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Optimization methods on Manifolc

A Rotation averaging (SO3)

A WeiszfeldAlgorithm on Riemannian
manifolds

A General IRLS algorithms on manifolds
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Kernels and kernel algorithms

A kernel is like a “similarity measure’ defined on points in
some set.

K(z,y) for z,y € S
If K(xz,y) is “large” then z and y are similar, if K(z,y) is
small, they are dissimilar.
Analogous to inner product < z,y >.

If a symmetric kernel is positive definite then it is essentially
the same as an inner product.

Applications

— Kernel SVM

— Kernel PCA

— Kernel Fisher Discriminant Analysis

— Dictionary learning (object recognition)
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Positive-definite Kernel

e A kernel K : X x X — IR is called positive definite if
for all real numbers ¢;,

n
Y e K( XXy >0
i=1
for all choices of X1, X>,...Xp, €S
e [ heorem: If a symmetric kernel is positive definite,
then it is just like an inner product: there exists a
map ® : X — H, a Hilbert space, such that



e Radial Basis Function Kernel
NICTA
e Commonly used kernel:

K(q;,y) — e—||aj—y||2/o'2
— e_d(xvy)Q/UQ

e This is always a positive definite kernel for all o, if |||
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Examples of manifolds

R
Sphere S"

Rotation space SO(3) — used in rotation averaging
Positive definite matrices — “covariance features”
Grassman Manifolds — used to model sets of images
Essential manifold — structure and motion

Shape manifolds — capture the shape of an object



OQ Kernels in the tangent space
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e Map from the manifold to the tangent space using

the logarithm map.
e Carry out kernel learning methods in the tangent space.




e Why this is not a good idea at all
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Angle-axis representation of Rotations

Lkl Flatten out the meridians
(longitude lines)

5 = theta /2P
t=1- phiFl

Azimuthal Equidistant Projection
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Tissot Indicatrix T shows distortion
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Why is the RBF kernel positive definite?

1. Kernel is positive definite on R".

2. How do we generalize this?

3. Can we extend this to
(a) Metric spaces: Distance function d(z,y) defined.
(b) Normed vector spaces?
(c) Manifolds?
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When is the RBF kernel positive definite

e Consider a “distance function” d(X,Y) defined on a
set S (metric space)

e [ heorem: The radial basis function
K(X,Y) = e~ d(X;Y)?/0?

iIs a positive definite kernel for all o, if and only if S
can be isometrically embedded in a Hilbert Space.

d(X,Y) = [[¢(X),o6(Y) |l

e (Technical point) It is not enough that H be a Banach
space. The inner product is needed.



e
- A negative result

\
Theorem. R" is the only complete manifold M for which the

RBF kernel
—d2 (z,y)

k(z,y) =e o2
is a kernel for all o.

Here, dy(z,y) is the geodesic distance on the manifold.

Solution: Find distance metrics on manifolds that do lead to
RBF kernels. " Asymptotically geodesic distances’.

1. Monotonic function of geodesic distance.

2. In the limit equal to a geodesic distance for small distances.
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Positive Definite Matrices

e The Positive definite n xn matrices form a cone (not a linear
subspace).

e Affine invariance:
d(X,Y)=d(ATXA ATY A)

e \We can define an “affine invariant” Riemannian metric.
e Other metrics:

— Logarithm:
d(X,Y) = |[log(X) —log(Y)| r
— Stein Metric:

d(X,Y)? = —logdet(XY) + 2logdet((X + Y)/2)
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Kernels on Positive Definite Matrices
: Geodesic Positive Definite
Memic Name Formuly Distance Gaussian Kernel Vo > 0

Log-Euclidean | 1og(S1) — log(S2)|| Yes Yes
Affine-Invariant || log(S —1/282 —1/2)||F Yes No
Cholesky || chol(S;) — chol(Sz)|| No Yes
Power-Euclidean L|S¢ —Sg| P No Yes

Root Stein Divergence | [log det (5S1 + 3S2) — 3 logdet(S:S,)] 2 No No

Euclidean Cholesky Power-Euclidean| Log-Euclidean

Nb. of
classes | KM | KKM KM | KKM | KM | KKM KM | KKM

3 7250 79.00 | 73.17| 82.67 | 71.33| 84.33 | 75.00 | 94.83
6488 | 73.75 | 69.50| 84.62 | 69.50| 83.50 | 73.00| 87.50
54.80| 70.30 | 70.80| 82.40 | 70.20 | 82.40 | 74.60| 85.90
50421 69.00 | 59.83| 73.58 | 59.42| 73.17 | 66.50| 74.50
4257 68.86 | 50.36| 69.79 | 50.14 | 69.71 59.64 | 73.14
40.19 | 68.00 | 53.81| 69.44 | 54.62| 68.44 | 58.31| 71.44

o0~ N ' =




Pedestrian detection

Table: Sample images from INRIA dataset



Pedestrian detection

@ Covariance descri

ptor is used as the region descriptor following

Tuzel et al., 2008.

@ Multiple covariance descriptors are calculated per detection
+ MKL framework is used to build the

window, an SVM

classifier.
—— Proposed Method (MKL on Manifold)
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Visual object categorization

Table: Sample images from ETH-80 dataset
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