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Motivation

Results on Office 31 dataset [K. Saenko et al., ECCV’10] reached ∼90% accuracy
(still a good dataset for the sanity check!).
New dataset Open Museum Identification Challenge (Open MIC) to stimulate
research in domain adaptation, egocentric recognition and few-shot learning.
866 unique exhibit labels, 8560 source and 7596 target images.
Open MIC: photos of exhibits captured in 10 distinct exhibition spaces of several
museums which showcase paintings, timepieces, sculptures, glassware, relics,
science exhibits, natural history pieces, ceramics, pottery, tools and indigenous
crafts.

Museums contain some of the most visually diverse objects. Cannot find a lot of
wearable data of them on Flickr or YouTube.
We study artwork identification in the context of:

supervised/unsupervised domain adaptation
one- and/or few-shot learning (follow up paper)
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Open MIC

Source domain: we captured photos in a controlled fashion by Android phones e.g.,
each exhibit is centered and non-occluded.
We captured 2–30 photos per art piece from different viewpoints and distances:

Source subsets of Open MIC.
(Top) Paintings (Shn), Clocks (Clk), Sculptures (Scl), Science Exhibits (Sci) and
Glasswork (Gls).
(Bottom) Cultural Relics (Rel), Natural History Exhibits (Nat), Historical/Cultural
Exhibits (Shx), Porcelain (Clv) and Indigenous Arts (Hon).
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Open MIC

Target domain: in-the-wild capture, wearable cameras took a photo every 10s.
We captured varied materials e.g., rigid, non-rigid, emitting light, in motion, extremely
small or composite installations:

Examples of the target subsets of Open MIC. From left to right, each column
illustrates one exhibition.
Paintings (Shn), Clocks (Clk), Sculptures (Scl), Science Exhibits (Sci) and Glasswork
(Gls), Cultural Relics (Rel), Natural History Exhibits (Nat), Historical/Cultural Exhibits
(Shx), Porcelain (Clv) and Indigenous Arts (Hon).
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Open MIC

Our target exhibits various photometric and geometric challenges e.g., sensor noises,
motion blur, occlusions, background clutter, varying viewpoints, scale changes,
rotations, glares, transparency, non-planar surfaces, clipping, multiple exhibits, active
light, color inconsistency, zoomed in/out photos, intra-exhibit variations:

Illustration of the significant domain shift from the source to target.

Some of the hardest to identify instances in Open MIC:
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Open MIC

Supervised Domain Adaptation:
Use small or large source data (lebelled).
Transfer to improve recognition on scarce target data (lebelled).
Ultimately: beat combined source+target training and/or fine-tuning.
Not all is big data! Quote: learning quickly from only a few examples is definitely the
desired characteristic to emulate in any brain-like system [Rajapakse & Wang, Research
& Development, 2004].

Evaluation protocols include:
training/evaluation per exhibition subset (10 exhibitions)
training/testing on the combined set of all 866 identities
testing w.r.t. various scene factors: quality of lighting, motion blur, occlusions, clutter,
viewpoint and scale variations, rotations, glares, transparency, non-planarity, clipping
unsupervised domain adaptation (±videoclips)

Accuracy measure we use:
top-k -n tells if any of top n ground-truth labels per image are contained in top k
predictions.
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Open MIC
One-shot protocols include:

training on combined target sets (shn+hon+clv), (clk+gls+scl), (sci+nat) and (shx+rlc)
which give subproblems p1, ..., p4.
We form 12 possible pairs: subproblem x is used for training and y for testing (x→y).
(generalization from one task to another task)

training on each source exhibition and testing on the corresponding target exhibition
(generalization from one domain to another domain: does few-shot learning cope
with the domain shift?).
training on combined source sets and testing on non-corresponding target sets (gen.
from one task to another task and from one domain to another domain).
Evaluation is performed for so called K-shot L-way problems (L-way means choosing
L random classes for each episode: generalization from task to task)
Episode=query training image + K×L support images
Charging all wearable cameras is the hardest part but ...
We plan to release next iteration of the dataset
(20 exhibition spaces: some challenging subsets such as fossils)
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DA pipeline
We build on the So-HoT model [Koniusz et al., CVPR’17] posed as a trade-off
between the classifier ` and source-target alignment loss ~.
Essentially, a trade-off between within- and between-class statistics (LDA)
Idea: establish so-called commonality between class-wise stats. of source and target.
The commonality: partial alignment of statistics (full alignment is bad assumption).

(a) (b) (c)
Alignment problem:

How to separate two classes + and - for two domains given β.
Partially aligned distributions have the commonality (CO).
Source and target specific parts (SO) and (TO) – dissimilarity between source/target.
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DA pipeline

We combine the source and target CNN streams:

(a) (b) (c)
DA pipeline:
(a) Source/target streams Λ and Λ∗merge at the classifier level.
(b) Loss ~ aligns covariances on the manifold of S++ matrices.
(c) At the test time, we use the target stream and the trained classifier.
For alignment of covariances, the Euclidean distance is suboptimal in the light of
Riemannian geometry.
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DA pipeline
The loss ~ depends on two sets of variables (Φ1, ...,ΦC) and (Φ∗1, ...,Φ

∗
C) – one set

per network stream.
Φ(Θ) and Φ∗(Θ∗) depend on parameters of the source/target streams Θ and Θ∗ that
we optimize over.
Σc≡Σ(Φc), Σ∗c≡Σ(Φ∗c), µc(Φ) and µ∗c(Φ

∗) denote the covariances and means,
respectively. We solve:

arg min
W,W∗,Θ,Θ∗

s. t. ||φn||22≤τ,
||φ∗n′ ||

2
2≤τ,

∀n∈IN,n
′∈I∗N

`(W,Λ)+`(W∗,Λ∗)+η||W−W∗||2F + (1)
α1

C

∑
c∈IC

d2 (Σc ,Σ
∗
c )+

α2

C

∑
c∈IC

||µc−µ∗c ||22.︸ ︷︷ ︸
~(Φ,Φ∗)

For alignment of covariances/SPD matrices, the Euclidean distance is suboptimal in
the light of Riemannian geometry.

Dist./Ref. d2(Σ,Σ∗) Invar. Tr. Geo. d if OΣ ∂d2(Σ,Σ∗)
∂ΣIneq. S+ if S+

Frobenius ||Σ−Σ∗||2F rot. yes no fin. fin. 2(Σ−Σ∗)

AIRM || log(Σ−
1
2 Σ∗Σ−

1
2 )||2F aff./inv. yes yes ∞ ∞ −2Σ−

1
2 log(Σ−

1
2 Σ∗Σ−

1
2 )Σ−

1
2

JBLD log
∣∣∣Σ+Σ∗

2

∣∣∣− 1
2 log|ΣΣ∗| aff./inv. no no ∞ ∞ (Σ+Σ∗)−1− 1

2Σ
−1

We use Affine Inv. Riemannian Metric (AIRM) and Jensen-Bregman LogDet Divergence (JBLD).
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DA pipeline
For GPU/CPU, SVD of large matrices (d≥2048) in CUDA BLAS is extremely slow.
Idea: we exploit the low-rank nature of our covariance matrices + low number of
datapoints (RKHS-friendly setting).
For typical N≈30, N∗≈3, we get 33×33 dim. covariances rather than 4096×4096.

For each class c∈IC , we choose X =Z = [Φc ,Φ
∗
c].

From the Nyström projection, we obtain:
Π(X )=(Z TZ )−0.5Z TX = ZX =(Z TZ )0.5=(X TX )0.5.
Then Π(Φ)=[y1, ...,yN ] and Π(Φ∗)=[yN+1, ...,yN+N∗].
Π(X ) is isometric w.r.t. AIRM/JBLD, that is
d2

g (Σ(Φ),Σ(Φ∗))=d2
g (Σ(Π(Φ)),Σ(Π(Φ∗))) (!!!)

Z (X ) can be treated as a constant in differentiation
∂Π(X)
∂Xmn

= ∂Z (X )X
∂Xmn

=Z (X ) ∂X
∂Xmn

=Z (X )Jmn (!!!)
Our proof shows that Z is a composite rotation (!!!) and the Euclidean, JBLD and
AIRM distances are rotation-invariant (!!!), hence isometry (!!!)
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Experiments

We provide baselines such as:
Fine-tuning CNNs on the source subsets (S) and testing on the randomly chosen
target splits.
Fine tuning on target only (T) and evaluating on remaining disjoint target splits.
Fine-tuning on the source+target (S+T) and evaluating on remaining disjoint target
splits.
Training state-of-the-art domain adaptation So-HoT algorithm equipped by us with
non-Euclidean distances (So).

Shn Clk Scl Sci Gls Rel Nat Shx Clv Hon Total
Inst. 79 113 41 37 98 100 111 166 81 40 866
Src. 417 650 160 391 575 587 695 2697 503 970 7645
Tgt. 404 305 112 1342 863 863 668 546 +307K fr 625 364 +73K fr 6092 +380K fr

Unique exhibit instances (Inst.) and numbers of images in the source (Src.) and target (Tgt.) splits of Open MIC.
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Experiments
Evaluation protocols include:

Training/evaluation per exhibition subset (10 exhibitions).
Training/testing on the combined set of all 866 identities.
Testing w.r.t. various scene factors: quality of lighting, motion blur, occlusions, clutter,
viewpoint and scale variations, rotations, glares, transparency, non-planarity, clipping.
Unsupervised domain adaptation (±videoclips).

S T S+T JBLD S T S+T JBLD S T S+T JBLD S T S+T JBLD S T S+T JBLD
top-1

S
hn 47.7 51.6 58.3 64.3

C
lk 56.9 49.1 56.0 61.2

S
cl 53.5 52.2 54.3 54.4

S
ci 58.5 58.1 64.9 66.8

G
ls 15.8 70.2 72.6 74.4

top-1-5 48.2 54.2 60.2 66.4 58.9 56.3 60.3 68.9 54.7 55.4 57.3 58.4 60.2 61.7 67.8 70.2 19.4 85.1 86.0 89.0
top-1

R
el 18.1 66.1 63.2 67.0

N
at 41.6 57.3 57.9 62.7

S
hx 29.9 41.1 29.0 48.5

C
lv 47.0 65.2 62.2 69.1

H
on 66.7 67.6 73.4 77.3

top-1-5 24.0 76.8 73.2 79.5 43.5 62.8 61.9 67.7 31.5 47.7 31.9 56.3 50.8 69.5 66.6 73.9 70.2 70.3 76.3 79.7
Challenge I. Open MIC accuracies on 10 subsets. Baselines (S), (T), (S+T), and JBLD are given.

So JBLD AIRM
sp1 55.8 57.7 57.2
sp2 58.9 58.9 58.9
sp3 69.6 71.4 71.4
sp4 53.8 57.7 57.7
sp5 58.3 60.4 60.4
acc. 59.3 61.2 61.1
AIRM vs. JBLD.

sp1 sp2 sp3 sp4 sp5 top-1 top-1-5
S 33.9 34.2 34.8 34.2 33.8 34.2 36.0
T 56.9 55.9 58.7 56.0 55.2 56.5 64.1

S+T 56.4 55.2 57.1 56.3 54.4 55.9 62.5
So 64.2 62.4 65.0 62.7 60.0 62.8 70.4

JBLD 65.7 63.8 65.7 63.7 62.0 64.2 72.0
Challenge II. Perf. on the whole dataset.
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Experiments

clp lgt blr glr bgr ocl rot zom vpc sml shd rfl ok
S 41.4 17.0 23.8 27.3 40.3 34.5 29.7 52.7 33.4 14.2 10.4 32.3 65.5
T 56.2 38.2 42.6 56.1 57.9 49.6 58.3 60.4 50.3 29.6 59.2 60.7 64.3

S+T 56.6 34.6 39.8 54.9 56.2 48.3 56.7 65.9 48.7 27.3 56.5 59.0 72.6
JBLD 65.3 48.6 51.6 64.0 65.9 56.4 65.0 70.0 58.6 34.1 70.4 67.5 81.0
Challenge III. Performance w.r.t. 12 distortion factors.

∩ clp lgt blr glr bgr ocl rot zom vpc sml shd rfl
all 65.3 48.6 51.6 64.0 65.9 56.4 65.0 70.0 58.6 34.1 70.4 67.5
clp 65.3 55.1 51.8 67.5 66.8 61.5 67.2 68.1 62.3 45.5 72.7 67.0
lgt 55.1 48.6 41.0 43.6 59.8 43.5 48.3 44.4 46.1 31.2 57.9 80.9
blr 51.8 41.0 51.6 48.7 48.6 37.0 52.3 64.2 43.3 21.0 39.1 59.4
glr 67.5 43.6 48.7 64.0 62.3 47.9 65.1 67.1 60.4 13.5 50.0 64.5
bgr 66.8 59.8 48.6 62.3 65.9 59.6 66.6 76.1 61.2 29.9 79.6 73.2
ocl 61.5 43.5 37.0 47.9 59.6 56.4 55.6 75.4 55.9 40.7 78.8 64.8
rot 67.2 48.3 52.3 65.1 66.6 55.6 65.0 75.5 57.6 32.6 73.4 70.4

zom 68.1 44.4 64.2 67.1 76.1 75.4 75.5 70.0 66.3 n/a 83.3 69.7
vpc 62.3 46.1 43.3 60.4 61.2 55.9 57.6 66.3 58.6 33.2 64.1 61.6
sml 45.5 31.2 21.0 13.5 29.9 40.7 32.6 n/a 33.2 34.1 n/a 46.4
shd 72.7 57.9 39.1 50.0 79.6 78.8 73.4 83.3 64.1 n/a 70.4 80.0
rfl 67.0 80.9 59.4 64.5 73.2 64.8 70.4 69.7 61.6 46.4 80.0 67.5

Accuracy w.r.t. pairs of 12 factors.

∩ sml sml sml sml sml sml blr blr sml lgt lgt lgt
glr blr bgr lgt rot vpc ocl shd ocl blr ocl glr

all 13.5 21.0 29.9 31.2 32.6 33.2 37.0 39.1 40.7 40.9 43.5 43.6
clp 42.8 27.8 38.7 66.7 42.8 46.0 44.4 53.8 45.5 49.1 45.1 45.7
lgt 0.0 30.0 40.0 31.2 37.5 50.0 52.3 38.5 10.0 40.9 43.5 43.6
blr 0.0 21.0 18.2 30.0 24.6 17.8 37.0 39.1 11.1 40.9 52.2 21.0
glr 13.5 0.0 7.7 0.0 10.5 15.0 27.8 33.3 27.8 21.0 31.2 43.6
bgr 7.7 18.2 29.9 40.0 27.7 31.4 37.2 60.0 33.0 46.1 51.4 42.1
ocl 15.0 11.1 33.0 14.3 39.7 41.0 37.0 83.3 40.7 52.2 43.5 31.2
rot 10.2 24.6 27.7 37.5 32.6 31.8 38.0 50.0 39.7 43.0 60.0 32.2

zom n/a n/a n/a n/a n/a n/a 75.0 100 n/a 100 n/a n/a
vpc 15.0 17.8 31.4 50.0 31.8 33.2 35.3 58.3 41.0 35.3 40.4 46.0
sml 13.5 21.0 29.9 31.2 32.6 33.2 11.1 n/a 40.7 30.0 14.3 0.0
shd n/a n/a n/a n/a n/a n/a 83.3 39.1 n/a 38.5 75.0 50.0
rfl 75.0 50.0 39.3 n/a 46.3 45.2 69.6 100 68.2 100 50.0 100

Accuracy w.r.t. selected triplets of 12 factors.

Shn Clk Scl Sci Gls Rel Nat Shx Clv Hon top-1
IHS 47.1 61.9 50.8 63.3 26.0 32.6 51.0 22.0 61.2 67.3 48.3
RTN 54.4 59.0 65.2 62.2 30.5 24.8 44.2 32.1 47.7 71.1 49.1
JAN 51.7 63.6 67.8 69.8 34.2 28.5 47.1 32.0 53.9 72.5 52.1
Challenge IV. Unsupervised Domain Adaptation.

Invariant Hilbert Space (IHS) [S. Herath et al., CVPR’17].

Unsupervised Domain Adaptation with Residual Transfer
Networks (RTN) [M. Long et al. NIPS’16].

Deep Transfer Learning with Joint Adaptation Networks (JAN) [M.
Long et al. ICML’17].
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Few-shot learning pipeline

P1
T x M x P1 PN

T x M x PN

P1
T x M1 x P1 

P1
T x M2 x P1 

P1
T x M3 x P1

We propose Second-order Similarity Network (SoSN):
The image encoding network.
Second-order relation descriptors with Power Normalization.
Similarity learning network (simple metric learning).
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Experiments
Evaluations on the Open MIC dataset (Protocol I).

Model L p1→p2 p1→p3 p1→p4 p2→p1 p2→p3 p2→p4 p3→p1 p3→p2 p3→p4 p4→p1 p4→p2 p4→p3
Relation Net

5
71.1±1.0 53.6±1.1 63.5±1.0 47.2±1.0 50.6±1.1 68.5±1.0 48.5±1.1 49.7±1.1 68.4±1.0 45.5±1.0 70.3±1.0 50.8±1.1

SoSN 80.8±0.9 64.3±1.1 74.9±1.1 58.8±1.1 61.2±1.1 76.9±0.9 61.3±1.1 80.8±0.9 77.2±1.0 58.2±1.1 80.1±0.9 61.6±1.1
SoSN+SigmE 81.4±0.9 65.2±1.1 75.1±1.0 60.3±1.1 62.1±1.1 77.7±0.9 61.5±1.1 82.0±1.0 78.0±1.0 59.0±1.1 80.8±1.0 62.5±1.1
SoSN+SigmE+224x224 83.9±0.9 68.9±1.1 82.1±0.9 64.7±1.1 66.6±1.1 82.2±0.9 65.5±1.1 84.5±0.8 80.6±0.8 64.6±1.1 83.6±0.8 66.0±1.1
Relation Net

20
40.1±0.5 30.4±0.5 41.4±0.5 23.5±0.4 26.4±0.5 38.6±0.5 26.2±0.4 25.8±0.4 46.3±0.5 23.1±0.4 43.3±0.5 27.7±0.4

SoSN 61.0±0.5 42.3±0.5 60.2±0.5 35.7±0.5 37.0±0.5 54.8±0.5 36.0±0.5 59.1±0.5 57.0±0.5 36.4±0.5 59.3±0.9 37.8±0.5
SoSN+SigmE 61.5±0.6 42.5±0.5 61.0±0.5 36.1±0.5 38.3±0.5 56.3±0.5 38.7±0.5 59.9±0.6 59.4±0.5 37.4±0.5 59.0±0.5 38.6±0.5
SoSN+SigmE+224x224 63.6±0.5 48.7±0.6 65.6±0.5 42.6±0.5 43.9±0.5 61.8±0.5 43.7±0.5 63.3±0.5 63.5±0.5 43.2±0.5 62.5±0.5 43.7±0.5
SoSN+SigmE 30 60.6±0.6 40.1±0.7 58.3±0.4 34.5±0.5 35.1±0.6 54.2±0.6 36.8±0.6 58.6±0.7 56.6±0.7 35.9±0.7 57.1±0.7 37.1±0.6
SoSN+SigmE+224x224 61.7±0.7 46.6±0.6 64.1±0.6 41.4±0.6 40.9±0.6 60.3±0.6 41.6±0.6 61.0±0.7 60.0±0.6 42.4±0.6 61.2±0.6 41.4±0.6
SoSN+SigmE 45 53.3±0.5 37.3±0.5 54.6±0.5 30.8±0.4 32.4±0.5 52.4±0.5 32.1±0.5 54.2±0.5 51.1±0.5 30.5±0.4 51.9±0.5 33.4±0.5
SoSN+SigmE+224x224 59.7±0.5 40.5±0.5 57.9±0.5 36.5±0.5 38.2±0.5 55.7±0.5 39.5±0.5 56.6±0.4 56.0±0.5 37.4±0.5 55.5±0.5 38.5±0.5
SoSN+SigmE 60 51.2±0.4 34.6±0.4 49.1±0.5 28.4±0.4 31.1±0.4 48.2±0.5 30.1±0.4 50.0±0.4 48.3±0.5 30.0±0.4 49.2±0.5 30.6±0.4
SoSN+SigmE+224x224 48.2±0.6 36.0±0.5 54.4±0.5 30.7±0.4 32.4±0.5 52.2±0.5 32.35±0.4 51.0±0.5 51.6±0.5 32.7±0.5 53.6±0.5 35.7±0.4
SoSN+SigmE 90 45.6±0.3 29.7±0.3 45.5±0.4 24.5±0.3 26.3±0.3 43.6±0.3 26.4±0.3 44.2±0.3 43.2±0.3 25.5±0.3 46.0±0.3 27.5±0.3
SoSN+SigmE+224x224 47.3±0.3 33.4±0.3 49.8±0.3 25.3±0.4 27.1±0.4 47.0±0.4 27.1±0.4 45.7±0.4 48.9±0.5 28.1±0.3 46.7±0.5 31.6±0.3
p1: shn+hon+clv, p2: clk+gls+scl, p3: sci+nat, p4: shx+rlc. Notation x→y means training on exhibition x and testing on y.

One-shot classification (realistic one-shot scenario, task-shift only). We go up to
90-way (typically 5- or 20-way protocols used on mini-ImageNet not exciting).
As L-way number increases, we see that few-shot learning has some way to go
(some results reach only ∼25% accuracy).
Relation Net [F. Sung et al., CVPR’18], SoSN: our Second-order Similarity Network,
SoSN+SigmE: SoSN+Power Normalization, 224×224: image resolution (typically
few-shot uses 84×84).

P. Koniusz et al. (Data61/CSIRO, ANU) Museum Exhibit Identification Challenge December 2, 2018 16 / 18



Experiments

Evaluations on the Open MIC dataset for Protocol II (asterisk ∗L′ indicates splits with the
number of classes L′<L).
Model L shn hon clv clk gls scl sci nat shx rlc
Relation Net

5
43.2±1.0 49.6±1.0 49.8±1.0 62.1±1.1 59.3±1.0 51.5±1.0 45.9±1.0 54.8±1.0 71.1±1.0 72.0±1.0

SoSN 60.3±1.1 62.6±1.1 60.5±1.1 72.9±1.1 74.3±1.1 72.3±1.0 53.4±1.1 68.0±1.1 77.0±1.0 78.4±1.0
SoSN+SigmE 61.5±1.1 63.6±1.1 61.7±1.1 74.5±1.2 74.9±1.1 72.9±1.0 54.2±1.0 68.9±1.1 78.0±1.0 79.1±1.0
Relation Net

20
20.8±0.4 25.7±0.4 26.1±0.4 34.3±0.4 35.5±0.5 18.4±0.3 18.6±0.3 32.8±0.5 51.8±0.5 48.2±0.5

SoSN 36.3±0.5 36.4±0.5 33.3±0.4 48.5±0.5 54.3±0.5 54.1±0.5 24.8±0.4 44.0±0.5 59.5±0.5 54.2±0.5
SoSN+SigmE 37.4±0.5 37.5±0.5 34.9±0.4 49.6±0.5 55.2±0.5 55.5±0.5 25.1±0.4 45.3±0.5 61.9±0.5 56.6±0.5
Relation Net

30
18.1±0.3 21.1±0.3 23.2±0.3 27.0±0.3 31.8±0.4 12.8±0.2 12.4±0.2 27.1±0.3 40.6±0.4 41.0±0.4

SoSN 34.2±0.4 35.2±0.4 32.7±0.3 46.7±0.4 51.0±0.4 52.2±0.4 20.3±0.3 39.9±0.4 56.7±0.4 51.0±0.4
SoSN+SigmE 35.5±0.4 36.0±0.4 33.5±0.3 47.7±0.5 52.3±0.4 53.0±0.3 21.1±0.3 40.8±0.4 58.3±0.4 52.7±0.5
SoSN+SigmE+224x224 41.4±0.6 39.4±0.7 37.2±0.6 51.3±0.7 53.4±0.7 59.0±0.6 23.3±0.5 46.7±0.7 59.8±0.6 55.4±0.6
SoSN+SigmE 45 34.1±0.5 33.4±0.4

(∗39) 29.2±0.5 45.2±0.5 48.5±0.5 49.6±0.5
(∗42) 19.2±0.4

(∗36) 38.0±0.5 54.1±0.6 49.3±0.5
SoSN+SigmE+224x224 34.9±0.4 34.5±0.4 30.7±0.5 50.5±0.5 39.9±0.6 50.6±0.5 20.1±0.4 41.9±0.5 54.6±0.5 52.1±0.5
SoSN+SigmE 60 30.0±0.4 - 25.5±0.4 42.6±0.5 46.6±0.4 - - 37.5±0.4 51.3±0.5 46.6±0.4
SoSN+SigmE+224x224 34.5±0.4 28.3±0.4 47.9±0.5 47.4±0.5 37.9±0.3 52.0±0.4 47.4±0.4
SoSN+SigmE 90 26.4±0.3

(∗78) - 24.6±0.3
(∗80) 41.8±0.3 39.2±0.3 - - 33.0±0.3 49.4±0.5 39.5±0.3

SoSN+SigmE+224x224 33.2±0.3 27.5±0.3 44.5±0.3 40.2±0.3 34.6±0.3 50.4±0.6 42.6±0.3
Training on source images and testing on target images for every exhibition, respectively.

The goal of this protocol it to test how few-shot learning algorithms deal with the
domain shift.
Even for low L-way number e.g., 30, Relation Net scores only ∼12–20%. SoSN is
more robust (∼40–50% accuracy) but there is still some way to go to reach 100%.
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Conclusions (Thank You)

New challenging dataset for domain adaptation and few-shot learning (Open MIC)
We have interesting evaluation protocols for DA: supervised/unsupervised DA,
per-exhibition and combined protocols, breakdowns w.r.t. factors impairing
recognition, even one-shot learning protocol.
We have interesting evaluation protocols for few-shot learning: within-domain
protocol using target combined splits (generalization from task to task),
between-domain protocol using original exhibitions (generalization from domain to
domain), between-task between-domain protocol III (we are evaluating it now).
We plan to extend this dataset to detection, segmentation, saliency detection,
deblurring, etc.
Our dataset is available for the academic use on claret.wikidot.com or
http://users.cecs.anu.edu.au/∼koniusz.
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