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Tensor Applications:

Machine vision: understanding the
world in 3D, enable understanding
phenomena such as perspective,
occlusions, illumination

Latent semantic tensor indexing:
common terms vs. entries vs. parts,
co-occurrence of terms

Tensor subspace Analysis for Viewpoint Recognition, T. Ivanov, L. Mathies, M.A.O. Vasilescu, ICCV, 2nd IEEE
International Workshop on Subspace Methods, September, 2009
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Tensor Applications:

Medical imaging: naturally involves 3D
(spatio) and 4D (spatio-temporal)
correlations

Video surveillance and Motion
signature: 2D images + 3rd dimension
of time, 3D/4D motion trajectory

Multi-target Tracking with Motion Context in Tenor Power Iteration X. Shi, H. Ling, W. Hu, C. Yuan, and J.
Xing IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus OH, 2014
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Tensors: Historical Review

1927 F.L. Hitchcock: “The expression of a tensor or a polyadic as a
sum of products” (Journal of Mathematics and Physics)

1944 R.B. Cattell introduced a multiway model: “Parallel
proportional profiles and other principles for determining the choice
of factors by rotation” (Psychometrika)

1960 L.R. Tucker: “Some mathematical notes on three-mode factor
analysis” (Psychometrika)

1981 tensor decomposition was first used in chemometrics

Past decade, computer vision, image processing, data mining, graph
analysis, etc.

F.L. Hitchcock

R.B. Cattell

L.R. Tucker
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The Power of Proper Representation

What is that ?

Let’s observe the same data but in a different (matrix rather than vector) representation

Representation matters! some correlations can only be realized in appropriate
representation
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Motivation

Much real-world data is inherently multidimensional
color video data – 4 way
3D medical image, evolving in time (4 way); multiple patients (5 way)

Many operators and models are also multi-way
Traditional matrix-based methods based on data vectorization (e.g. matrix PCA) generally
agnostic to possible high dimensional correlations

Can we uncover hidden patterns in tensor data by computing an appropriate tensor
decomposition/approximation?

Need to decide on the tensor decomposition – application dependent!

What do we mean by ‘decompose’?
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Tensors: Background and Notation

Notation : An1×n2...,×nj - jth order tensor
Examples

0th order tensor - scalar

1st order tensor - vector

2nd order tensor - matrix

3rd order tensor ...
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Notation

Ai,j,k = element of A in row i, column j, tube k

← A4,7,1

← A:,3,1

← A:,:,3
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Tensors: Background and Notation

Fiber - a vector defined by fixing all but one index while varying the rest

Slice - a matrix defined by fixing all but two indices while varying the rest
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Tensor Multiplication

Definition : The k - mode multiplication of a tensor X ∈ Rn1×n2×...,×nd with a matrix
U ∈ RJ×nk is denoted by X×kU and is of size n1 × · · · × nk−1 × J × nk+1 × · · · × nd

Element-wise

(X×kU)i1···ik−1jik+1···id
=

nd∑
ik=1

xi1i2···id
ujik

1-mode multiplication
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Tensor Holy Grail and the Matrix Analogy

Find a way to express a tensor that leads to the possibility for compressed representation
(near redundancy removed) that maintains important features of the original tensor

min ‖A−B‖F s.t. B has rank p ≤ r

B =
∑p

i=1 σi(V u
(i) ◦V v

(i)) where A =
∑r

i=1 σi(u(i) ◦ v(i))
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Tensor Decompositions - CP
CP (CANDECOMP-PARAFAC) Decomposition 1 :

X ≈
r∑

i=1
ai ◦ bi ◦ ci

Outer product T = u ◦ v ◦ w ⇒ Tijk = uivjwk

Columns of A = [a1, . . . , ar], B = [b1, . . . , br], C = [c1, . . . , cr] are not orthogonal
If r is minimal, then r is called the rank of the tensor
No perfect procedure for fitting CP for a given number of components 2

1R. Harshman, 1970; J. Carroll and J. Chang, 1970
2V. de Silva, L. Lim, Tensor Rank and the Ill-Posedness of the Best Low-Rank Approximation Problem, 2008
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Tensor Decompositions - Tucker

Tucker Decomposition :

X ≈ C ×1 G×2 T ×3 S =
r1∑

i=1

r2∑
j=1

r3∑
k=1

cijkgi ◦ tj ◦ sk

C is the core tensor
G, T , S are the components of factors
Can either have diagonal core or orthogonal columns in components [DeLathauwer et al.]
Truncated Tucker decomposition is not optimal in approximating the norm of the difference

‖X − C ×1 G×2 T ×3 S‖
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Tensor Decompositions - t-product

t-product : Let A be n1 × n2 × n3 and B be n2 × `× n3. Then the t-product A ∗ B is the
n1 × `× n3 tensor

A ∗ B = fold(circ(A) · vec(B))

circ (A) · vec (B) =


A1 An3 An3−1 · · · A2
A2 A1 An3 · · · A3

...
. . . . . . . . .

...
An3−1 An3−2 An3−3 · · · An3

An3 An3−1 An3−2 · · · A1




B1
B2
B3
...
Bn3


fold(vec(B)) = B

Ai, Bi, i = 1, . . . , n3 are frontal slices of A and B

M.E. Kilmer and C.D. Martin. Factorization strategies for third-order tensors, Linear Algebra and its
Applications, Special Issue in Honor of G. W. Stewart’s 70th birthday, vol. 435(3):641–658, 2011
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Block Circulants

A block circulant can be block-diagonalized by a (normalized) DFT in the 2nd dimension:

(F⊗ I)circ (A) (F∗ ⊗ I) =


Â1 0 · · · 0
0 Â2 0 · · ·

0 · · ·
. . . 0

0 · · · 0 Ân



Here ⊗ is a Kronecker product of matrices
If F is n× n, and I is m×m, (F⊗ I) is the mn×mn block matrix, of n block rows and
columns, each block is m×m, where the ijth block is fi,jI
But we never implement it this way because an FFT along tube fibers of A yields a tensor,
Â whose frontal slices are the Âi

CVPR 2017 New Tensor Algebra Lior Horesh & Misha Kilmer 29



t-product Identity

Definition: The n× n× ` identity tensor Inn` is the tensor whose frontal face is the n× n
identity matrix, and whose other faces are all zeros

Class Exercise: Let A be n1 × n× n3, show that

A ∗ I = A and I ∗ A = A

A ∗ I = fold (circ (A) · vec (I)) =


A1 An3 An3−1 · · · A2
A2 A1 An3 · · · A3

...
. . . . . . . . .

...
An3−1 An3−2 An3−3 · · · An3

An3 An3−1 An3−2 · · · A1




I
0
0
...
0

 = A
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t-product Transpose

Definition: If A is n1×n2×n3, then A> is the n2×n1×n3 tensor obtained by transposing
each of the frontal faces and then reversing the order of transposed faces 2 through n3

Example: If A ∈ Rn1×n2×4 and its frontal faces are given by the n1 × n2 matrices
A1,A2,A3,A4, then

A> = fold



A>1
A>4
A>3
A>2




Mimetic property: when n = 1, the ∗ operator collapses to traditional matrix multiplication
between two matrices and tranpose becomes matrix transposition
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t-product Orthogonality

Definition: An n× n× l real-valued tensor Q is orthogonal if

Q> ∗Q = Q ∗Q> = I

Note that this means that

Q(:, i, :)> ∗ Q(:, j, :) =
{
e1 i = j
0 i 6= j
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t-SVD and Trunction Optimality

Theorem: Let the T -SVD of A ∈ R`×m×n be given by A = U ∗ S ∗ V>, with `× `× n
orthogonal tensor U , m×m× n orthogonal tensor V, and `×m× n f-diagonal tensor S

For k < min(l, m), define

Ak = U(:, 1 : k, :) ∗ S(1 : k, 1 : k, :) ∗ V>(:, 1 : k, :) =
k∑

i=1

U(:, i, :) ∗ S(i, i, :) ∗ V(:, i, :)>

Then
Ak = arg min

Â∈M

‖A − Â‖

where M = {C = X ∗ Y | X ∈ R`×k×n,Y ∈ Rk×m×n}
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t-SVD and Optimality in Truncation

Let A ∈ Rm×p×n, for k < min(m, p), define

Ak =
k∑

i=1
U(:, i, :) ∗ S(i, i, :) ∗V(:, i, :)>

Then
Ak = arg min

Ã∈M

‖A− Ã‖

where M = {C = X ∗ Y |X ∈ Rm×k×n,Y ∈ Rk×p×n}
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t-SVD example

Let A be 2× 2× 2

(F⊗ I)circ (A) (F∗ ⊗ I) =
[
Â1 0
0 Â2

]
∈ C4×4

[
Â1 0
0 Â2

]
=
[
Û1 0
0 Û2

]
[
σ̂

(1)
1 0
0 σ̂

(1)
2

]
[
σ̂

(2)
1 0
0 σ̂

(2)
2

]

[
V̂
∗
1 0

0 V̂
∗
2

]

The U,S,VT are formed by putting the hat matrices as frontal slices, then ifft along tubes

e.g. S(1,1,:) obtained from ifft of vector
[
σ̂

(1)
1
σ̂

(2)
1

]
oriented into screen
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T -SVD and Multiway PCA

Xj , j = 1, 2, . . . ,m are the training images
M is the mean image
A(:, j, :) = Xj −M stores the mean-subtracted images
K = A ∗ A> = U ∗ S ∗ S> ∗ U> is the covariance tensor
Left orthogonal U contains the principal components with respect to K

A(:, j, :) ≈ U(:, 1 : k, :) ∗ U(:, 1 : k, :)> ∗ A(:, j, :) =
k∑

t=1
U(:, t, :) ∗ C(t, j, :)
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T -QR Decomposition

Theorem: Let A be an `×m× n real-valued tensor, then A can be factored as

A ∗ P = Q ∗R

where Q is orthogonal `× `× n, R is `×m× n f-upper triangular, and P is a permutation
tensor

Cheaper for updating and downdating
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Face Recognition Task

Multilinear (Tensor) ICA and Dimensionality Reduction”, M.A.O. Vasilescu, D. Terzopoulos, Proc. 7th
International Conference on Independent Component Analysis and Signal Separation (ICA07), London, UK,
September, 2007. In Lecture Notes in Computer Science, 4666, Springer-Verlag, New York, 2007, 818-826
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Face Recognition Task

Experiment 1: randomly selected 15 images of each person as training set and test all
remaining images
Experiment 2: randomly selected 5 images of each person as the training set and test all
remaining images
Preprocessing: decimated the images by a factor of 3 to 64× 56 pixels
20 trials for each experiment

The Extended Yale Face Database B, http://vision.ucsd.edu/˜leekc/ExtYaleDatabase/ExtYaleB.html
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T -SVD vs. PCA

N. Hao, M.E. Kilmer, K. Braman, R.C. Hoover, Facial Recognition Using Tensor-Tensor Decompositions,
SIAM J. Imaging Sci., 6(1), 437-463
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N. Hao, M.E. Kilmer, K. Braman, R.C. Hoover, Facial Recognition Using Tensor-Tensor Decompositions,
SIAM J. Imaging Sci., 6(1), 437-463
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Non-Negative Tensor Decompositions - t-product

Given a nonnegative third-order tensor T ∈ R`×m×n and a positive integer k < min(l,m, n)
Find nonnegative G ∈ R`×k×n, H ∈ Rk×m×n such that

min
Ĝ,Ĥ
‖T − G ∗ H‖2

F

Facial Recognition Example:
Dataset: The Center for Biological and Computational Learning (CBCL) Database
Training images: 200
k = 10
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Reconstructed Images Based on NMF, NTF-CP and NTF-GH

N. Hao, L. Horesh, M. Kilmer, Non-negative Tensor Decomposition, Compressed Sensing & Sparse Filtering,
Springer, 123–148, 2014
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Tensor Nuclear Norm

If A is an `×m, ` ≥ m matrix with singular values σi, the nuclear norm ‖A‖~ =
∑m

i=1 σi.

However, in the t-SVD, we have singular tubes (the entries of which need not be positive),
which sum up to a singular tube!

The entries in the jth singular tube are the inverse Fourier coefficients of the length-n vector
of the jth singular values of Â:,:,i, i = 1..n.

Definition
For A ∈ R`×m×n, our tensor nuclear norm is
‖A‖~ =

∑min(`,m)
i=1 ‖

√
nFV si‖1 =

∑min(`,m)
i=1

∑n
j=1 Ŝi,i,j . (Same as the matrix nuclear norm

of circ (A)).
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Tensor Nuclear Norm

Theorem (Semerci,Hao,Kilmer,Miller)
The tensor nuclear norm is a valid norm.

Since the t-SVD extends to higher-order tensors [Martin et al, 2012], the norm does, as well.
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Tensor Completion

Given unknown tensor TM of size n1 × n2 × n3, given a subset of entries
{TMijk : (i, j, k) ∈ Ω} where Ω is an indicator tensor of size n1 × n2 × n3. Recover the
entire TM :

min ‖TX‖~
subject to PΩ(TX) = PΩ(TM)

The (i, j, k)th component of PΩ(TX) is equal to TMijk if (i, j, k) ∈ Ω and zero otherwise.

Similar to the previous problem, this can be solved by ADMM, with 3 update steps, one
which decouples, one that is a shrinkage / thresholding step.
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Numerical Results

TNN minimization, Low Rank Tensor Completion (LRTC) [Liu, et al, 2013] based on
tensor-n-rank [Gandy, et al, 2011], and the nuclear norm minimization on the vectorized
video data [Cai, et al, 2010].
MERL3 video, Basketball video

3with thanks to A. Agrawal
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Numerical Results
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