
Draft – Do not distribute

Modal Functional Logic Programming

J.W. Lloyd
Computer Sciences Laboratory

The Australian National University
john.lloyd@anu.edu.au

K.S. Ng J. Veness
Symbolic Machine Learning and Knowledge

Acquisition, NICTA
{keesiong.ng, joel.veness}@nicta.com.au

Abstract
This paper introduces aspects of a novel modal functional logic
programming language called Bach that is an extension of theex-
isting functional logic language Escher. Language facilities avail-
able in Bach but not in Escher include (1) support for modalities
and (2) an improved theorem-proving capability. We show how
the increased expressiveness of Bach can be exploited to produce
easy-to-understand programs for solving a variety of computational
problems that arise in applications, especially agents applications.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms Languages, Theory, Design

Keywords modal functional logic programming, modal logic,
equational reasoning, theorem proving

1. Introduction
This paper continues one thread in the development of declarative
programming languages that goes back about 15 years. The start-
ing point was the recognition that Prolog (Lloyd 1987) has various
flaws that reduces its credibility as a declarative programming lan-
guage; these flaws include non-declarative meta-programming fa-
cilities and the lack of a type system. This motivated the Gödel pro-
gramming language (Hill and Lloyd 1994) that was closely based
on Prolog but had a polymorphic type system and declarative meta-
programming facilities. The next step was Escher (Lloyd 1999) that
differed markedly from Gödel in that it was a higher-order language
and was based on equational theories rather than clausal theories.
In its final form, Escher was presented as an extension to Haskell,
thus taking advantage of the many good design decisions of that
language, by adding the idea of programming with abstractions
(Lloyd 2003) that provides the logic programming idioms. Escher
also avoided the highly problematical negation as failure rule by
treating negation as just another function. Escher is related to the
functional logic language Curry (Hanus ed.).

This paper introduces the language Bach that takes a signifi-
cant step beyond Escher in that modalities and improved theorem-
proving support are included. The improved theorem-proving ca-
pability of Bach extends the range of computational problems that
can be solved automatically. The main motivation for introducing

[Copyright notice will appear here once ’preprint’ option is removed.]

modal facilities is the existence of the extensive and important class
of agent applications. When an agent is deciding what actionto
perform next it is common for modal considerations to be impor-
tant; for example, epistemic modalities can be needed because it is
necessary to reason about the beliefs of other agents and temporal
modalities can be needed because it is necessary to reason about be-
liefs in the past, present, or future. Thus, Bach can be regarded as
a general-purpose, declarative programming language thatis par-
ticularly well-suited to the development of autonomous agents and
multi-agent systems.

The paper is organised as follows. Section 2 contains a sum-
mary of the logic underlying Bach. The main equational reason-
ing component of Bach is described in Section 3. This is followed
by a presentation of the theorem proving component in Section 4.
Small instructive programming examples are sprinkled throughout
the two sections to illustrate important concepts. More significant
applications can be found in Section 5. Implementation issues are
discussed in Section 6. Section 7 gives a list of related workand we
conclude with a statement on what has been achieved in Section 8.

2. Logic
We outline the most relevant aspects of the logic here, focusing
to begin with on the monomorphic version. We define types and
terms, and give an introduction to the modalities that we will use.
Full details of the logic can be found in (Lloyd 2007).

Definition 1. An alphabetconsists of three sets:

1. A setT of type constructors.
2. A setC of constants.
3. A setV of variables.

Each type constructor inT has an arity. The setT always in-
cludes the type constructorΩ of arity 0. Ω is the type of the
booleans. Each constant inC has a signature. The setV is denu-
merable. Variables are typically denoted byx, y, z,

Definition 2. A typeis defined inductively as follows.

1. If T is a type constructor of arityk andα1, . . . , αk are types,
thenT α1 . . . αk is a type. (Thus a type constructor of arity0
is a type.)

2. If α andβ are types, thenα→ β is a type.
3. If α1, . . . , αn are types, thenα1 × · · · × αn is a type.

The setC always includes the following constants.

1. ⊤ and⊥, having signatureΩ.

2. =α, having signatureα→ α→ Ω, for each typeα.

3. ¬, having signatureΩ → Ω.

4. ∧, ∨,−→,←−, and←→, having signatureΩ → Ω → Ω.

5. Σα andΠα, having signature(α→ Ω)→ Ω, for each typeα.

short description of paper 1 2007/5/25

The intended meaning of⊤ is true, and that of⊥ is false. The
intended meaning of=α is identity (that is,=α x y is⊤ iff x and
y are identical), and the intended meanings of the connectives ¬,
∧, ∨, −→,←−, and←→ are as usual. The intended meanings of
Σα andΠα are thatΣα maps a predicate to⊤ iff the predicate
maps at least one element to⊤ andΠα maps a predicate to⊤ iff
the predicate maps all elements to⊤.

We assume there are necessity modality operators�i, for i =
1, . . . ,m.

Definition 3. A term, together with its type, is defined inductively
as follows.

1. A variable inV of typeα is a term of typeα.
2. A constant inC having signatureα is a term of typeα.
3. If t is a term of typeβ andx a variable of typeα, thenλx.t is a

term of typeα→ β.
4. If s is a term of typeα → β andt a term of typeα, then(s t)

is a term of typeβ.
5. If t1, . . . , tn are terms of typeα1, . . . , αn, respectively, then

(t1, . . . , tn) is a term of typeα1 × · · · × αn.
6. If t is a term of typeα andi ∈ {1, . . . , m}, then�it is a term

of typeα.

Terms of the form(Σα λx.t) are written as∃αx.t and terms
of the form (Πα λx.t) are written as∀αx.t (in accord with the
intended meaning ofΣα andΠα).

Constants can be declared to be rigid; they then have the same
meaning in each world (in the semantics). Except in the most so-
phisticated applications, it is entirely natural for some constants to
be rigid; for example, all constants (data constructors andfunctions
alike) in the Haskell prelude can be declared to be rigid. A term is
rigid if every constant in it is rigid.

The polymorphic version of the logic extends what is given
above by also having available parameters which are type variables
(denoted bya, b, c, . . .). The definition of a type as above is then
extended to polymorphic types that may contain parameters and
the definition of a term as above is extended to terms that may
have polymorphic types. We work in the polymorphic version of
the logic in the remainder of the paper. In this case, we drop theα
in ∃α, ∀α, and=α, since the types associated with∃, ∀, and= are
now inferred from the context. The universal closure of a formula
ϕ is denoted by∀(ϕ).

As is well known, modalities can have a variety of meanings,
depending on the application. Some of these are indicated here;
more detail can be found in (Fagin et al. 1995), (Gabbay et al.2003)
and (Lloyd 2007), for example.

In multi-agent applications, one meaning for�iϕ is that ‘agent
i knows ϕ’. In this case, the modality�i is written asK i. A
weaker notion is that of belief. In this case,�iϕ means that ‘agent
i believesϕ’ and the modality�i is written asBi.

The modalities also have a variety of temporal readings. We
adopt the usual modalities# (‘next’), � (‘always in the future’),
3 (‘sometime in the future’), andU (‘until’). Dual to these are
the past temporal modalities (‘last’), � (‘always in the past’),�
(‘sometime in the past’), andS (‘since’).

A novel feature of the logic is that modalities can be appliedto
terms that are not formulas. (A formula is a term of typeΩ.) Thus
terms such asBi42 and A, whereA is a constant, are admitted.
Such terms are called modal terms.

The logic can be given a rather conventional semantics in the
usual Kripke style for modal logics; the main novelty is giving a
semantics to modal terms.

A theory in the logic, which is a set of formulas, can consist of
two kinds of assumptions, global and local. The essential difference
is that global assumptions are true in each world in the intended in-

terpretation, while local assumptions only have to be true in the
actual world in the intended interpretation. Each kind of assump-
tion has a certain role to play in computations. A theory is denoted
by a pair(G,L), whereG is the set of global assumptions andL is
the set of local assumptions.

A Bach program is a theory in the logic. The inference mech-
anism underlying Bach combines an equational reasoning system
and a theorem prover. The equational reasoning system is, ineffect,
a computational system that significantly extends existingfunc-
tional programming languages by adding facilities for computing
with modalities. The theorem prover is a fairly conventional tableau
theorem prover for modal higher-order logic similar to whatis pro-
posed in (Fitting 2002). The computation component and the proof
component are tightly integrated, in the sense that either can call
the other. Furthermore, this synergy between the two makes possi-
ble all kinds of interesting reasoning tasks.

We describe the equational reasoning system next. This willbe
followed by a discussion of the proof system.

3. Computation
Informally, thecomputation problemis as follows.

Given a theoryT, a termt, and a sequence�j1 · · ·�jr
of

modalities, find a ‘simpler’ termt′ such that the formula
�j1 · · ·�jr

∀(t = t′) is a consequence ofT.

Thus t and t′ have the same meaning in all worlds accessible
from the point world in the intended interpretation according to the
modalities�j1 · · ·�jr

.
Here are the details about a mechanism that addresses the com-

putational problem by employing equational reasoning to rewrite
terms to ‘simpler’ terms that have the same meaning. We first es-
tablish some notation. The occurrenceo of a subterms in a termt
is a description of the path from the root of the syntax tree oft to s.
The notationt[s/r]o denotes the term obtained fromt by replacing
s at occurrenceo with r. A modal path to a subterm is the sequence
of indices of modalities whose scope one passes through whengo-
ing down to the subterm. A substitution is admissible if any term
that replaces a free occurrence of a variable that is in the scope of a
modality is rigid.

Definition 4. Let T ≡ (G,L) be a theory. Acomputation using
�j1 · · ·�jr

with respect toT is a sequence{ti}ni=1 of terms such
that the following conditions are satisfied. Fori = 1, . . . , n − 1,
there is

1. a subtermsi of ti at occurrenceoi of typeαi, where the modal
path tooi in ti is k1 . . . kmi

,
2. (a) a formula�j1 · · ·�jr

�k1
· · ·�kmi

∀(ui = vi) in L, or
(b) a formula∀(ui = vi) in G, or
(c) a formula�j1 · · ·�jr

�k1
· · ·�kmi

∀(ui = vi) that is the
theorem of a proof with respect toT, and

3. a substitutionθi that is admissible with respect toui = vi

such thatuiθi isα-equivalent tosi andti+1 is ti[si/viθi]oi
.

The termt1 is called thegoal of the computation andtn is
called theanswer. Each subtermsi is called aredex. Each formula
�j1 · · ·�jr

�k1
· · ·�kmi

∀(ui = vi) or ∀(ui = vi) is called an
input equation. The formula�j1 · · ·�jr

∀(t1 = tn) is called the
resultof the computation.

Note: Some technical details in Definition 4 and Definition 6 below
have been surpressed to ease the presentation. Full detailscan be
found in (Lloyd 2007).

We remark that the treatment of modalities in a computation
has to be carefully handled. The reason is that even such a simple
concept as applying a substitution is greatly complicated in the

short description of paper 2 2007/5/25

modal setting by the fact that constants generally have different
meanings in different worlds and therefore the act of applying a
substitution may not result in a term with the desired meaning. This
explains the restriction to admissible substitutions in the definition
of computation. It also explains why, for input equations that are
local assumptions, the sequence of modalities�k1

· · ·�kmi
whose

scopes are entered going down to the redex must appear in the
modalities at the front of the input equation. (For input equations
that are global assumptions, in effect, every sequence of modalities
that we might need is implicitly at the front of the input equation.)

A selection rulechooses the redex at each step of a computa-
tion. A common selection rule is theleftmostone which chooses the
leftmost outermost subterm that satisfies the requirementsof Defi-
nition 4. It is straightforward to extend Definition 4 so thatmultiple
redexes can be selected at each step. Then a common selectionrule
is the parallel-outermostone that selects all outermost subterms
that each satisfy the requirements of Definition 4.

Theorem 1. Let T be a theory. Then the result of a computation
using�j1 · · ·�jr

with respect toT is a consequence ofT.

3.1 Pattern Matching

For the computation system introduced, given termss andt, there
will be a need to determine whether or not there is a substitution θ
such thatsθ isα-equivalent tot. This motivates the next definition.

Definition 5. Let s and t be terms of the same type. Then a
substitutionθ is a matcherof s to t if sθ is α-equivalent tot. In
this case,s is said to bematchableto t.

The matching algorithm in Figure 1 determines whether one
term is matchable with another. Note that the inputs to this algo-
rithm are two terms that have no free variables in common. It is
usual to standardise apart before applying a unification algorithm
so doing this for matching as well is not out of the ordinary. In the
figure, the subterm of a termt at occurrenceo is denotedt|o.

function Match(s, t) returns matcherθ, if s is matchable tot
failure, otherwise;

inputs: s andt, terms of the same type with no free variables in
common;

θ := {};

while s 6= t do

o := occurrence of innermost subterm containing symbol
at leftmost point of disagreement betweens andt;

if s|o has formλx.v andt|o has formλy.w andx 6= y

then

s := s[λx.v/λz.(v{x/z})]o; % z a new variable

t := t[λy.w/λz.(w{y/z})]o;

else if s|o is a free occurrence of a variablex and there
is no free occurrence ofx in s to the left ofo and
each free occurrence of a variable int|o is a free
occurrence int

then
θ := θ ◦ {x/t|o};

s := s{x/t|o};
elsereturn failure;

return θ;

Figure 1. Algorithm for finding a matching substitution

In the algorithm, the expressionθ ◦ {x/t|o} denotes the compo-
sition ofθ with {x/t|o}. Since onlyα-equivalence is required here,
given a termv, we can computev(θ ◦ϕ) by computing(vθ)ϕ.

Theorem 2. Let s and t be terms of the same type with no free
variables in common. Ifs is matchable tot, then the algorithm in
Figure 1 terminates and returns a matcher ofs to t. Otherwise, the
algorithm terminates and returns failure.

Here are three examples to illustrate the matching algorithm.

Example 1. Lets beλx.(f x (g y z)) andt beλz.(f z (g A B)),
wheref , g, A, andB are constants with suitable signatures. Then
the successive steps of the algorithm are as follows.

0. λx
↑
.(f x (g y z)) λz

↑
.(f z (g A B))

1. λw.(f w (g y
↑

z)) λw.(f w (g A
↑
B)) {y/A}

2. λw.(f w (g A z
↑
)) λw.(f w (g A B

↑
)) {z/B}

3. λw.(f w (g A B)) λw.(f w (g A B))

(The arrows indicate the points of disagreement and the substi-
tutions in the last column are the substitutions applied at that
step in the algorithm.) Thusλx.(f x (g y z)) is matchable to
λz.(f z (g A B)) with matcher{y/A} ◦ {z/B}.

Example 2. Let s be(f x (g x)) andt be(f y (g A)). Then the
successive steps of the algorithm are as follows.

0. (f x
↑

(g x)) (f y
↑

(g A)) {x/y}

1. (f y (g y
↑

)) (f y (g A
↑
))

Thus(f x (g x)) is not matchable to(f y (g A)), since there is
a free occurrence ofy in s to the left of the point of disagreement.
Note that, in contrast,s andt are unifiable.

Example 3. Let s beλx.(f x y z) andt beλx.(f x A (g x)).
Then the successive steps of the algorithm are as follows.

0. λx.(f x y
↑

z) λx.(f x A
↑

(g x)) {y/A}

1. λx.(f x A z
↑
) λx.(f x A (

↑

g x))

Thusλx.(f x y z) is not matchable toλx.(f x A (g x)), since
x has a free occurrence in(g x) but this occurrence is not free in
λx.(f x A (g x)).

3.2 Standard Equality Theory

Computations generally require use of definitions of=, the connec-
tives and quantifiers, and some other basic functions. Thesedefini-
tions, which constitute what we call the standard equality theory,
are discussed next.

Given the intended meanings of equality, the connectives and
the quantifiers, it is natural that their definitions would normally be
taken to beglobal assumptions in the theories of applications.

In general, a schema is intended to stand for the collection of
formulas that can be obtained from the schema by replacing its syn-
tactical variables with terms that satisfy the side conditions, if there
is any. (Syntactical variables are typeset in bold in the following.)
Thus a schema is a compact way of specifying a (possibly infinite)
collection of formulas. When using a schema in a computation, a
choice of terms to replace its syntactical variables is firstmade. The
resultant formula is then handled as before.

Now we give a series of definitions of=, connectives, quan-
tifiers, and so on, that constitute the standard equality theory. All
substitutions appearing in these definitions are assumed tobe ad-

short description of paper 3 2007/5/25

missible. The first definition is that for=.

= : a→ a→ Ω

(C x1 . . . xn = C y1 . . . yn) = (x1 = y1) ∧ · · · ∧ (xn = yn)

% whereC is a data constructor of arityn.

(C x1 . . . xn = D y1 . . . ym) = ⊥

% whereC is a data constructor of arityn, D is a data

% constructor of aritym, andC 6= D.

((x1, . . . , xn) = (y1, . . . , yn)) = (x1 = y1) ∧ · · · ∧ (xn = yn)

% wheren = 2, 3,

(λx.u = λy.v) = (less λx.u λy.v) ∧ (less λy.v λx.u)

The first two schemas in the above definition simply capture the
intended meaning of data constructors, while the third captures
an important property of tuples. (Note that for the first schema, if
n = 0, then the body is⊤.)

The fourth schema is more subtle. In formulations of higher-
order logics, it is common for the axioms for equality to include
the axiom of extensionality:

(f = g) = ∀x.((f x) = (g x)).

This axiom is not used in the computational part of the reason-
ing system because it is not computationally useful: showing that
∀x.((f x) = (g x)) is not generally possible as there can be in-
finitely many values ofx to consider. Instead, a special case of the
axiom of extensionality is used. Its purpose is to provide a method
of checking whether certain abstractions representing finite sets, fi-
nite multisets and similar data types are equal. In such cases, one
can check for equality in a finite amount of time. The fourth schema
relies on the two following definitions.

less : (a→ b)→ (a→ b)→ Ω

less λx.d z = ⊤ % whered is a default term.

less (λx.if u then v else w) z =

(∀x.(u −→ v = (z x))) ∧ (less (remove λx.u λx.w) z)

remove : (a→ Ω)→ (a→ b)→ (a→ b)

remove s λx.d = λx.d % whered is a default term.

remove s λx.if u then v else w =

λx.if u ∧ ¬(s x) then v else ((remove s λx.w) x)

There is a default term for each type. For example, the default term
of typeΩ is⊥ and that of typeInt is 0. The intended meaning of
less is best given by an illustration. Consider the multisetsm and
n. Thenless m n is true iff each item in the support ofm is also in
the support ofn and has the same multiplicity there. For sets,less
is simply the subset relation.

The following definitions are for the connectives∧, ∨, and¬.

∧ : Ω → Ω → Ω

⊤ ∧ x = x

⊥ ∧ x = ⊥

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z)

(if u then v else w) ∧ t = if u ∧ t then v else w ∧ t

u ∧ (∃x1. · · · ∃xn.v) = ∃x1. · · · ∃xn.(u ∧ v) (C1)

% whereu does not contain a free occurrence of any of thexi

u ∧ (x = t) ∧ v = u{x/t} ∧ (x = t) ∧ v{x/t} (C2)

% wherex is a variable free inu or v or both, but not free int,

% andt is not a variable.

∨ : Ω → Ω → Ω

⊤ ∨ x = ⊤

⊥ ∨ x = x

(if u then ⊤ else w) ∨ t = if u then ⊤ else w ∨ t

(if u then ⊥ else w) ∨ t = (¬ u ∧ w) ∨ t

¬ : Ω → Ω

¬ ⊥ = ⊤

¬ ⊤ = ⊥

¬ (¬ x) = x

¬ (x ∧ y) = (¬ x) ∨ (¬ y)

¬ (x ∨ y) = (¬ x) ∧ (¬ y)

¬ (if u then v else w) = if u then ¬ v else ¬ w

Symmetric versions of some of the above equations have been
omitted for brevity here.

These definitions are straightforward, except perhaps for the last
two schemas in the definition of∧. The second last schemas allow
the scope of existential quantifiers to be extended providedit does
not result in free variable capture.

The last schema allows the elimination of some occurrences of
a free variable (x, in this case), thus simplifying an expression. A
similar schema allowing this kind of simplification also occurs in
the definition ofΣ below. However, a few words about the expres-
sion u ∧ (x = t) ∧ v are necessary. The intended meaning of
this expression is that it is a term such that(x = t) is ‘embedded
conjunctively’ inside it. More formally, a termt is embedded con-
junctively in t and, if t is embedded conjunctively inr (or s), then
t is embedded conjunctively inr ∧ s. So, for example,x = s is
embedded conjunctively in((p ∧ q) ∨ r) ∧ ((x = s) ∧ (t ∨ u)).

Next come the definitions ofΣ andΠ. Recall that∃x.t stands
for (Σ λx.t) and∀x.t stands for(Π λx.t).

Σ : (a→ Ω)→ Ω

∃x.⊤ = ⊤

∃x.⊥ = ⊥

∃x1. · · · ∃xn.(x ∧ (x1 = u) ∧ y) =

∃x2. · · · ∃xn.(x{x1/u} ∧ y{x1/u}) (E)

% wherex1 is not free inu.

∃x1. · · · ∃xn.(u ∨ v) = (∃x1. · · · ∃xn.u) ∨ (∃x1. · · · ∃xn.v)

∃x1. · · · ∃xn.(if u then ⊤ else v) =

if ∃x1. · · · ∃xn.u then ⊤ else ∃x1. · · · ∃xn.v

∃x1. · · · ∃xn.(if u then ⊥ else v) = ∃x1. · · · ∃xn.(¬ u ∧ v)

Π : (a→ Ω)→ Ω

∀x1. · · · ∀xn.(⊥ −→ u) = ⊤

∀x1. · · · ∀xn.(x ∧ (x1 = u) ∧ y −→ v) =

∀x2. · · · ∀xn.(x{x1/u} ∧ y{x1/u} −→ v{x1/u}) (A)

% wherex1 is not free inu.

∀x1. · · · ∀xn.(u ∨ v −→ t) =

(∀x1. · · · ∀xn.(u −→ t)) ∧ (∀x1. · · · ∀xn.(v −→ t))

∀x1. · · · ∀xn.((if u then ⊤ else v) −→ t) =

(∀x1. · · · ∀xn.(u −→ t)) ∧ (∀x1. · · · ∀xn.(v −→ t))

∀x1. · · · ∀xn.((if u then ⊥ else v) −→ t) =

∀x1. · · · ∀xn.(¬ u ∧ v −→ t)

short description of paper 4 2007/5/25

Next comes the definition for theif then else function.

if then else : Ω × a× a→ a

if ⊤ then u else v = u

if ⊥ then u else v = v

Note that a term of the formif x then y else z is really a syntactic
sugar forif then else (x , y , z).

The next two equations involve function application and the
if then else function.

(w (if x then y else z)) = if x then (w y) else (w z) (I1)

((if x then y else z) w) = if x then (y w) else (z w) (I2)

There is also the definition corresponding toβ-reduction.

λx.u : σ → τ

λx.u t = u{x/t} % whereσ → τ is the type ofλx.u. (B)

Also included in the standard equality theory is the schema

(�is t) = �i(s t), (M1)

wheres is a syntactical variable ranging over terms of typeα→ β
andt is a syntactical variable ranging overrigid terms of typeα.
A similar schema holds for the dual modality3i (whenβ is Ω).
Another useful schema in the standard equality theory is

�it = t, (M2)

wheret is a syntactical variable ranging overrigid terms.

3.3 Examples of Computation

Here are a few examples to illustrate computation.

Example 4. Consider the following definitions of the functions
append , permute and delete , which have been written in the
relational style of logic programming.

append : List a× List a× List a→ Ω

(append (u, v, w)) = ((u = []) ∧ (v = w)) ∨

∃r.∃x.∃y.((u = r ♯ x)∧ (w = r ♯ y)∧ (append (x, v, y)))

permute : List a× List a→ Ω

(permute ([], x)) = (x = [])

(permute (x ♯ y, w)) = ∃u.∃v.∃z.((w = u ♯ v) ∧

(delete (u, x ♯ y, z)) ∧ (permute (z, v)))

delete : a× List a× List a→ Ω

(delete (x, [], y)) = ⊥

(delete (x, y ♯ z, w)) = ((x = y) ∧ (w = z)) ∨

∃v.((w = y ♯ v) ∧ (delete (x, z, v)))

The intended meaning ofappend is that it is true iff its third argu-
ment is the concatenation of its first two arguments. The intended
meaning ofpermute is that it is true iff its second argument is a
permutation of its first argument. The intended meaning ofdelete
is that it is true iff its third argument is the result of deleting its first
argument from its second argument.

The notable feature of the above definitions is the presence
of existential quantifiers on the RHS of the input equations,so
not surprisingly the key statement that makes all this work is
concerned with the existential quantifier. To motivate this, con-
sider the computation in Figure 2 that results from the goal
(append (1 ♯ [], 2 ♯ [], x)). At one point in the computation, the

following term is reached:

∃r′.∃x′.∃y′.((1 = r′) ∧ ([] = x′) ∧

(x = r′ ♯ y′) ∧ (append (x′, 2 ♯ [], y′))).

An obviously desirable simplification that can be made to this term
is to eliminate the local variabler′ since there is a ‘value’ (that is,
1) for it. This leads to the term

∃x′.∃y′.(([] = x′) ∧ (x = 1 ♯ y′) ∧ (append (x′, 2 ♯ [], y′))).

Similarly, one can eliminatex′ to obtain

∃y′.((x = 1 ♯ y′) ∧ (append ([], 2 ♯ [], y′))).

After some more computation, the answerx = 1 ♯ 2 ♯ [] results. The
input equation that makes all this possible is Equation (E),which
comes from the definition ofΣ : (a → Ω) → Ω in the standard
equality theory and hasλ-abstractions on the LHS of the equation.

This example illustrates how the definitions in the standard
equality theory allow the traditional functional programming style
to be extended to encompass the relational style of logic program-
ming. This general technique is calledprogramming with abstrac-
tions(Lloyd 2003).

Another feature of Bach-style logic programming is that al-
ternative answers are returned as a disjunction. Thus the goal
(append (x, y, 1 ♯ 2 ♯ [])) will be reduced to the answer

((x = []) ∧ (y = 1 ♯ 2 ♯ [])) ∨ ((x = 1 ♯ []) ∧ (y = 2 ♯ []))

∨ ((x = 1 ♯ 2 ♯ []) ∧ (y = [])),

and the goal(permute (1 ♯ 2 ♯ [], x)) will be reduced to the answer

(x = (1 ♯ 2 ♯ [])) ∨ (x = (2 ♯ 1 ♯ [])).

Example 5. Consider the following definition off : σ → Nat :

(f x) = if x = A then 42 else if x = B then 21

else if x = C then 42 else 0,

whereA,B,C : σ. With such a definition, it is straightforward to
compute in the ‘forward’ direction. Thus, for example,(f B) can
be computed in the obvious way to produce the answer 21.

Less obviously, the definition can be used to compute in the
‘reverse’ direction. For example, consider the computation of
{x | (f x) = 42 } in Figure 3, which produces the answer{A,C}.
(The notation{x | t } is syntactic sugar for the termλx.t.) The
computation makes essential use of Equations (I1) and (I2),which
comes from the definition ofif then else in the standard equality
theory.

Example 6. Consider a theory that includes definitions of the
functionf : σ → Nat at the current time and some recent times.

∀x.((f x) = if (p4 x) then (f x) else (2f x))

 ∀x.((f x) = if (p3 x) then (f x) else 0)

2 ∀x.((f x) = if (p1 x) then 42 else 21)

3 ∀x.((f x) = 0).

Now supposet is a rigid term of typeσ and consider the
computation of(f t) in Figure 4. Note how earlier definitions for
f get used in the computation: at the step (f t), the definition at
the last time step gets used, and at the step

2(f t), the definition
from two time steps ago gets used.

Also needed in this computation are the global assumptions
(M1) and (M2) from the standard equality theory.

3.4 A Comparison with Escher, Haskell, and Prolog

The equational reasoning component of Bach is essentially an ex-
tension of Escher. We end this section with a comparison between

short description of paper 5 2007/5/25

(append (1 ♯ [], 2 ♯ [], x))

((1 ♯ [] = []) ∧ (2 ♯ [] = x)) ∨ ∃r′.∃x′.∃y′.((1 ♯ [] = r′ ♯ x′) ∧ (x = r′ ♯ y′) ∧ (append (x′, 2 ♯ [], y′)))

(⊥ ∧ (2 ♯ [] = x)) ∨ ∃r′.∃x′.∃y′.((1 ♯ [] = r′ ♯ x′) ∧ (x = r′ ♯ y′) ∧ (append (x′, 2 ♯ [], y′)))

⊥ ∨ ∃r′.∃x′.∃y′.((1 ♯ [] = r′ ♯ x′) ∧ (x = r′ ♯ y′) ∧ (append (x′, 2 ♯ [], y′)))

∃r′.∃x′.∃y′.((1 ♯ [] = r′ ♯ x′) ∧ (x = r′ ♯ y′) ∧ (append (x′, 2 ♯ [], y′)))

∃r′.∃x′.∃y′.((1 = r′) ∧ ([] = x′) ∧ (x = r′ ♯ y′) ∧ (append (x′, 2 ♯ [], y′)))

∃x′.∃y′.(([] = x′) ∧ (x = 1 ♯ y′) ∧ (append (x′, 2 ♯ [], y′)))

∃y′.((x = 1 ♯ y′) ∧ (append ([], 2 ♯ [], y′)))

...

∃y′.((x = 1 ♯ y′) ∧ (y′ = 2 ♯ []))

x = 1 ♯ 2 ♯ []

Figure 2. Computation of(append (1 ♯ [], 2 ♯ [], x)). Redexes underlined.

{ x | (= (f x) 42) }

{ x | ((= if x = A then 42 else if x = B then 21 else if x = C then 42 else 0) 42) }

{ x | (if x = A then (= 42) else (= if x = B then 21 else if x = C then 42 else 0) 42) }

{ x | if x = A then (42 = 42) else ((= if x = B then 21 else if x = C then 42 else 0) 42) }

{ x | if x = A then ⊤ else ((= if x = B then 21 else if x = C then 42 else 0) 42) }

{ x | if x = A then ⊤ else (if x = B then (= 21) else (= if x = C then 42 else 0) 42) }

{ x | if x = A then ⊤ else if x = B then (21 = 42) else ((= if x = C then 42 else 0) 42) }

{ x | if x = A then ⊤ else if x = B then ⊥ else ((= if x = C then 42 else 0) 42) }

{ x | if x = A then ⊤ else if x = B then ⊥ else (if x = C then (= 42) else (= 0) 42) }

{ x | if x = A then ⊤ else if x = B then ⊥ else if x = C then (42 = 42) else (0 = 42) }

{ x | if x = A then ⊤ else if x = B then ⊥ else if x = C then ⊤ else (0 = 42) }

{ x | if x = A then ⊤ else if x = B then ⊥ else if x = C then ⊤ else ⊥ }

Figure 3. Computation of{ x | (f x) = 42 }

Escher and Bach. Before examining how Bach is different fromEs-
cher, it will be helpful to first understand the relationshipbetween
Escher and Haskell, and that between Escher and Prolog.

Escher vs Haskell At the logic level, every Haskell program is
an Escher program1, and every Escher program is a (syntactically-
correct) Haskell program which may not compile. In that sense,
Escher is a superset of Haskell. The difference between Escher and
Haskell comes down to the following two points.

• Haskell allows pattern matching only on data constructors.Es-
cher extends this by allowing pattern matching on function
symbols and lambda abstractions in addition to data construc-
tors. Examples of equations that Haskell cannot handle include
Equation (E) and several others in the standard equality theory.

1 This is not exactly true at the implementation level, however, since Haskell
has several advanced language features not currently available in Escher.
But this is only a software maturity issue. Given more development time,
these language features will be implemented and Escher willthen be able
to run any valid Haskell program.

Thus Haskell cannot perform the kind of logic-programming-
style computations illustrated in Example 4.

• Escher allows reduction of terms inside lambda abstractions,
an operation not permitted in Haskell. This mechanism allows
Escher to handle sets (and similar data types) in a natural and
intensional way. Thus Haskell cannot perform the kind of set-
processing computations illustrated in Example 5.

The extra expressiveness afforded by Escher comes with a price,
however. Some common optimisation techniques developed for
efficient compilation of Haskell code (see (Peyton Jones 1987) for
a survey) cannot be used in the implementation of Escher. In other
words, efficiency is at present still an issue for Escher, although
we expect this to become less of a problem over time as computing
power increases and new implementation techniques are developed.

Escher vs Prolog We next explore the relationship between Es-
cher and Prolog. The general relationship between Prolog and stan-
dard functional programming languages is well understood and will
not be explored further here. Instead, we will concentrate on logic-
programming facilities. Perhaps surprisingly, there is actually a sig-

short description of paper 6 2007/5/25

(f t)

if (p4 t) then (f t) else (2f t)

...

if ⊤ then (f t) else (2f t)

(f t)

 (f t)

 (if (p3 t) then (f t) else 0)

...

 (if ⊤ then (f t) else 0)

 (f t)

2(f t)

2(if (p1 t) then 42 else 21

...

2(if ⊤ then 42 else 21)

242

 42

42

Figure 4. Computation of(f t)

nificant overlap between Escher and Prolog. In fact, any Prolog pro-
gram defined without using cuts can be mechanically translated into
Escher via Clark’s completion algorithm (Clark 1978). For exam-
ple, the definition ofappend given in Example 4 is essentially the
completion of the following Prolog definition:

append ([],L,L).

append ([X |L1],L2 , [X |L3])←− append (L1 ,L2 ,L3).

There is of course nothing that can be done with a cut that cannot be
done in a more natural way in the functional programming setting,
so nothing is lost here.

Procedurally, there is also a difference between Escher and
Prolog in that Prolog computes alternative answers one at a time
via backtrackking whereas Escher returns all alternative answers in
a disjunction (a set). This point is illustrated in Example 4.

Bach vs Escher We can now compare Bach and Escher. An
Escherstatementis a term of the formh = b, whereh has the
form f t1 . . . tn, n ≥ 0, for some functionf . In contrast, a Bach
input equation is a term of the form

�j1 · · ·�jr
∀(u = v),

where �j1 · · ·�jr
is a sequence of modalities which may be

empty, andu andv are arbitrary terms in the logic, possibly with
modalities in them. There are thus two main differences between
Escher and the equational-reasoning component of Bach:

• The restriction on the form of the LHS of an Escher statement is
dropped in Bach. Equation (I1), which we have seen serves an
important role in supporting ‘reverse’-direction computations in
Example 5, is an example of an equation supported in Bach but
not in Escher. The extra flexibility afforded in Bach comes at

a small price in the form of a more computationally expensive
pattern matching algorithm.

• Modalities are only supported in Bach; Escher cannot perform
the kind of computations illustrated in Example 6.

We have concentrated on the equational-reasoning component
of Bach so far. There is a significant difference in theorem-proving
capabilities between Escher and Bach as well. Theorem-proving
support in Escher is provided through theΣ and Π rules in the
standard equality theory. Although sufficient for a wide variety of
tasks, this is fundamentally a limited set. In contrast, Bach has a
full-scale theorem prover as a subsystem and the interaction be-
tween computation and proof makes possible all kinds of interest-
ing computational tasks. The proof component is described next.

4. Theorem Proving
In general, an input equation to a computation can be a theorem that
is proved by the theorem-proving component of Bach. Here arethe
details of a tableau proof system that can, given a theoryT and a
formulaϕ, determine whetherϕ is a consequence ofT.

The system employs prefixed formulas as is often the case for
modal logics. We concentrate on the (multi-modal) logicKm (m
refers to the number of modalities) which has the tableau system
given by the rules in Figures 5 and 6. Generally speaking, these
rules are well known (see, for example, (Fitting and Mendelsohn
1998) and (Fitting 2002)), but the versions here differ in some
details, in particular, in the use of admissibility assumption in the
universal, abstraction, and substitutivity rules.

Definition 6. Let T be a theory. Aproof with respect toT is a se-
quenceT1, . . . , Tn of trees labelled by prefixed formulas satisfying
the following conditions.

1. T1 consists of a single node labelled by1 ¬ϕ, for some formula
ϕ.

2. Fori = 1, . . . , n− 1, there is
(a) a tableau ruleR from Figure 5 or 6 such thatTi+1 is

obtained fromTi,
i. if R is a conjunctive rule, by extending a branch with

two nodes labelled by the prefixed formulas in the de-
nominator ofR,

ii. if R is a disjunctive rule, by splitting a branch so that the
leaf node of the branch has two children each labelled by
one of the prefixed formulas in the denominator ofR,

iii. otherwise, by extending a branch with a node labelled
by the prefixed formula in the denominator ofR,

provided that any prefixed formulas in the numerator ofR
already appear in the branch and any side-conditions ofR
are satisfied.

(b) there is a resultη of a computation and a branch is extended
with the prefixed formula1 η.

3. Each branch ofTn contains nodes labelled byσ ψ andσ ¬ψ,
for some prefixσ and formulaψ.

EachTi is called atableau. A branch of a tableau isclosedif
it contains nodes labelled byσ ψ andσ ¬ψ, for some prefixσ
and formulaψ; otherwise, the branch isopen. A tableau isclosedif
each branch is closed; otherwise, the tableau isopen. The formula
ϕ is called thetheoremof the proof; this is denoted byT ⊢ ϕ.

The following soundness result can be proved.

Theorem 3. Let T be a theory. Then the theorem of a proof with
respect toT is a consequence ofT.

Here are some examples of proof.

short description of paper 7 2007/5/25

(Conjunctive rules) For any prefixσ,

σ ϕ ∧ ψ
σ ϕ
σ ψ

σ ¬(ϕ ∨ ψ)
σ ¬ϕ
σ ¬ψ

σ ¬(ϕ −→ ψ)
σ ϕ
σ ¬ψ

(Disjunctive rules) For any prefixσ,

σ ϕ ∨ ψ
σ ϕ | σ ψ

σ ¬(ϕ ∧ ψ)
σ ¬ϕ | σ ¬ψ

σ ϕ −→ ψ
σ ¬ϕ | σ ψ

(Double negation rule) For any prefixσ,

σ ¬¬ϕ
σ ϕ

(Possibility rules) If the prefixσ.ni is new to the branch, where
i ∈ {1, . . . ,m},

σ 3iϕ
σ.ni ϕ

σ ¬�iϕ
σ.ni ¬ϕ

(Necessity rules) If the prefixσ.ni already occurs on the
branch, wherei ∈ {1, . . . ,m},

σ �iϕ
σ.ni ϕ

σ ¬3iϕ
σ.ni ¬ϕ

(Existential rules) For any prefixσ, if y is a variable of typeα
new to the branch,

σ ∃x.ϕ
σ ϕ{x/y}

σ ¬∀x.ϕ
σ ¬ϕ{x/y}

(Universal rules) For any prefixσ, if ϕ is a formula and{x/t}
is admissible w.r.t.ϕ,

σ ∀x.ϕ
σ ϕ{x/t}

σ ¬∃x.ϕ
σ ¬ϕ{x/t}

(Abstraction rules) For any prefixσ, if ϕ is a formula and
{x/t} is admissible w.r.t.ϕ,

σ (λx.ϕ t)
σ ϕ{x/t}

σ ¬(λx.ϕ t)
σ ¬ϕ{x/t}

(Reflexivity rule) If t is a term of typeα and the prefixσ
already occurs on the branch,

σ t = t

(Substitutivity rule) For any prefixσ, if ϕ is a formula contain-
ing a free occurrence of the variablex of typeα, and{x/s}
and{x/t} are admissible with respect toϕ,

σ s = t
σ ϕ{x/s}
σ ϕ{x/t}

(Global assumption rule) Ifψ is a global assumption and the
prefixσ already occurs on the branch,

σ ψ

(Local assumption rule) Ifψ is a local assumption,

1 ψ

(⊤ introduction rules) For any prefixσ,

σ ⊤ σ ¬⊥

Figure 5. Tableau rules

(Derived rule for global implicational assumption) For any
prefixσ, if ϕ −→ ψ is a global assumption,

σ ϕ
σ ψ

σ ¬ψ
σ ¬ϕ

(Derived rule for local implicational assumption) Ifϕ −→ ψ
is a local assumption,

1 ϕ
1 ψ

1 ¬ψ
1 ¬ϕ

Figure 6. More tableau rules

Example 7. Suppose we have a theory that includes the following
as global assumptions.

proj2 : String × Int → Int

(proj2 (x , y)) = y

evenperfect : Int → Ω

(evenperfect x) = ∃n.(n ∈ N ∧ (x = 2
n−1 (2n − 1)))

Consider the problem of simplifying the term

((proj2 x) = 496) ∧ (evenperfect (proj2 x)). (1)

(This kind of problem arises naturally in belief acquisition applica-
tions (Lloyd and Ng 2007a).) There is not much the computation
system can do other than to expand out the second conjunct. How-
ever, we can show using the proof system that

∀x.(((proj2 x) = 496) −→ (evenperfect (proj2 x))). (2)

The proof is in Figure 7. An explanation of the proof follows:Item

1 ¬∀x.(((proj2 x) = 496) −→ (evenperfect (proj2 x))) 1.
1 ¬((proj2 y) = 496) −→ (evenperfect (proj2 y)) 2.
1 ((proj2 y) = 496) 3.
1 ¬(evenperfect (proj2 y)) 4.
1 ¬(evenperfect 496) 5.
1 (evenperfect 496) = ⊤ 6.
1 ¬⊤ 7.
1 ⊤ 8.

Figure 7. Proof of Formula (2)

1 is the negation of the formula to be proved; 2 is from 1 by an
existential rule; 3 and 4 are from 2 by a conjunctive rule; 5 isfrom
3 and 4 by the substitutivity rule; 6 is by lemma introductionfrom
a computation of(evenperfect 496); 7 is from 5 and 6 by the
substitutivity rule; 8 is by the⊤ introduction rule; the tableau now
closes by 7 and 8.

Recognising the fact that(p −→ q) = ((p ∧ q) = p), we can
construct a new input equation

((proj2 x) = 496) ∧ (evenperfect (proj2 x))

= ((proj2 x) = 496),

from which (1) can be simplified to((proj2 x) = 496).

Example 8. Suppose we have a theory that includes the following

 Bϕ1,
2
Bϕ2,

3
Bϕ3,

4
Bϕ4,

5
Bϕ5

as local assumptions. Using the global assumption

 Bϕϕϕ −→ B ϕϕϕ (3)

it is easy to show that, for eachi ∈ {1, . . . , 5}, B iϕi is a
theorem of the belief base. Figure 8 shows the proof ofB 2ϕ2.

short description of paper 8 2007/5/25

An explanation of the proof is as follows. Item 1 is the negation of
the formula to be proved; 2 is a local assumption; 3 is from 1 bya
derived rule from the global implicational assumption (3);4 is from
3 by a possibility rule; 5 is from 4 by a derived rule from (3); 6is
from 2 by a necessity rule; the tableau now closes by 5 and 6.

1 ¬B 2ϕ 1.
1

2Bϕ 2.
1 ¬ B ϕ 3.
1.1• ¬B ϕ 4.
1.1• ¬ Bϕ 5.
1.1• Bϕ 6.

Figure 8. Proof ofB 2ϕ.

Theoremhood is, of course, undecidable in the case of higher-
order logic, but it is still possible to prove theorems in many
cases of practical interest. For any one application, it is possible
to examine the kind of theorem-proving tasks that will arisein that
application and show that they will all terminate. (Otherwise the
application has to be redesigned and re-implemented in order to
achieve this.) What we have in mind here is that each application
is a substantial system and that it makes sense to expend effort on
ensuring the desired termination, in the same way as it makessense
to use conventional software engineering techniques to ensure the
correctness of the software that implements an application.

5. Applications
We look at some larger-scale applications in this section.

5.1 Logic Puzzles

Bach can be used to express and solve all kinds of logic puzzles.
We present here a beautifully declarative Sudoku solver written in
Bach, using the puzzle in Figure 9 for illustration.

Figure 9. A Sudoku puzzle: Fill in the grid so that every row, every
column and every 3×3 block contains the digits 1 – 9.

We represent the puzzle as a tuple of integers. The problem then
is to find a suitable instantiation of the variables.

Square = Int × · · · × Int -- dimension = 81

puzzle : Square

puzzle = (6, x1, x2, 1, x3, 8, 2, x4, 3,
x5, 2, x6, x7, 4, x8, x9, 9, x10,
8, x11, 3, x12, x13, 5, 4, x14, x15,
5, x16, 4, 6, x17, 7, x18, x19, 9,
x20, 3, x21, x22, x23, x24, x25, 5, x26,
7, x27, x28, 8, x29, 3, 1, x30, 2,
x31, x32, 1, 7, x33, x34, 9, x35, 6,
x36, 8, x37, x39, 3, x40, x41, 2, x42,
3, x43, 2, 9, x44, 4, x45, x46, 5)

Specific rows, columns, and blocks can be retrieved frompuzzle
using the following operations.

row : Int → Square → List Int

(row x z) = (map λy .(proj (y + 9x) z) idxs)

col : Int → Square → List Int

(col x z) = (map λy .(proj (9y + x) z) idxs)

block : Int → Square → List Int

(block x z) =

(map λy .(proj ((proj y offsets) + (start cell x)) z) idxs)

idxs : List Int

idxs = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]

offsets : Int × · · · × Int -- dimension = 9

offsets = (0 , 1 , 2 , 9 , 10 , 11 , 18 , 19 , 20)

start cell : Int → Int

(start cell x) = 9 (3⌊x/3⌋) + 3 (x % 3)

Blocks are numbered from left-to-right, top-to-bottom. Adding the
index i into the top-left cell (start cell) of any given block with
the numbers inoffsets gives us the indices into all the cells in the
block.

Every row, column, and block must be a permutation of the
numbers 1 to 9. This translates into a total of 27 constraintson the
variables. These constraints can be folded together using∧ to form
one big constraint on the variables, which when simplified gives us
the answer to the Sudoku puzzle. This kind of reasoning leadsus to
the following solver.

sdkConstraint : List Int → Ω

(sdkConstraint x) = (permute ([1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9], x))

solve : Square → Ω

(solve x) = (fold ∧ (map λy .(fold ∧

[(sdkConstraint (row y x)), (sdkConstraint (col y x)),

(sdkConstraint (block y x))]) idxs))

Given the term(solve puzzle), Bach returns the following answer:

(x1 = 4) ∧ (x2 = 5) ∧ (x3 = 9) ∧ (x4 = 7) ∧ (x5 = 1)∧

(x6 = 7) ∧ · · · ∧ (x44 = 6) ∧ (x45 = 8) ∧ (x46 = 1).

The Sudoku solver just described makes essential use of the
programming with abstractions technique presented in Example 4.

5.2 Databases

We next look at databases. Consider a TV agent that maintainsa
TV guide, that is, a database about television programs. There are
different ways a TV guide can be represented. A standard way is to
represent it as a relation, either in the form of a relationaldatabase
or a Prolog program. But this standard relational representation
is not a good one because it ignores a functional dependency in
the data: each date, time and channel triple uniquely determines a
program. Here we represent a TV guide as a function definitionthat
correctly models this functional dependency:

tv guide : Occurrence → Program ,

where

Occurrence = Date × Time × Channel

Program = Title ×Duration ×Genre

×Classification × Synopsis .

short description of paper 9 2007/5/25

Here is a typical definition fortv guide.

Bt ∀x.((tv guide x) =

if (x = ((1, 1, 2007), (21, 30),ABC))

then (“The Bill”, 50,Drama,M , “Sun . . . ”)

else if (x = ((1, 1, 2007), (19, 00),ABC))

then (“ABC News”, 30,News ,G, “The . . . ”)

else if (x = ((1, 1, 2007), (20, 30),TEN))

then (“Numb3rs”, 60,Crime,M , “When . . . ”)

...

else (“ ”, 0,NA,NA, “ ”)),

whereBt is the belief modality of the TV agent, and the last entry
(“ ”, 0,NA,NA, “ ”) is the default term of typeProgram .

Listed below are some typical queries we can answer using the
definition. Each query is stated formally and the answer computed
is given. The computational mechanism with which the answers are
computed is explained earlier in Example 5. All computations are
done in the context ofBt.

1. Find the program at occurrence((1, 1, 2007), (20, 30),TEN).

Query:(tv guide ((1, 1, 2007), (20, 30),TEN)).

Answer:(“Numb3rs”, 60,Crime,M , “When . . . ”).

2. Find the time and channel “The Bill” is screened on 1 Jan 2007.

Query:∃y.((y = (tv guide ((1, 1, 2007), t, c)))

∧ ((projTitle y) = “The Bill”)).

Answer:(t = (21, 30)) ∧ (c = ABC).

3. Find allM -rated programs in the database.

Query:{ x | ∃y.((x = (tv guide y))∧

((projClassification x) = M)) }.

Answer:{ (“The Bill”, 50,Drama,M , “ . . . ”),

(“Numb3rs”, 60,Crime,M , “ . . . ”), . . . }.

4. Find all current-affairs programs in the database.

Query:{ x | ∃y.((x = (tv guide y))∧

(currentAffairs (projGenre x))) }.

Answer:{ (“ABC News”, 30,News,G, “ . . . ”), . . . }.

This last example shows howtv guide can be used in conjunc-
tion with other functions, in the same way relational databases
can be joined to answer complex queries.

The definition fortv guide given above has a linear structure.
This is clearly not the best way to represent a database. We note
here that the same data can be captured in a better data structure like
a red-black tree and the same set of queries can still be answered
using essentially the same basic underlying mechanism described
in Example 5, albeit more efficiently.

5.3 Belief Acquisition in Multi-Agent Systems

We end the section with an application in belief acquisitionin
multi-agent systems. In particular, we’ll look at a TV recommender
agent described in (Cole et al. 2005). Suppose the current occupants
of a household are Alice, Bob, and Cathy, and that our TV agent
has acquired from training examples their television preferences
in the form of current and past definitions for the functionlikes :
Program → Ω for each of them, wherelikes is true for a program
iff the person likes the program.

Let Bt be the belief modality for the TV agent,Ba the belief
modality for Alice, Bb the belief modality for Bob, andBc the
belief modality for Cathy. Thus part of the TV agent’s beliefbase
has the following form:

BtBa ∀x.((likes x) = ϕ0)

 BtBa ∀x.((likes x) = ϕ1)

...

n−1

BtBa ∀x.((likes x) = ϕn−1)

n
Bt∀x.(�Ba(likes x) = ⊥)

BtBb ∀x.((likes x) = ψ0)

 BtBb ∀x.((likes x) = ψ1)

...

k−1

BtBb ∀x.((likes x) = ψk−1)

k
Bt∀x.(�Bb(likes x) = ⊥)

BtBc ∀x.((likes x) = ξ0)

 BtBc ∀x.((likes x) = ξ1)

...

l−1

BtBc ∀x.((likes x) = ξl−1)

l
Bt∀x.(�Bc(likes x) = ⊥),

for suitableϕi, ψi, andξi. The form these can take is explained in
(Cole et al. 2005).

In the beginning, the belief base contains the formula

Bt∀x.(�Ba(likes x) = ⊥),

whose purpose is to prevent runaway computations into the infinite
past for certain formulas of the form�ϕ. After n time steps, this
formula has been transformed into

n
Bt∀x.(�Ba(likes x) = ⊥).

In general, at each time step, the beliefs aboutlikes at the previous
time steps each have another placed at their front to push them
one step further back into the past, and a new current belief about
likes is acquired.

Based on these beliefs about the occupant preferences for TV
programs, the task for the agent is to recommend programs that
all three occupants would be interested in watching together. To
achieve this, a (current) definition for the function

group likes : Program → Ω

needs to be acquired. The informal meaning ofgroup likes is
that it is true for a program iff the occupants collectively like the
program. (This may involve a degree of compromise by some of
the occupants.) Training examples for this function can come in the
form of individual examples and/or rules. Here are two examples:

Bt∀x.((x = (“ABC news”, 30 ,News ,G, “ . . . ”))

−→ (group likes x))

Bt∀x.(((projGenre x) = Sports) −→ (group likes x)).

short description of paper 10 2007/5/25

The following is a typical definition forgroup likes acquired
from training examples.

Bt∀x. ((group likes x) =

if ((∧3 Ba likes Bb likes Bc likes) x) then ⊤

else if ((∧3 �Ba likes Bb likes �Bc likes) x) then ⊤

...

else ⊥).

The algorithm used to acquire the definition is a generalisation of
Rivest’s decision-list learning algorithm (Rivest 1987).We shall
not be concerned with the actual algorithm here, details of which
can be found in (Lloyd and Ng 2007b) and (Lloyd and Ng 2007a).
Instead we will look at the kind of computational tasks that must
be solved in support of the algorithm. The most important of these
involve simplifying terms of the form

(x = (“ABC news”, 30 ,News ,G, “ . . . ”))∧

((∧3 Ba likes Bb likes Bc likes) x)

and

((projGenre x) = Sports)∧

((∧3 �Ba likes Bb likes �Bc likes) x)

in the context ofBt, using the previously acquired definitions of
likes, the standard equality theory, and global assumptions like

�ϕ = ϕ ∨ �ϕ

 Biϕ −→ Bi ϕ.

It should be clear that all the different computational (sub)tasks
illustrated in Examples 6, 7 and 8 are needed in tight integration of
each other to solve the above computational problems.

6. Implementation Issues
Implementation Language We have a prototype implementation
of a Bach interpreter written inC++. An industrial-strength imple-
mentation is currently being developed using Lisp. We optedfor
Lisp as the implementation language because it has a good balance
of computational efficiency and language expressiveness, an im-
portant feature given our limited programming resources. There is
a rich set of library functions in Lisp. Bootstrapping from these pro-
vides us with a mature and efficient low-level system call library.
We find the following two features of Lisp particularly useful in our
development:

• built-in support for garbage collection and symbolic types;
• strong support for numeric computation, most notably large

integers and complex numbers.

Another noteworthy advantage that comes from using Lisp is
the ease with which the existing interpreter can be converted into a
compiler once it reaches a more mature state. The macro facility of
Lisp can be used to transform performance-critical portions of code
into specialised Lisp routines that can then be compiled andopti-
mised by the Lisp environment. Orders-of-magnitude improvement
in efficiency can be obtained with minimal effort this way.

Standard Equality Theory Most of the equations in the standard
equality theory can be accepted as is by the Bach interpreter. The
more complex ones are implemented as system-level subroutines.
These include the first three equations for= : a → a → Ω and
Equations (C1), (C2), (E), (A), and (B). These equations aretried
before any other equations in pattern matchings.

Syntactical Variables In theory, syntactical variables in a schema
must first be instantiatedbeforethe schema can be pattern-matched
against a candidate redex. This is realized in practice by adding to
the pattern matching algorithm (Figure 1) a special case forwhen
s|o is a syntactical variable, in which cases|o is instantiated with
t|o, subject tot|o satisfying all the side conditions (if there are any)
on the syntactical variables|o.

Redex Selection The overall redex-selection strategy is leftmost-
outermost reduction, which gives lazy evaluation. This is,however,
not strictly followed. Input equations can be graded, in which case
we perform leftmost-outermost reduction using only level 1input
equations to begin with, and in general moving from leveli to level
i+1 only when no redex can be found using leveli input equations.
Fine-grained control over evaluation order can be achievedusing
this mechanism.

Theorem Prover The tableau theorem proving system was imple-
mented using the framework presented in (del Cerro and Gasquet
2002). Most of the tableau rules in Figures 5 and 6 can be easily
implemented. The main exception is the universal rule. It isin gen-
eral very hard to know what is a good choice of term to instantiate
a universally quantified variable. We use a variant of the incremen-
tal closure algorithm described in (Giese 2001) to implement the
universal rule. Backtracking algorithms can be used instead.

Interactions between Computation and Proof The rules and
strategies governing the interactions between computation and
proof are not well developed at the moment. We are investigat-
ing the use of tactics and tacticals to improve this aspect ofthe
system.

We plan to release the system later in the year.

7. Related Work
This section contains a discussion of related work.

Modal computation has been studied for 20 years or so, mostly
in the logic programming community in the context of epistemic
or temporal logic programming languages. Useful surveys ofthis
work are in (Orgun and Ma 1994) and (Gergatsoulis 2001). A re-
cent paper showing the current state of the art of modal logicpro-
gramming languages is (Nguyen 2006). What is common between
these works and this paper is the emphasis on epistemic and tempo-
ral modalities. What is different is that almost all are based on Pro-
log and are, therefore, first order, and it seems they either provide
epistemic modalities or temporal modalities, but not both.Bach ex-
tends typical modal higher-order theorem proving systems,such as
those in (Fitting and Mendelsohn 1998) and (Fitting 2002), largely
in that it also has an equational reasoning component.

Modal logic has also been studied in the functional program-
ming community in the context of type systems. In particular,
modal (propositional) logics have been used to formulate sophis-
ticated type systems that capture complex properties of environ-
ments in which programs are executed. Useful introductionsto this
line of work include (Nanevski 2004) and (Fairtlough et al. 2001).
Bach differs from these works in that modalities appear directly
inside the language, not in a (meta-level) type system.

We turn now to related work in higher-order logic. The tradi-
tional foundation for functional programming languages has been
the λ-calculus, rather than a higher-orderlogic. However, it is
possible to regard functional programs as equational theories in a
higher-order logic and this also provides a useful semantics. Bach
extends the core computational mechanisms of existing functional
languages in that it also contains a theorem-proving system, it is
modal, and it admits logic programming idioms through program-
ming with abstractions.

short description of paper 11 2007/5/25

In the 1980s, higher-order programming in the logic program-
ming community was introduced through the languageλProlog
(Nadathur and Miller 1998). The logical foundations ofλProlog
are provided by almost exactly the same logic as that underly-
ing Bach (with the modal facilities removed). However, a differ-
ent sublogic is used forλProlog programs than the equational the-
ories proposed here. InλProlog, program statements are higher-
order hereditary Harrop formulas, a generalisation of the definite
clauses used by Prolog. The language provides an elegant useof
λ-terms as data structures, meta-programming facilities, universal
quantification and implications in goals, amongst other features. A
more modern and well developed higher-order logic programming
system is Mercury (Henderson et al. 2006).

A long-term interest amongst researchers in declarative pro-
gramming has been the goal of building integrated functional
logic programming languages. Probably the best developed of
these functional logic languages is the Curry language (http:
//www.informatik.uni-kiel.de/∼curry), which is the result
of an international collaboration over the last decade. A survey of
functional logic programming up to 1994 is in (Hanus 1994).

8. Conclusion
This paper has introduced a novel modal functional logic program-
ming language called Bach. The main innovation in Bach is thepro-
vision of native support for modalities as a basic language construct
in the functional programming context. As shown in the paper, this
increased expressiveness can be put to good use in the development
of dynamic and multi-agent systems.

A second contribution of Bach is the integration of equational
reasoning and theorem proving in a unified computational system.
The resultant enhanced support for logic programming in thefunc-
tional context represents another useful step in the development of
functional logic programming languages.

Future work Much remains to be done on the development of
Bach. New algorithms and design approaches need to be developed
to speed up performance-critical aspects of the language. The basic
language also need to be extended with constructs like modules and
I/O to make it a practical programming language.

Acknowledgments

Many thanks to Joshua Cole and Rajeev Goré for numerous helpful
discussions. We are particularly grateful to Joshua Cole for pro-
viding an early implementation of the theorem prover. NICTAis
funded through the Australian Government’s Backing Australia’s
Ability initiative, in part through the Australian Research Council.

References
K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,

Logic and Databases, pages 293–322. Plenum Press, 1978.

J. J. Cole, M. Gray, J. W. Lloyd, and K. S. Ng. Personalisation
for user agents. InProceedings of the 4th International Joint
Conference on Autonomous Agents and Multi Agent Systems,
pages 603–610, 2005.

L. F. del Cerro and O. Gasquet. A general framework for pattern-
driven modal tableaux.Logic Journal of the IGPL, 10(1):51–83,
2002.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning
about Knowledge. MIT Press, 1995.

M. Fairtlough, M. Mendler, and E. Moggi. Special issue: Modal-
ities in type theory.Mathematical Structures in Computer Sci-
ence, 11:507–509, 2001.

M. Fitting. Types, Tableaus, and Gödel’s God. Kluwer Academic
Publishers, 2002.

M. Fitting and R. L. Mendelsohn.First-order Modal Logic. Kluwer
Academic Publishers, 1998.

D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev.Many-
Dimensional Modal Logics: Theory and Applications, volume
148 of Studies in Logic and The Foundations of Mathematics.
Elsevier, 2003.

M. Gergatsoulis. Temporal and modal logic programming lan-
guages. In A. Kent and J. Williams, editors,Encyclopedia of Mi-
crocomputers, volume 27, pages 393–408. Marcel Dekker, 2001.

M. Giese. Incremental closure of free variable tableaux. InPro-
ceedings of International Joint Conference on Automated Rea-
soning, Siena, Italy, number 2083 in LNCS, pages 545–560.
Springer-Verlag, 2001.

M. Hanus. The integration of functions into logic programming:
From theory to practice.Journal of Logic Programming, 19&20:
583–628, 1994.

M. Hanus (ed.). Curry: An integrated functional logic language.
http://www.informatik.uni-kiel.de/∼curry.

F. Henderson, T. Conway, Z. Somogyi, D. Jeffery, P. Schachte,
S. Taylor, C. Speirs, T. Dowd, R. Becket, and M. Brown.The
Mercury Language Reference Manual. 2006.

P. M. Hill and J. W. Lloyd. The Gödel Programming Language.
MIT Press, Cambridge MA, 1994.

J. W. Lloyd. Logic for Learning: Learning Comprehensible Theo-
ries from Structured Data. Springer, 2003.

J. W. Lloyd. Knowledge representation and reasoning in modal
higher-order logic.http://rsise.anu.edu.au/∼jwl, 2007.

J. W. Lloyd. Foundations of Logic Programming. Springer, 2nd
edition, 1987.

J. W. Lloyd. Programming in an integrated functional and logic
language. Journal of Functional and Logic Programming, 3,
1999.

J. W. Lloyd and K. S. Ng. Belief acquisition for agents. In
preparation, 2007a.

J. W. Lloyd and K. S. Ng. Learning modal theories. In S. Muggle-
ton and R. Otero, editors,Proceedings of the 16th International
Conference on Inductive Logic Programming, 2007b.

G. Nadathur and D. Miller. Higher-order logic programming.In
D. Gabbay, C. Hogger, and A. Robinson, editors,Handbook of
Logic in AI and Logic Programming, Volume 5: Logic Program-
ming. Oxford, 1998.

A. Nanevski.Functional Programming with Names and Necessity.
PhD thesis, School of Computer Science, Cargenie Mellon Uni-
versity, 2004.

L. A. Nguyen. Multimodal logic programming.Theoretical Com-
puter Science, 360:247–288, 2006.

M. A. Orgun and W. Ma. An overview of temporal and modal logic
programming. In D. Gabbay and H. Ohlbach, editors,Proceed-
ings of the First International Conference on Temporal Logics
(ICTL’94), volume 827 ofLNAI, pages 445–479. Springer, 1994.

S. L. Peyton Jones.The Implementation of Functional Program-
ming Languages. Prentice-Hall, 1987.

R. L. Rivest. Learning decision lists.Machine Learning, 2(3):229–
246, 1987.

short description of paper 12 2007/5/25

