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Abstract This paper provides a study of probabilistic modelling, inference and learn-

ing in a logic-based setting. We show how probability densities, being functions, can

be represented and reasoned with naturally and directly in higher-order logic, an ex-

pressive formalism not unlike the (informal) everyday language of mathematics. We

give efficient inference algorithms and illustrate the general approach with a diverse

collection of applications. Some learning issues are also considered.

1 Introduction

Complex computer applications, especially those needing the technology of artificial

intelligence, demand the ability to model structured knowledge and uncertainty, and

typically require the use of procedures that acquire new knowledge. The associated re-

search issues arising from dealing with such applications are thus at the intersection of

several subfields, including logic, probability theory, and machine learning. Given the

increasing importance of such complex applications, it is not surprising that there is

a huge body of literature mostly from researchers in the artificial intelligence commu-

nity that addresses the myriad associated research issues. Useful surveys of the more

pertinent papers in this literature can be found in [9], [41], and [10].

The nature of much of this literature is partly explained by the fact that the logical

and the probabilistic artificial intelligence communities have historically been separated

and have only started to come together in the last decade or two. A consequence of

this separation is that most of the probabilistic reasoning techniques were originally

developed for the propositional case; thus researchers have had to spend much of the
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last decade lifting them to the first-order case. Here we reconsider the entire issue from

the perspective of a general and well-established principle.

The fundamental principle on which we rely is that of the axiomatic method: given

some situation that one wants to capture, one writes down a logical theory that has

the intended interpretation as a model; then one can determine the value of any term

in the intended interpretation by a (sound) reasoning procedure. This is a long held

principle that has driven the development of logic for over a century, but has often been

considered unsuitable for modelling uncertainty because of the perceived limitation that

a (classical) logic can only capture the truth or falsity of a formula, but nothing ‘in

between’. We demonstrate in this paper that the axiomatic method in partnership with

a suitable logic is more than powerful enough to satisfactorily model uncertainty.

The crucial issue is exactly how the uncertainty (which we model with probability

theory) is captured. Almost all other approaches to this issue have a clear separation

between the logical statements and the probabilities. In contrast, we prefer the un-

certainty to be captured directly in the theory itself. Taking this for granted, the issue

becomes one of finding a suitable logic. There has been a tradition of extending first-

order logic with probabilistic facilities. One could follow this approach, but here we

follow a different one and use a logic that was shown over half a century ago to have

exactly the desired properties: higher-order logic [6,27,2].

The best way to think about higher-order logic is that it is the formalisation of

everyday informal mathematics: whatever mathematical description one might give of

some situation, the formalisation of that situation in higher-order logic is likely to be

a straightforward translation of the informal description. In particular, higher-order

logic provides a suitable foundation for mathematics itself which has many advantages

over more traditional approaches that are based on axiomatising sets in first-order logic

[2]. The most crucial property of higher-order logic that we exploit is that it admits

so-called higher-order functions which take functions as arguments and/or return func-

tions as results. It is this property that allows the modelling of, and reasoning about,

probabilistic concepts directly in higher-order theories, and thus provides an elegant

solution to the problem of integrating logic and probability [44].

Let us examine this idea in a little more detail. Applications are typically modelled

mathematically by functions (this includes predicates and constants), so that suitable

theories consist mainly of function definitions. Therefore the most useful and direct

approach to handling uncertainty is to model the uncertainty in (some) function defi-

nitions in theories. Consider a function f : σ → τ for which there is some uncertainty

about its values that we want to model. We do this with a function

f ′ : σ → Density τ,

where, for each argument t, the value of the function f ′ applied to t, written (f ′ t),

is a suitable probability density for modelling the uncertainty in the value of (f t).

(Here Density τ is the type of densities on the domain of type τ .) The intuition is

that the actual value of (f t) is likely to be where the ‘mass’ of the density (f ′ t)

is most concentrated. Of course, (unconditional) densities can also be expressed by

functions having a signature of the form Density τ . This simple idea turns out to be a

powerful and convenient way of modelling uncertainty with logical theories in diverse

applications. Note carefully the use that has been made of higher-order logic here to

model functions whose values are densities.

There are a number of requirements that follow from our decision to use higher-

order logic. The first is that we need a reasoning system for the logic in which to
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carry out probabilistic computations. This is provided by the Bach system which is a

functional logic programming language [38]. Bach programs are equational theories in

higher-order logic and these are what we employ to model applications. Thus prob-

abilistic reasoning is handled by Bach’s computation system which is an equational

reasoning system with special support to make probabilistic reasoning efficient. This

is provided by equations that implement (the equivalent of) variable elimination and

lifted inference. We also need to show that we can easily model suitable probabilistic

concepts and provide operations on them in the logic. We argue that all that is really

needed are probability densities and these can be easily modelled and reasoned about

in both the discrete and continuous cases in higher-order logic. Finally, we need to

demonstrate the usefulness and practicality of the ideas and this we do using a diverse

set of applications, most of which have also been considered by other authors and thus

provide a comparison with alternative approaches.

We have taken the view that we want Bach to be a general-purpose reasoning

system. Therefore we have designed it to handle all the various kinds of applications

that other systems can. The price we pay for this generality is that for a particular

application a more specialised probabilistic reasoning system may have some advan-

tages. With extra work, Bach could also be fined-tuned to be just as effective as a more

specialised system, but we leave this for subsequent development.

The paper is organised as follows. Section 2 gives an outline of the underlying

logic and recalls some pertinent probabilistic concepts. Section 3 presents our general

approach to probabilistic modelling. Section 4 describes the reasoning system. Section

5 considers some associated learning problems. Section 6 contains a general discussion

of our approach in the context of related work.

2 Mathematical Preliminaries

We review a standard formulation of higher-order logic based on Church’s simple theory

of types [6] in Section 2.1. (More complete accounts of the logic can be found in [34]

and [35]. Other references on higher-order logic include [57], [2], [56], [32], and [54].) We

then introduce a modicum of measure theory in Section 2.2 and show how probability

density functions can be naturally represented in the logic.

2.1 Logic

Definition 1 An alphabet consists of three sets:

1. a set T of type constructors;

2. a set C of constants; and

3. a set V of variables.

Each type constructor in T has an arity, which is the number of arguments it

needs. The set T always includes the type constructor Ω of arity 0. Ω is the type of the

booleans. Each constant in C has a type signature. The set V is denumerable. Variables

are typically denoted by x, y, z, . . . .

Types are built up from the set of type constructors, using the symbols → and ×.

Definition 2 A type is defined inductively as follows.
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1. If T is a type constructor of arity k and α1, . . . , αk are types, then T α1 . . . αk is a

type. (Thus a type constructor of arity 0 is a type.)

2. If α and β are types, then α→ β is a type.

3. If α1, . . . , αn are types, then α1 × · · · × αn is a type.

We use the convention that → is right associative. So, for example, when we write

α→ β → γ → κ we mean α→ (β → (γ → κ)).

Besides Ω, here are some other common types we will need.

Example 1 The type of the integers is denoted by Int , and the type of the reals by

Real . Also (List σ) is the type of lists whose items have type σ, and {σ} is the type of

sets whose elements have type σ. The type {σ} is a synonym for σ → Ω.

The set C always includes the following constants: ⊤ and ⊥ having signature Ω; =α
having signature α → α → Ω for each type α; ¬ having signature Ω → Ω; ∧, ∨, and

−→ having signature Ω → Ω → Ω; and Σα and Πα having signature (α → Ω) → Ω

for each type α. The intended meaning of ⊤ is true, and that of ⊥ is false. The intended

meaning of =α is identity (that is, (=α x y) is ⊤ iff x and y are identical), and the

intended meanings of the connectives ¬, ∧, ∨, and −→ are as usual (not , and , or

and implies). The intended meaning of Σα is that Σα maps a predicate (i.e. boolean

function) over elements of type α to ⊤ iff the predicate maps at least one element of

type α to ⊤. The intended meaning of Πα is that Πα maps a predicate over elements

of type α to ⊤ iff the predicate maps all elements of type α to ⊤.

Other useful constants that often appear in applications include the integers, real

numbers, and data constructors like #σ : σ → (List σ) → (List σ) and []σ : List σ

for constructing lists where the elements have type σ. (See Example 3.) The notation

C : σ is used to denote that the constant C has signature σ.

Definition 3 A term, together with its type, is defined inductively as follows.

1. A variable in V of type α is a term of type α.

2. A constant in C having signature α is a term of type α.

3. If t is a term of type β and x a variable of type α, then λx.t is a term of type

α→ β.

4. If s is a term of type α→ β and t a term of type α, then (s t) is a term of type β.

5. If t1, . . . , tn are terms of type α1, . . . , αn, respectively, then (t1, . . . , tn) is a term

of type α1 × · · · × αn.

Terms of the form (Σα λx.t) are written as ∃αx.t and terms of the form (Πα λx.t)

are written as ∀αx.t (in accord with the intended meaning of Σα and Πα). Thus, in

higher-order logic, each quantifier is obtained as a combination of an abstraction acted

on by a suitable function (Σα or Πα). A formula is a term of type Ω. The universal

closure of a formula ϕ is denoted by ∀(ϕ).

Example 2 Constants like ⊤, 42, 3.11, and + (a boolean, an integer, a real number

and a function with signature Int → Int → Int) are terms. Variables like x, y, z are

terms. An example of a term that can be formed using abstraction is λx.((+ x) x),

whose intended meaning is a function that takes a number x and returns x + x. To

apply that function to the constant 42, for example, we use application to form the

term (λx.((+ x) x) 42).
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Example 3 The term (#Int 2 (#Int 3 []Int )) represents a list with the numbers 2 and 3

in it, obtained via a series of applications from the constants #Int , []Int , 2, and 3, each

of which is a term. For convenience, we sometimes write [2, 3] to represent the same

list.

Example 4 Sets are identified with predicates in the logic. In other words, sets are

represented by their membership functions. Thus, the term

λx.((∨ ((=Int x) 2)) ((=Int x) 3)) (1)

can be used to represent a set with the integers 2 and 3 in it. We often use infix

notation for common function symbols like equality and the connectives. We also adopt

the convention that applications are left-associative; thus, (f x y) means ((f x) y). All

these conventions allow us to write the more natural λx.((x =Int 2) ∨ (x =Int 3)) for

(1) above. For convenience, we sometimes also write {2, 3} to represent the same set.

Since sets are predicates, set membership test is obtained using function application.

Let s denote (1) above. To check whether a number y is in s, we write (s y).

The polymorphic version of the logic extends what is given above by also having

available type variables (denoted by a, b, c, . . .). The definition of a type as above is then

extended to polymorphic types that may contain type variables and the definition of a

term as above is extended to terms that may have polymorphic types. We work in the

polymorphic version of the logic in the remainder of the paper. In this case, we drop

the α in constants like ∃α, ∀α, =α, #α, and []α, since the types associated with these

are now inferred from the context.

Example 5 A common polymorphic function we need is if then else : Ω × a× a → a.

Using it, we can give the following equivalent way of representing the set denoted by

(1) above:

λx.(if then else ((x = 2 ),⊤, (if then else ((x = 3 ),⊤,⊥)))).

Using if x then y else z as syntactic sugar for (if then else (x , y , z )), the above can be

written in the following more readable form:

λx.if x = 2 then ⊤ else if x = 3 then ⊤ else ⊥.

The logic can be given a rather conventional Henkin semantics – more on this later.

2.2 Densities

Probability distributions can be described formally using measure theory. A probability

distribution is defined over some set X and observable events correspond to subsets of

X. The collection A of these subsets is called the measurable sets of X and we require

that A forms a σ-algebra; in other words, A satisfies the following two properties: (i)

X ∈ A; and (ii) A is closed under complementation and countable unions. A measure

is a function µ that maps each measurable set in A to a real number in the range

[0,∞] and that is countably additive. A triple (X,A, µ) satisfying the above is called

a measure space. Let Y be another set and B a σ-algebra on Y . A function f : X → Y

is measurable if f−1(B) ∈ A, for all B ∈ B.
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Definition 4 Let (X,A, µ) be a measure space and f : X → R a measurable function.

Then f is a density (wrt the measure µ) if (i) f(x) ≥ 0, ∀x ∈ X, and (ii)
R

X
f dµ = 1.

There are two main cases of interest. The first is when µ is the counting measure

on X, in which case
R

X
f dµ =

P

x∈X f(x); this is the discrete case. The second case

is when X is R
n, for some n ≥ 1, and µ is the Lebesgue measure; this is the continuous

case.

To formulate the above ideas in the logic, we introduce a type synonym

Density a ≡ a→ Real .

Here a is a type variable; so Density a is a polymorphic type. The intended meaning

of a term of type Density τ in the semantics is a density over Dτ , the domain of τ ,

and not some arbitrary real-valued function. Any term of type Density τ , for some τ ,

is called a density.

In performing probabilistic inference, we often need to compose densities and func-

tions in different ways. Two composition functions we will need in this paper are given

next. The definitions are mathematical definitions; we will see how they are defined in

the logic in Section 4.2.1.

Definition 5 The function

§ : Density Y → (Y → Density Z) → Density Z

is defined by

(f § g)(z) =

Z

Y

f(y) × g(y)(z) dν(y),

where f : Density Y , g : Y → Density Z, and z ∈ Z.

Specialised to the discrete case, the definition is

(f § g)(z) =
X

y∈Y

f(y) × g(y)(z).

Intuitively, § is used to chain together a density on Y and a conditional density on Z

to produce a density on Z by marginalising out Y .

Definition 6 The function

$ : Density Y → (Y → Z) → Density Z

is defined by

(f $ g)(z) =

Z

g−1(z)
f(y) dν(y),

where f : Density Y , g : Y → Z, and z ∈ Z.

Specialised to the discrete case, the definition is

(f $ g)(z) =
X

y∈g−1(z)

f(y).

Intuitively, $ is used to obtain a density on Z from a density on Y by passing it through

a function from Y to Z.
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3 Modelling

We will use three examples to illustrate the central concepts and also the generality of

our approach to probabilistic modelling. Example 6 illustrates the kind of problem be-

ing investigated with formalisms like stochastic logic programs [42]. Example 8 presents

a solution to a generative probabilistic model problem described in [40]. We will focus

only on modelling issues in this section, delaying computational issues to Section 4.

Example 6 Consider an agent that makes recommendations of TV programs to a user.

The agent has access to the TV guide through the definition of the function tv guide.

It also knows about the user’s preferences for TV programs through the definition of

the function likes, the uncertainty of which is modelled by densities in its codomain.

Suppose now that the agent is asked to make a recommendation about a program at

a particular occurrence (that is, date, time, and channel), except that there is some

uncertainty in the actual occurrence intended by the user; this uncertainty, which is

modelled in the definition of the density choice, could come about, for example, if the

user asked the somewhat ambiguous question “Are there any good programs on ABC

during dinner time?”. The question the agent needs to answer is the following: given

the uncertainty in choice and likes, what is the probability that the user likes the

program that is on at the occurrence intended by the user.

This situation is modelled as follows. First, here are some type synonyms.

Occurrence = Date × Time × Channel

Program = Title × Duration × Genre × Classification × Synopsis.

Here is the definition of the density choice that models the uncertainty in the

intended occurrence.

choice : Density Occurrence

∀x.((choice x) = if x = ((21, 7, 2007), (19, 30),ABC ) then 0.8

else if x = ((21, 7, 2007), (20, 30),ABC ) then 0.2 else 0). (2)

So the uncertainty is in the time of the program; it is probably 7.30pm, but it could

be 8.30pm.

Next there is the TV guide that maps occurrences to programs.

tv guide : Occurrence → Program

∀x.((tv guide x) =

if (x = ((20, 7, 2007), (11, 30),Win))

then (“NFL Football”, 60,Sport ,G, “The Buffalo . . . ”)

else if (x = ((21, 7, 2007), (19, 30),ABC ))

then (“Seinfeld”, 30,Sitcom,PG, “Kramer . . . ”)

else if (x = ((21, 7, 2007), (20, 30),ABC ))

then (“The Bill”, 50,Drama,M , “Sun Hill . . . ”)

...

else (“ ”, 0,NULL,NA, “ ”)). (3)
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Finally, here is the definition of the function likes. We use 〈(⊤, r1), (⊥, r2)〉 as a

shorthand for the term

λy.if y = ⊤ then r1 else if y = ⊥ then r2 else 0

in the following.

likes : Program → Density Ω

∀x.((likes x) =

if (projTitle x) = “NFL Football” then 〈(⊤, 1), (⊥, 0)〉

else if (projGenre x) = Movie then 〈(⊤, 0.75), (⊥, 0.25)〉

else if (projGenre x) = Documentary then 〈(⊤, 1), (⊥, 0)〉

else if (projTitle x) = “World Soccer” then 〈(⊤, 0.9), (⊥, 0.1)〉

else if (projGenre x) = Drama then 〈(⊤, 0.2), (⊥, 0.8)〉

else if (projGenre x) = Sitcom then 〈(⊤, 0.9), (⊥, 0.1)〉

else 〈(⊤, 0), (⊥, 1)〉). (4)

The definition of likes given above can come about from a learning process like [8].

Recall that the agent needs to compute the probability that the user likes the

program which is on at the occurrence intended by the user. This amounts to computing

the value of the term

((choice $ tv guide) § likes), (5)

which is a term of type Density Ω. We show in Section 4.3.1 how (5) simplifies to

λz.if z = ⊤ then 0.76 else if z = ⊥ then 0.24 else 0.

The agent can now use this information to decide whether to recommend the program

or not.

Example 7 The probabilistic model presented in this example is motivated by work on

lifted inference [50,10]. Consider the factor graph [30] representation of an undirected

graphical model shown in Fig. 1, where each node is a boolean random variable and

the two common factors f and g are defined as follows:

f : Ω → Ω → Real

(f ⊤ ⊤) = 7.0 (f ⊥ ⊤) = 0.5

(f ⊤ ⊥) = 3.0 (f ⊥ ⊥) = 9.5

g : Ω → Ω → Real

(g ⊤ ⊤) = 1.0 (g ⊥ ⊤) = 0.5

(g ⊤ ⊥) = 9.0 (g ⊥ ⊥) = 9.5.

We can represent the factor graph in a propositional way directly in Bach but the

size of the resultant theory would be unnecessarily large. In the following, we exploit

the repeated structure in the graph to arrive at a more compact representation. As

we shall see in Section 4.3.2, this compact representation can also lead to much better

inference procedures.
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(hospitalised Steve)                   (sick Steve)

f

f

f

f

g

g

g

g

epidemic

(hospitalised Brian)                    (sick Brian)

(hospitalised John)                     (sick John)

(hospitalised Mary)                    (sick Mary)

Fig. 1 A factor graph with repeated structures

We first note that all the random variables except epidemic can be grouped under

two classes: one parameterised by the function hospitalised : Person → Ω, and the

other by the function sick : Person → Ω. Observe now that there is a one-to-one

correspondence between an assignment of values to the variables parameterised by

hospitalised and a definition for the function hospitalised . Similarly for the variables

parameterised by sick . This leads us to define the underlying joint density for the factor

graph by defining the following real-valued function over triples (s, h, e), where s (short

for sick) and h (short for hospitalised) are function variables and e (short for epidemic)

is a boolean variable.

joint : (Person → Ω) × (Person → Ω) ×Ω → Real

(joint (s, h, e)) =
Y

x∈all

(f (s x) (h x)) × (g (s x) e)

all : Person → Ω

all = {Brian, John,Mary ,Mike,Liz ,Steve}.

Here,
Q

x∈all
is used to form a product of terms over the set all . The Bach definition

of
Q

is given later in Section 4.2.1.1

One can answer various queries using the model. For example, suppose we know

Brian, John and Mary are hospitalised but Mike is not and we would like to compute

the probability of there being an epidemic. In other words, we want to compute

Pr(e = ⊤ | (hBrian) = ⊤, (h John) = ⊤, (h Mary) = ⊤, (h Mike) = ⊥). (6)

This can be solved by marginalising out s and those parts of h not already instantiated

in the evidence from joint . This involves summations over sets of functions and we will

see how that can be achieved in Section 4.3.2.

Example 8 We model the following scenario, which is one of the main examples used

in [40]. An urn contains an unknown number of balls that have the colour blue or green

with equal probability. Identically coloured balls are indistinguishable. An agent has

the prior belief that the distribution of the number of balls is a Poisson distribution

with mean 6. The agent now draws some balls from the urn, observes their colour, and

then replaces them. The observed colour is different from the actual colour of the ball

1 The function
Q

is distinct from the function Π used to obtain universal quantification in
Section 2.1.
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drawn with probability 0.2. On the basis of these observations, the agent should infer

certain properties about the urn, such as the number of balls it contains.

This is an interesting problem because it is an example of a model that exhibits

domain uncertainty: the number of balls in the urn is unknown and unbounded. This,

claims [40], is the reason it cannot be modelled using some existing first-order proba-

bilistic languages. Interestingly, the problem can be modelled rather straightforwardly

if we can define densities over structured objects like sets and lists. There are essen-

tially four variables in the problem setup: the number n of balls in the urn, the actual

set s of balls in the urn, the list x of balls drawn, and the list y of observations made.

The following is a suitable graphical model.

�� ��

�� ��
numOfBalls //

�� ��

�� ��
setOfBalls //

�� ��

�� ��
ballsDrawnd

//

�� ��

�� ��observations

The details of the graphical model are specified in the following theory.

colour : Colour → Ω

(colour x) = (x = Blue) ∨ (x = Green)

numOfBalls : Density Int

(numOfBalls x) = (poisson 6 x)

poisson : Int → Density Int

(poisson x y) = e−xxy/y!

setOfBalls : Int → Density {Ball }

(setOfBalls n s) =

if ∃x1 · · · ∃xn.((colour x1) ∧ · · · ∧ (colour xn) ∧ (s = {(1, x1), . . . , (n, xn)}))

then 0.5n else 0

ballsDrawn : Int → {Ball } → Density (List Ball)

(ballsDrawn d s x) =

if ∃x1 · · · ∃xd.((s x1) ∧ · · · ∧ (s xd) ∧ (x = [x1, . . . , xd])) then (card s)−d else 0

observations : (List Ball) → Density (List Colour)

(observations x y) = if (length x) = (length y) then (obsProb x y) else 0

obsProb : (List Ball) → (List Colour) → Real

(obsProb [] []) = 1

(obsProb (# (v, y1) z1) (# y2 z2)) =

(if (y1 = y2) then 0.8 else 0.2) × (obsProb z1 z2)

joint : Int → Density (Int × {Ball } × (List Ball) × (List Colour))

(joint d (n, s, x, y)) =

(numOfBalls n) × (setOfBalls n s) × (ballsDrawn d s x) × (observations x y)

The function card returns the cardinality of a set; length returns the size of a list. The

functions setOfBalls and ballsDrawn are defined informally above; formal recursive

definitions can be given.
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The function joint at the end defines the following mathematical expression

Pr(n)Pr(s |n)Pr(x | s)Pr(y |x).

The prior over the number of balls is captured in the density numOfBalls. Given n

the number of balls in the urn, (setOfBalls n) specifies a distribution over all possible

sets of balls in the urn. A ball is represented by an integer identifier and its colour:

Ball = Int × Colour . Every set of balls that has non-zero weight under (setOfBalls n)

contains n balls. These balls are labelled 1 to n and their colours are chosen randomly.

Given d the number of draws the agent can make and s the set of balls in the urn,

(ballsDrawn d s) specifies a distribution over all possible sequences of balls drawn, where

each draw sequence is represented as a list of balls. Finally, given x the list of balls

drawn, (observations x) gives the distribution over the possible colours that is actually

observed by the agent.

We can compute marginalisations of the given joint distribution to obtain answers

to different questions, questions like “How many balls are in the urn?” and “Was the

same ball drawn twice?”. For example, the following gives the probability that the

number of balls in the urn is m after we have seen the colours [o1, o2, . . . , od] from d

draws:

1

K

X

s

X

l

(joint d (m, s, l, [o1, o2, . . . , od])), (7)

where K is a normalisation constant, s ranges over sets of balls and l ranges over lists of

balls. Fig. 2 shows the posterior distribution ofm after drawing ten and fifteen balls and

observing that they are all blue. (We will see how the probabilities are computed in the

next section.) Consistent with intuition, the lower numbers of m become increasingly

probable (compared to the prior Poisson distribution) as more blue balls are observed.

Fig. 2 The posterior distributions of the number of balls in the urn after some observations.
The Poisson curve is the prior distribution on the number of balls.
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4 Inference

We will first describe a general mechanism for reasoning with equational theories in

Section 4.1. Extensions needed to support probabilistic reasoning are then discussed

in Section 4.2. Finally, we show in Section 4.3 how the inference mechanism is used to

solve the three example problems described in Section 3

4.1 Equational Reasoning

The reasoning system described next is a subset of a more general system called Bach

[36,38]. It is a computation system that significantly extends existing functional pro-

gramming languages by adding logic programming facilities. For convenience, we will

refer to this subsystem as Bach in this paper. Bach is closely related to the Haskell

programming language, being a strict superset. Haskell allows pattern matching only

on data constructors. Bach extends this by also allowing pattern matching on func-

tion symbols and lambda abstractions. Further, Bach allows reduction of terms inside

lambda abstractions, an operation not permitted in Haskell. It is also worth noting

that any (pure) Prolog program can be mechanically translated into Bach using Clark’s

completion [7].

The inference mechanism underlying Bach is given in Definition 7 below. We first

establish some terminology. The occurrence of a subterm s of t is a description of the

path from the root of t to s. An occurrence of a variable x in a term is bound if it occurs

within a subterm of the form λx.t. Otherwise it is free. The notation t[s/r]o denotes

the term obtained from t by replacing s at occurrence o with r. If x is a variable, the

notation t{x/r} denotes the term obtained from t by replacing every free occurrence of

variable x in t with r. Two terms are α-equivalent if they are identical up to a change

of bound variable names.

Definition 7 Let T be a theory. A computation with respect to T is a sequence {ti}
n
i=1

of terms such that for i = 1, . . . , n − 1, there is a subterm si of ti at occurrence oi, a

formula ∀(ui = vi) in T, and a substitution θi such that uiθi is α-equivalent to si and

ti+1 is ti[si/viθi]oi .

The term t1 is called the goal of the computation and tn is called the answer. Each

subterm si is called a redex (short for reducible expression). The formula ∀(t1 = tn) is

called the result of the computation.

A selection rule chooses the redex at each step of a computation. The selection rule

we use in this paper is the leftmost one which chooses the leftmost outermost subterm

that satisfies the requirements of Definition 7. This rule gives us lazy evaluation.

We will see many examples of computations shortly. Theorem 1 below shows that

computation as defined in Definition 7 is essentially a form of theorem proving. The

proof of Theorem 1 is rather involved and is omitted here; the proof of a more general

case of the theorem can be found in [36, Sect. 6].

Theorem 1 The result of a computation with respect to a theory T is a logical conse-

quence of T.

Computations generally require use of definitions of =, the connectives and quan-

tifiers, and some other basic functions. These definitions constitute what we call the
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standard equality theory. The complete list of equations in its various versions can be

found in [33,35,36]. Here are some examples of equations that will be needed.

(if ⊤ then u else v) = u (8)

(if ⊥ then u else v) = v (9)

(w (if x = t then u else v)) = (if x = t then (w{x/t} u) else (w v)) (10)

-- where x is a variable.

((if x = t then u else v) w) = (if x = t then (u w{x/t}) else (v w)) (11)

-- where x is a variable.

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) (12)

(λx.u t) = u{x/t} (13)

∃x1. · · · ∃xn.(x ∧ (x1 = u) ∧ y) = ∃x2. · · · ∃xn.(x{x1/u} ∧ y{x1/u}) (14)

-- where x1 is not free in u.

∃x1. · · · ∃xn.(u ∨ v) = (∃x1. · · · ∃xn.u) ∨ (∃x1. · · · ∃xn.v) (15)

∀x1. · · · ∀xn.(x ∧ (x1 = u) ∧ y −→ v) =

∀x2. · · · ∀xn.(x{x1/u} ∧ y{x1/u} −→ v{x1/u}) (16)

-- where x1 is not free in u.

Some of the equations above are schemas. A schema is intended to stand for the

collection of formulas that can be obtained from the schema by replacing its syntactical

variables (typeset in bold above) with terms that satisfy the side conditions, if there

are any. Equations (8)-(11) above are useful for simplifying if then else expressions.

Equation (13) provides β-reduction. Equations like (14)-(16) are used to provide logic

programming idioms in the context of functional computations.

We now look at some example computations.

Example 9 Consider the following definition of f : Alphabet → Int :

(f x) = if x = A then 42 else if x = B then 21 else if x = C then 42 else 0. (17)

With such a definition, it is straightforward to compute in the ‘forward’ direction.

Thus, for example, (f B) can be computed in the obvious way to produce the answer

21. Less obviously, the definition can be used to compute in the ‘reverse’ direction. For

example, Fig. 3 shows the computation of the (intensional) set λx.((f x) = 42), which

produces the equivalent of {A,C} as the answer.

This next example gives further demonstration of the inbuilt capability of Bach to

enumerate the elements of an intensionally described set using its logic programming

facilities. Such operations play an important role in probabilistic inference routines.

Example 10 Consider the definition of setOfBalls in Example 8. Fig. 4 shows the com-

putation of the term (setOfBalls 2 s). A similar computation would allow us to compute

the support λs.((setOfBalls 2 s) > 0) of the density (setOfBalls 2), which produces

the answer

λs.(s = {(1,Blue), (2,Blue)} ∨ s = {(1,Blue), (2,Green)} ∨

s = {(1,Green), (2,Blue)} ∨ s = {(1,Green), (2,Green)}).



14

λx.(= (f x) 42) [17]

λx.(= (if x = A then 42 else if x = B then 21 else if x = C then 42 else 0) 42) [10]

λx.((if x = A then (= 42) else (= (if x = B then 21 else if x = C then 42 else 0))) 42) [11]

λx.if x = A then (42 = 42) else (= (if x = B then 21 else if x = C then 42 else 0) 42)

λx.if x = A then ⊤ else (= (if x = B then 21 else if x = C then 42 else 0) 42) [10]

λx.if x = A then ⊤ else (if x = B then (= 21) else (= (if x = C then 42 else 0) 42)) [11]

λx.if x = A then ⊤ else if x = B then (21 = 42) else (= (if x = C then 42 else 0) 42)

λx.if x = A then ⊤ else if x = B then ⊥ else (= (if x = C then 42 else 0) 42) [10]

.

.

.

λx.if x = A then ⊤ else if x = B then ⊥ else if x = C then ⊤ else ⊥

Fig. 3 Computation of λx.((f x) = 42). The redexes are underlined. The equation used to
rewrite each redex is shown on the right.

(setOfBalls 2 s)

if ∃x.∃y.((colour x) ∧ (colour y) ∧ s = {(1, x), (2, y)}) then 0.52 else 0

if ∃x.∃y.(((x = Blue) ∨ (x = Green)) ∧ (colour y) ∧ s = {(1, x), (2, y)}) then 0.52 else 0 [12]

if ∃x.∃y.(((x = Blue) ∧ (colour y) ∧ s = {(1, x), (2, y)}) ∨

((x = Green) ∧ (colour y) ∧ s = {(1, x), (2, y)})) then 0.52 else 0 [15]

if ∃x.∃y.((x = Blue) ∧ (colour y) ∧ s = {(1, x), (2, y)}) ∨

∃x.∃y.((x = Green) ∧ (colour y) ∧ s = {(1, x), (2, y)}) then 0.52 else 0 [14]

if ∃y.((colour y) ∧ s = {(1,Blue), (2, y)}) ∨

∃x.∃y.((x = Green) ∧ (colour y) ∧ s = {(1, x), (2, y)}) then 0.52 else 0

if ∃y.(((y = Blue) ∨ (y = Green)) ∧ s = {(1,Blue), (2, y)}) ∨

∃x.∃y.((x = Green) ∧ (colour y) ∧ s = {(1, x), (2, y)}) then 0.52 else 0 [12]

if ∃y.(((y = Blue) ∧ s = {(1,Blue), (2, y)}) ∨ ((y = Green) ∧ s = {(1,Blue), (2, y)})) ∨

∃x.∃y.((x = Green) ∧ (colour y) ∧ s = {(1, x), (2, y)}) then 0.52 else 0 [15]

if ∃y.((y = Blue) ∧ s = {(1,Blue), (2, y)}) ∨ ∃y.((y = Green) ∧ s = {(1,Blue), (2, y)}) ∨

∃x.∃y.((x = Green) ∧ (colour y) ∧ s = {(1, x), (2, y)}) then 0.52 else 0 [14]

if s = {(1,Blue), (2,Blue)} ∨ ∃y.((y = Green) ∧ s = {(1,Blue), (2, y)}) ∨

∃x.∃y.((x = Green) ∧ (colour y) ∧ s = {(1, x), (2, y)}) then 0.52 else 0 [14]

if s = {(1,Blue), (2,Blue)} ∨ s = {(1,Blue), (2,Green)} ∨

∃x.∃y.((x = Green) ∧ (colour y) ∧ (s = {(1, x), (2, y)})) then 0.52 else 0 [14]

..

.

if s = {(1,Blue), (2,Blue)} ∨ s = {(1,Blue), (2,Green)} ∨

s = {(1, Green), (2,Blue)} ∨ s = {(1,Green), (2,Green)} then 0.52 else 0

Fig. 4 Computation of (setOfBalls 2 s).
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The support λx.((ballsDrawn 2 {(1,Blue), (2,Green)} x) > 0) of the density over

lists of balls (ballsDrawn 2 {(1,Blue), (2,Green)}) can be computed in like fashion to

yield

λx.(x = [(1,Blue), (1,Blue)] ∨ x = [(1,Blue), (2,Green)] ∨

x = [(2,Green), (1,Blue)] ∨ x = [(2,Green), (2,Green)]).

4.2 Probabilistic Inference

We give in this section a few rules that are needed to support probabilistic inference

in Bach. They are all rules for manipulating sums and products.

4.2.1 Sums and Products

In answering probabilistic queries, we are really computing (ratios of) marginalisa-

tions of density functions. These expressions usually contain summations of the form
P

x∈s f(x) that we need to evaluate. In the case when s can be efficiently enumerated,

we introduce the following function to represent such sums.

sum : {a} → (a→ Real) → Real

(sum λx.(if (x = y) then ⊤ else w) f) = (f y) + (sum λx.w f)

(sum λx.(if (x = y) then ⊥ else w) f) = (sum λx.w f)

(sum λx.(x = y) f) = (f y)

(sum λx.((x = y) ∨ w) f) = (f y) + (sum λx.w f)

(sum λx.(w ∨ (x = y)) f) = (f y) + (sum λx.w f)

(sum λx.(v ∨ w) f) = (sum λx.v f) + (sum λx.w f)

(sum λx.⊥ f) = 0

Thus the term (sum s f) denotes, in a natural way, the (informal mathematical)

expression
P

x∈s f(x). In the definition of sum above, we have assumed that the set s

can be reduced to the syntactic form of an abstraction over either a nested if then else

or a nested disjunction for which there are no repeated occurrences of the (x = y) tests.

Thus, for example, both

λx.(x = 1 ∨ x = 2 ∨ x = 1) and

λx.if (x = 1) then ⊤ else if (x = 2) then ⊤ else if (x = 1) then ⊤ else ⊥

are disallowed. If there are such repeats, it is easy enough to remove them [35, p.189].

The two syntactic forms are sufficiently useful for a wide range of applications.

Example 11 Using sum, (7) above can be written as

1/K × (sum λs.((setOfBalls m s) > 0)

λs.(sum λl.((ballsDrawn d s l) > 0) λl.(joint d (m, s, l, [o1, . . . , od])))).
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We need to deal with products as well as summations. For that, we introduce the

function prod : {a} → (a → Real) → Real , which has an analogous definition to that

of sum. Thus (prod s f ) denotes
Q

x∈s f(x) in the natural way.

For convenience, we will use the following shorthand notation

X

x∈s

t ≡ (sum s λx .t)
Y

x∈s

t ≡ (prod s λx .t)

in the remainder of the text. Thus, e.g.,
P

w∈s1

P

x∈s1

Q

y∈s2

P

z∈s2
(f (w, x, y, z))

denotes the term

(sum s1 λw.(sum s1 λx.(prod s2 λy .(sum s2 λz .(f (w , x , y , z )))))).

Before moving on, we look at two special cases of summation expressions that will

be needed to define the composition functions $ and § described in Section 2.2. The two

functions are needed to solve some computational problems associated with Example 6

and Bayesian tracking (Section 5.2).

In the case when the set s in
P

x∈s f(x) cannot be efficiently enumerated but there is

an (intensional) predicate representation for it so that set membership can be computed

easily, we can use the following function sum2 to compute the summation.

sum2 : {a} → (a→ Real) → Real

(sum2 s λx.if x = u then v else w) = (if (s u) then v else 0) + (sum2 s λx.w)

(18)

(sum2 s λx.0) = 0 (19)

Here it is assumed that the second argument to sum2 has the syntactic form of an

abstraction over a nested if then else for which there are no repeated occurrences of

the tests x = u. Similar remarks apply to sum3 below.

We will also need a function sum3 that computes
P

x f(x) in the case when x ranges

over the whole domain of f .

sum3 : (a→ Real) → Real

(sum3 λx.if x = u then v else w) = v + (sum3 λx.w) (20)

(sum3 λx.0) = 0 (21)

Example 12 The discrete case of the two composition functions $ and § described in

Section 2.2 can be defined in the logic as follows.

$ : Density b→ (b→ c) → Density c

f $ g = λz.(sum2 λy.((g y) = z) f) (22)

§ : Density b→ (b→ Density c) → Density c

f § g = λz.(sum3 λy.((f y) × ((g y) z))). (23)
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4.2.2 Variable Elimination

In computing marginalisations of a given joint density, we can exploit the factorization

of the joint to move products outside sums, a transformation procedure commonly

known as variable elimination. The following rule is essentially what we need.
X

y∈s

t1 × · · · × tn = ti ×
X

y∈s

t1 × · · · × ti−1 × ti+1 × · · · × tn (24)

-- if y is not free in ti.

Example 13 Fig. 5 shows how a term of the form
X

x∈s1

X

y∈s2

X

z∈s3

(g1 x) × (g2 (x, y)) × (g3 (y, z))

can be simplified using Equation (24).

X

x∈s1

X

y∈s2

X

z∈s3

(g1 x) × (g2 (x, y)) × (g3 (y, z))

X

x∈s1

X

y∈s2

(g1 x) ×
X

z∈s3

(g2 (x, y)) × (g3 (y, z))

X

x∈s1

(g1 x) ×
X

y∈s2

X

z∈s3

(g2 (x, y)) × (g3 (y, z))

X

x∈s1

(g1 x) ×
X

y∈s2

(g2 (x, y)) ×
X

z∈s3

(g3 (y, z))

Fig. 5 Computation of
P

x∈s1

P

y∈s2

P

z∈s3
(g1 x) × (g2 (x, y)) × (g3 (y, z))

In contrast to the standard variable-elimination algorithm [60], we move a summa-

tion inside a product of factors one factor at a time instead of multiple factors at a

time. Further, unlike the standard algorithm, actual summations over a variable are

usually delayed as much as possible courtesy of the leftmost (lazy) redex selection rule.

4.2.3 Lifted Inference

Many existing inference algorithms for first-order probabilistic models employ the strat-

egy of first grounding out the model before applying standard inference techniques.

There are a few problems with this approach. First, the grounding step can only be

done if the domain of the model is finite, an unworkable assumption in many applica-

tions. Further, for many kinds of queries, it is unnecessary to consider all the random

variables in the model. Lifted first-order probabilistic inference algorithms avoid the

grounding step by working directly with groups of random variables, exploiting oppor-

tunities to simplify and/or eliminate sets of random variables all in one go. Examples

of such algorithms appear in [50] and [11].

Building on [11,12], we develop a set of tools to support lifted probabilistic inference

in this section. We will use the factor graph shown in Fig. 6 to motivate the key ideas.
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e

g

g

g

                                                         (s Brian)

                                                         (s John)

                                                         (s Mary)

Fig. 6 A fragment of the factor graph shown in Fig. 1

Let P = {Brian, John,Mary}. The joint for the factor graph is defined as follows:

joint : ((Person → Ω) ×Ω) → Real

(joint (s, e)) =
Y

x∈P

(g (s x) e).

Suppose we want to compute Pr(e = ⊤ | (s Mary) = ⊤). The (informal) mathematical

expression that we need to evaluate is

1

K

X

(sBrian)∈{⊤,⊥}

X

(s John)∈{⊤,⊥}

(g (s Brian) ⊤)× (g (s John) ⊤)× (g ⊤ ⊤), (25)

where K is a normalisation constant and the two terms (s Brian) and (s John) are

treated as variables ranging over the set {⊤,⊥}. The need to treat (s Brian) and

(s John) as variables, which they are clearly not, is the main technical problem to be

addressed in encoding (25) in the logic. A compact and logically clean way of writing

(25) in Bach is

1

K

X

s∈{⊤,⊥}{John,Brian}

(g (s Brian) ⊤) × (g (s John) ⊤) × (g ⊤ ⊤), (26)

where {⊤,⊥}{John,Brian} is the set of all functions from {John,Brian} to {⊤,⊥}; i.e.,

{⊤,⊥}{John,Brian} = {λx.if x = John then ⊤ else if x = Brian then ⊤ else vd ,

λx.if x = John then ⊤ else if x = Brian then ⊥ else vd ,

λx.if x = John then ⊥ else if x = Brian then ⊤ else vd ,

λx.if x = John then ⊥ else if x = Brian then ⊥ else vd },

where vd is some default value, say, ⊥. To see that (26) correctly captures the intended

meaning of (25), observe that (26) can be expanded out to the following term

1/K( (λs.(g (s Brian) ⊤) × (g (s John) ⊤) × (g ⊤ ⊤)

λx.if x = John then ⊤ else if x = Brian then ⊤ else vd )

+ (λs.(g (s Brian) ⊤) × (g (s John) ⊤) × (g ⊤ ⊤)

λx.if x = John then ⊤ else if x = Brian then ⊥ else vd )

+ (λs.(g (s Brian) ⊤) × (g (s John) ⊤) × (g ⊤ ⊤)

λx.if x = John then ⊥ else if x = Brian then ⊤ else vd )

+ (λs.(g (s Brian) ⊤) × (g (s John) ⊤) × (g ⊤ ⊤)

λx.if x = John then ⊥ else if x = Brian then ⊥ else vd )), (27)
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which can be simplified to the exact term we need:

1/K((g ⊤ ⊤) × (g ⊤ ⊤) × (g ⊤ ⊤) + (g ⊥ ⊤) × (g ⊤ ⊤) × (g ⊤ ⊤)

+ (g ⊤ ⊤) × (g ⊥ ⊤) × (g ⊤ ⊤) + (g ⊥ ⊤) × (g ⊥ ⊤) × (g ⊤ ⊤)). (28)

Fig. 7 shows how the first term in the summation in (27) is reduced to the first term

in the summation in (28). The other terms are reduced in a similar way.

(λs.(g (s Brian) ⊤) × (g (s John) ⊤) × (g ⊤ ⊤)

λx.if x = John then ⊤ else if x = Brian then ⊤ else vd ) [13]

(g (λx.if x = John then ⊤ else if x = Brian then ⊤ else vd Brian) ⊤)

× (g (λx.if x = John then ⊤ else if x = Brian then ⊤ else vd John) ⊤) × (g ⊤ ⊤) [13]

(g (if Brian = John then ⊤ else if Brian = Brian then ⊤ else vd ) ⊤)

× (g (λx.if x = John then ⊤ else if x = Brian then ⊤ else vd John) ⊤) × (g ⊤ ⊤)

(g (if ⊥ then ⊤ else if Brian = Brian then ⊤ else vd ) ⊤)

× (g (λx.if x = John then ⊤ else if x = Brian then ⊤ else vd John) ⊤) × (g ⊤ ⊤) [9]

.

.

.

(g ⊤ ⊤) × (g (λx.if x = John then ⊤ else if x = Brian then ⊤ else vd John) ⊤) × (g ⊤ ⊤) [13]

(g ⊤ ⊤) × (g (if John = John then ⊤ else if John = Brian then ⊤ else vd ) ⊤) × (g ⊤ ⊤)

.

.

.

(g ⊤ ⊤) × (g ⊤ ⊤) × (g ⊤ ⊤)

Fig. 7 Computation of the first term in the summation in (27)

The above discussion motivates the need to sum over sets of functions. Let X and

Y be two arbitrary finite sets. The set of all functions from X to Y is denoted by Y X .

Suppose X = {x1, . . . , xk} and yd is an arbitrarily chosen default element in Y . We

define Y X in Bach as follows:

{λx.if x = x1 then v1 else · · · else if x = xk then vk else yd | vi ∈ Y }. (29)

The set {⊤,⊥}{John,Brian} given above is an example of such a set. We can recursively

apply (29) to arrive at, for example, {⊤,⊥}Y
X

, which is the set of all functions with

type X → Y → {⊤,⊥}. In practice, the sets X and Y in Y X need only be specified

intensionally and their enumeration is taken care of automatically by Bach. The set

Y X , which can be large, is also only enumerated by Bach when strictly necessary. The

key techniques needed to achieve all that are explained earlier in Examples 9 and 10.

We are now in a position to present two key ideas needed to support lifted inference.

First-order versions of these results were presented earlier in [11]. We clarify some of

those results here. Proofs of correctness are deferred to the appendix.

Inversion Elimination The central idea behind inversion elimination, which was intro-

duced in [50] and subsequently formalised in [11], can be motivated by the following
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equation
X

f∈Y X

Y

x∈X

(g (f x)) =
Y

x∈X

X

f∈Y {x}

(g (f x)), (30)

where X and Y are two finite sets and g some real-valued function on Y . It is clear that

the RHS of (30) is computationally more tractable than the LHS. To get an intuition

for (30), consider the case when X = {x1, x2} and Y = {⊤,⊥}. Expanding out the

RHS of (30), we have

RHS of (30) =

„

X

f∈Y {x1}

(g (f x1))

«

×

„

X

f∈Y {x2}

(g (f x2))

«

= ((g (f1⊤ x1)) + (g (f1⊥ x1))) × ((g (f2⊤ x2)) + (g (f2⊥ x2)))

= (g (f1⊤ x1)) × (g (f2⊤ x2)) + (g (f1⊤ x1)) × (g (f2⊥ x2)) +

(g (f1⊥ x1)) × (g (f2⊤ x2)) + (g (f1⊥ x1)) × (g (f2⊥ x2))

=
X

f∈Y X

Y

x∈X

(g (f x)),

where fiy is a shorthand for λx.if x = xi then y else ⊥. The basic argument above

works for any finite sets X and Y . Indeed, (30) can be significantly generalised, leading

to the following formalisation.

Let t be a real-valued term such that each free occurrence of the variable f in t

occurs in a subterm of the form (f x1 . . . xk), where x1, . . . , xk are free occurrences

in t of these variables and 1 ≤ k ≤ n, and X1, . . . , Xn, Y be finite sets. Then
X

f∈Y X
. .

.X1

n

Y

x1∈X1

· · ·
Y

xk∈Xk

t =
Y

x1∈X1

· · ·
Y

xk∈Xk

X

f∈Y X
. .

.X
{xk}.

. .{x1}

k+1

n

t. (31)

Example 14 Let X,Y, Z be non-empty finite sets, τ the type of elements in Z, and

f : τ → τ → Real an arbitrary function. Here are some special cases of (31).

X

p∈ZX

Y

x∈X

(f (p x) (p x)) =
Y

x∈X

X

p∈Z{x}

(f (p x) (p x))

X

q∈ZY X

Y

x∈X

Y

y∈Y

(f (p x) (q x y)) =
Y

x∈X

Y

y∈Y

X

q∈Z{y}{x}

(f (p x) (q x y))

X

q∈ZY X

Y

x∈X

Y

y∈Y

Y

z∈Y

(f (q x y) (q x z)) =
Y

x∈X

X

q∈ZY {x}

Y

y∈Y

Y

z∈Y

(f (q x y) (q x z)).

Here is an example that illustrates multiple applications of (31).

X

p∈ZY X

X

q∈ZY X

Y

x∈X

Y

y∈Y

(f (p x y) (q x y))

=
X

p∈ZY X

Y

x∈X

Y

y∈Y

X

q∈Z{y}{x}

(f (p x y) (q x y))

=
Y

x∈X

Y

y∈Y

X

p∈Z{y}{x}

X

q∈Z{y}{x}

(f (p x y) (q x y)).
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Here are some examples of terms that cannot be simplified using (31).

X

p∈ZX

Y

x∈X

Y

y∈X

(f (p x) (p y))

X

p∈ZX

Y

x∈X

(f (p x) (p c)) – where c is an element in X

X

p∈ZX

Y

x∈X

(f (p x) (p x))
X

x∈X

(f (p x) (p x)).

Counting Elimination The basic idea behind counting elimination can be illustrated

by considering the problem of simplifying an expression like

X

p∈{⊤,⊥}X

Y

x∈X

(f (p x)),

where X is a finite set with its cardinality denoted by |X| and f : Ω → Real is an

arbitrary function. Given any fixed p ∈ {⊤,⊥}X , it is easy to see that
Q

x∈X(f (p x))

reduces to the expression (f ⊤)i(f ⊥)|X|−i, where p maps i elements in X to ⊤ and

the rest to ⊥. Observing that there are
`|X|
i

´

functions in {⊤,⊥}X that map exactly i

elements in X to ⊤, we have

X

p∈{⊤,⊥}X

Y

x∈X

(f (p x)) =

|X|
X

i=0

 

|X|

i

!

(f ⊤)i(f ⊥)|X|−i,

where the RHS is computationally more tractable than the LHS. The kind of reasoning

we have just gone through can be generalised, leading to the counting-elimination result

encapsulated in (32) below.

We first establish some notation in preparation for the result. If m,n ≥ 1, let

Mn
m = {(k1, . . . , km) | k1 + · · · + km = n, where ki ≥ 0, for i = 1, . . . ,m}.

If π ≡ (k1, . . . , km) ∈Mn
m, let

Cπ =

„

n
k1, . . . , km

«

.

If Y is a set of cardinality m, φ : Y → {1, . . . ,m} is a fixed, but arbitrary, bijection,

and π ≡ (k1, . . . , km) ∈Mn
m, then µπ : Y → N is defined by

µπ(y) = kφ(y),

for y ∈ Y .

Let t be a real-valued term such that each free occurrence of the variable fi in t

occurs in a subterm of the form (fi xi1) or . . . or (fi xiri
), where xi1, . . . , xiri

are free

occurrences in t of these variables that do not have any free occurrences in t other than

these, for i = 1, . . . , p. Let yi1, . . . , yiri
be variables not appearing in t, for i = 1, . . . , p.
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Also let Xi be a set of cardinality ni and Yi a set of cardinality mi, for i = 1, . . . , p.

Then
X

f1∈Y1
X1

· · ·
X

fp∈Yp
Xp

Y

x11∈X1

· · ·
Y

x1r1
∈X1

· · ·
Y

xp1∈Xp

· · ·
Y

xprp∈Xp

t

=
X

π1∈M
n1
m1

· · ·
X

πp∈M
np
mp

p
Y

i=1

Cπi

Y

y11∈Y1

· · ·
Y

y1r1
∈Y1

· · ·
Y

yp1∈Yp

· · ·
Y

yprp∈Yp

t{(f1 x11)/y11, . . . , (fp xprp)/yprp}
µπ1

(y11) ... µπ1
(y1r1

) ... µπp (yp1) ... µπp (yprp ).

(32)

(The notation t{(f1 x11)/y11, . . . , (fp xprp)/yprp} means that all occurrences in t of

(f1 x11), where the occurrences of f1 and x11 are free, are replaced by y11, and so on.)

The above captures the essence of Theorem 15.1 in [12] but is rather more general.

Example 15 Let X, Y and Z be three arbitrary non-empty finite sets, τ the type of the

elements in Z, f : τ → τ → Real and g : τ → τ → τ → Real two arbitrary functions.

Here are some special cases of (32):

X

p∈ZX

Y

x∈X

Y

y∈X

(f (p x) (p y)) =
X

π∈M
|X|

|Z|

Cπ
Y

x′∈Z

Y

y′∈Z

(f x′ y′)(µπ x
′)(µπ y

′)

X

p∈ZX

Y

x∈X

(f (p x) (p x)) =
X

π∈M
|X|

|Z|

Cπ
Y

x′∈Z

(f x′ x′)(µπ x
′)

X

p∈ZX

Y

x∈X

Y

y∈Y

(f (p x) (q y)) =
X

π∈M
|X|

|Z|

Cπ
Y

x′∈Z

„

Y

y∈Y

(f x′ (q y))

«(µπ x
′)

X

p∈ZX

X

q∈ZY

Y

x∈X

Y

y∈X

Y

z∈Y

(g (p x) (q z) (p y)) =

X

π∈M
|X|

|Z|

X

ν∈M
|Y |

|Z|

CπCν
Y

x′∈Z

Y

y′∈Z

Y

z′∈Z

(g x′ z′ y′)(µπ x
′)(µπ y

′)(µν z
′)

X

p∈ZX

Y

x∈X

Y

y∈X

(f (p x) (p y))
X

p∈ZY

Y

x∈Y

Y

y∈Z

(f (p x) y) =

X

π∈M
|X|

|Z|

Cπ
Y

x′∈Z

Y

y′∈Z

„

(f x′ y′)
X

p∈ZY

Y

x∈Y

Y

y∈Z

(f (p x) y)

«(µπ x
′)(µπ y

′)

.

The third and fifth equations above are examples of equations that cannot be handled

in the formulation of [12].

Here are some examples of expressions that cannot be simplified using (32).
X

p∈ZX

Y

x∈X

(f (p x) (p y))

X

p∈ZX

Y

x∈X

(f (p x) (p c)) – where c is an element of X

X

p∈ZX

Y

x∈X

Y

y∈Y

(f (p x) (q y))
Y

x∈X

(f (q y) (p x))
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Auxiliary Operation Equations (31) and (32) are powerful when we can apply them,

but expressions that can be simplified using those two equations may not always be

available in the form required. In both [50] and [12], auxiliary operations like shattering

are introduced to reorganise expressions into desired forms. Here we introduce one such

useful equation:

X

f∈ZX

t1 × t2 =

„

X

f∈ZY

t1

«

×

„

X

f∈ZX\Y

t2

«

(33)

if there exists Y ⊂ X such that

1. for each subterm of the form (f t) in t1, either t ∈ Y or t is a variable bound in t1
that can only be substituted with an element in Y ;

2. for each subterm of the form (f t) in t2, either t /∈ Y or t is a variable bound in t2
that can only be substituted with an element in X \ Y .

For common cases encountered in practice, the set Y can be automatically determined.

Equations (31)-(33) are implemented as system-level equations in Bach. We will see

how they can be used to solve the problem originally posed in Example 7 in Section

4.3.2. Before proceeding, we note that the formulation of (31)-(33) and associated

concepts all involve natural and non-trivial use of higher-order functions (functions

that take functions as arguments and/or return functions as values). In formalising

lifted inference, these higher-order concepts can appear either in the semantics of an

inference system (as in [50] and [12]) or directly in the syntax and proof theory of

a logical system (as here). The advantage of the latter is that it makes a complete,

declarative implementation of lifted inference significantly easier.

4.3 Examples of Probabilistic Inference

Having laid the necessary groundwork, we are now in a position to show in detail how

the example problems given in Section 3 can be solved.

4.3.1 TV Agent

We now see how the value of the term

((choice $ tv guide) § likes)

described in Example 6 can be computed. The computation is somewhat complicated.

To make it easier to understand, the computation is broken up into two steps. Fig. 8

gives the computation of (choice $ tv guide) that gives the answer

λy.if y = (“The Bill”, 50,Drama,M , “Sun Hill . . . ”) then 0.2 else

if y = (“Seinfeld”, 30,Sitcom,PG, “Kramer . . . ”) then 0.8 else 0,

which is a term of type Density Program. Then the second part of the computation in

Fig. 9 is that of

((λy.if y = (“The Bill”, . . .) then 0.2

else if y = (“Seinfeld”, . . .) then 0.8 else 0) § likes),
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(choice $ tv guide) [22]

λz.(sum2 λy.((tv guide y) = z) choice) [3]

λz.(sum2 λy.((if y = ((20, 7, 2007), (11, 30),Win) then . . .) = z) choice) [2]

λz.(sum2 λy.((if y = ((20, 7, 2007), (11, 30),Win) then . . .) = z)

λx.if x = ((21, 7, 2007), (19, 30),ABC ) then 0.8 . . .) [18]

..

.

λz.(if z = (“Seinfeld”, . . .) then 0.8 else 0

+ (sum2 λy.((if y = ((20, 7, 2007), (11, 30),Win) then . . .) = z)

λx.if x = ((21, 7, 2007), (20, 30),ABC ) then 0.2 . . .) [18]

.

.

.

λz.(if z = (“Seinfeld”, . . .) then 0.8 else 0

+ if z = (“The Bill”, . . .) then 0.2 else 0

+ (sum2 λy.((if y = ((20, 7, 2007), (11, 30),Win) then . . .) = z) λx.0) [19]

λz.(if z = (“Seinfeld”, . . .) then 0.8 else 0

+ if z = (“The Bill”, . . .) then 0.2 else 0 + 0)

λz.(if z = (“Seinfeld”, . . .) then 0.8 else 0 + if z = (“The Bill”, . . .) then 0.2 else 0) [10]

.

.

.

λz.if z = (“The Bill”, . . .) then 0.2 else if z = (“Seinfeld”, . . .) then 0.8 else 0

Fig. 8 Computation of (choice $ tv guide)

the answer of which can be further simplified to

λz.if z = ⊤ then 0.76 else if z = ⊥ then 0.24 else 0

using the technique for removing duplicates in a set given in [35, p.189].

4.3.2 Epidemics

Consider now the problem of computing, in the context of Example 7,

Pr(e = ⊤ | (hBrian) = ⊤, (h John) = ⊤, (h Mary) = ⊤, (h Mike) = ⊥). (34)

Let vst (evidence set) denote {Brian, John,Mary ,Mike} and othr denote (all \ vst).

The term we need to evaluate is

1

K

X

s∈2all

X

h∈2othr

(f (s Mike) ⊥)(g (s Mike) ⊤)

„

Y

x∈vst\{Mike}

(f (s x) ⊤)(g (s x) ⊤)

«

„

Y

x∈all\vst

(f (s x) (h x))(g (s x) ⊤)

«

, (35)
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((λy.if y = (“The Bill”, . . .) then 0.2 else if y = (“Seinfeld”, . . .) then 0.8 else 0) § likes) [23]

λz.(sum3 λy.(((λy.if y = (“The Bill”, . . .) then 0.2 else

if y = (“Seinfeld”, . . .) then 0.8 else 0) y) × ((likes y) z))) [13]

λz.(sum3 λy.((if y = (“The Bill”, . . .) then 0.2 else

if y = (“Seinfeld”, . . .) then 0.8 else 0) × ((likes y) z))) [10]

.

.

.

λz.(sum3 λy.(if y = (“The Bill”, . . .) then 0.2 × ((likes (“The Bill”, . . .)) z)

else ((if y = (“Seinfeld”, . . .) then 0.8 else 0) × ((likes y) z)))) [4]

.

.

.

λz.(sum3 λy.(if y = (“The Bill”, . . .) then

0.2 × (λy.if y = ⊤ then 0.2 else if y = ⊥ then 0.8 else 0 z)

else ((if y = (“Seinfeld”, . . .) then 0.8 else 0) × ((likes y) z)))) [13]

λz.(sum3 λy.(if y = (“The Bill”, . . .) then

0.2 × (if z = ⊤ then 0.2 else if z = ⊥ then 0.8 else 0)

else ((if y = (“Seinfeld”, . . .) then 0.8 else 0) × ((likes y) z)))) [10]

.

..

λz.(sum3 λy.(if y = (“The Bill”, . . .) then

(if z = ⊤ then 0.04 else if z = ⊥ then 0.16 else 0)

else ((if y = (“Seinfeld”, . . .) then 0.8 else 0)× ((likes y) z)))) [10]

..

.

λz.(sum3 λy.(if y = (“The Bill”, . . .) then

(if z = ⊤ then 0.04 else if z = ⊥ then 0.16 else 0)

else if y = (“Seinfeld”, . . .) then

(if z = ⊤ then 0.72 else if z = ⊥ then 0.08 else 0) else 0)) [20]

..

.

λz.((if z = ⊤ then 0.04 else if z = ⊥ then 0.16 else 0) +

(if z = ⊤ then 0.72 else if z = ⊥ then 0.08 else 0)) [10]

.

.

.

λz.if z = ⊤ then 0.76 else if z = ⊥ then 0.24

else if z = ⊤ then 0.04 else if z = ⊥ then 0.16 else 0

Fig. 9 Computation of ((λy.if y = (“The Bill”, . . .) then 0.8 else . . .) § likes)

where 2 is {⊤,⊥}, K is a normalisation constant and the summand is just the joint

Y

x∈all

(f (s x) (h x)) × (g (s x) e)

expanded out for the partition of all into {Mike}, (vst \ {Mike}), and othr and instan-

tiated with the evidence

(h Brian) = ⊤, (h John) = ⊤, (h Mary) = ⊤, and (h Mike) = ⊥.
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Fig. 10 shows how the main summation term in (35) can be evaluated efficiently using

lifted-inference techniques. Note the drastic improvement achieved: the complexity of

the first line is O(2|all|+|othr ||all |), whereas that of the seventh line is O(|vst |).

The normalisation constant K contains two terms corresponding to when e = ⊤

and e = ⊥. One of them is exactly the first line of Fig. 10. The other term is similar

and can be evaluated efficiently in exactly the same way.

Comparison with FOVE The main algorithmic difference between FOVE [12] and the

lifted inference mechanism of Bach is that the so-called shattering operation is per-

formed up-front in FOVE but the equivalent operation is only performed dynamically

on a per need basis in Bach. [12] rightly points out that the up-front approach can be

expensive and unnecessary and lists as a future work an extension of their algorithm

to do shattering dynamically. We believe what we have is close to, if not exactly, the

extension wanted in [12].

4.3.3 Urn and Balls

We will see in this section how the points on the graph in Fig. 2 in Example 8 are

computed. Expression (7) above can be written down formally as

1

K
×
X

s∈sb

X

l∈(bd s)

(joint d (m, s, l, [o1, . . . , od])), (36)

where sb : {{Ball}}

sb = λs.((setOfBalls m s) > 0 )

bd : {Ball} → {(List Ball)}

(bd s) = λl .((ballsDrawn d s l) > 0 ).

We have seen in Example 10 how the sets sb and (bd s) can be enumerated by

Bach. So we could just go ahead and compute the value of the term (36) as it is; but

we would have to wait a long time – a very long time. This is because the cardinality

of sb is 2m, and that of (bd s) is md. Both are exponential in the relevant parameters.

At this point, we can use Monte-Carlo integration techniques to estimate the prob-

abilities we are interested in. (Indeed this has been done and reasonable estimates were

obtained.) But a closer inspection of the problem reveals that even though the term

(36) is expensive to evaluate, the actual complexity of the underlying computational

problem is quite low. We will now show how term (36) can be simplified through a

series of rewrites.

To begin with, we can obtain through the variable-elimination procedure the fol-

lowing equivalent but simpler expression for (36):

C ×
X

s∈sb

X

l∈(bd s)

(observations l [o1, . . . , od]), (37)

where C = (numOfBalls m)0.5m/(Kmd).
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7

X

s∈2all

X

h∈2othr

(f (s Mike) ⊥)(g (s Mike) ⊤)

„

Y

x∈vst\{Mike}

(f (s x) ⊤)(g (s x) ⊤)

«„

Y

x∈othr

(f (s x) (h x))(g (s x) ⊤)

«

[24]

X

s∈2all

(f (s Mike) ⊥)(g (s Mike) ⊤)

„

Y

x∈vst\{Mike}

(f (s x) ⊤)(g (s x) ⊤)

«

X

h∈2othr

Y

x∈othr

(f (s x) (h x))(g (s x) ⊤) [33]

„

X

s∈2{Mike}

(f (s Mike) ⊥)(g (s Mike) ⊤)

«

X

s∈2all\{Mike}

„

Y

x∈vst\{Mike}

(f (s x) ⊤)(g (s x) ⊤)

«

X

h∈2othr

Y

x∈othr

(f (s x) (h x))(g (s x) ⊤) [33]

„

X

s∈2{Mike}

(f (s Mike) ⊥)(g (s Mike) ⊤)

«„

X

s∈2vst\{Mike}

Y

x∈vst\{Mike}

(f (s x) ⊤)(g (s x) ⊤)

«

X

s∈2othr

X

h∈2othr

Y

x∈othr

(f (s x) (h x))(g (s x) ⊤) [32]

„

X

s∈2{Mike}

(f (s Mike) ⊥)(g (s Mike) ⊤)

«„

X

π∈M
|vst\{Mike}|
2

Cπ

Y

x ′∈{⊤,⊥}

((f x ′ ⊤)(g x ′ ⊤))(µπ x
′)

«

X

s∈2othr

X

h∈2othr

Y

x∈othr

(f (s x) (h x))(g (s x) ⊤) [31]

„

X

s∈2{Mike}

(f (s Mike) ⊥)(g (s Mike) ⊤)

«„

X

π∈M
|vst\{Mike}|
2

Cπ

Y

x ′∈{⊤,⊥}

((f x ′ ⊤)(g x ′ ⊤))(µπ x
′)

«

X

s∈2othr

Y

x∈othr

X

h∈2{x}

(f (s x) (h x))(g (s x) ⊤) [31]

„

X

s∈2{Mike}

(f (s Mike) ⊥)(g (s Mike) ⊤)

«„

X

π∈M
|vst\{Mike}|
2

Cπ

Y

x′∈{⊤,⊥}

((f x′ ⊤)(g x′ ⊤))(µπ x′)

«

Y

x∈othr

X

s∈2{x}

X

h∈2{x}

(f (s x) (h x))(g (s x) ⊤)

.

.

.

7.75 ×

„

X

π∈M
|vst\{Mike}|
2

Cπ

Y

x′∈{⊤,⊥}

((f x′ ⊤)(g x′ ⊤))(µπ x′)

«

Y

x∈othr

X

s∈2{x}

X

h∈2{x}

(f (s x) (h x))(g (s x) ⊤)

.

.

.

7.75 × 381.08 ×
Y

x∈othr

X

s∈2{x}

X

h∈2{x}

(f (s x) (h x))(g (s x) ⊤)

.

.

.

7.75 × 381.08 × 225

Fig. 10 A computation illustrating lifted inference.
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Exploiting symmetries, (37) can be further simplified to

C ×
X

s∈S′

`

m
(n s)

´

×
X

l∈(bd s)

(observations l [o1, . . . , od]), (38)

where S′ ≡ { { (1,Blue), (2,Blue), (3,Blue), . . . , (m,Blue) },

{ (1,Green), (2,Blue), (3,Blue), . . . , (m,Blue) },

{ (1,Green), (2,Green), (3,Blue), . . . , (m,Blue) },

...

{ (1,Green), (2,Green), (3,Green), . . . , (m,Green) } },

and (n s) is the number of green balls in the set s. To understand (38), observe that for

each s in S′, there are
`

m
(n s)

´

sets in sb that are equivalent (modulo relabelling of balls)

to s with respect to the second summation term. Note the reduction in complexity of

the outer summation term from 2m to m+ 1 achieved by this rewrite.

Proceeding in a similar vein, we can further simplify (38) to

C×
X

s∈S′

`

m
(n s)

´

×
X

l∈L′

(n s)(p l)×(m−(n s))d−(p l)×(observations l [o1, . . . , od]), (39)

where

L′ ≡ { l | ∃x1 · · · ∃xd.((colour x1) ∧ · · · ∧ (colour xd) ∧ l = [(1, x1), . . . , (d, xd)]) },

and (p l) is the number of green balls in the list l. To understand (39), observe that for

each s in S′ and each l in L′, there are (n s)(p l)(m − (n s))d−(p l) lists in the set (bd s)

that are equivalent to l with respect to the term (observations l [o1, . . . , od]). This last

rewrite reduces the complexity of the inner summation from md to 2d, a significant

improvement.

But after all the above we still have a computational problem that is exponential in

d. There is not much one can do to further simplify (39) in general. But we are dealing

with a special case of (39) where oi = oj , for all i, j ∈ {1, . . . , d}. In this special case,

(39) can be further simplified to

C ×
X

s∈S′

`

m
(n s)

´

×
X

l∈L′′

`

m
(p l)

´

× (n s)(p l) × (m− (n s))d−(p l)

× (observations l [o1, . . . , od]), (40)

where L′′ ≡ { [(1,Blue), (2,Blue), (3,Blue), . . . , (d,Blue)],

[(1,Green), (2,Blue), (3,Blue), . . . , (d,Blue)],

[(1,Green), (2,Green), (3,Blue), . . . , (d,Blue)],

...

[(1,Green), (2,Green), (3,Green), . . . , (d,Green)] }.

This simplification can be made because we have

(observations l1 [o, . . . , o]) = (observations l2 [o, . . . , o])
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whenever l1 and l2 have the same number of green and blue balls; the order in which the

colours appear does not actually matter. The computational complexity of evaluating

expression (40) is a very manageable O(|S′| × |L′′|) = O(m × d), and this is what we

used to compute the points in Fig. 2.

Comparison with BLOG From a modelling perspective, our solution to the urn and

balls problem is very different to the solution presented in [40]. The Bayesian network

that resulted from the BLOG problem specification has an infinite number of nodes.

In contrast, our network has four, although some of the nodes are fairly complex in

that they range over structured data like sets of balls and lists of balls.

We believe the compactness of our model provides better control when it comes to

inference. Given a query, we can perform exact inference if that is feasible. We only

need to resort to approximate-inference techniques when the answer to the query is

inherently expensive to compute. This is different to BLOG. The default (and only)

inference mechanism of BLOG is a sampling based method. The sheer size of the net-

works they generate makes sampling inevitable. Indeed, in BLOG, even simple queries

that can be answered exactly cheaply must be handled approximately via sampling. As

an example, consider the query discussed in this section. We have seen that the query

can be answered exactly and cheaply. (Admittedly some non-trivial human input is

provided here and a lot more needs to be automated in the future. This is addressed

further in Section 6.) The probabilities calculated in Fig. 2 are all exact answers (at

least up to the precision we require). But this same query can only be answered ap-

proximately using sample-based estimates in [40]. The main advantage of the BLOG

scheme over the current Bach solution is that inference is completely automatic.

5 Learning

In this section, we discuss some learning problems and investigate one of these in some

detail to see how it can be addressed using Bach.

5.1 Learning Problems

To understand the various kinds of learning problems that arise, it is helpful to consider

the task of building agent systems – a setting that is sufficiently general to cover a large

majority of computer applications. So consider an agent situated in some environment

that can receive percepts from the environment and can apply actions that generally

have a non-deterministic effect on the environment. The primary task of the agent is to

do the ‘right thing’, that is, choose the appropriate action for each state it finds itself

in, where ‘appropriate’ usually means maximising its expected performance measure.

Associated with such a situation, there are several learning problems that we now

explain.

Suppose that State is the type of states of the world, Action is the type of actions,

and Observation is the type of observations that the agent can make with its sensors.

Then Density State is the type of densities of states and Density Observation is the

type of densities of observations. There are five important functions on these types

that an agent must have available in order to choose actions. These are

transition : Action → State → (Density State)
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observe : State → (Density Observation)

observationUpdate : Observation → (Density State) → (Density State)

policy : (Density State) → Action

actionUpdate : Action → (Density State) → (Density State)

Given an action and a state, the function transition returns a state density which

gives the distribution on the states the agent could end up in as a result of applying the

action to the current state. Generally, this function has to be learned during deployment

of the agent by collecting training examples of the effect of applying actions.

The function observe, which provides the observation model, is generally given by

the agent designer, although in more complex applications it may need to be learned

from training examples.

The next function observationUpdate provides the update of the state density as a

result of the agent perceiving a particular observation. Updating the state density is

regarded as a learning task since the agent learns its new state density from the current

state density and the information provided by the observation. Essentially, this update

is an application of Bayes rule.

The function policy , the most important of the functions that the agent needs, gives

the action that is appropriate for any particular state density. Assuming that the agent

has learned the transition function and knows the utility of each state, this function

can be defined directly. In cases where one or other of these assumptions is not true,

some form of reinforcement learning may be needed to learn the policy.

Finally, the function actionUpdate provides the update of the state density as a

result of the agent applying some action. This update is a simple computation using

the transition function and the (current) state density, and is not usefully regarded as

a learning task (except insofar as it requires knowledge of the transition function that

usually needs to be learned).

In addition, many agent applications require another kind of learning task. In com-

plex applications it is common for the state space to be very large indeed. In such

cases, a common technique is to define features on the state space and work instead

with the much smaller set of equivalence classes of states that are defined by the fea-

tures. Sometimes features need to be learned during deployment of the agent using

training examples [39].

In summary, many agent applications involve at least some of the four basic learning

problems:

1. Learning the transition function.

2. Learning the policy function.

3. Learning features on the state space.

4. Updating the state density as a result of an observation.

The first three of these learning problems have much in common: in each case there

are training examples that are obtained during deployment and there is an hypothesis

space that is searched to obtain an hypothesis that ‘explains’ the training examples.

More detail about these problems, in the context of using higher-order logic for knowl-

edge representation, is given in [35,43,37].

The fourth problem is conceptually simpler than the first three in that it is handled

by an application of Bayes rule but, depending on the application, there can be some

subtle difficulties in this. We now show how updating state densities can be handled

in robotics applications.
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5.2 Updating State Densities

In a robotic system, the sensors can usually gather only partial, noisy, information

about the state of the world. This noisy sensor data is integrated over time using Bayes

rule to produce a distribution over possible states of the world. As this distribution

represents the subjective belief of the agent about the state of the world it is referred

to as the belief state.

In more detail, an agent is supplied with an initial (prior) distribution over states,

a motion model (corresponding to transition above) defining a distribution over the

resulting state in the world for each action performed from each starting state, and a

sensor model (corresponding to observe above) which defines a distribution over the

observations we make when in a given state. We introduce the following functions to

represent the prior distribution and the motion and sensor models.

prior : (Density State)

motionModel : Action → State → (Density State)

sensorModel : State → (Density Observation)

Here we have only given the type declarations. The actual definitions of these functions

are of course problem-dependent and we will see some examples shortly. Assuming these

functions are defined, we can use the following equations obtained using Bayes rule to

update our state density when our robot performs an action or makes an observation

about the world:

motionUpdate : Action → (Density State) → (Density State)

(motionUpdate a ds) = (ds § (motionModel a)) (41)

observationUpdate : Observation → (Density State) → (Density State)

(observationUpdate o ds) = (normalise λs.((ds s) × (sensorModel s o))), (42)

where normalise : (State → Real) → (Density State) normalises a real-valued function

so that it sums/integrates to one over its domain. (The actual definition is dependent

on the type State.)

As a simple specific example, imagine we have an iron-ore loader that runs on a

track with four stations. Station 1 is under the conveyor belt from the stockpile, and

the remaining stations are over different train lines. The ore loader must gather iron

ore at Station 1 and then move over to one of the other stations and dump the iron

ore into a carrying car.

The loader only has a simple sensor: it can sense whether it is under the conveyor

with 90% accuracy. The loader can perform two actions: move to the next station or

move to the previous one. These actions only work 85% of the time because wheels can

slip. The loader fails to move at all 10% of the time. In the remaining 5% of the time, the

loader moves two stations (in the desired direction). If the cart is limited by the length

of the track then the distribution is modified accordingly. Using 1, 2, 3, 4 to represent

the states and Y,N to represent observations, we have the following formalisation:

(prior s) = 0.25

(sensorModel s o) = if ((s = 1) = (o = Y )) then 0.9 else 0.1
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State Distribution Action Observation Actual
1 2 3 4 State

0.25 0.25 0.25 0.25 - - 2
0.0357 0.321 0.321 0.321 - n 2
0.00357 0.0625 0.307 0.627 next - 3
0.00040 0.0627 0.308 0.629 - n 3
0.07223 0.2996 0.565 0.063 prev - 2
0.00858 0.3202 0.604 0.067 - n 2
0.32693 0.5488 0.117 0.007 prev - 1
0.81383 0.1518 0.033 0.002 - y 1

Table 1 The state distribution of the loader given a series of observations and actions.

(motionModel a s s′) =

(if (s = s′) then 0.1 else if (distance a s s′) = 1 then 0.85

else if (distance a s s′) = 2 then 0.05 else 0)

+ (if (a = next) ∧ (s′ = 4) then

(if (s = 4) then 0.9 else if (s = 3) then 0.05 else 0)

else if (a = prev) ∧ (s′ = 1) then

(if (s = 1) then 0.9 else if (s = 2) then 0.05 else 0)

else 0)

distance : Action → State → State → Int

(distance a s s′) = if (a = next) then (s′ − s) else (s− s′).

Leaving aside the problem of control, the location of the loader can now be tracked.

Table 1 shows the state distribution after two observations and an action.

In practice most robotics problems are too large to use a simple discrete set of

states as we did in the previous example. Luckily, there are some known distributions

where the two update rules (41) and (42) can be performed in closed form. These so-

called conjugate priors can be defined in the system and allow one to track the state

of real-world problems.

For example, we can define a k-dimensional Gaussian distribution that takes a

mean vector and a covariance matrix as arguments as follows:

gaussian : Vector → Matrix → (Density Vector)

(gaussian µ Σ) = λx.
1

p

(2π)k|Σ|
e−

1
2
(x−µ)TΣ−1(x−µ).

Using identities such as

(normalise λs.((gaussian µ1 Σ1) s) × ((gaussian µ2 Σ2) s)) =

(λn.(gaussian (Σ1nµ2 +Σ2nµ1) (Σ1nΣ2)) (Σ1 +Σ2)
−1), (43)

the system can rewrite the update rules defined above in Equations (41) and (42)

in closed form. This allows us to track the state of a k-dimensional continuous linear

system – this is mathematically equivalent to a Kalman filter [28]. For example, imagine

we have a robot moving about a two-dimensional world. The robot’s state will be

represented as a two-dimensional vector. The robot can move; its actions will also
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Actual Desired Actual Observed Estimated
Location Action Action Location State
x y x y x y x y mean Variance

0.0 0.0 5.0 0.0 4.881 0.035 5.0 0.0 1.1
4.881 0.035 5.227 -0.228 5.208 -0.209 0.092
4.881 0.035 5.0 5.0 5.053 4.721 10.208 4.791 0.192
9.934 4.756 10.136 4.717 10.161 4.743 0.066
9.934 4.756 0.0 5.0 0.009 5.110 10.161 9.743 0.166
9.943 9.866 9.806 9.929 9.940 9.859 0.062
9.943 9.866 -5.0 0.0 -4.909 0.744 4.940 9.860 0.162
5.034 10.610 5.477 10.827 5.272 10.458 0.062
5.034 10.610 -5.0 -5.0 -4.788 -5.628 0.272 5.458 0.162
0.246 4.982 0.256 4.744 0.262 5.017 0.062
0.246 4.982 0.0 -5.0 0.050 -5.006 0.262 0.017 0.162
0.296 -0.024 0.143 -0.543 0.189 -0.329 0.062

Table 2 The actual and estimated state of a 2D robot given a series of noisy actions and
observations. In this example, the covariance matrix is always diagonal with equal entries, and
so for compactness we have only given one number for the variance.

be represented by a two-dimensional vector describing the relative motion from the

current location. When the robot moves, there is circular Gaussian noise with variance

0.1 in its movement. The robot also has an approximate location sensor which returns

the robot’s location with additional circular Gaussian noise of variance 0.1. The above

leads to the following theory:

(prior s) = (gaussian [0.0, 0.0] [[1.0, 0.0], [0.0, 1.0]] s)

(sensorModel s o) = (gaussian o [[0.1, 0.0], [0.0, 0.1]] s)

(motionModel a s s′) = (gaussian (s+ a) [[0.1, 0.0], [0.0, 0.1]] s′).

Consider an agent that starts at the origin, but with uncertainty about its own location

represented by a circular Gaussian distribution of variance 1. The agent then attempts

to perform a series of actions which, if performed correctly, would bring it back to its

starting location. As noted above, there is noise in these actions. The agent will track

its location using Bayesian tracking. The path travelled by the agent on one simulated

run and an estimate of its state at each step as calculated by Bach is shown in Table 2.

6 Discussion

This section contains some historical background, more discussion about higher-order

logic, a comparison with other probabilistic reasoning systems, and several other topics.

Integrating Logic and Probability The problem of integrating logic and probability has

a history going back around 300 years for which three main threads can be discerned.

The oldest by far is the philosophical thread that can be traced via Boole [4,5] back to

Jacob Bernoulli in 1713. An extensive historical account of this thread can be found

in [23] and overviews of more recent work in [24,58]. The second thread is that of the

knowledge representation and reasoning community in artificial intelligence, of which

[46,25,18,26,55] are typical works. The third thread is that of the machine learning

community in artificial intelligence, of which [42,9,40,52,41,29] are typical works.
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An important and useful technical distinction that can be made between these var-

ious approaches is that the combination of logic and probability can be done externally

or internally [59]: in the external view, probabilities are attached to formulas in some

logic; in the internal view, formulas incorporate statements about probability. One can

even mix the two cases so that probabilities appear both internally and externally. This

paper takes the the internal view. By way of comparison, we now briefly discuss the

external view.

The standard logical setting adopted for integrating logic and probability according

to the external view is first-order logic. Imagine that an agent is operating in some

environment for which there is some uncertainty (for example, the environment might

be partially observable). The environment is modelled as a probability distribution

over the collection of first-order interpretations (over some suitable alphabet for the

application at hand). The intuition is that any of these interpretations could be the

actual environment but that some interpretations are more likely than others and this

information is given by the distribution on the interpretations. If the agent actually

knew this distribution, then it could answer probabilistic questions of the form: if

(closed) formula ψ holds, what is the probability that the (closed) formula ϕ holds? In

symbols, the question is: what is Pr(ϕ |ψ)?

We now formalise this situation. Let I be the set of interpretations and p a prob-

ability measure on the σ-algebra of all subsets of this set. Define the random variable

Xϕ : I → R by

Xϕ(I) =

(

1 if ϕ is true in I

0 otherwise,

with a similar definition for Xψ. Then Pr(ϕ |ψ) can be written in the form

p(Xϕ = 1 |Xψ = 1)

which is equal to

p(Xϕ = 1 ∧Xψ = 1)

p(Xψ = 1)

and, knowing p, can be evaluated.

Of course, the real problem is to know the distribution on the interpretations. To

make some progress on this, most systems intending to integrate logical and proba-

bilistic reasoning make simplifying assumptions. For a start, most are based on Prolog.

Thus theories are first-order Horn clause theories, maybe with negation as failure. In-

terpretations are limited to Herbrand interpretations and often function symbols are

excluded so the Herbrand base (and therefore the number of Herbrand interpreta-

tions) is finite. Let I denote the (finite) set of Herbrand interpretations and B the

Herbrand base. We can identify I with the product space {0, 1}B in the natural way.2

Thus the problem amounts to knowing the distribution on this product space. At this

point, there is a wide divergence in the approaches. For example, the product distri-

bution can be represented either directly or more compactly using Bayesian networks

or Markov random fields. In [52], the occurrences of atoms in the same clause are used

2 The Herbrand base B of a first-order language L is the set of all ground atoms in L. Each
subset of B is a Herbrand interpretation. Each Herbrand interpretation I corresponds to an
element in {0, 1}B in the sense that an atom in B is true (takes value 1) iff the atom is in I.
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to give the arcs and the weights attached to clauses are used to give the potential

functions in a Markov random field. In [29], conditional probability distributions are

attached to clauses to give a Bayesian network. Closely related to [29] is [49], in which

probability distributions are attached to sets of literals capturing alternative scenarios

and logic programming is used to generate a distribution on possible worlds. In [53],

Prolog is extended with probabilistic switches to define distributions over Herbrand

interpretations. In [3], A-Prolog [20] is extended with probabilistic atoms to generate

distributions on possible worlds using answer set programming. In all these cases, the

logic is exploited to give some kind of compact representation of what is usually a very

large distribution. Generally, the theory is only used to define/construct/constrain the

underlying distribution on possible models and reasoning proceeds probabilistically

as described above, either through specially developed proof procedures or (modified

versions of) standard inference algorithms for graphical models. To achieve efficiency

in answering queries, most systems employ some kind of knowledge-based model con-

struction technique that constructs only those parts of the underlying distribution that

are relevant to the query.

There are some interesting contrasts between the above external view and what we

propose in this paper. Here we adopt the standard axiomatic method of using a theory

to model a situation and relying on the soundness of theorem proving to produce results

that are correct in the intended interpretation. We simply have to note that this theory,

if it is higher-order, can include densities that can be reasoned with. In our approach,

whatever the situation, there is a single intended interpretation, which would include

densities in the case where uncertainty is being modelled, that is a model of the theory.

Our approach also gives fine control over exactly what uncertainty is modelled – we only

introduce densities in those parts of the theory that really need them. Furthermore,

the probabilistic and non-probabilistic parts of a theory work harmoniously together.

Another attractive aspect of our approach is that the correctness of even sophis-

ticated probabilistic-inference procedures can be obtained easily as a consequence of

the soundness theorem for the general theorem-proving procedure. A case in point is

lifted inference. The two algorithms proposed in [50] and [12] are quite complex and

establishing their correctness is non-trivial. What we show in this paper is that the es-

sential operations of those two algorithms can be distilled down to several equations in

Bach, and these when acted on by the equational-reasoning mechanism of Bach give us

the desired lifted-inference procedure. The correctness of our lifted-inference procedure

then follows easily from Theorem 1 and the correctness of the individual equations.

Why Higher-order Logic? The most notable technical attribute of the material in this

paper is that it is set in the context of higher-order logic. Since almost all other work

on the topic of this paper is given in the context of first-order logic, we make some

comments about this more general setting. In summary, our view is that the higher-

order setting is superior to the first-order setting. To justify this claim, we now examine

the two settings from several points of view. For a highly readable account of this topic

that is more detailed than we have space for here, we strongly recommend [19].

The first aspect is that of expressive power. Higher order-logic, also known as

simple type theory [6], is highly expressive. One way to think about higher-order logic

is that it is a formalisation of everyday informal mathematics. Mathematical concepts

are easy to express directly in higher-order logic because, amongst other things, the

logic allows quantification over predicates and functions. This is illustrated by the

direct modelling of probabilistic concepts such as densities and operations on them in
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higher-order theories; other good examples are given in [19]. In contrast, first-order

logic only allows one to model many mathematical concepts indirectly and requires the

introduction of (semantically complicated) set theory to give a satisfactory foundation

for mathematics. The great expressive power of higher-order logic partly explains its

widespread use in some subfields of computer science; in functional programming, where

a program can be understood as a higher-order equational theory; in formal methods,

where the logic is used to give specifications of programs and prove properties about

them; in theoretical computer science, where various kinds of semantics are typically

higher order; and elsewhere. This expressivity part of the story is quite convincing: it is

much easier to express many mathematical concepts, function definitions in functional

programming languages, and program specifications, as well as probabilistic concepts

like those discussed in this paper, in higher-order rather than first-order logic. (How

they might be expressed at all in first-order logic is discussed below.)

However, even accepting the superior expressive power of higher-order logic, a com-

mon criticism is that it is computationally less attractive than first-order logic. This

criticism is usually fuelled by observations such as the fact that higher-order unifi-

cation is undecidable [14] and the logic does not have a sound and complete proof

system. Carefully formulated, these criticisms are correct, but they do not present a

balanced view of the situation. For that, we need to say something about the semantics

of higher-order logic.

In the semantics, each (closed) type α is interpreted by a (non-empty) set Dα. The

crucial aspect of the semantics in this discussion is the meaning given to function types.

In the standard semantics, for a function type α → β, the set Dα→β is all functions

from Dα to Dβ . The models given by this semantics are called standard models. Gödel

showed in 1931 that, with the standard semantics, higher-order logic does not have

a sound and complete proof system. Also (higher-order versions of) the compactness

theorem and the Löwenhein-Skolem theorem do not hold.

The characteristic of the standard semantics that leads to these undesirable proper-

ties is that there are comparatively few models. Before we explain how the problem can

be fixed, note that a desirable aspect of this semantics is that many theories are cate-

gorical, that is, have exactly one model up to isomorphism. For example, the theory of a

complete ordered field has just the real numbers as a model (up to isomorphism). This

is exactly what one would want: the theory has characterised just the desired model.

Also there is a proof system for the logic that, while not complete, is an adequate

foundation for mathematics. For a discussion of this, see [19].

A way to get a completeness result is to expand the class of models. This was

famously done by Henkin in 1950 [27]. The key idea is to expand the class of models

by allowing α → β to denote a subset of the set of all functions from Dα to Dβ ,

not necessarily all functions. The class of models given by this definition are called

general models. Each standard model is a general model, but the converse is not true.

With this enlarged set of models, Henkin was able to prove that there is a sound and

complete proof procedure for higher-order logic. Also, using the Henkin semantics, the

compactness theorem and the Löwenheim-Skolem theorem hold.

Note that, at this point, Lindström’s (first) theorem [15] can be applied to show that

higher-order logic with the Henkin semantics is essentially just a variant of first-order

logic. (Informally, Lindström’s theorem states that a logical system (satisfying some

weak technical conditions) that is at least as strong as first-order logic and satisfies

conditions corresponding to the compactness theorem and Löwenheim-Skolem theorem

is equally strong as first-order logic; here, ‘at least as strong’ and ‘equally strong’ are
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technical, model-theoretic notions.) In spite of this result, something important has

been gained: instead of being forced to express certain concepts awkwardly in first-

order logic, the greater expressive power of higher-order logic can be exploited.

It is also interesting to see how a theory T in higher-order logic can be directly

encoded as a theory T ′ in first-order logic. Since there is a simple embedding of many-

sorted first-order logic into (unsorted) first-order logic [16], it suffices to embed higher-

order logic into many-sorted logic. In outline, this is done as follows. (More detail is

given in [19].) For each (closed) type α in T , there is a sort sα in the many-sorted

theory T ′. Each variable and constant of type α in T is represented by a variable and

constant, respectively, of sort sα in T ′. For each function type α → β of higher-order

logic, there is an (‘apply’) function in T ′ having sort sα→β×sα → sβ that represents the

application of functions of type α→ β to arguments of type α. For each abstraction in

T , there is a function in T ′ that represents the abstraction. The theory T ′ also includes

extensionality and comprehension axioms. As a result of this encoding, a general model

of T is represented by a many-sorted model of T ′. Overall, the encoding shows that a

theory of higher-order logic with the Henkin semantics is essentially just a first-order

theory presented in a more convenient form. But, to emphasise yet again, something

important has been gained by working in the higher-order context: the higher-order

syntax is natural for expressing concepts whose encoding into first-order logic would

be unnatural.

With regard to the undecidability of higher-order unification, note first that we

cannot avoid dealing with undecidability even in the first-order case, since the validity

problem of first-order logic is undecidable. In any case, one can do a lot in higher-order

logic without ever having to resort to (higher-order) unification. This should be evident

from the computational models of widely used functional languages like Haskell and

ML, all of which are highly efficient and effective. Our reasoning system Bach, which can

be viewed as an extension of Haskell, is also a useful subset of higher-order logic that is

both expressive and tractable. It uses linear-time (one-way) matching of terms instead

of the difficult (two-way) unification of terms for pattern matching. Also it captures a

significant part of theorem-proving via a computationally inexpensive mechanism for

doing equational reasoning. The general strategy adopted here is of course no different

from the common technique of restricting first-order logic in different ways to achieve

tractability in inference.

In summary, with the standard semantics, higher-order logic admits the desirable

categorical theories and there is a proof system adequate for the foundations of mathe-

matics, but the price one pays is the lack of a complete proof system. With the Henkin

semantics, one loses categoricity, but gains important properties that first-order logic

has such as a sound and complete proof system, the compactness theorem, and the

Löwenhein-Skolem theorem, and yet has available the more expressive higher-order

syntax.

Other Systems based on Higher-order Languages We move on now to a discussion of

related systems based on higher-order logic, starting with a comparison of Bach and

IBAL [48], the system closest to ours in the literature. IBAL has three components:

a probabilistic-reasoning component, a learning component, and a decision-making

component. We focus only on the probabilistic-reasoning component here.

IBAL and Bach are in some ways quite similar. Each is based on a higher-order

language, and each represents probability densities using that language. However, there
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are significant differences between the two in the details of how a distribution is rep-

resented and the computational mechanisms used to answer queries.

To represent a distribution, IBAL extends a standard functional programming lan-

guage with stochastic features. Terms in the IBAL language represent a distribution

over values, rather than a single value as in a standard programming language. These

terms are still used in the language as if they contained a single value and IBAL takes

care of calculating the appropriate distribution over the result. In this way, an IBAL

program describes a generative model for a joint distribution. This generative model

can be constrained with observation statements. These statements allow the results of

a generative model to be partially specified, and those specifications used to inform

the values of random variables appearing earlier in the model. An observation state-

ment in IBAL converts a generative model into a conditional model. IBAL’s method of

representing a distribution is quite different from that used in Bach, where probability

distributions are represented explicitly as functions and manipulated as such.

From a language design perspective, there is also a philosophical difference between

the two systems in that Bach allows the description of distributions it may not be able

reason with efficiently, whereas the IBAL language is restricted to fit its computational

mechanism. In fact, any language features that would be inefficient to reason with

using IBAL’s inference mechanism were removed.

Once a model has been specified, IBAL uses specific probabilistic inference routines

to answer queries about the model. The exact computational model appears to have

changed in different versions of the IBAL system. [48] describes a two stage process. A

graphical representation of the computation is generated in the first stage. This repre-

sentation is then processed to answer the query in the second stage. The intermediate

graphical structure is lazily generated and is closely related to the function call graph,

a much smaller structure than the fully expanded graphical model.

As we have seen, IBAL’s computational model is specialised for probabilistic in-

ference. In contrast, Bach uses a general computational model for higher-order logic.

We then have various equations represented in our language that allow the system to

reason efficiently with many common density functions. As it is not possible, or desir-

able, to list all equations that might speed up computation, we also allow the user to

add their own tailored rewrites within the system. Some of these equations (e.g. (43))

require Bach’s programming with abstractions facility [33,35], which allows matching

and reduction inside lambda expressions. This facility is not available in more standard

functional computation models like those underlying ML, Haskell, and IBAL.

We could gain significantly from the addition of some syntactic sugar to ease com-

mon use cases. Having said this, the flexibility of the Bach language, and the ability

for the user to specify useful equations, allow a user of our system to easily extend its

capabilities. For example, in Section 5.2, we show how Bach can be extended to effi-

ciently reason with a continuous Gaussian distribution even though our system cannot

efficiently reason with continuous distributions in general.

We now give a survey of other related work. The system described in [22] is based

on the same underlying logic as ours. In it, the authors explore ways of defining proba-

bility distribution functions over basic terms [35], a class of terms in higher-order logic

identified for the purpose of representing individuals in applications. All the distribu-

tions in the class identified in [22] are defined by induction on the structure of basic

terms. An efficient sampling algorithm is also given for these distributions. The work

set up in [22] fits directly into our general framework.
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There are also related studies on adding probabilistic reasoning support to func-

tional programming languages. These come in the form of language extensions to the

λ-calculus. In [51], which is closely related to IBAL, the authors show how probability

distributions can be captured using monads. They also introduced a simple language

called measure terms that allows certain operations on (discrete) distributions to be

computed efficiently. Measure terms is a subset of the language we use for representing

and manipulating densities in this paper. In [47], a probabilistic language based on

sampling functions is presented. The language supports all kinds of probability distri-

butions and exploits the fact that sampling functions form a so-called state monad. In

[21], a system similar to IBAL is introduced that uses sampling as its main inference

mechanism.

In [17], the authors build on the idea that probability distributions form a monad

to design a probability and simulation library for Haskell. In [1], the Haskell language

is used to describe a family of statistical models based on the MML principle. The

generalisation of the various models, and the natural mappings between them, are

shown by the use of Haskell classes, types, and functions.

Programming versus Intelligent Knowledge Base To what extent are we just imple-

menting different probabilistic models and inference procedures in Bach? In other

words, is Bach a programming approach or an intelligent knowledge base approach?

The first thing to note is that the (pure) programming approach and the (fully

automatic) intelligent knowledge base approach are just two ends of a spectrum of

possibilities. So the question to ask is not whether Bach is a programming approach

or an intelligent knowledge base approach, but where in the spectrum does it lie. For

the purpose of this discussion, the spectrum of possibilities can be characterised along

two dimensions: expressive power and the level of automation in inference. (There are

other dimensions like efficiency as well, of course.) Expressive power here refers to the

availability of language features and the general compactness of model descriptions

(with respect to our target class of probabilistic AI applications). In particular, we

are not talking about notions like Turing completeness where there is no difference

between, for example, assembly language and Prolog. Fig. 11 shows where we see the

different languages sit in this scheme of things.
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Fig. 11 A mapping of the different languages
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Naturally, the top right-hand corner of the graph is where we want to be. Low-level

imperative languages like C and Java are quite clearly not what we want unless speed is

the biggest consideration. Widely used declarative programming languages like Haskell

and Prolog are better but these languages are designed with full programming general-

ity in mind and they can be significantly improved for our target area of probabilistic

AI applications, both in terms of expressive power and the level of automated inference

supported. However, there is a general trade-off to be made here since increased ex-

pressive power is usually accompanied by a harder automated-inference problem. The

difference between Bach and many existing SRL systems can be understood in terms

of this tradeoff. By design, Bach leans towards greater expressive power while many

existing SRL systems lean towards more sophisticated level of automated inference.

At present, Bach allows the user to specify, in a declarative fashion, a wide class

of probabilistic models. We have seen several different probabilistic models in this pa-

per. In [44], we also show how the different forms of graphical models, probabilistic

logic programs [45,31,13] and representative first-order probabilistic logics like [18] can

be captured in Bach. The class of probabilistic models we can accommodate is larger

than that supported in any one existing system. For this generality, we pay a price in

the form of a more difficult inference problem. There remains work to be done on au-

tomating more of Bach’s probabilistic inference mechanism. In posing queries to Bach,

the user needs to know how to marginalise densities and enumerate sets. This is not

too onerous since the tools needed for both these operations are well supported in the

language. In any case, it would not be hard to introduce syntactic sugar for common

probabilistic queries that can be mechanically translated into terms involving the re-

quired marginalisation operations. The harder problem for Bach is in automatically

figuring out ways to efficiently compute (approximate) answers to queries posed. As

we saw in the urn and balls example (§4.3.3), naively posing the correct question is not

always sufficient to obtain the desired answer in a reasonable amount of time. In this

case, a bit of cleverness on the part of the user solves the problem. What is required in

general is a mechanism to automatically detect difficult integration/summation opera-

tions and then solve them using Monte-Carlo integration/summation techniques. This

is one issue that we are working on in the on-going development of Bach.

Coming back to our original question posed in the opening paragraph, the answer

is that Bach sits somewhere in between a programming approach and an intelligent

knowledge base approach, but is moving in the direction of the latter.

Approximate Inference A good probabilistic logical language needs to support approxi-

mate inference for the case when computing the exact answer is unacceptably expensive.

Support for approximate inference in Bach is still under development. When describing

a probabilistic system in our language, there are a number of approaches. Our preferred

approach is that the system is described naturally in logic, without the user requir-

ing any special knowledge of probabilistic inference. When input in this natural form

there are many distributions that can be described, but about which Bach, with only

support for a general purpose equational reasoner, cannot efficiently answer questions

exactly. It would be desirable to incorporate an approximation system into Bach to

handle such cases. One of the main components needed for such a system is an efficient

way to sample from terms. Towards that end, we have developed a scheme whereby

suitable sampling distributions for a wide range of inference tasks can be specified and

efficiently sampled from. This work is ongoing and will be reported elsewhere.
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7 Conclusion

We conclude by summarising the main contributions of the paper.

1. A detailed account of a theory-based approach to probabilistic modelling, inference,

and learning is presented.

2. Higher-order logic is shown to be an expressive and practical logic in which to

model and reason about applications involving uncertainty, and thus provide an

harmonious integration of logic and probability.

3. A detailed account of the theory and application of lifted probabilistic inference,

which clarifies the existing literature on this topic, is presented.

4. It is shown how Bach can be used to support probabilistic modelling and inference,

for both the discrete and continuous cases, in a wide range of applications.
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A Lifted Inference Proofs

A.1 Proof of Inversion Elimination

Proposition 1 Let t be a real-valued term such that each free occurrence of the variable f
in t occurs in a subterm of the form (f x1 . . . xk), where x1, . . . , xk are free occurrences in t
of these variables and 1 ≤ k ≤ n, and X1, . . . , Xn, Y be non-empty finite sets. Then

X

f∈Y X
. .

.X1

n

Y

x1∈X1

· · ·
Y

xk∈Xk

t =
Y

x1∈X1

· · ·
Y

xk∈Xk

X

f∈Y X
. .

.X
{xk}.

. .{x1}

k+1

n

t.

Proof The proof is by induction on k.
Base case. We have to show that

X

f∈Y X

Y

x∈X

t =
Y

x∈X

X

f∈Y {x}

t.

(Y can itself be a function space.) Suppose that X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and

Y X = {f1, . . . , fmn}. Define fij ∈ Y {xi} by fij(xi) = yj , for i = 1, . . . , n and j = 1, . . . , m.
Then

X

f∈Y X

Y

x∈X

t

=
X

f∈Y X

t{x/x1} × t{x/x2} × · · · × t{x/xn}

= t{x/x1, f/f1} × t{x/x2, f/f1} × · · · × t{x/xn, f/f1}

+ t{x/x1, f/f2} × t{x/x2, f/f2} × · · · × t{x/xn, f/f2}

+ · · ·

+ t{x/x1, f/fmn} × t{x/x2, f/fmn} × · · · × t{x/xn, f/fmn}

= (t{x/x1, f/f11} + t{x/x1, f/f12} + · · · + t{x/x1, f/f1m})

× (t{x/x2, f/f21} + t{x/x2, f/f22} + · · · + t{x/x2, f/f2m})

× · · ·

× (t{x/xn, f/fn1} + t{x/xn, f/fn2} + · · · + t{x/xn, f/fnm}) [Assumption on t]

=
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Induction step.
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t [Base case]
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=
Y

x1∈X1

· · ·
Y

xk∈Xk

X
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.X{xk}.
. .{x1}

k+1

n

t

A.2 Proof of Counting Elimination

Let Mn
m, Cπ and µπ be as defined in Section 4.2.3. If X is a set of cardinality n, Y is a set

of cardinality m, φ : Y → {1, . . . , m} a fixed, but arbitrary, bijection, and π ≡ (k1, . . . , km) ∈
Mn

m, then

Y X |π = {f ∈ Y X | φ(y) = i implies |f−1(y)| = ki, for each y ∈ Y }.

Note that the cardinality of Y X |π is Cπ .

Proposition 2 Let t be a real-valued term such that each free occurrence of the variable fi

in t occurs in a subterm of the form (fi xi1) or . . . or (fi xiri
), where xi1, . . . , xiri

are free
occurrences in t of these variables that do not have any free occurrences in t other than these,
for i = 1, . . . , p. Let yi1, . . . , yiri

be variables not appearing in t, for i = 1, . . . , p. Also let Xi

be a set of cardinality ni ≥ 1 and Yi a set of cardinality mi ≥ 1, for i = 1, . . . , p. Then
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The step from the second to the third expression uses the condition on t. ⊓⊔


