Museum Exhibit Identification Challenge for the Supervised Domain Adaptation and Beyond.

Authors: Piotr Koniusz^{1,2} Yusuf.Tas^{1,2} Hongguang.Zhang^{2,1} Rui Zhang⁴ Mehrtash.Harandi³ Fatih.Porikli² ¹@data61.csiro.au ²@anu.edu.au ³@monash.edu.au ⁴renata_zhang@sina.com

*** The contents

- Motivation (saturated performance).
- Open MIC dataset (details, challenges).
- Our supervised domain adaptation pipeline+Results
- Our few-shot learning pipeline+Results
- Conclusions.

[Koniusz et al., ECCV'18] [Zhang & Koniusz, WACV'19]

Yusuf

Hongguang

Mehrtash

Motivation

- Results on Office 31 dataset [K. Saenko et al., ECCV'10] reached ~90% accuracy (still a good dataset for the sanity check!).
- New dataset Open Museum Identification Challenge (Open MIC) to stimulate research in domain adaptation, egocentric recognition and few-shot learning.
- 866 unique exhibit labels, 8560 source and 7596 target images.
- Open MIC: photos of exhibits captured in 10 distinct exhibition spaces of several museums which showcase paintings, timepieces, sculptures, glassware, relics, science exhibits, natural history pieces, ceramics, pottery, tools and indigenous crafts.

Motivation

- Results on Office 31 dataset [K. Saenko et al., ECCV'10] reached ~90% accuracy (still a good dataset for the sanity check!).
- New dataset Open Museum Identification Challenge (Open MIC) to stimulate research in domain adaptation, egocentric recognition and few-shot learning.
- 866 unique exhibit labels, 8560 source and 7596 target images.
- Open MIC: photos of exhibits captured in 10 distinct exhibition spaces of several museums which showcase paintings, timepieces, sculptures, glassware, relics, science exhibits, natural history pieces, ceramics, pottery, tools and indigenous crafts.
- Museums contain some of the most visually diverse objects. Cannot find a lot of wearable data of them on Flickr or YouTube.
- We study artwork identification in the context of:
 - supervised/unsupervised domain adaptation
 - one- and/or few-shot learning (follow up paper)

- Source domain: we captured photos in a controlled fashion by Android phones *e.g.*, each exhibit is centered and non-occluded.
- We captured 2–30 photos per art piece from different viewpoints and distances:

Source subsets of Open MIC.

(Top) Paintings (*Shn*), Clocks (*Clk*), Sculptures (*Scl*), Science Exhibits (*Sci*) and Glasswork (*Gls*).

(Bottom) Cultural Relics (*Rel*), Natural History Exhibits (*Nat*), Historical/Cultural Exhibits (*Shx*), Porcelain (*Clv*) and Indigenous Arts (*Hon*).

- Target domain: in-the-wild capture, wearable cameras took a photo every 10s.
- We captured varied materials *e.g.*, rigid, non-rigid, emitting light, in motion, extremely small or composite installations:

Examples of the target subsets of Open MIC. From left to right, each column illustrates one exhibition.

Paintings (*Shn*), Clocks (*Clk*), Sculptures (*Scl*), Science Exhibits (*Sci*) and Glasswork (*Gls*), Cultural Relics (*Rel*), Natural History Exhibits (*Nat*), Historical/Cultural Exhibits (*Shx*), Porcelain (*Clv*) and Indigenous Arts (*Hon*).

• Our target exhibits various photometric and geometric challenges *e.g.*, sensor noises, motion blur, occlusions, background clutter, varying viewpoints, scale changes, rotations, glares, transparency, non-planar surfaces, clipping, multiple exhibits, active light, color inconsistency, zoomed in/out photos, intra-exhibit variations:

Illustration of the significant domain shift from the source to target.

• Our target exhibits various photometric and geometric challenges *e.g.*, sensor noises, motion blur, occlusions, background clutter, varying viewpoints, scale changes, rotations, glares, transparency, non-planar surfaces, clipping, multiple exhibits, active light, color inconsistency, zoomed in/out photos, intra-exhibit variations:

Illustration of the significant domain shift from the source to target.

• Some of the hardest to identify instances in Open MIC:

• Supervised Domain Adaptation:

- Use small or large source data (lebelled).
- Transfer to improve recognition on scarce target data (lebelled).
- Ultimately: beat combined source+target training and/or fine-tuning.
- Not all is big data! Quote: learning quickly from only a few examples is definitely the desired characteristic to emulate in any brain-like system [Rajapakse & Wang, Research & Development, 2004].

• Supervised Domain Adaptation:

- Use small or large source data (lebelled).
- Transfer to improve recognition on scarce target data (lebelled).
- Ultimately: beat combined source+target training and/or fine-tuning.
- Not all is big data! Quote: learning quickly from only a few examples is definitely the desired characteristic to emulate in any brain-like system [Rajapakse & Wang, Research & Development, 2004].

• Evaluation protocols include:

- training/evaluation per exhibition subset (10 exhibitions)
- training/testing on the combined set of all 866 identities
- testing w.r.t. various scene factors: quality of lighting, motion blur, occlusions, clutter, viewpoint and scale variations, rotations, glares, transparency, non-planarity, clipping
- unsupervised domain adaptation (±videoclips)
- Accuracy measure we use:
 - top-*k*-*n* tells if any of top *n* ground-truth labels per image are contained in top *k* predictions.

One-shot protocols include:

training on combined target sets (*shn+hon+clv*), (*clk+gls+scl*), (*sci+nat*) and (*shx+rlc*) which give subproblems *p1*,..., *p4*.
 We form 12 possible pairs: subproblem *x* is used for training and *y* for testing (x→y).

(generalization from one task to another task)

One-shot protocols include:

training on combined target sets (*shn+hon+clv*), (*clk+gls+scl*), (*sci+nat*) and (*shx+rlc*) which give subproblems *p1*,..., *p4*.
 We form 12 possible pairs: subproblem *x* is used for training and *y* for testing (x→y).

(generalization from one task to another task)

• training on each source exhibition and testing on the corresponding target exhibition (generalization from one domain to another domain: does few-shot learning cope with the domain shift?).

One-shot protocols include:

- training on combined target sets (*shn+hon+clv*), (*clk+gls+scl*), (*sci+nat*) and (*shx+rlc*) which give subproblems *p1*,..., *p4*.
 - We form 12 possible pairs: subproblem x is used for training and y for testing $(x \rightarrow y)$. (generalization from one task to another task)
- training on each source exhibition and testing on the corresponding target exhibition (generalization from one domain to another domain: does few-shot learning cope with the domain shift?).
- training on combined source sets and testing on non-corresponding target sets (gen. from one task to another task and from one domain to another domain).

One-shot protocols include:

- training on combined target sets (*shn+hon+clv*), (*clk+gls+scl*), (*sci+nat*) and (*shx+rlc*) which give subproblems *p1*,..., *p4*.
 - We form 12 possible pairs: subproblem x is used for training and y for testing $(x \rightarrow y)$. (generalization from one task to another task)
- training on each source exhibition and testing on the corresponding target exhibition (generalization from one domain to another domain: does few-shot learning cope with the domain shift?).
- training on combined source sets and testing on non-corresponding target sets (gen. from one task to another task and from one domain to another domain).
- Evaluation is performed for so called K-shot L-way problems (L-way means choosing L random classes for each episode: generalization from task to task)
- Episode=query training image + $K \times L$ support images

One-shot protocols include:

• training on combined target sets (*shn+hon+clv*), (*clk+gls+scl*), (*sci+nat*) and (*shx+rlc*) which give subproblems *p1*,..., *p4*.

We form 12 possible pairs: subproblem x is used for training and y for testing $(x \rightarrow y)$. (generalization from one task to another task)

- training on each source exhibition and testing on the corresponding target exhibition (generalization from one domain to another domain: does few-shot learning cope with the domain shift?).
- training on combined source sets and testing on non-corresponding target sets (gen. from one task to another task and from one domain to another domain).
- Evaluation is performed for so called K-shot L-way problems (L-way means choosing L random classes for each episode: generalization from task to task)
- Episode=query training image + K×L support images
- Charging all wearable cameras is the hardest part but ...
- We plan to release next iteration of the dataset (20 exhibition spaces: some challenging subsets such as fossils)

P. Koniusz et al. (Data61/CSIRO, ANU)

- We build on the *So-HoT* model [Koniusz et al., CVPR'17] posed as a trade-off between the classifier ℓ and source-target alignment loss ħ.
- Essentially, a trade-off between within- and between-class statistics (LDA)
- Idea: establish so-called commonality between class-wise stats. of source and target.
- The commonality: partial alignment of statistics (full alignment is bad assumption).

Alignment problem:

- How to separate two classes + and for two domains given β .
- Partially aligned distributions have the commonality (CO).
- Source and target specific parts (SO) and (TO) dissimilarity between source/target.

• We combine the source and target CNN streams:

DA pipeline:

(a) Source/target streams Λ and Λ^* merge at the classifier level.

(b) Loss \hbar aligns covariances on the manifold of S_{++} matrices.

(c) At the test time, we use the target stream and the trained classifier.

• For alignment of covariances, the Euclidean distance is suboptimal in the light of Riemannian geometry.

- The loss ħ depends on two sets of variables (Φ₁, ..., Φ_C) and (Φ^{*}₁, ..., Φ^{*}_C) one set per network stream.
- Φ(Θ) and Φ*(Θ*) depend on parameters of the source/target streams Θ and Θ* that we optimize over.
- $\Sigma_c \equiv \Sigma(\Phi_c)$, $\Sigma_c^* \equiv \Sigma(\Phi_c^*)$, $\mu_c(\Phi)$ and $\mu_c^*(\Phi^*)$ denote the covariances and means, respectively. We solve:

$$\arg\min_{\substack{\boldsymbol{W},\boldsymbol{W},\boldsymbol{\Theta},\boldsymbol{\Theta}^{*}\\ \text{s. t. }||\boldsymbol{\phi}n||_{2}^{2} \leq \tau,\\ \forall n \in \mathcal{I}_{N}, n' \in \mathcal{I}_{N}^{*}}} \ell(\boldsymbol{W},\boldsymbol{\Lambda}) + \ell(\boldsymbol{W}^{*},\boldsymbol{\Lambda}^{*}) + \eta ||\boldsymbol{W} - \boldsymbol{W}^{*}||_{F}^{2} +$$
(1)
$$\left\|\boldsymbol{\psi}_{n'}^{*}\right\|_{2}^{2} \leq \tau,\\ \forall n \in \mathcal{I}_{N}, n' \in \mathcal{I}_{N}^{*}} \underbrace{\frac{\alpha_{1}}{C} \sum_{c \in \mathcal{I}_{C}} d^{2}\left(\boldsymbol{\Sigma}_{c},\boldsymbol{\Sigma}_{c}^{*}\right) + \frac{\alpha_{2}}{C} \sum_{c \in \mathcal{I}_{C}} ||\boldsymbol{\mu}_{c} - \boldsymbol{\mu}_{c}^{*}||_{2}^{2}}_{\hbar(\boldsymbol{\Phi},\boldsymbol{\Phi}^{*})}$$

- The loss ħ depends on two sets of variables (Φ₁, ..., Φ_C) and (Φ^{*}₁, ..., Φ^{*}_C) one set per network stream.
- Φ(Θ) and Φ*(Θ*) depend on parameters of the source/target streams Θ and Θ* that we optimize over.
- $\Sigma_c \equiv \Sigma(\Phi_c)$, $\Sigma_c^* \equiv \Sigma(\Phi_c^*)$, $\mu_c(\Phi)$ and $\mu_c^*(\Phi^*)$ denote the covariances and means, respectively. We solve:

$$\arg \min_{\substack{\boldsymbol{W}, \boldsymbol{W}; \boldsymbol{\Theta}, \boldsymbol{\Theta}^* \\ \text{s. t. } ||\boldsymbol{\Phi}_n||_2^2 \leq \tau, \\ \forall n \in \mathcal{I}_N, n' \in \mathcal{I}_N^*}} \underbrace{\ell(\boldsymbol{W}, \boldsymbol{\Lambda}) + \ell(\boldsymbol{W}^*, \boldsymbol{\Lambda}^*) + \eta ||\boldsymbol{W} - \boldsymbol{W}^*||_F^2 + C}_{C c \in \mathcal{I}_C} \underbrace{\ell(\boldsymbol{W}, \boldsymbol{\Lambda}) + \ell(\boldsymbol{W}^*, \boldsymbol{\Lambda}^*) + \frac{\alpha_2}{C}}_{h(\boldsymbol{\Phi}, \boldsymbol{\Phi}^*)} \sum_{\boldsymbol{\Phi} \in \mathcal{I}_C} \frac{\ell(\boldsymbol{W}, \boldsymbol{\Lambda}) + \ell(\boldsymbol{W}, \boldsymbol{\Lambda}^*) + \frac{\alpha_2}{C}}{\hbar(\boldsymbol{\Phi}, \boldsymbol{\Phi}^*)} \left(\frac{1}{2} \sum_{\boldsymbol{e} \in \mathcal{I}_C} \frac{1}{2} \sum_{\boldsymbol{e} \in \mathcal{I}_$$

• For alignment of covariances/SPD matrices, the Euclidean distance is suboptimal in the light of Riemannian geometry.

- For GPU/CPU, SVD of large matrices ($d \ge 2048$) in CUDA BLAS is extremely slow.
- Idea: we exploit the low-rank nature of our covariance matrices + low number of datapoints (RKHS-friendly setting).
- For typical $N \approx 30$, $N^* \approx 3$, we get 33×33 dim. covariances rather than 4096×4096 .

- For GPU/CPU, SVD of large matrices ($d \ge 2048$) in CUDA BLAS is extremely slow.
- Idea: we exploit the low-rank nature of our covariance matrices + low number of datapoints (RKHS-friendly setting).
- For typical $N \approx 30$, $N^* \approx 3$, we get 33×33 dim. covariances rather than 4096×4096 .
- For each class $c \in \mathcal{I}_{C}$, we choose $X = Z = [\Phi_{c}, \Phi_{c}^{*}]$.
- From the Nyström projection, we obtain: $\Pi(\mathbf{X}) = (\mathbf{Z}^T \mathbf{Z})^{-0.5} \mathbf{Z}^T \mathbf{X} = \mathbf{Z} \mathbf{X} = (\mathbf{Z}^T \mathbf{Z})^{0.5} = (\mathbf{X}^T \mathbf{X})^{0.5}.$
- Then $\Pi(\Phi) = [\textbf{y}_1, ..., \textbf{y}_N]$ and $\Pi(\Phi^*) = [\textbf{y}_{N+1}, ..., \textbf{y}_{N+N*}].$

- For GPU/CPU, SVD of large matrices ($d \ge 2048$) in CUDA BLAS is extremely slow.
- Idea: we exploit the low-rank nature of our covariance matrices + low number of datapoints (RKHS-friendly setting).
- For typical $N \approx 30$, $N^* \approx 3$, we get 33×33 dim. covariances rather than 4096×4096 .
- For each class $c \in \mathcal{I}_{\mathcal{C}}$, we choose $X = Z = [\Phi_c, \Phi_c^*]$.
- From the Nyström projection, we obtain: $\Pi(\boldsymbol{X}) = (\boldsymbol{Z}^T \boldsymbol{Z})^{-0.5} \boldsymbol{Z}^T \boldsymbol{X} = \boldsymbol{Z} \boldsymbol{X} = (\boldsymbol{Z}^T \boldsymbol{Z})^{0.5} = (\boldsymbol{X}^T \boldsymbol{X})^{0.5}.$
- Then $\Pi(\Phi) = [\mathbf{y}_1, ..., \mathbf{y}_N]$ and $\Pi(\Phi^*) = [\mathbf{y}_{N+1}, ..., \mathbf{y}_{N+N*}].$
- $\Pi(\mathbf{X})$ is isometric w.r.t. AIRM/JBLD, that is $d_g^2(\Sigma(\Phi), \Sigma(\Phi^*)) = d_g^2(\Sigma(\Pi(\Phi)), \Sigma(\Pi(\Phi^*)))$ (!!!)

- For GPU/CPU, SVD of large matrices ($d \ge 2048$) in CUDA BLAS is extremely slow.
- Idea: we exploit the low-rank nature of our covariance matrices + low number of datapoints (RKHS-friendly setting).
- For typical $N \approx 30$, $N^* \approx 3$, we get 33×33 dim. covariances rather than 4096×4096 .
- For each class $c \in \mathcal{I}_{\mathcal{C}}$, we choose $X = Z = [\Phi_c, \Phi_c^*]$.
- From the Nyström projection, we obtain: $\Pi(\boldsymbol{X}) = (\boldsymbol{Z}^T \boldsymbol{Z})^{-0.5} \boldsymbol{Z}^T \boldsymbol{X} = \boldsymbol{Z} \boldsymbol{X} = (\boldsymbol{Z}^T \boldsymbol{Z})^{0.5} = (\boldsymbol{X}^T \boldsymbol{X})^{0.5}.$
- Then $\Pi(\Phi) = [\mathbf{y}_1, ..., \mathbf{y}_N]$ and $\Pi(\Phi^*) = [\mathbf{y}_{N+1}, ..., \mathbf{y}_{N+N*}].$
- $\Pi(X)$ is isometric w.r.t. AIRM/JBLD, that is $d_g^2(\Sigma(\Phi), \Sigma(\Phi^*)) = d_g^2(\Sigma(\Pi(\Phi)), \Sigma(\Pi(\Phi^*)))$ (!!!)
- Z(X) can be treated as a constant in differentiation $\frac{\partial \Pi(X)}{\partial X_{mn}} = \frac{\partial Z(X)X}{\partial X_{mn}} = Z(X) \frac{\partial X}{\partial X_{mn}} = Z(X)J_{mn}$ (!!!)
- Our proof shows that *Z* is a composite rotation (!!!) and the Euclidean, JBLD and AIRM distances are rotation-invariant (!!!), hence isometry (!!!)

We provide baselines such as:

- Fine-tuning CNNs on the source subsets (*S*) and testing on the randomly chosen target splits.
- Fine tuning on target only (*T*) and evaluating on remaining disjoint target splits.
- Fine-tuning on the source+target (*S*+*T*) and evaluating on remaining disjoint target splits.
- Training state-of-the-art domain adaptation So-HoT algorithm equipped by us with non-Euclidean distances (*So*).

	Shn	Clk	Scl	Sci	Gls	Rel	Nat	Shx	Clv	Hon	Total
Inst.	79	113	41	37	98	100	111	166	81	40	866
Src.	417	650	160	391	575	587	695	2697	503	970	7645
Tgt.	404	305	112	1342	863	863	668	546 +307K fr	625	364 +73K fr	6092 +380K fr

Unique exhibit instances (Inst.) and numbers of images in the source (Src.) and target (Tgt.) splits of Open MIC.

Experiments

Evaluation protocols include:

- Training/evaluation per exhibition subset (10 exhibitions).
- Training/testing on the combined set of all 866 identities.
- Testing w.r.t. various scene factors: quality of lighting, motion blur, occlusions, clutter, viewpoint and scale variations, rotations, glares, transparency, non-planarity, clipping.
- Unsupervised domain adaptation (±videoclips).

	S	Т	S+T	JBLD	S	Т	S+T	JBLD	<i>S</i>	Т	S+T	JBLD	S	Т	S+T	JBLD	S	Т	S+T	JBLD
top-1	\$ 47.7	51.6	58.3	64.3	₹56.9	49.1	56.0	61.2	53.5	52.2	54.3	54.4	58.5	58.1	64.9	66.8	<u>v</u> 15.8	70.2	72.6	74.4
top-1-5	os 48.2	54.2	60.2	66.4	58.9	56.3	60.3	68.9	54 .7	55.4	57.3	58.4	رم 60.2	61.7	67.8	70.2	🖱 19.4	85.1	86.0	89.0
top-1	18.1	66.1	63.2	67.0	₩41.6	57.3	57.9	62.7	≥29.9	41.1	29.0	48.5	≥47.0	65.2	62.2	69.1	S 66.7	67.6	73.4	77.3
top-1-5	° 24.0	76.8	73.2	79.5	2 43.5	62.8	61.9	67.7	S31.5	47.7	31.9	56.3	O50.8	69.5	66.6	73.9	₹70.2	70.3	76.3	79.7
Challenge I. Open MIC accuracies on 10 subsets Baselines (S) (\mathcal{T} , (S+ \mathcal{T}) and (IBI D are given																				

	So	JBLD	AIRM
sp1	55.8	57.7	57.2
sp2	58.9	58.9	58.9
sp3	69.6	71.4	71.4
sp4	53.8	57.7	57.7
sp5	58.3	60.4	60.4
acc.	59.3	61.2	61.1
AIRN	V vs.	JBLD.	

	sp1	sp2	sp3	sp4	sp5	top-1	top-1-5					
S	33.9	34.2	34.8	34.2	33.8	34.2	36.0					
Т	56.9	55.9	58.7	56.0	55.2	56.5	64.1					
S+T	56.4	55.2	57.1	56.3	54.4	55.9	62.5					
So	64.2	62.4	65.0	62.7	60.0	62.8	70.4					
JBLD 65.7 63.8 65.7 63.7 62.0 64.2 72.0												
Challenge II. Perf. on the whole dataset.												

Challenge III. Performance w.r.t. 12 distortion factors.

\cap	clp	lgt	blr	glr	bgr	ocl	rot	zom	vpc	sml	shd	rfl
all	65.3	48.6	51.6	64.0	65.9	56.4	65.0	70.0	58.6	34.1	70.4	67.5
clp	65.3	55.1	51.8	67.5	66.8	61.5	67.2	68.1	62.3	45.5	72.7	67.0
lġt	55.1	48.6	41.0	43.6	59.8	43.5	48.3	44.4	46.1	31.2	57.9	80.9
Бlr	51.8	41.0	51.6	48.7	48.6	37.0	52.3	64.2	43.3	21.0	39.1	59.4
glr	67.5	43.6	48.7	64.0	62.3	47.9	65.1	67.1	60.4	13.5	50.0	64.5
Бgr	66.8	59.8	48.6	62.3	65.9	59.6	66.6	76.1	61.2	29.9	79.6	73.2
ocl	61.5	43.5	37.0	47.9	59.6	56.4	55.6	75.4	55.9	40.7	78.8	64.8
rot	67.2	48.3	52.3	65.1	66.6	55.6	65.0	75.5	57.6	32.6	73.4	70.4
zom	68.1	44.4	64.2	67.1	76.1	75.4	75.5	70.0	66.3	n/a	83.3	69.7
VPC	62.3	46.1	43.3	60.4	61.2	55.9	57.6	66.3	58.6	33.2	64.1	61.6
sml	45.5	31.2	21.0	13.5	29.9	40.7	32.6	n/a	33.2	34.1	n/a	46.4
shd	72.7	57.9	39.1	50.0	79.6	78.8	73.4	83.3	64.1	n/a	70.4	80.0
rfl	67.0	80.9	59.4	64.5	73.2	64.8	70.4	69.7	61.6	46.4	80.0	67.5

Accuracy w.r.t. pairs of 12 factors.

 Shn
 Clk
 Sci
 Sci
 Gls
 Rel
 Nat
 Shx
 Clv
 Hon
 top-1

 IHS
 47.1
 61.9
 50.8
 63.3
 26.0
 32.6
 51.0
 22.0
 61.2
 67.3
 48.3

 RTN
 54.4
 59.0
 65.2
 62.2
 30.5
 24.8
 44.2
 32.1
 47.7
 71.1
 49.1

 JAN
 51.7
 63.6
 67.8
 69.8
 34.2
 28.5
 47.1
 32.0
 53.9
 72.5
 52.1

Challenge IV. Unsupervised Domain Adaptation.

0	smi	smi	smi	smi	smi	smi	DIr	DIr	smi	Igt	Igt	lgt
	glr	blr	bgr	lgt	rot	vpc	ocl	shd	ocl	Ыr	ocl	glr
all	13.5	21.0	29.9	31.2	32.6	33.2	37.0	39.1	40.7	40.9	43.5	43.6
clp	42.8	27.8	38.7	66.7	42.8	46.0	44.4	53.8	45.5	49.1	45.1	45.7
lġt	0.0	30.0	40.0	31.2	37.5	50.0	52.3	38.5	10.0	40.9	43.5	43.6
БIr	0.0	21.0	18.2	30.0	24.6	17.8	37.0	39.1	11.1	40.9	52.2	21.0
glr	13.5	0.0	7.7	0.0	10.5	15.0	27.8	33.3	27.8	21.0	31.2	43.6
Бgr	7.7	18.2	29.9	40.0	27.7	31.4	37.2	60.0	33.0	46.1	51.4	42.1
ocl	15.0	11.1	33.0	14.3	39.7	41.0	37.0	83.3	40.7	52.2	43.5	31.2
rot	10.2	24.6	27.7	37.5	32.6	31.8	38.0	50.0	39.7	43.0	60.0	32.2
zom	n/a	n/a	n/a	n/a	n/a	n/a	75.0	100	n/a	100	n/a	n/a
vpc	15.0	17.8	31.4	50.0	31.8	33.2	35.3	58.3	41.0	35.3	40.4	46.0
sml	13.5	21.0	29.9	31.2	32.6	33.2	11.1	n/a	40.7	30.0	14.3	0.0
shd	n/a	n/a	n/a	n/a	n/a	n/a	83.3	39.1	n/a	38.5	75.0	50.0
rfl	75.0	50.0	39.3	n/a	46.3	45.2	69.6	100	68.2	100	50.0	100

Accuracy w.r.t. selected triplets of 12 factors.

- Invariant Hilbert Space (IHS) [S. Herath et al., CVPR'17].
- Unsupervised Domain Adaptation with Residual Transfer Networks (*RTN*) [M. Long et al. NIPS'16].
- Deep Transfer Learning with Joint Adaptation Networks (JAN) [M. Long et al. ICML'17].

Few-shot learning pipeline

We propose Second-order Similarity Network (SoSN):

- The image encoding network.
- Second-order relation descriptors with Power Normalization.
- Similarity learning network (simple metric learning).

Experiments

Evaluations on the Open MIC dataset (Protocol I).

Model	L	$p1 \rightarrow \mu$	02	$p1 \rightarrow p3$	p1-	→ p4	$p2 \rightarrow p$	o1	$p2 \rightarrow p3$	$p2 \rightarrow p4$	$p3 \rightarrow p1$	$ p3 \rightarrow p2$	$p3 \rightarrow p4$	$ p4 \rightarrow p1$	$ p4 \rightarrow p2$	$ p4 \rightarrow p3$
Relation Net		$71.1\pm$	1.0	$53.6 \pm 1.$	1 63.5	± 1.0	$47.2\pm$	1.0	50.6 ± 1.1	68.5 ± 1.0	48.5 ± 1.1	49.7 ± 1.1	68.4 ± 1.0	45.5 ± 1.0	70.3 ± 1.0	50.8 ± 1.1
SoSN	5	$80.8\pm$	0.9	$64.3 \pm 1.$	1 74.9	± 1.1	$58.8\pm$	1.1 (61.2 ± 1.1	76.9 ± 0.9	61.3 ± 1.1	80.8 ± 0.9	77.2 ± 1.0	58.2 ± 1.1	80.1 ± 0.9	61.6 ± 1.1
SoSN+SigmE	Ŭ	$81.4\pm$	0.9	65.2±1.	1 75.1	± 1.0	60.3±	1.1	62.1±1.1	77.7±0.9	61.5±1.1	82.0±1.0	78.0±1.0	59.0±1.1	80.8±1.0	62.5±1.1
SoSN+SigmE+224x224		$83.9\pm$	0.9	68.9±1.	1 82.1	± 0.9	$64.7\pm$	1.1	66.6±1.1	82.2±0.9	65.5±1.1	84.5±0.8	80.6±0.8	64.6±1.1	83.6±0.8	66.0±1.1
Relation Net		$40.1\pm$	0.5	$30.4 \pm 0.$	5 41.4	± 0.5	$23.5\pm$	0.4	26.4 ± 0.5	38.6 ± 0.5	26.2 ± 0.4	25.8 ± 0.4	46.3 ± 0.5	23.1 ± 0.4	43.3 ± 0.5	27.7 ± 0.4
SoSN	20	$61.0\pm$	0.5	$42.3 \pm 0.$	5 60.2	± 0.5	$35.7\pm$	0.5	37.0 ± 0.5	54.8 ± 0.5	36.0 ± 0.5	$ 59.1\pm0.5$	$ 57.0\pm0.5$	$ 36.4 \pm 0.5 $	$ 59.3 \pm 0.9 $	$ 37.8\pm0.5 $
SoSN+SigmE		$61.5\pm$	0.6	42.5±0.	5 61.0	± 0.5	36.1±	0.5	38 . 3 ±0.5	56 . 3 ±0.5	38 .7±0.5	59.9 ±0.6	59.4±0.5	37.4±0.5	59.0±0.5	38.6 ±0.5
SoSN+SigmE+224x224		$63.6\pm$	0.5	48 .7±0.	6 65.6	± 0.5	$42.6\pm$	0.5	43 .9±0.5	61.8±0.5	43 .7±0.5	63.3±0.5	63.5±0.5	43.2±0.5	62.5±0.5	43 .7±0.5
SoSN+SigmE	30	$60.6 \pm$	0.6	$40.1 \pm 0.$	7 58.3	± 0.4	$34.5\pm$	0.5	35.1 ± 0.6	54.2 ± 0.6	36.8 ± 0.6	58.6 ± 0.7	56.6 ± 0.7	35.9 ± 0.7	57.1 ± 0.7	37.1 ± 0.6
SoSN+SigmE+224x224	50	$61.7\pm$	0.7	$46.6 \pm 0.$	6 64.1	± 0.6	$41.4\pm$	0.6	40.9 ± 0.6	60.3 ± 0.6	41.6 ± 0.6	61.0 ± 0.7	60.0 ± 0.6	42.4 ± 0.6	61.2 ± 0.6	41.4 ± 0.6
SoSN+SigmE	15	$53.3\pm$	0.5	$37.3 \pm 0.$	5 54.6	± 0.5	$30.8\pm$	0.4	32.4 ± 0.5	52.4 ± 0.5	32.1 ± 0.5	54.2 ± 0.5	51.1 ± 0.5	30.5 ± 0.4	51.9 ± 0.5	33.4 ± 0.5
SoSN+SigmE+224x224	45	$59.7\pm$	0.5	$40.5 \pm 0.$	5 57.9	± 0.5	$36.5\pm$	0.5	38.2 ± 0.5	55.7 ± 0.5	39.5 ± 0.5	56.6 ± 0.4	56.0 ± 0.5	37.4 ± 0.5	55.5 ± 0.5	38.5 ± 0.5
SoSN+SigmE	60	$51.2\pm$	0.4	$34.6 \pm 0.$	4 49.1	± 0.5	$28.4\pm$	0.4	31.1 ± 0.4	48.2 ± 0.5	30.1 ± 0.4	50.0 ± 0.4	48.3 ± 0.5	30.0 ± 0.4	49.2 ± 0.5	30.6 ± 0.4
SoSN+SigmE+224x224	00	$48.2\pm$	0.6	$36.0 \pm 0.$	5 54.4	± 0.5	$30.7\pm$	0.4	32.4 ± 0.5	52.2 ± 0.5	32.35 ± 0.4	$ 51.0\pm0.5$	51.6 ± 0.5	$ 32.7\pm0.5$	$ 53.6 \pm 0.5 $	35.7 ± 0.4
SoSN+SigmE	00	$45.6\pm$	0.3	$29.7 \pm 0.$	3 45.5	± 0.4	$24.5\pm$	0.3	26.3 ± 0.3	43.6 ± 0.3	26.4 ± 0.3	44.2 ± 0.3	43.2 ± 0.3	25.5 ± 0.3	46.0 ± 0.3	27.5 ± 0.3
SoSN+SigmE+224x224	30	$47.3\pm$	0.3	$33.4 \pm 0.$	3 49.8	± 0.3	$25.3\pm$	0.4	27.1 ± 0.4	47.0 ± 0.4	27.1 ± 0.4	45.7 ± 0.4	48.9 ± 0.5	$ 28.1\pm0.3$	46.7 ± 0.5	31.6 ± 0.3

p1: shn+hon+clv, p2: clk+gls+scl, p3: sci+nat, p4: shx+rlc. Notation $x \rightarrow y$ means training on exhibition x and testing on y.

- One-shot classification (realistic one-shot scenario, task-shift only). We go up to 90-way (typically 5- or 20-way protocols used on *mini*-ImageNet not exciting).
- As *L*-way number increases, we see that few-shot learning has some way to go (some results reach only ~25% accuracy).
- Relation Net [F. Sung et al., CVPR'18], SoSN: our Second-order Similarity Network, SoSN+SigmE: SoSN+Power Normalization, 224×224: image resolution (typically few-shot uses 84×84).

P. Koniusz et al. (Data61/CSIRO, ANU)

Evaluations on the Open MIC dataset for Protocol II (asterisk *L' indicates splits with the number of classes L' < L).

Model	L	shn	hon	clv	clk	gls	scl	sci	nat	shx	rlc
Relation Net	-	43.2±1.0	49.6 ± 1.0	49.8 ± 1.0	62.1 ± 1.1	59.3 ± 1.0	51.5 ± 1.0	45.9 ± 1.0	54.8 ± 1.0	71.1 ± 1.0	72.0 ± 1.0
SoSN	5	60.3 ± 1.1	62.6 ± 1.1	60.5 ± 1.1	72.9 ± 1.1	$ 74.3 \pm 1.1$	72.3±1.0	53.4 ± 1.1	68.0 ± 1.1	$ 77.0 \pm 1.0$	78.4 ± 1.0
SoSN+SigmE		61.5 ± 1.1	63.6 ± 1.1	61.7 ± 1.1	74.5 ± 1.2	274.9 ± 1.1	72.9±1.0	54.2 ± 1.0	68.9 ± 1.1	78.0 ± 1.0	79.1 ± 1.0
Relation Net		20.8 ± 0.4	25.7 ± 0.4	26.1 ± 0.4	34.3 ± 0.4	35.5 ± 0.5	18.4±0.3	18.6 ± 0.3	32.8 ± 0.5	51.8 ± 0.5	48.2 ± 0.5
SoSN	20	36.3 ± 0.5	36.4 ± 0.5	33.3 ± 0.4	48.5 ± 0.5	54.3 ± 0.5	54.1 ± 0.5	24.8 ± 0.4	44.0 ± 0.5	59.5 ± 0.5	54.2 ± 0.5
SoSN+SigmE		37.4 ± 0.5	37.5 ± 0.5	34.9 ± 0.4	49.6 ± 0.5	55.2 ± 0.5	55.5 ± 0.5	25.1 ± 0.4	45.3 ± 0.5	61.9 ± 0.5	56.6 ± 0.5
Relation Net		18.1 ± 0.3	21.1 ± 0.3	23.2 ± 0.3	27.0 ± 0.3	31.8 ± 0.4	12.8 ± 0.2	12.4 ± 0.2	27.1 ± 0.3	40.6 ± 0.4	41.0 ± 0.4
SoSN	30	34.2 ± 0.4	35.2 ± 0.4	32.7 ± 0.3	46.7 ± 0.4	51.0 ± 0.4	52.2 ± 0.4	20.3 ± 0.3	39.9 ± 0.4	56.7 ± 0.4	51.0 ± 0.4
SoSN+SigmE		35.5 ± 0.4	36.0 ± 0.4	33.5 ± 0.3	47.7 ± 0.5	52.3 ± 0.4	53.0 ± 0.3	21.1 ± 0.3	40.8 ± 0.4	58.3 ± 0.4	52.7 ± 0.5
SoSN+SigmE+224x224		41.4±0.6	39.4 ± 0.7	37.2 ± 0.6	51.3 ± 0.7	53.4±0.7	59.0 ± 0.6	23.3 ± 0.5	46.7 ± 0.7	59.8 ± 0.6	55.4 ± 0.6
SoSN+SigmE	45	34.1 ± 0.5	$33.4 \pm 0.4_{(*20)}$	29.2 ± 0.5	45.2 ± 0.5	48.5 ± 0.5	$49.6 \pm 0.5_{(*42)}$	19.2 ± 0.4 (*26)	38.0 ± 0.5	54.1 ± 0.6	49.3 ± 0.5
SoSN+SigmE+224x224	40	34.9 ± 0.4	$34.5\pm0.4^{(33)}$	30.7 ± 0.5	50.5 ± 0.5	39.9 ± 0.6	50.6 ± 0.5	$20.1 \pm 0.4^{(30)}$	41.9 ± 0.5	54.6 ± 0.5	52.1 ± 0.5
SoSN+SigmE	60	30.0 ± 0.4		25.5 ± 0.4	42.6 ± 0.5	46.6 ± 0.4			37.5 ± 0.4	51.3 ± 0.5	46.6 ± 0.4
SoSN+SigmE+224x224	00	34.5 ± 0.4	-	28.3 ± 0.4	47.9 ± 0.5	47.4 ± 0.5			37.9 ± 0.3	52.0 ± 0.4	47.4 ± 0.4
SoSN+SigmE	90	$26.4 \pm 0.3_{(*79)}$		$24.6 \pm 0.3_{(*90)}$	41.8 ± 0.3	39.2 ± 0.3			33.0 ± 0.3	49.4 ± 0.5	39.5 ± 0.3
SoSN+SigmE+224x224	90	33.2 ± 0.3 (78)	-	$27.5 \pm 0.3^{(80)}$	44.5 ± 0.3	40.2 ± 0.3	-	-	34.6 ± 0.3	50.4 ± 0.6	42.6 ± 0.3

Training on source images and testing on target images for every exhibition, respectively.

- The goal of this protocol it to test how few-shot learning algorithms deal with the domain shift.
- Even for low *L*-way number *e.g.*, 30, Relation Net scores only ~12–20%. SoSN is more robust (~40–50% accuracy) but there is still some way to go to reach 100%.

Conclusions (Thank You)

- New challenging dataset for domain adaptation and few-shot learning (Open MIC)
- We have interesting evaluation protocols for DA: supervised/unsupervised DA, per-exhibition and combined protocols, breakdowns w.r.t. factors impairing recognition, even one-shot learning protocol.
- We have interesting evaluation protocols for few-shot learning: within-domain protocol using target combined splits (generalization from task to task), between-domain protocol using original exhibitions (generalization from domain to domain), between-task between-domain protocol III (we are evaluating it now).
- We plan to extend this dataset to detection, segmentation, saliency detection, deblurring, *etc.*
- Our dataset is available for the academic use on claret.wikidot.com or http://users.cecs.anu.edu.au/~koniusz.