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Abstract

We consider multiple-input multiple-output (MIMO) transmit beamforming systems with maximum

ratio combining (MRC) receivers. The operating environment is Rayleigh-fading with both transmit and

receive spatial correlation. We present exact expressions for the probability density function (p.d.f.) of

the output signal-to-noise ratio (SNR), as well as the system outage probability. The results are based

on explicit closed-form expressions which we derive for the p.d.f. and c.d.f. of the maximum eigenvalue

of double-correlated complex Wishart matrices. For systems with two antennas at either the transmitter

or the receiver, we also derive exact closed-form expressions for the symbol error rate (SER). The new

expressions are used to prove that MIMO-MRC achieves the maximum available spatial diversity order,

and to demonstrate the effect of spatial correlation. The analysis is validated through comparison with

Monte-Carlo simulations.
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I. INTRODUCTION

Multiple-input multiple-output (MIMO) antenna technology can provide significant improve-

ments in capacity [1–4] and error performance [5] over conventional single-antenna technology,

without requiring extra power or bandwidth. When channel knowledge is available at both the

transmitter and receiver, MIMO transmit beamforming with maximum-ratio combining (MRC)

receivers [6] is particularly robust against the severe effects of fading. This robustness is achieved

by steering the transmitted signal along the maximum eigenmode of the MIMO channel, resulting

in the maximization of the signal-to-noise ratio (SNR) at the MRC output.

Recently, MIMO-MRC has been investigated in uncorrelated and semi-correlated channel sce-

narios (i.e. where correlation occurs at only one end of the transmission link, or not at all). A key

to deriving analytical performance results is to statistically characterize the SNR at the output of

the MRC combiner. In [7–11], uncorrelated Rayleigh fading was considered, and the output SNR

statistical properties were derived based on maximum eigenvalue statistics of complex central

Wishart matrices. In [12], uncorrelated Rician channels were characterized using maximum

eigenvalue properties of complex noncentral Wishart matrices. Semi-correlated Rayleigh channels

were considered in [13], utilizing properties of semi-correlated Wishart matrices.

In this paper we consider double-correlated Rayleigh channels, by first deriving results for

the eigenvalue statistics of double-correlated complex Wishart matrices. In practice, double-

correlated channels (i.e. with correlation at both the transmitter and receiver) commonly occur

due to, for example, insufficient scattering around both the transmit and receive terminals, or to

closely spaced antennas with respect to the wavelength of the signal. While there are numerous

statistical results on general Wishart matrices, there are almost no results for the eigenvalue

statistics in the case of double-correlated Wishart matrices. In [14], the joint probability density

function (p.d.f.) of the eigenvalues of such matrices was derived in terms of hypergeometric

functions of three matrix arguments. In [15], the marginal p.d.f. of an arbitrary unordered

eigenvalue was derived. Here, we add to these general statistical results, by deriving new exact

closed-form expressions for the p.d.f. and cumulative distribution function (c.d.f.) of the maximum

eigenvalue of double-correlated complex Wishart matrices.
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The new general statistical results allow us to consider performance measures for MIMO-MRC

in double-correlated Rayleigh environments. In particular, we present explicit expressions for the

p.d.f. of the output SNR, and for the outage probability. These expressions are in closed-form,

simple, and apply for arbitrary antenna configurations, and over the entire range of SNRs.

We also derive explicit closed-form expressions for the average symbol error rate (SER) with

various modulation formats. SER expressions are only currently available in closed-form for

uncorrelated Rayleigh channels with 2 × m (i.e. 2 transmit and m receive antennas), or m × 2

systems, where m ≥ 2 [8, 9]; and all other results either require numerical evaluation of unknown

coefficients (e.g. [7]), or evaluation of infinite series. For the SER results in this paper, we also

restrict attention to 2×m and m× 2 systems in order to obtain closed-form solutions, however

our results are much more general since they apply for double-correlated channels. The 2-

antenna restriction in fact has important practical applications. As discussed in [9], size and cost

constraints in realistic cellular MIMO systems will typically limit mobile units to accommodate

a maximum of two antennas. Base stations, on the other hand, usually have greater design

flexibility, and can easily be implemented with more antennas. As such, 2 × m and m × 2

correspond to uplink and downlink communication scenarios in such systems, respectively.

Even more insights can be gained by analyzing the performance at high SNR. In particular,

we formally prove that MIMO-MRC achieves the maximum possible spatial diversity order in

double-correlated Rayleigh environments, and show a clear and direct relationship between the

SER and the transmit and receive correlation matrices in the high SNR regime.

Finally, we verify the analytical SNR p.d.f., outage probability, and SER expressions by

comparing with Monte-Carlo simulations, and examine the impact of correlation in each case.

Our results show that the outage probability may increase or decrease as a function of the spatial

correlation, whereas the SER tends to vary monotonically.

II. STATISTICAL PROPERTIES OF DOUBLE-CORRELATED COMPLEX WISHART MATRICES

This section presents new general statistical properties of complex double-correlated Wishart

matrices, which will be used in the subsequent performance analysis of MIMO-MRC.
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A. Cumulative Distribution Function (C.D.F.)

The following theorem presents the c.d.f. of the maximum eigenvalue of double-correlated

complex Wishart matrices. This will be used for deriving the outage probability of MIMO-MRC

in double-correlated Rayleigh channels.

Theorem 1: Let X ∼ CNm,n (0m×n,Σ ⊗ Ω), where n ≤ m, and Ω ∈ Cn×n and Σ ∈ Cm×m

are Hermitian positive-definite matrices with eigenvalues ω1 < . . . < ωn and σ1 < . . . < σm

respectively. Then the c.d.f. of the maximum eigenvalue λm of the double-correlated complex

Wishart matrix X†X is given by

Fλm(x) =
(−1)nΓn(n) det(Ω)n−1 det(Σ)m−1 det(Ψ(x))

∆n(Ω)∆m(Σ)(−x)n(n−1)/2
(1)

where Γn(·) is the normalized complex multivariate gamma function, defined as1

Γn(n) =
n
∏

i=1

Γ(n − i + 1) (2)

and ∆m(·) is a Vandermonde determinant in the eigenvalues of the m-dimensional matrix

argument2, given by

∆m(Σ) =
m
∏

i<j

(σj − σi) . (3)

Also, Ψ(x) is an m × m matrix with (i, j)th element

(Ψ(x))i,j =







(

1
σj

)m−i
for i ≤ τ

e
− x

ωi−τ σj P
(

m;− x
ωi−τσj

)

for i > τ
(4)

where τ = m − n, and

P (%; y) = 1 − e−y
$−1
∑

k=0

yk/k! (5)

is the regularized lower incomplete gamma function.

Proof: See the Appendix.
1Note that this is related to the standard complex multivariate gamma function Γ̃n(n) (as defined in [16]) via Γn(n) =

π−n(n−1)/2Γ̃n(n).
2For notational convenience, we will sometimes give a set in place of a matrix in the argument of ∆m(·), as a shorthand.

Specifically, for the set A, we use ∆m(A) as shorthand for ∆m(diag(A)).
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Corollary 1: For the case n = 2, m ≥ 2, (1) reduces to

Fλm(x) =
det (Ω)

∆2 (Ω) ∆m (Σ)

m
∑

p=1

m
∑

t=1,t#=p

(−1)p+φ(t) (σpσt)
m−1 ∆m−2

(

σ[p,t]
)

Qp,t(x) (6)

where

φ(t) =







t , t < p

t − 1 , t > p
(7)

and σ[p,t] = {σi; i ∈ {1, . . . , m} \ {p, t}}, and

Qp,t(x) =
1

x
e
− x

ω2σp P
(

m;− x

ω2σp

)

e−
x

ω1σt P
(

m;− x

ω1σt

)

. (8)

Proof: The proof follows by applying Laplace’s Expansion to the last two rows of det (Ψ(x))

in (1), and then simplifying the resulting (Vandermonde-type) minors using (56).

Corollary 2: For the case n = m = 2, (1) reduces to the simple expression

Fλm(x) =
ω1ω2σ1σ2

x(σ2 − σ1)(ω2 − ω1)

2
∑

i=1

(−1)i
2
∏

j=1

(

e
− x

ω|i−j|+1σj +
x

ω|i−j|+1σj
− 1

)

. (9)

Proof: The proof is straightforward and is omitted.

B. Probability Density Function (P.D.F.)

The following theorem presents the p.d.f. of the maximum eigenvalue of double-correlated

complex Wishart matrices. This will be used for deriving the p.d.f. of the output SNR of MIMO-

MRC in double-correlated Rayleigh channels.

Theorem 2: Let X ∼ CNm,n (0m×n,Σ ⊗ Ω), where n ≤ m, and Ω ∈ Cn×n and Σ ∈ Cm×m

are Hermitian positive-definite matrices with eigenvalues ω1 < . . . < ωn and σ1 < . . . < σm

respectively. Then the p.d.f. of the maximum eigenvalue λm of the double-correlated complex

Wishart matrix X†X is given by

fλm(λm) =
(−1)n+1Γn(n) det(Ω)n−1 det(Σ)m−1

∆n(Ω) ∆m(Σ) (−λm)n(n−1)/2

×
(

n(n − 1) det(Ψ(λm))

2λm
+

m
∑

$=τ+1

det(Ψ$(λm))

)

(10)

where Ψ$(λm) is an m × m matrix with (i, j)th element
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(Ψ$(λm))i,j =











(Ψ(λm))i,j for i )= %

e
− λm

ωi−τ σj

ωi−τσj
P
(

m − 1; −λm
ωi−τσj

)

for i = %
(11)

and where (Ψ(λm))i,j is defined in (4).

Proof: The result follows by differentiating (1) with respect to x.

III. MIMO-MRC SYSTEM MODEL

Consider Nt transmit and Nr receive antennas, where the Nr × 1 received vector is

r =
√
γ̄Hwx + n (12)

where x is the transmitted symbol with E [|x|2] = 1, w is the beamforming vector (specified

below) with E
[

‖w‖2] = 1, n is noise ∼ CNNr,1 (0Nr×1, INr), and γ̄ is the transmit SNR. Also,

H is the Nr ×Nt channel matrix, assumed to be flat spatially-correlated Rayleigh fading, and is

decomposed according to the common kronecker structure (as in [4, 14, 17, 18], among others)

as

H = R
1
2 HwS

1
2 ∼ CNNr ,Nt (0Nr×Nt ,R⊗ S) (13)

where R and S are the receive and transmit correlation matrices respectively, with unit diagonal

entries, and Hw ∼ CNNr,Nt (0Nr×Nt , INr ⊗ INt).

The receiver employs the principle of MRC to give

z = w
†
H

†
r =

√
γ̄w†

H
†
Hwx + w

†
H

†
n . (14)

Therefore, the SNR at the output of the combiner is easily derived as

γ = γ̄w†
H

†
Hw . (15)

The BF vector w is chosen to maximize this instantaneous output SNR, thereby minimizing

the error probability. It is well known that the optimum BF vector wopt is the eigenvector

corresponding to the maximum eigenvalue λm of H†H. In this case, the output SNR (15) becomes

γ = γ̄w†
optH

†
Hwopt = γ̄λm . (16)
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Clearly the output SNR (and therefore the performance) of MIMO-MRC depends directly on

the statistical properties of λm.

In the previous section we presented results which apply directly to λm for the case when

Nr ≥ Nt (i.e. H†H is full-rank), by setting Ω = S, Σ = R, n = Nt, and m = Nr. The results

of the previous section also apply to the case when Nr < Nt, (i.e. HH† is full-rank), by setting

Ω = R, Σ = S, n = Nr, and m = Nt; since the maximum eigenvalue is the same in both cases.

IV. PERFORMANCE ANALYSIS OF MIMO-MRC IN DOUBLE-CORRELATED CHANNELS

A. Statistical Characterization of the Output SNR

We now characterize the statistics of the output SNR γ. Using (16), and making a simple

change of variables to (10) we obtain the p.d.f. of γ, given in closed-form by

fγ(γ) =
(−1)nΓn(n) det(Ω)n−1 det(Σ)m−1

∆n(Ω) ∆m(Σ)

(

− γ̄
γ

)n(n−1)/2

×





n(1 − n) det
(

Ψ

(

γ
γ̄

))

γ̄

2γ
+

m
∑

$=τ+1

det

(

Ψ$

(

γ

γ̄

))



 . (17)

The outage probability is an important quality of service measure, defined as the probability

that γ drops below an acceptable SNR threshold γth. It is obtained from (1) and (15) as follows

Fγ(γth) = Pr(γ ≤ γth) = Fλm

(

γth

γ̄

)

=
(−1)nΓn(n) det(Ω)n−1 det(Σ)m−1 det

(

Ψ

(

γth
γ̄

))

∆n(Ω) ∆m(Σ)
(

−γth
γ̄

)n(n−1)/2
. (18)

In Section V we show that the outage probability can increase or decrease with the spatial

correlation, depending on the value of γth.

B. Symbol Error Rate Analysis

In this subsection we derive closed-form expressions for the average symbol error rate (SER)

of MIMO-MRC in double-correlated Rayleigh channels, with various modulation formats. As

discussed in Section I, we consider the practical special cases 2 × m and m × 2. Our results
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apply for all general modulation formats that have a SER expression of the form

Ps = Eγ

[

aQ
(

√

2bγ
)]

(19)

where Q(·) is the Gaussian Q-function, and a and b are modulation-specific constants. Such

modulation formats include BPSK (a = 1, b = 1); BFSK with orthogonal signalling (a = 1, b =

0.5) or minimum correlation (a = 1, b = 0.715); and M−ary PAM (a = 2(M − 1)/M, b =

3/(M2 − 1)). Our results also provide the approximate SER for those other formats for which

(19) is an approximation, e.g. M-ary PSK (a = 2, b = sin2(π/M)) [19, Eq. 5.2-61].

A common useful approach for evaluating SERs of the form (19), is to first evaluate the moment

generating function (m.g.f.) of γ, and then apply the well-known m.g.f.-SER relationships given

in [20]. In the context of MIMO-MRC, this approach was used in [7, 9] to evaluate SERs in

uncorrelated Rayleigh channels. Although it is possible to evaluate the output SNR m.g.f. for

double-correlated channels considered in this paper, unfortunately the resulting expression has

significant convergence problems.

As such, we adopt an alternative approach. We begin by generalizing a result presented in

[13], which directly related the SER of MIMO-MRC in semi-correlated channels with BPSK to

the c.d.f. of the output SNR. We start by noting that the Gaussian Q-function can be written as

Q (x) =
1√
π

∫ ∞

x/
√

2

e−v2/2 dv (20)

and substitute into (19) to give

Ps =
a√
π

∫ ∞

0

[∫ ∞

√
bu

e−v2
dv

]

fγ (u) du . (21)

Now we apply (definite) integration by parts to (21). To do this we integrate fγ(u), and differ-

entiate the quantity in square brackets as follows

d

du

[
∫ ∞

√
bu

e−v2
dv

]

= − d

du

[

∫

√
bu

0

e−v2
dv

]

= − d

du

√
bu

(

d

dx

[
∫ x

0

e−v2
dv

])

x=
√

bu

= −1

2

√

b

u
e−bu (22)
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where the first line followed by noting that
∫ ∞

0

e−v2
dv =

√
π

2
(23)

and the second line followed from the Chain Rule, and last line was obtained using the Second

Fundamental Theorem of Calculus. This gives

Ps =
a
√

b

2
√
π

∫ ∞

0

e−bu

√
u

Fγ (u) du. (24)

Note that (24) is a generalization of [13, Eq. 32] to SER expressions of the form (19).

Now we can directly substitute (18) into (24) and integrate term by term. This procedure,

however, is problematic since the term-by-term integrals are divergent (although the overall

result converges). To circumvent this problem, we first write (24) in terms of the c.d.f. of λm,

given in Corollary 1, as follows

Ps =
a
√

b

2
√
π

∫ ∞

0

e−bu

√
u

Fλm

(

u

γ̄

)

du (25)

and derive an alternative expression for Qp,t(x) in (8).

Expanding the exponentials into power series, and using (5), we manipulate (8) as follows

Qp,t(x) =
1

x







∞
∑

k=m

(

− x
ω2σp

)k

k!













∞
∑

k=m

(

− x
ω1σt

)k

k!







=
1

x

∞
∑

k1=m

∞
∑

k2=m

(−x)k1+k2

(

1
ω2σp

)k1
(

1
ω1σt

)k2

k1!k2!

= −
∞
∑

k=2m

(−x)k−1 Sk (26)

where

Sk =
k−m
∑

$=m

(

1
ω2σp

)$ (
1

ω1σt

)k−$

%!(k − %)! . (27)

Now, substituting (26) into (6) and (25), the SER can be written as

Ps =
a
√

b

2
√
π

det (Ω)

∆2 (Ω) ∆m (Σ)

m
∑

p=1

m
∑

t=1,t#=p

(−1)p+φ(t) (σpσt)
m−1 ∆m−2

(

σ[p,t]
)

I (28)
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where

I =

∫ ∞

0

e−bu

√
u

Qp,t

(

u

γ̄

)

du

= −
∞
∑

k=2m

Sk

(

−1

γ̄

)k−1 ∫ ∞

0

uk−3/2e−budu

= γ̄
√

b
∞
∑

k=2m

Sk

(

− 1

bγ̄

)k

Γ (k − 1/2) (29)

where the last line followed by applying the integration identity [21, Eq. 3.381.4]. To remove

the infinite summation from (29), we apply the Binomial Theorem to express Sk in (27) as

Sk =
1

k!

((

1

ω2σp
+

1

ω1σt

)k

−
m−1
∑

$=0

(

k

%

)(

1

ω2σp

)$( 1

ω1σt

)k−$

−
k
∑

$=k−m+1

(

k

%

)(

1

ω2σp

)$( 1

ω1σt

)k−$)

. (30)

Now, performing the change of variables %→ (k − %) in the last summation in (30), and using

the property
(

k
$

)

=
(

k
k−$

)

, we can write

Sk =
1

k!

(

(

1

ω2σp
+

1

ω1σt

)k

−
m−1
∑

$=0

(

k

%

)

(

(

1

ω2σp

)$( 1

ω1σt

)k−$

+

(

1

ω1σt

)$( 1

ω2σp

)k−$
))

.

(31)

Note that the key advantage of writing Sk in this way, as opposed to (27), is that we have

removed the dependence of the summation limits on k. We now substitute (31) into (29) and

simplify to obtain

I = γ̄
√

b



η

(

0,− 1

γ̄b

(

1

ω2σp
+

1

ω1σt

))

−
m−1
∑

$=0

1

%!

η
(

%,− 1
γ̄bω2σp

)

(γ̄bω1σt)
$ −

m−1
∑

$=0

1

%!

η
(

%,− 1
γ̄bω1σt

)

(γ̄bω2σp)
$





(32)

where

η(%, y) =
∞
∑

k=2m

yk−$ Γ (k − 1/2)

(k − %)!

=
∞
∑

k=2m−$

yk Γ (k + %− 1/2)

k!

= Γ (%− 1/2) 1F0 (%− 1/2; y)−
2m−$−1
∑

k=0

yk Γ (k + %− 1/2)

k!
(33)
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where 1F0 (·) is the binomial hypergeometric function. Noting that 1F0 (a; y) = 2F1 (a; b; b; y),

and using [22, Eq. 15.1.8], we obtain

η(%, y) = Γ (%− 1/2) (1 − y)1/2−$ −
2m−$−1
∑

k=0

yk Γ (k + %− 1/2)

k!
. (34)

Now we apply the identity

Γ (k + 1/2) =
(2k − 1)!!

√
π

2k
(35)

where

(2k − 1)!!
∆
= 1 × 3 × . . . × (2k − 1) (36)

for k > 0, and define (−1)!! = 1 and (−3)!! = −1, which yields

η(%, y) =

√
π

2$−1
η̃(%, y) (37)

where

η̃(%, y) = (2%− 3)!! (1 − y)1/2−$ −
2m−$−1
∑

k=0

(y

2

)k (2(k + %) − 3)!!

k!
. (38)

Finally, substituting (37) into (32) and (28) yields the desired closed-form SER expression

Ps =
det (Ω) abγ̄

∆2 (Ω) ∆m (Σ)

m
∑

p=1

m
∑

t=1,t#=p

(−1)p+φ(t) (σpσt)
m−1 ∆m−2

(

σ[p,t]
)

×



η̃

(

0,− 1

γ̄b

(

1

ω2σp
+

1

ω1σt

))

−
m−1
∑

$=0

1

%!

η̃
(

%,− 1
γ̄bω2σp

)

(2γ̄bω1σt)
$

−
m−1
∑

$=0

1

%!

η̃
(

%,− 1
γ̄bω1σt

)

(2γ̄bω2σp)
$



 . (39)

Note that (39) is a simple finite closed-form expression (involving only polynomial terms in

γ̄), which can be evaluated easily and efficiently.

C. High SNR SER Analysis

We now analyze the SER performance in the high SNR regime in order to derive the diversity

order of the system.

Consider the SER expression given by (28) and (29). It can easily be shown that, irrespective of

the SNR, the first term in (29) (i.e. k = 2m) cancels with terms in (28) to give zero contribution

to Ps. Therefore the summation in (29) could equally well be written starting from k = 2m+1.

Since as γ̄ → ∞, the infinite series in (29) is dominated by the low order terms, in the high
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SNR regime we need only to consider k = 2m + 1. To proceed, we take the k = 2m + 1 term

in the series and use (27) to write (29) at high SNR as follows

I∞ = −(γ̄b)−2m Γ(2m + 1/2)√
bm!(m + 1)!

(

(

1

ω2σp

)m (

1

ω1σt

)m+1

+

(

1

ω2σp

)m+1 ( 1

ω1σt

)m
)

= −(γ̄b)−2m Γ(2m + 1/2)√
bm!(m + 1)!

1

det (Ω)m (σpσt)
m

(

1

ω1σt
+

1

ω2σp

)

. (40)

Substituting (40) into (28) gives Ps at high SNR as follows

P∞
s = − a Γ(2m + 1/2) (γ̄b)−2m

2
√
πm!(m + 1)!∆2 (Ω) ∆m (Σ) det (Ω)m−1 S̃ (41)

where

S̃ =
m
∑

p=1

m
∑

t=1,t#=p

(−1)p+φ(t) ∆m−2

(

σ[p,t]
)

σpσt

(

1

ω1σt
+

1

ω2σp

)

. (42)

Now, it can be shown that
m
∑

p=1

m
∑

t=1,t#=p

(−1)p+φ(t) ∆m−2

(

σ[p,t]
)

σpσ2
t

and
m
∑

p=1

m
∑

t=1,t#=p

(−1)p+φ(t) ∆m−2

(

σ[p,t]
)

σ2
pσt

are Laplace expansions of (−1)m−2∆m(Σ) and (−1)m−1∆m(Σ) respectively. As such, (42) can

be written as

S̃ = −
(

1

ω1
− 1

ω2

)

∆m(Σ)

det (Σ)2

= − ∆2(Ω)∆m(Σ)

det (Ω) det (Σ)2
(43)

where the second line followed from (56). Finally, substituting (43) into (41) and simplifying

using (35), we obtain the desired high SNR SER result

P∞
s =

a (4m − 1)!!

b2m 22m+1 m!(m + 1)! det (Ω)m det (Σ)2 γ̄
−2m . (44)

Therefore, clearly MIMO-MRC achieves the maximum possible spatial diversity order of 2m in

double-correlated Rayleigh channels. Also, using Hadamard’s inequality [23, Th. 16.8.2], and

the fact that the diagonal elements of Ω and Σ are unity, it can be easily shown that

0 ≤ det (Ω) ≤ 1 and 0 ≤ det (Σ) ≤ 1 (45)

with equality in the upper limit only when the correlation matrices are identity matrices. This

proves that the presence of spatial correlation (at either end) yields a net reduction in error
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performance in the high SNR regime.

V. NUMERICAL RESULTS

While the analytic results in this paper apply to arbitrary channel correlation matrices, for

our numerical studies we construct the correlation matrices using the practical channel model

presented in [24]. The model assumes that there are uniform linear arrays at both the transmitter

and receiver. Let us denote the relative antenna spacing between adjacent antennas (measured in

number of wavelengths) as dr at the receiver and dt at the transmitter. Also, define θr, θt, σ2
r and

σ2
t as the mean angle of arrival (AoA), mean angle of departure (AoD), receive angle spread

and transmit angle spread respectively, and let θr = θr + θ̂r and θt = θt + θ̂t denote the actual

AoA and AoD, with θ̂r ∼ N (0, σ2
r) and θ̂t ∼ N (0, σ2

t ). With these definitions, the (p, q)th entry

of R and S is given by

Rp,q = e−j2π(q−p)dr cos(θr)e−
1
2 (2π(q−p)dr sin(θr)σr)2 , Sp,q = e−j2π(p−q)dt cos(θt)e−

1
2 (2π(p−q)dt sin(θt)σt)

2

.

Recall that R and S are directly related to Ω and Σ as discussed at the end of Section III. For

all results in this section we assume dr = dt = 1
2 and θr = θt = π

2 .

Fig. 1 shows the p.d.f. of the output SNR of MIMO-MRC with various antenna configurations.

The ‘Analytical’ curves are from (17), and clearly agree with the Monte-Carlo simulated p.d.f.s.

Moreover, we observe that both the mean and variance of the output SNR increase with the

number of antennas.

Fig. 2 shows the (analytical) p.d.f. of the output SNR, comparing various correlation scenarios.

We see that for 4 × 4 antennas, extra correlation increases the spread of the SNR around the

mean. This effect was also observed for semi-correlated channels in [13]. For the 2 × 2 case,

the correlation has less effect.

Fig. 3 shows the outage probability of MIMO-MRC, with the same antenna configurations as

in Fig. 1. The ‘Analytical’ curves are from (18), and agree precisely with Monte-Carlo simulated

curves. We see that the outage probability is significantly improved as the number of antennas

are increased.

Fig. 4 shows (analytical) outage probability curves, comparing different correlation scenarios.
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We see that for both antenna configurations, the correlation increases the outage probability at low

SNR thresholds, and decreases the outage probability (thereby improving system performance)

at high SNR thresholds. These general trends were also previously observed for semi-correlated

channels in [13]. Moreover, we see that the cross-over point of the different correlated curves

occurs at lower outage probabilities as the numbers of antennas increase.

Fig. 5 shows the SER of MIMO-MRC with BPSK modulation, for various antenna configu-

rations. The ‘Analytical’ curves are from (39) with a = 1 and b = 1, and match exactly with

the Monte-Carlo simulated SERs. The ’Analytical (High SNR)’ curves are from (44). Clearly

they converge to the exact SER in the high SNR regime, confirming that the maximum possible

diversity order is achieved.

Fig. 6 shows the SER of MIMO-MRC with 4-PAM modulation, for various antenna configu-

rations. The ’Analytical’ curves were generated from (39) with a = 1.5 and b = 0.2. Again we

see an exact agreement with the Monte-Carlo simulated curves in all cases.

Fig. 7 shows the SER of MIMO-MRC with QPSK modulation, for various antenna config-

urations. The ’Analytical’ curves were generated based on (39) with a = 2 and b = 0.5. As

discussed in Section IV-B, (39) only provides an approximation for QPSK, however we see that

this approximation is accurate for all but very low SNRs. In particular, for all SERs of practical

interest (i.e. Ps < 0.01), the analytical curves match almost exactly with the simulated curves.

Fig. 8 uses the analytical expressions to examine the effect of correlation on the SER. Results

are presented for BPSK modulation. We see that for both antenna configurations, the SER

increases monotonically with the level of correlation. This agrees with the high SNR predictions

from (44) and (45).

VI. CONCLUSION

We have examined the performance of MIMO-MRC in double-correlated Rayleigh fading

environments. Our results are based on exact closed-form expressions which we derived for the

p.d.f. and c.d.f. of the maximum eigenvalue of double-correlated complex Wishart matrices. We

showed that the outage performance may increase or decrease due to the presence of spatial
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correlation, depending on the average SNR. When the minimum number of transmit and receive

antennas is two, we proved that MIMO-MRC achieves the maximum available spatial diversity

order in double-correlated channels.

APPENDIX

A. Proof of Theorem 1

First consider the n = m case of square random matrices X ∼ CNm,m(0m×m,Σ ⊗ Ω), and

let λ1 < . . . < λm be the non-zero eigenvalues of X†X. The c.d.f. of λm is obtained using

Fλm(x) =

∫

D
f(Λ) dΛ (46)

where Λ = diag{λ1, . . . ,λm}, f(Λ) is the joint p.d.f. of λ1, . . . ,λm, and D = {0 ≤ λ1 ≤ . . . ≤ λm < x}.

It was shown in [14] that

f(Λ) =
0F̃0 (−Ω−1,Σ−1,Λ) ∆m(Λ)2

Γm(m)2 det(Ω)m det(Σ)m
(47)

where 0F̃0 (·; ·; ·) is a complex hypergeometric function of three matrix arguments. To evaluate

the integral in (46) we first expand 0F̃0(·) in complex zonal polynomials [16] as

0F̃0

(

−Ω
−1,Σ−1,Λ

)

=
∞
∑

k=0

∑

K

C̃K(−Ω−1)C̃K(Σ−1)C̃K(Λ)

k!C̃K(Im)2
(48)

where the inner sum is over all partitions K = (k1, . . . , km) with k1 ≥ k2 ≥ . . . km ≥ 0, and

k1 + . . . + km = k. Using the character representation for complex zonal polynomials [16]

C̃K(Λ) = χ[K](1)χ{K}(Λ) (49)

and

C̃K(Im) =
χ[K](1)2 Γm(m,K)

k! Γm(m)
(50)

where χ{K}(·) is the character of the representation {K} of the linear group, χ[K](1) is the

dimension of the representation [K] of the symmetric group, and

Γm(m,K) =
m
∏

i=1

Γ(m + ki − i + 1) (51)
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we can write

0F̃0

(

−Ω
−1,Σ−1,Λ

)

=
∞
∑

k=0

∑

K

k! Γm(m)2

Γm(m,K)2

χ{K}(−Ω−1)χ{K}(Σ−1)χ{K}(Λ)

χ[K](1)
. (52)

Now we apply Weyl’s formulas [25]

χ[K](1) = k!

∏m
i<j (ki − kj − i + j)

Γm(m,K)
(53)

and3

χ{K}(Λ) =
det

(

λ
kj+m−j
i

)

det
(

λm−j
i

) = (−1)m(m−1)/2
det

(

λ
kj+m−j
i

)

∆m (Λ)
(54)

to give

0F̃0

(

−Ω
−1,Σ−1,Λ

)

=
Γm(m)2

∏m
i<j

[(

1
ωj

− 1
ωi

)(

1
σi
− 1

σj

)]

×
∞
∑

k=0

∑

K

det

(

(

− 1
ωi

)kj+m−j
)

det

(

(

1
σi

)kj+m−j
)

det
(

λ
kj+m−j
i

)

Γ (m,K)
∏m

i<j (kj − ki − j + i) ∆m(Λ)
. (55)

Now changing from K to strictly ordered partitions Ko = (k̃1, . . . , k̃m) with k̃1 > . . . > k̃m ≥ 0

(i.e. such that ki + m − i → k̃i), and using
m
∏

i<j

(

1

ωj
− 1

ωi

)

=

∏m
i<j (ωi − ωj)
∏m

i=1 ω
m−1
i

(56)

we obtain

0F̃0

(

−Ω
−1,Σ−1,Λ

)

=
(−1)m(m−1)/2Γm(m)2 det (Ω)m−1 det (Σ)m−1

∆m (Ω) ∆m (Σ)

×
∞
∑

k=0

∑

Ko

det

(

(

− 1
ωi

)k̃j
)

det

(

(

1
σi

)k̃j
)

det
(

λ
k̃j

i

)

(

∏m
i=1 k̃i!

)

∆m(Ko) ∆m(Λ)
. (57)

Substituting (57) into (47) and simplifying, the joint eigenvalue p.d.f. becomes

f(Λ) =
(−1)m(m−1)/2

det(Ω) det(Σ)∆m(Ω)∆m(Σ)

×
∞
∑

k=0

∑

Ko

det

(

(

− 1
ωi

)k̃j
)

det

(

(

1
σi

)k̃j
)

det
(

λ
k̃j

i

)

∆m(Λ)
(

∏m
i=1 k̃i!

)

∆m(Ko)
. (58)

3Here we introduce the compact notation for the determinant of a matrix, written in terms of the (i, j)th element.
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Now substituting (58) into (46), the c.d.f. of λm can be written as

Fλm(x) =
(−1)m(m−1)/2

det(Ω) det(Σ)∆m(Ω)∆m(Σ)

∞
∑

k=0

∑

Ko

det

(

(

− 1
ωi

)k̃j
)

det

(

(

1
σi

)k̃j
)

J
(

∏m
i=1 k̃i!

)

∆m(Ko)
(59)

where

J =

∫

D
det

(

λ
k̃j

i

)

∆m(Λ) dΛ . (60)

To evaluate this integral, we note that ∆m (Λ) = det
(

λj−1
i

)

, and apply [26, Corr. 2] to obtain

J = det

(
∫ x

0

tk̃j+i−1dt

)

= x
m(m+1)

2 +k̃ det

(

1

k̃j + i

)

. (61)

Now, in order to remove the infinite sum over partitions in (59), we must manipulate the right-

hand determinant in (61) as follows

det

(

1

k̃j + i

)

= det













1
k̃1+1

1
k̃2+1

· · · 1
k̃m+1

1
k̃1+2

1
k̃2+2

· · · 1
k̃m+2

...
...

. . .
...

1
k̃1+m

1
k̃2+m

· · · 1
k̃m+m













(62)

= det













1
k̃1+1

k̃1−k̃2

(k̃1+1)(k̃2+1)
· · ·

k̃1−k̃m

(k̃1+1)(k̃m+1)

1
k̃1+2

k̃1−k̃2

(k̃1+2)(k̃2+2)
· · ·

k̃1−k̃m

(k̃1+2)(k̃m+2)

...
...

. . .
...

1
k̃1+m

k̃1−k̃2

(k̃1+m)(k̃2+m)
· · ·

k̃1−k̃m

(k̃1+m)(k̃m+m)













(63)

=
m
∏

i=2

(k̃1 − k̃i)
m
∏

i=1

(

1

k̃1 + i

)

det













1 1
k̃2+1

· · · 1
k̃m+1

1 1
k̃2+2

· · · 1
k̃m+2

...
...

. . .
...

1 1
k̃2+m

· · · 1
k̃m+m













(64)

=
m
∏

i=2

(k̃1 − k̃i)
m
∏

i=1

(

1

k̃1 + i

)

det

















1 1
k̃2+1

· · · 1
k̃m+1

0 −1
(k̃2+1)(k̃2+2)

· · · −1
(k̃m+1)(k̃m+2)

0 −2
(k̃2+1)(k̃2+3)

· · · −2
(k̃m+1)(k̃m+3)

...
...

. . .
...

0 −(m−1)

(k̃2+1)(k̃2+m)
· · ·

−(m−1)

(k̃m+1)(k̃m+m)

















(65)
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= Γ(m)
m
∏

i=2

(

k̃i − k̃1

k̃i + 1

)

m
∏

i=1

(

1

k̃1 + i

)

det













1
k̃2+2

· · · 1
k̃m+2

1
k̃2+3

· · · 1
k̃m+3

...
. . .

...
1

k̃2+m
· · · 1

k̃m+m













(66)

Note that in (63) and (64) we have subtracted the first column from all other columns and removed

common factors. In (65) and (66) we have then subtracted the first row in the determinant from

all other rows and removed common factors. Notice that the determinant in (66) is a principle

submatrix of the determinant in (62). Applying the same sequence of operations (m − 1 times)

to the determinant in (66), we obtain

det

(

1

k̃j + i

)

= Γm(m) ∆m(Ko)
m
∏

i,j=1

(

1

k̃i + j

)

. (67)

Substituting (67) into (61) and (59) and simplifying gives

Fλm(x) =
(−1)m(m−1)/2 Γm(m)xm(m+1)/2

det(Ω) det(Σ) ∆m(Ω) ∆m(Σ)

∞
∑

k=0

∑

Ko

det

(

(

− 1

ωi

)k̃j
)

det

(

(

1

σi

)k̃j
)

m
∏

i=1

g(k̃i)

(68)

where

g(k̃i) =
xk̃i

k̃i!

m
∏

j=1

(

1

k̃i + j

)

. (69)

Now we apply the Cauchy-Binet formula [27] to give

Fλm(x) =
(−1)m(m−1)/2 Γm(m) xm(m+1)/2

det(Ω) det(Σ) ∆m(Ω) ∆m(Σ)
det

(

∞
∑

k=0

(

− 1

ωiσj

)k

g(k)

)

(70)

and deal with the infinite sum as follows

∞
∑

k=0

(

− 1

ωiσj

)k

g(k) =
∞
∑

k=0

(

− x
ωiσj

)k

k!

m
∏

j=1

(

1

k + j

)

=
∞
∑

k=0

(

− x
ωiσj

)k

k!

Γ(k + 1)

Γ(m + k + 1)

=
1

m!
1F1

(

1; m + 1;− x

ωiσj

)

(71)
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where 1F1(·) is the confluent hypergeometric function. Applying the identity (see [22, Eq. 6.5.2]

and [22, Eq. 6.5.12])

1F1 (1; b; z) = Γ(b)z1−bez P (b − 1; z) (72)

in (71), and then substituting into (70) yields

Fλm(x) =
(−1)m Γm(m) det(Ω)m−1 det(Σ)m−1

∆m(Ω) ∆m(Σ) (−x)m(m−1)/2
det

(

e
− x

ωiσj P
(

m;− x

ωiσj

))

. (73)

This establishes the result for square matrices.

To obtain the result for rectangular matrices (i.e. for n < m, and n× n matrix Ω), we follow

an approach of [15], and consider an auxiliary (expanded) system with m × m matrix Ω̃ with

eigenvalues (ω̃1, . . . , ω̃m) = (ε1, . . . , ετ ,ω1, . . . ,ωn), for which (73) holds, and take limits of (73)

as ε1 → 0, . . . , ετ → 0. We then have

Fλm(x) =
(−1)m Γm(m) det (Σ)m−1

∆m(Σ)(−x)m(m−1)/2
L (74)

where

L = lim
ω̃1→0,...,ω̃τ→0

det
(

Ω̃

)m−1

∆m

(

Ω̃

) det

(

e
− x

ω̃iσj P
(

m;− x

ω̃iσj

))

. (75)

To take these limits, we start by noting that

e
− x

ω̃iσj P
(

m;− x

ω̃iσj

)

= e
− x

ω̃iσj



1 −
Γ
(

m,− x
ω̃iσj

)

Γ(m)



 (76)

where Γ(·, ·) is the upper incomplete gamma function, and use [22, Eq. 6.5.32] to obtain

lim
ωi→0

e
− x

ω̃iσj P
(

m;− x

ω̃iσj

)

=
−1

Γ(m)

(

− x

ω̃iσj

)m−1
(

1 +
m − 1

− x
ω̃iσj

+
(m − 1)(m − 2)

(− x
ω̃iσj

)2
+ . . .

)

.

(77)

We then consider each of the τ limits in turn, starting with ω̃1 → 0. We replace the first

row in the right-hand determinant in (75) with the first term in the expansion in (77) (i.e.

− 1
Γ(m)

(

− x
ω̃1σj

)m−1
). For the denominator we have

lim
ω̃1→0

∆m(Ω̃) = ∆m−1(ω̃2, . . . , ω̃m)
m
∏

j=2

ω̃j . (78)

Now, factoring the numerator determinant yields a finite ratio for L in (75) in the limit ω̃1 → 0,



Submitted to the IEEE Transactions on Communications (Submitted November 2005) 19

given by

L =
(−1)m xm−1

Γ(m)
lim

ω̃2→0,...,ω̃τ→0

(

∏m
j=2 ω̃j

)m−2

det (Ξ1(x))

∆m−1(ω̃2, . . . , ω̃m)
(79)

where Ξ$(x) is an m × m matrix with (i, j)th element

(Ξ$(x))i,j =







(

1
σj

)m−i
, i ≤ %

e
− x

ω̃iσj P
(

m;− x
ω̃iσj

)

, i > %
(80)

Now we take the limit as ω̃2 → 0. In this case the leading divergence in the numerator comes

from the second term in the expansion (77) (i.e. taking the first term results in a determinant

of zero). Hence, we can replace the second row of Ξ1(x) with (−1)m−1

Γ(m−1)

(

x
ω̃iσj

)m−2

. For the

denominator we have

lim
ω̃2→0

∆m−1(Ω̃) = ∆m−2(ω̃3, . . . , ω̃m)
m
∏

j=3

ω̃j . (81)

Hence, factoring the numerator determinant again yields a finite ratio for L as ω̃2 → 0, given by

L =
(−1)m+(m−1) x(m−1)+(m−2)

Γ(m)Γ(m − 1)
lim

ω̃3→0,...,ω̃τ→0

(

∏m
j=3 ω̃j

)m−3
det (Ξ2(x))

∆m−2(ω̃3, . . . , ω̃m)
. (82)

Continuing this procedure until all limits have been calculated, and simplifying the result, yields

L =
(−1)

n(n+1)
2 x−n(n−1)

2 det (Ω)n−1 det (Ξτ (x))

Γ(m) . . . Γ(m − τ + 1) ∆n(Ω)
. (83)

Now noting that Ξτ (x) = Ψ(x), where Ψ(x) is defined in the theorem, and substituting (83)

into (74), we perform some basic manipulations to obtain the desired result in (1). !
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Fig. 4. Outage probability of MIMO-MRC in various double-correlated Rayleigh channels, for γ̄ = 0 dB.
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