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Abstract — The capacity of correlated finite-dimensions
MIMO channels, where the channel gains have a generalized
Wishart distribution is found. Asymptotic expressions are given
where one dimension is much larger than the other. For many
transmitters, the asymptotic capacity can be divided into two
components: one arising from the dominant eigenvalues of the
correlation matrix, and the other from the remaining eigenval-
ues.

I. SUMMARY

The work of [1–3] has shown that under the assumption of an i.i.d.
transfer matrix, the capacity of a MIMO channel grows in proportion
to the minimum number of transmitters and receivers. Recently, [4]
proposed the use of the Stieltjes’ transform to estimate the capacity
of a correlated channel, and suggested that the growth of the MIMO
channel will remain linear under correlation, although the proportion-
ality constant may change.

Consider a point-to-point communication link with t transmit an-
tennas and r receive antennas. Define m = min{r, t} and n =
max{r, t}. At each symbol interval, y ∈ C

r depends on x ∈ C
t,

y = Hx + w (1)

Element yj is the matched-filter output from antenna j, while xi is
the signal transmitted from antenna i, with the transmitter given a
transmission power limit P . The matrix H ∈ C

r×t has elements
Hji, which are the complex gains between transmit antenna i and
receive antenna j. The vector w ∈ C

r contains i.i.d. circularly sym-
metric Gaussian noise samples E [ww∗] = η2Ir . The Hji are chosen
from a complex Gaussian ensemble with zero mean and an m × m
covariance matrix Σ. In the notation of [6], H ∼ Nr,t (0, Σ ⊗ In).
If Σ = Im we have the well known i.i.d. case [1].

Assume H is known at the receiver and that H , Σ are unknown at
the transmitter. In this case, E [xx∗] = P · It/t is optimal.

Theorem 1 (Correlated MIMO Capacity).
The capacity of the ergodic correlated MIMO channel (1) with
H ∼ Nr,t (0, Σ ⊗ I) is given by

C =
nmnπm(m−1)

2mnΓm(n)Γm(m) det(Σ)n
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where Γm(a) = πm(m−1)/2 ∏m
i=1 Γ(a− i + 1) is the complex mul-

tivariate gamma function, Λ = diag(λ1, . . . , λm) and 0F0 (·) is a
hypergeometric function of two matrix arguments [6, p. 34].
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Theorem 2 (Asymptotic Correlated MIMO Capacity).
Consider (1) with H ∼ Nr,t (0, Σ ⊗ I) such that Σ has eigenvalues
σ1 > · · · > σk > σk+1 = · · ·σm = σ > 0. [5, Corrollary 9.5.7].
Then the asymptotic capacity C∞, as n → ∞ with finite m is
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where Hj(·) is the j-th Hermite polynomial [7] and A ∼ B implies
A/B → 1.

When r = n → ∞ and m = t, capacity grows logarithmically
without bound. For r = m and n = t → ∞, the right hand side
above converges to a constant.

Corollary 1 (Large t).
Suppose t � r, i.e. t = n → ∞ and r = m, then

lim
t=n→∞

C∞ ≈
k

∑

i=1

log (1 + Pσi) + (m − k) log (1 + Pσm)

where we have omitted constants of integration.

Corollary 1 presents two forms of growth for increasing r.
The first term is given by the dominant eigenvalues of the co-
variance matrix and for r ≥ k is independent of r. The sec-
ond term is linear in r − k and corresponds to “linear” capac-
ity growth of the i.i.d. channel, with proportionality constant
α = log(1 + Pσm). Over the class of equivalent covariance ma-
trices Sm = {Σm ∈ Sm : tr(Σm) = m} the i.i.d. channel has the
largest rate of capacity growth α = log(1 + P ) for increasing r.
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