

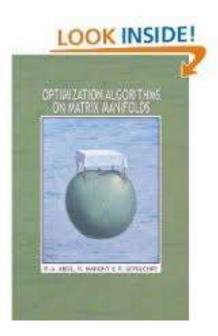
Kernel Methods on Manifolds

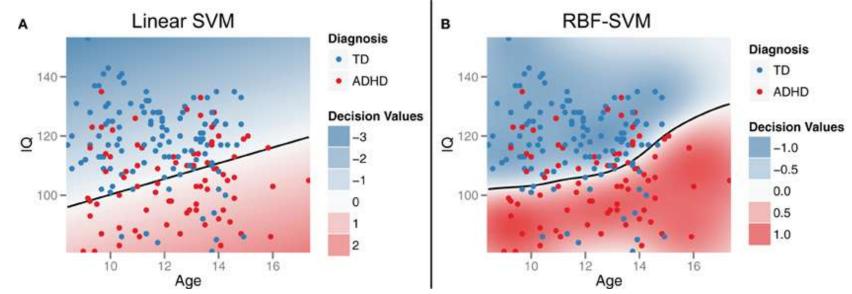
Richard Hartley, Sadeep Jayasumana, Mehrtash Harandi, Mathieu Salzmann Hongdong Li, Khurrum Aftab, Fatih Porikli Conrad Sanderson

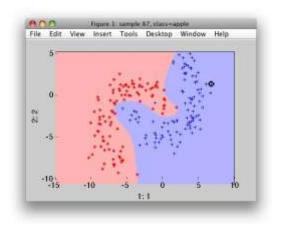
CVPR-2017

Optimization methods on Manifolds.

- Rotation averaging (SO3)
- Weiszfeld Algorithm on Riemannian manifolds
- General IRLS algorithms on manifolds







Linear and Kernel SVM

Kernels and kernel algorithms

 A kernel is like a "similarity measure" defined on points in some set.

K(x,y) for $x,y \in S$

- If K(x,y) is "large" then x and y are similar, if K(x,y) is small, they are dissimilar.
- Analogous to inner product $\langle x, y \rangle$.
- If a symmetric kernel is **positive definite** then it is essentially the same as an inner product.
- Applications
 - Kernel SVM
 - Kernel PCA
 - Kernel Fisher Discriminant Analysis
 - Dictionary learning (object recognition)

Positive-definite Kernel

 A kernel K : X × X → ℝ is called positive definite if for all real numbers c_i,

$$\sum_{i=1}^n c_i c_j K(X_i, X_j) \ge 0$$

for all choices of $X_1, X_2, \ldots X_n \in S$

 Theorem: If a symmetric kernel is positive definite, then it is just like an inner product: there exists a map Φ : X → H, a Hilbert space, such that

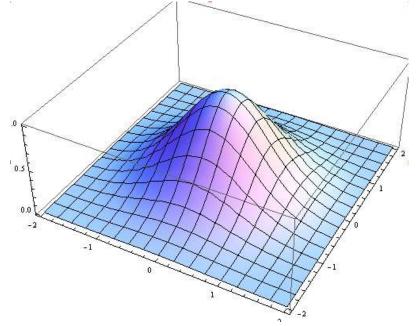
$$K(X,Y) = \langle \Phi(X), \Phi(Y) \rangle_H$$
.

Radial Basis Function Kernel

• Commonly used kernel:

$$K(x,y) = e^{-\|x-y\|^2/\sigma^2} \\ = e^{-d(x,y)^2/\sigma_2}$$

• This is always a positive definite kernel for all σ , if $\|\cdot\|$ is a norm in a Hilbert space (or Euclidean space)

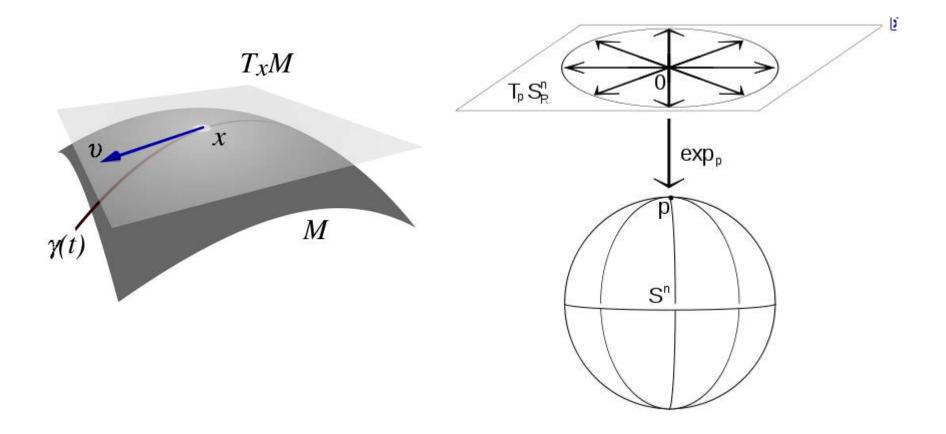


Examples of manifolds

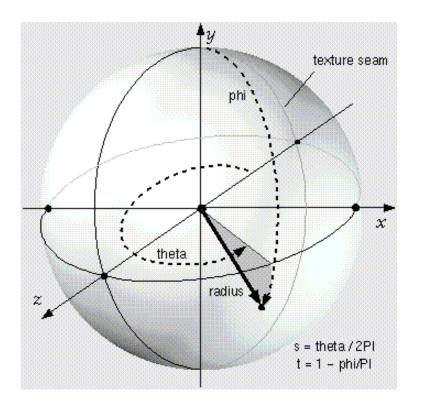
- \mathbb{R}^n
- Sphere S^n
- Rotation space SO(3) used in rotation averaging
- Positive definite matrices "covariance features"
- Grassman Manifolds used to model sets of images
- Essential manifold structure and motion
- Shape manifolds capture the shape of an object

Kernels in the tangent space

- Map from the manifold to the tangent space using the logarithm map.
- Carry out kernel learning methods in the tangent space.

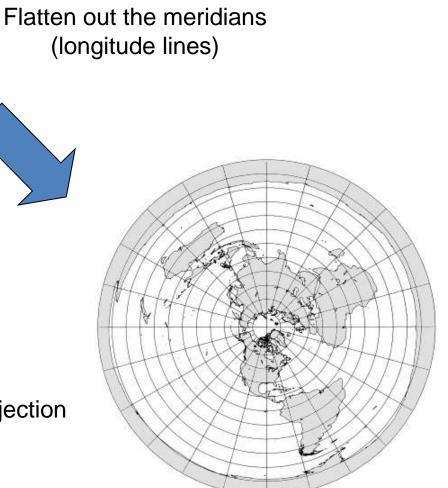


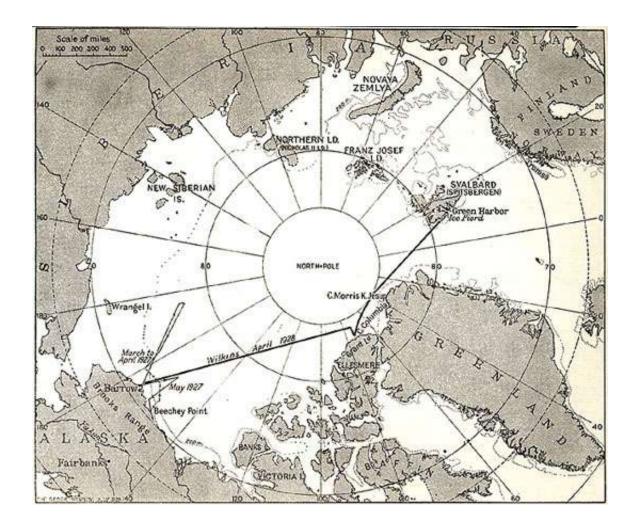
Why this is not a good idea at all



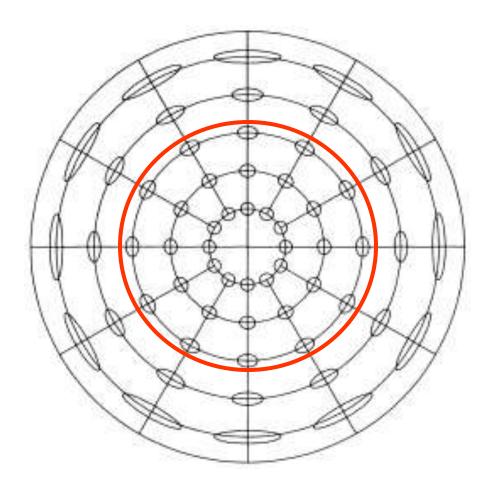
Azimuthal Equidistant Projection

Angle-axis representation of Rotations





Azimuthal Equidistant Projection



Tissot Indicatrix – shows distortion

Why is the RBF kernel positive definite?

- 1. Kernel is positive definite on \mathbb{R}^n .
- 2. How do we generalize this?
- 3. Can we extend this to
 - (a) Metric spaces: Distance function d(x, y) defined.
 - (b) Normed vector spaces?
 - (c) Manifolds?

When is the RBF kernel positive definite

- Consider a "distance function" d(X,Y) defined on a set S (metric space)
- Theorem: The radial basis function

$$K(X,Y) = e^{-d(X,Y)^2/\sigma^2}$$

is a positive definite kernel for all σ , if and only if S can be isometrically embedded in a Hilbert Space.

$$d(X,Y) = \|\phi(X),\phi(Y)\|_H$$

• (Technical point) It is not enough that *H* be a Banach space. The inner product is needed.

A negative result

Theorem. \mathbb{R}^n is the only complete manifold M for which the RBF kernel

$$k(x,y) = e^{\frac{-d_g^2(x,y)}{\sigma^2}}$$

is a kernel for all σ .

Here, $d_g(x, y)$ is the geodesic distance on the manifold.

Solution: Find distance metrics on manifolds that do lead to RBF kernels. "Asymptotically geodesic distances".

- 1. Monotonic function of geodesic distance.
- 2. In the limit equal to a geodesic distance for small distances.

Positive Definite Matrices

- The Positive definite n×n matrices form a cone (not a linear subspace).
- Affine invariance:

$$d(X,Y) = d(A^{\top}XA, A^{\top}YA)$$

- We can define an "affine invariant" Riemannian metric.
- Other metrics:
 - Logarithm:

$$d(X,Y) = \|\log(X) - \log(Y)\|_F$$

- Stein Metric:

 $d(X,Y)^2 = -\log \det(XY) + 2\log \det((X+Y)/2)$

Kernels on Positive Definite Matrices

Metric Name	Formula	Geodesic Distance	Positive Definite Gaussian Kernel $\forall \sigma > 0$	
Log-Euclidean	$\ \log(\mathbf{S}_1) - \log(\mathbf{S}_2)\ _F$	Yes	Yes	
Affine-Invariant	$\ \log(\mathbf{S}_1^{-1/2}\mathbf{S}_2\mathbf{S}_1^{-1/2})\ _F$	Yes	No	
Cholesky	$\ \operatorname{chol}(\mathbf{S}_1) - \operatorname{chol}(\mathbf{S}_2)\ _F$	No	Yes	
Power-Euclidean	$\frac{1}{lpha} \ \mathbf{S}_1^{lpha} - \mathbf{S}_2^{lpha} \ _F$	No	Yes	
Root Stein Divergence	$\left[\log \det \left(\frac{1}{2}\mathbf{S}_1 + \frac{1}{2}\mathbf{S}_2\right) - \frac{1}{2}\log \det(\mathbf{S}_1\mathbf{S}_2)\right]^{1/2}$	No	No	

6	0	6	0
m	-171	ð	1
-	~	8	
3	ħ	3	8

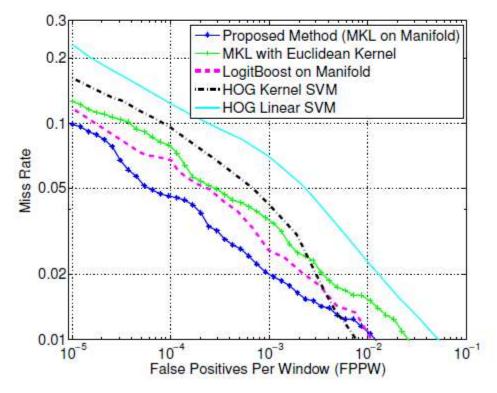
Nb. of Euclidean		Cholesky		Power-Euclidean		Log-Euclidean		
classes	KM	KKM	KM	KKM	KM	KKM	KM	KKM
3	72.50	79.00	73.17	82.67	71.33	84.33	75.00	94.83
4	64.88	73.75	69.50	84.62	69.50	83.50	73. <mark>0</mark> 0	87.50
5	54.80	70.30	70.80	82.40	70.20	82.40	74.60	85.90
6	50.42	69.00	59.83	73.58	59.42	73.17	66.50	74.50
7	42.57	68.86	50.36	69.79	50.14	69.71	59.64	73.14
8	40 <mark>.1</mark> 9	68.00	53.81	<mark>69.44</mark>	54.62	68.44	58.31	71.44

Pedestrian detection

Table: Sample images from INRIA dataset

Pedestrian detection

- Covariance descriptor is used as the region descriptor following Tuzel et al., 2008.
- Multiple covariance descriptors are calculated per detection window, an SVM + MKL framework is used to build the classifier.



Visual object categorization

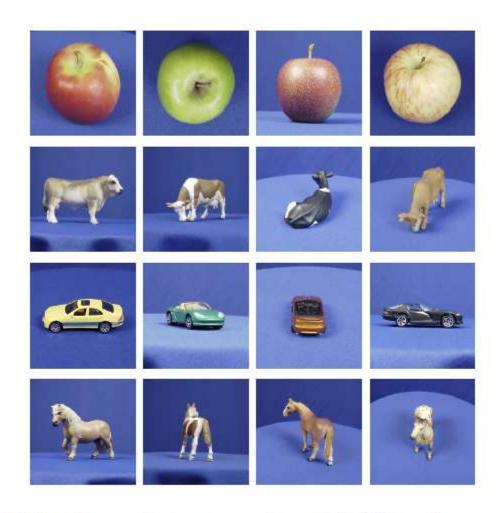


Table: Sample images from ETH-80 dataset

Visual object categorization

- ETH-80 dataset, 5×5 covariance descriptors.
- Manifold k-means and manifold kernel k-means with different metrics.

Nb. of	Euc	lidean	Cho	lesky	Power-I	Euclidean	Log-E	uclidean
classes	KM	KKM	KM	<u>KKM</u>	KM	KKM	KM	KKM
3	72.50	79.00	73.17	82. <mark>6</mark> 7	71.33	84.33	75.00	<mark>94.83</mark>
4	64.88	73.75	69.50	84.62	69.50	83.50	73.00	87.50
5	54.80	70.30	70.80	82.40	70.20	82.40	74.60	85.90
6	50.42	69.00	59.83	73.58	59.42	73.17	66.50	74.50
7	42.57	68.86	50.36	69.79	50.14	<mark>69.71</mark>	<mark>59.64</mark>	73.14
8	<mark>40.1</mark> 9	68.00	<mark>53.</mark> 81	69.44	54.62	68.44	58. <mark>3</mark> 1	71.44

(=)

Texture recognition

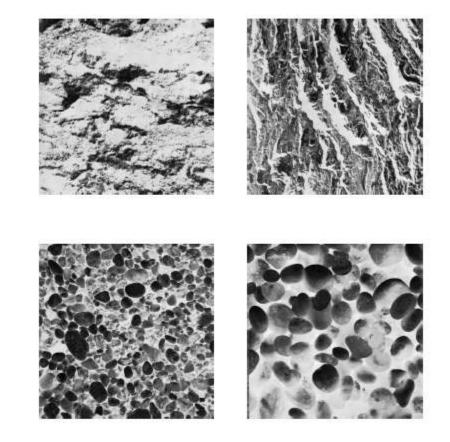
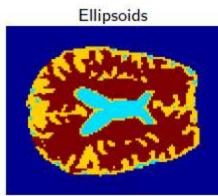


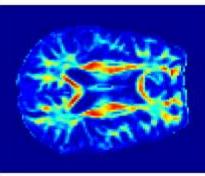
Table: Sample images from Brodatz

DTI segmentation

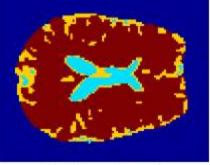
- Diffusion tensor at the voxel is directly used as the descriptor.
- Kernel k-means is utilized to cluster points on Sym⁺_d, yielding a segmentation of the DTI image.



Riemannian kernel



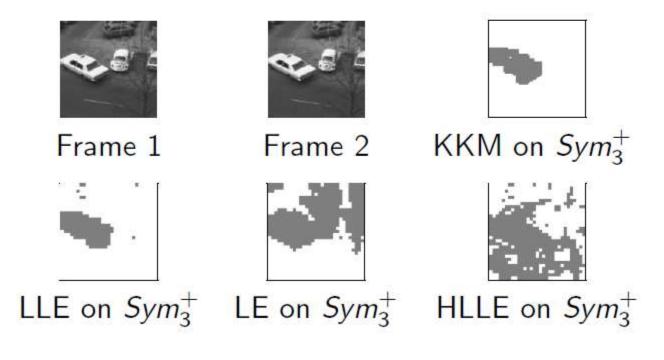
Fractional Anisotropy



Euclidean kernel

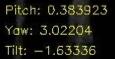
Motion segmentation

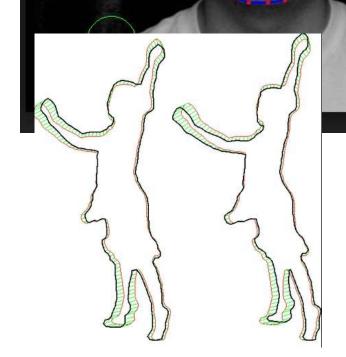
- The structure tensor (3×3) was used as the descriptor.
- Kernel k-means clustering of the tensors yields the segmentation.
- Achieves better clustering accuracy than methods that work in a low dimensional space.



Shape Manifolds

- Captures what is invariant in a set of k points in \mathbb{R}^n , when you take away rotation, translation and scale.
- Formally, a shape is an equivalence class of k points, where two sets of k points are equivalent if they are related by rotation, translation and scaling.
- Jayasumana et al, (ICCV 2013)





Atul's Research Page

www.research.rutgers.edu - 640 × 480 - More sizes

Shape Manifold.

Captures the configuration of a set of points, allowing for rotation, translation and scaling.

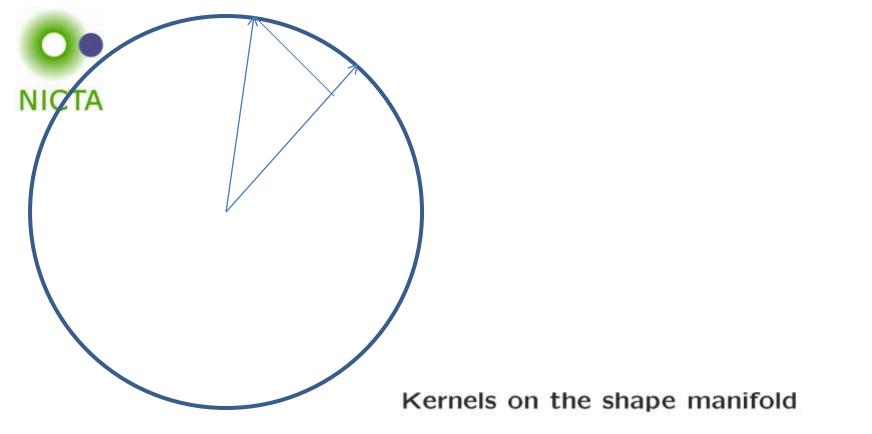
Guillaume Charpiat

2D Shape manifolds

- Represent each point as a complex number.
- Vector of *n* complex numbers represents a shape.
- Normalize this vector to unit length and scale to length 1.
- "Preshape manifold" is equal to the complex n-dimensional sphere.

$$S = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix}$$

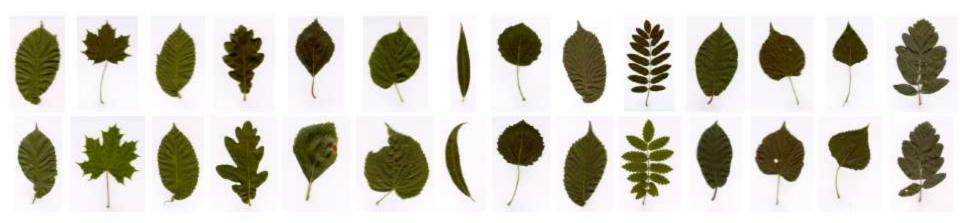
- Multiplication by a non-zero complex unit complex number $z = e^{i\theta}$ rotates all the points.
- Shape manifold is equal to the complex projective space.



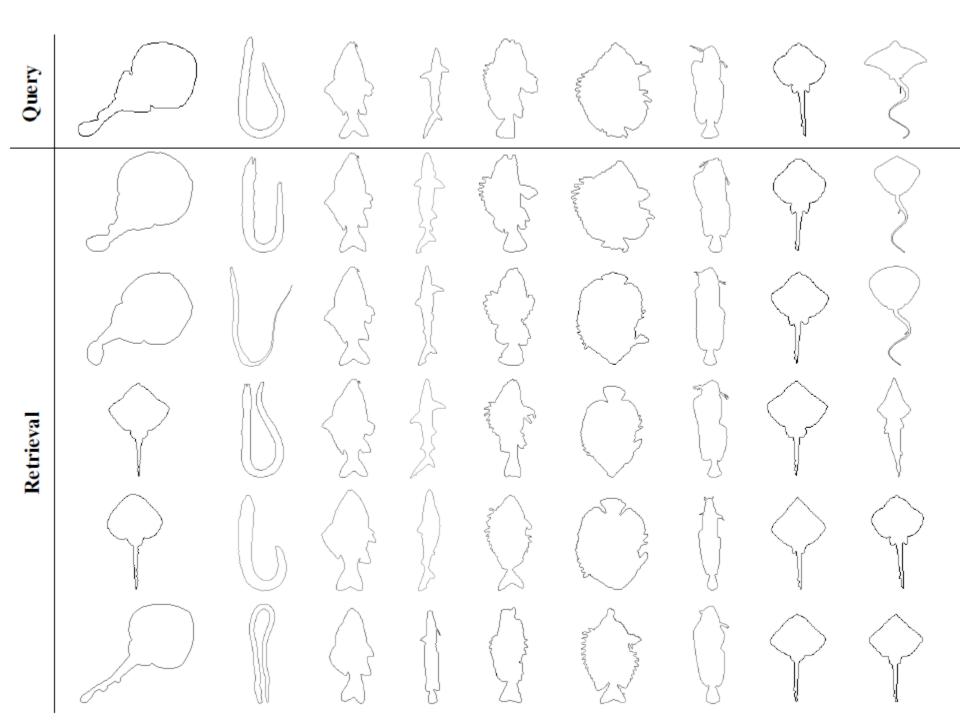
- Define $\cos \theta = \| \langle X, Y \rangle \|$
- sin(θ) is the "full-Procrustes" distance yields a positive definite RBF kernel
- Other possible distance
 - $d_P(X, Y) = 2\sin(\theta/2)$ does not
 - Geodesic distance θ does not

Í A K M

Figure 1: The ETH-80 dataset. Sample images from different objects and classes in the ETH-80 dataset.



Leaf Database



Radial kernels on n-sphere

 $k_i(\mathbf{x},\mathbf{y}) = \langle \mathbf{x},\mathbf{y} \rangle^i, \text{ for } i \in \mathbb{N}^0,$

$$k_{-1}(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{y}, \\ -1 & \text{if } \mathbf{x} = -\mathbf{y}, \\ 0 & \text{otherwise}, \end{cases}$$

$$k_{-2}(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} = \pm \mathbf{y}, \\ 0 & \text{otherwise.} \end{cases}$$

Schoenberg's result

Theorem 4.3. A kernel $k : S_{\mathcal{H}} \times S_{\mathcal{H}} \to \mathbb{R}$ is radial with respect to the geodesic distance and is p.d. if and only if it admits the form

$$k(\mathbf{x},\mathbf{y}) = \sum_{i=-2}^{\infty} a_i k_i(\mathbf{x},\mathbf{y})$$

where $\sum_{i} a_i < \infty$ and $a_i \ge 0$ for all *i*. Furthermore, *k* is continuous if and only if $a_{-1} = a_{-2} = 0$.

Radial kernels on n-sphere

$$k_i(\mathbf{x},\mathbf{y}) = \langle \mathbf{x},\mathbf{y} \rangle^i, \text{ for } i \in \mathbb{N}^0,$$

$$k_{-1}(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{y}, \\ -1 & \text{if } \mathbf{x} = -\mathbf{y}, \\ 0 & \text{otherwise}, \end{cases}$$

$$k_{-2}(\mathbf{x},\mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} = \pm \mathbf{y}, \\ 0 & \text{otherwise.} \end{cases}$$

- As i increases k_i rapidly approaches either k_{-1} or k_{-2} .
- Therefore, the infinite series can be closely approximated with a finite sum.
- Readily fits in to a Multiple Kernel Learning (MKL) framework!

Extending to other manifolds

• Grassmann manifold with Projection distance $d_P([Y_1], [Y_2]) = ||Y_1Y_1^T - Y_2Y_2^T||_F$

 $k_i([Y_1],[Y_2]) = \langle Y_1Y_1^T - Y_2Y_2^T \rangle_F^i$

Shape manifold with full Procrustes
 distance

$$d_{FP}([\mathbf{z}_1], [\mathbf{z}_2]) = \sqrt{1 - |\langle \mathbf{z}_1, \mathbf{z}_2 \rangle|^2}$$

 $k_i([\mathbf{z}_1], [\mathbf{z}_2]) = |\langle \mathbf{z}_1, \mathbf{z}_2
angle|^{2i}$

Hand sketch recognition

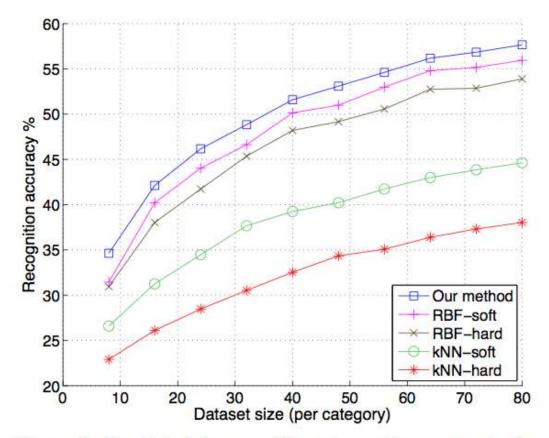
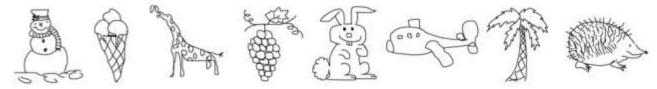


Figure 1: Hand sketch recognition. Recognition accuracies for different dataset sizes. The curves for the baselines were reproduced from [7].



Face & action recognition

Method	YT-Celebrity dataset	Ballet dataset		
GDA [10]	58.72 ± 3.0	67.33 ± 1.1		
GGDA [11]	61.06 ± 2.2	73.54 ± 2.0		
Projection kernel k_P [10]	64.76 ± 2.1	74.66 ± 1.2		
Proj. Gaussian kernel k_{PG} [12]	71.78 ± 2.4	76.95 ± 0.9		
Our method	$\textbf{72.00} \pm \textbf{1.9}$	$\textbf{78.05} \pm \textbf{1.0}$		

Table 2: Face and action recognition. Average recognition accuracies of our method compared to other kernel methods on \mathcal{G}_n^r .

Shape recognition

Method	Butterfly dataset	Pet dataset	
Procrustes kernel k_{FP}	57.75 ± 2.0	67.48	
Proc. Gaussian kernel k_{FPG} [13]	60.37 ± 1.6	77.34	
Tangent Gaussian kernel [13]	58.96 ± 1.8	75.77	
Our method	63.98 ± 1.6	80.87	

Table 3: Shape recognition. Average recognition accuracies of our method compared to other kernel methods on SP^n . Note that the train/test partition on the Pet dataset is fixed and given by [17].

Acknowledgements.

This talk deals with work done by myself and my collaborators, particularly

- Mehrtash Harandi
- Sadeep Jayasumana
- Mathieu Salzmann
- Hongdong Li
- Brian Lovell
- Fatih Porikli

Papers in the last 3 years at top 3 vision conferences on Riemannian manifolds.

NICTA : 9 Maryland : 7 Florida state : 6 University of Florida : 6 John Hopkins : 2 INRIA : 1

The End