI, 1939.

¹A part of this work was carried out while L. Hanlen visited the Institute for Telecommunications Research.

²The work of A. Grant was supported in part by the Australian Government under ARC Grant DP0209658.