Draft — Do not distribute

Modal Functional Logic Programming

J.W. Lloyd

Computer Sciences Laboratory
The Australian National University

john.lloyd@anu.edu.au

Abstract

This paper introduces aspects of a novel modal functiorgitlo
programming language called Bach that is an extension oéxhe
isting functional logic language Escher. Language faesgiavail-
able in Bach but not in Escher include (1) support for mouksit
and (2) an improved theorem-proving capability. We show how
the increased expressiveness of Bach can be exploited doigeo
easy-to-understand programs for solving a variety of cdatfmnal
problems that arise in applications, especially agentficiijpns.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guage§ Formal Definitions and Theory

General Terms Languages, Theory, Design

Keywords modal functional logic programming, modal logic,
equational reasoning, theorem proving

1. Introduction

This paper continues one thread in the development of deilar
programming languages that goes back about 15 years. Tite sta
ing point was the recognition that Prolog (Lloyd 1987) hasous
flaws that reduces its credibility as a declarative progrargrtan-
guage; these flaws include non-declarative meta-programiar-
cilities and the lack of a type system. This motivated thel&ro-
gramming language (Hill and Lloyd 1994) that was closelyeoias
on Prolog but had a polymorphic type system and declaratetam
programming facilities. The next step was Escher (LIoyd2)3Bat
differed markedly from Godel in that it was a higher-orderduage
and was based on equational theories rather than clausaiebe
In its final form, Escher was presented as an extension todask
thus taking advantage of the many good design decisionsadf th
language, by adding the idea of programming with abstrastio
(Lloyd 2003) that provides the logic programming idiomscliesr
also avoided the highly problematical negation as failute by
treating negation as just another function. Escher isedltt the
functional logic language Curry (Hanus ed.).

This paper introduces the language Bach that takes a signifi-
cant step beyond Escher in that modalities and improvedéeheo
proving support are included. The improved theorem-pigp\ia-
pability of Bach extends the range of computational prolsi¢nat
can be solved automatically. The main motivation for intrcidg

[Copyright notice will appear here once 'preprint’ optiGrémoved.]

short description of paper

K.S.Ng J.Veness

Symbolic Machine Learning and Knowledge
Acquisition, NICTA

{keesiong.ng, joel.veness}@nicta.com.au

modal facilities is the existence of the extensive and irtgtrclass
of agent applications. When an agent is deciding what adtion
perform next it is common for modal considerations to be impo
tant; for example, epistemic modalities can be needed Bedais
necessary to reason about the beliefs of other agents apdtaim
modalities can be needed because it is necessary to reamdrbab
liefs in the past, present, or future. Thus, Bach can be degbas
a general-purpose, declarative programming languageshsr-
ticularly well-suited to the development of autonomousragend
multi-agent systems.

The paper is organised as follows. Section 2 contains a sum-
mary of the logic underlying Bach. The main equational reaso
ing component of Bach is described in Section 3. This is Yodlo
by a presentation of the theorem proving component in Sedtio
Small instructive programming examples are sprinkledughmut
the two sections to illustrate important concepts. Moraiicant
applications can be found in Section 5. Implementationdssare
discussed in Section 6. Section 7 gives a list of related \@otkwe
conclude with a statement on what has been achieved in 8etio

2. Logic

We outline the most relevant aspects of the logic here, fogus
to begin with on the monomorphic version. We define types and
terms, and give an introduction to the modalities that we wgeé.

Full details of the logic can be found in (LIoyd 2007).

Definition 1. An alphabetconsists of three sets:
1. A set¥ of type constructors.

2. A set¢ of constants.
3. A setl of variables.

Each type constructor i has an arity. The sef always in-
cludes the type constructar of arity 0. {2 is the type of the
booleans. Each constant ¢hhas a signature. The s®t is denu-
merable. Variables are typically denotedyy, z,

Definition 2. A typeis defined inductively as follows.

1. If T is a type constructor of aritg andas, . . ., ay, are types,
thenT «a; ...ay is a type. (Thus a type constructor of arity
is atype.)

2. If « andg are types, then — 3 is a type.

3. Ifas,...,a, are types, then; x --- x a,, iS atype.

The set¢ always includes the following constants.
. T and_L, having signature?.
. =a, having signaturec — o — 2, for each typex.
. =, having signature? — (2.
A, V, —, «—, and«—, having signature? — 2 — (2.

oA W N R

. Yo andIl,, having signaturéa — £2) — (2, for each typex.

2007/5/25

The intended meaning of is true, and that ofi_ is false. The
intended meaning ok, is identity (that is=, x y is T iff and
y are identical), and the intended meanings of the connective
A, V, —, «——, and+— are as usual. The intended meanings of
Y, and I1,, are thatY, maps a predicate t@ iff the predicate
maps at least one elementtoand I7, maps a predicate to iff
the predicate maps all elementsTo

We assume there are necessity modality operairdor i =
1,...,m.

Definition 3. A term, together with its type, is defined inductively
as follows.

1. Avariable in of type « is a term of typex.

2. A constant in® having signaturex is a term of typex.

3. If tis a term of type3 andx a variable of typey, thenAz.t is a
term of typea — 3.

4. If sis a term of typex — (3 andt a term of typen, then(s t)
is a term of types.

5. If t1,...,t, are terms of typevs, ..., a,, respectively, then
(t1,...,tn) isaterm of typevs X - -+ X an.

6. If tis aterm of typex andi € {1,...,m}, thend;t is a term
of typea.

Terms of the form(X, Az.t) are written asd,x.t and terms
of the form (II, Ax.t) are written asv,x.t (in accord with the
intended meaning of, andIl,).

terpretation, while local assumptions only have to be tru¢ghe
actual world in the intended interpretation. Each kind afumsp-
tion has a certain role to play in computations. A theory isaled
by a pair(G, L), where§ is the set of global assumptions afds
the set of local assumptions.

A Bach program is a theory in the logic. The inference mech-
anism underlying Bach combines an equational reasoningrsys
and a theorem prover. The equational reasoning systemeffeirt,

a computational system that significantly extends exisfinge-
tional programming languages by adding facilities for catinyg
with modalities. The theorem prover is a fairly conventidahleau
theorem prover for modal higher-order logic similar to wisgbro-
posed in (Fitting 2002). The computation component and tbefp
component are tightly integrated, in the sense that eitaeroall
the other. Furthermore, this synergy between the two mabesi{
ble all kinds of interesting reasoning tasks.

We describe the equational reasoning system next. Thidwill
followed by a discussion of the proof system.

3. Computation
Informally, thecomputation problers as follows.

Given a theoryT, a termt, and a sequendd;, ---J;, of
modalities, find a ‘simpler’ termt’ such that the formula
0j, ---0;,.V(t = t') is a consequence 6f.

Thus ¢t and ¢’ have the same meaning in all worlds accessible

Constants can be declared to be rigid; they then have the samefom the point world in the intended interpretation accogrio the

meaning in each world (in the semantics). Except in the most s
phisticated applications, it is entirely natural for sonoastants to
be rigid; for example, all constants (data constructorsfandtions
alike) in the Haskell prelude can be declared to be rigid.rintes
rigid if every constant in it is rigid.

The polymorphic version of the logic extends what is given
above by also having available parameters which are typeblas
(denoted byu, b, ¢, . ..). The definition of a type as above is then
extended to polymorphic types that may contain parametsis a

modalities(1;, - - -0,
Here are the details about a mechanism that addresses the com

putational problem by employing equational reasoning terite

terms to ‘simpler’ terms that have the same meaning. We first e

tablish some notation. The occurrencef a subterms in a termt¢

is a description of the path from the root of the syntax tregtofs.

The notationt[s/r], denotes the term obtained franby replacing

s at occurrence with ». A modal path to a subterm is the sequence

of indices of modalities whose scope one passes through gdien

the definition of a term as above is extended to terms that may jng down to the subterm. A substitution is admissible if gt

have polymorphic types. We work in the polymorphic versidn o
the logic in the remainder of the paper. In this case, we dnept

in 3., Vo, and=,, since the types associated withv, and= are
now inferred from the context. The universal closure of arfola

o is denoted by/(p).

As is well known, modalities can have a variety of meanings,

depending on the application. Some of these are indicatest he
more detail can be found in (Fagin et al. 1995), (Gabbay €0ai3)
and (Lloyd 2007), for example.

In multi-agent applications, one meaning fory is that ‘agent
i knows ¢'. In this case, the modality]; is written asK ;. A
weaker notion is that of belief. In this case;» means that ‘agent
i believesy’ and the modalityJ; is written asB;.

The modalities also have a variety of temporal readings. We

adopt the usual modalities (‘next’), O (‘always in the future’),
<& (‘sometime in the future’), an@/ (‘until’). Dual to these are
the past temporal modalitieg (‘last’), B (‘always in the past’)#
(‘sometime in the past’), and (‘since’).

A novel feature of the logic is that modalities can be appteed
terms that are not formulas. (A formula is a term of typg Thus
terms such a$3;42 and @A, whereA is a constant, are admitted.
Such terms are called modal terms.

that replaces a free occurrence of a variable that is in thigesof a
modality is rigid.

Definition 4. Let T = (9,4L) be a theory. Acomputation using
Oj, ---0Oj, with respect tdJ is a sequencét; };—, of terms such

that the following conditions are satisfied. Foe 1,...,n — 1,
there is

1. a subterny; of ¢; at occurrence; of type «;, where the modal
path too; int; iSki ... km,,

2. (a) aformuled;, ---0;,.0p, - - - Og
(b) aformulaVv(u; = v;)in G, or
(c) aformulady, ---0;, O, -+ - Ui, V(wi = v;) that is the

theorem of a proof with respect f and

3. a substitutio; that is admissible with respecttq = v;

V(u; =wv;)inkL, or

my

such thatu;0; is a-equivalent tos; andt; 41 is t;[si /vi0:]o, .

The termt, is called thegoal of the computation and,, is
called theanswer Each subterm; is called aredex Each formula
Ojy 05,0k -+ - Og,,, V(i = v;) or V(u; = v;) is called an
input equation The formulall;, ---0; . V(t1 = t,) is called the
resultof the computation.

The logic can be given a rather conventional semantics in the Note: Some technical details in Definition 4 and Definitioneiolv

usual Kripke style for modal logics; the main novelty is giyia
semantics to modal terms.

A theory in the logic, which is a set of formulas, can consfst o
two kinds of assumptions, global and local. The essentitardince
is that global assumptions are true in each world in the tredrin-

short description of paper

have been surpressed to ease the presentation. Full detailse
found in (Lloyd 2007).

We remark that the treatment of modalities in a computation
has to be carefully handled. The reason is that even suchpesim
concept as applying a substitution is greatly complicatedhie

2 2007/5/25

modal setting by the fact that constants generally haveraifft
meanings in different worlds and therefore the act of apgjya
substitution may not result in a term with the desired megniinis
explains the restriction to admissible substitutions mdlefinition
of computation. It also explains why, for input equationattare
local assumptions, the sequence of modalifigs - - - kai whose

In the algorithm, the expressia@h {z/t|,} denotes the compo-
sition of @ with {z/t|, }. Since onlya-equivalence is required here,
given a termw, we can compute (6 - ¢) by computing(v8) .

Theorem 2. Let s andt be terms of the same type with no free
variables in common. I§ is matchable td, then the algorithm in

scopes are entered going down to the redex must appear in theFigure 1 terminates and returns a matches @ ¢. Otherwise, the

modalities at the front of the input equation. (For input &ipns
that are global assumptions, in effect, every sequence dalities
that we might need is implicitly at the front of the input etjoa.)

A selection rulechooses the redex at each step of a computa-
tion. A common selection rule is theftmostone which chooses the
leftmost outermost subterm that satisfies the requirentdridefi-
nition 4. It is straightforward to extend Definition 4 so thatltiple
redexes can be selected at each step. Then a common setatgion
is the parallel-outermostone that selects all outermost subterms
that each satisfy the requirements of Definition 4.

Theorem 1. Let T be a theory. Then the result of a computation
using;, - - - O;,. with respect tdJ is a consequence 6f.

3.1 Pattern Matching

For the computation system introduced, given tesnasidt, there
will be a need to determine whether or not there is a subistitdt
such thatsf is a-equivalent ta. This motivates the next definition.

Definition 5. Let s and ¢ be terms of the same type. Then a
substitutiond is amatcherof s to ¢ if s is a-equivalent tot. In
this caseg is said to benatchableo ¢.

The matching algorithm in Figure 1 determines whether one
term is matchable with another. Note that the inputs to thjs-a
rithm are two terms that have no free variables in commors It i
usual to standardise apart before applying a unificatioaragn
so doing this for matching as well is not out of the ordinarytie
figure, the subterm of a terimat occurrence is denoted|..

function Match(s,t) returns matchem, if s is matchable to
failure, otherwise;

inputs: s andt, terms of the same type with no free variables
common;

0:={}
while s # t do

o :=occurrence of innermost subterm containing symbol
at leftmost point of disagreement betweeandt;

n

if s, has formAz.v andt|, has form\y.w andx # y
then
s =s[Az.v/Az.(v{x/2})]o; % z @ new variable
t:=ty.w/Az.(w{y/z})]o;
elseif s|, is a free occurrence of a variabteand there
is no free occurrence af in s to the left ofo and

each free occurrence of a variableljpis a free
occurrence irt

then
0:=0-{x/tlo},
s=s{z/tlo};

elsereturn failure;
return 0;

Figure 1. Algorithm for finding a matching substitution

short description of paper

algorithm terminates and returns failure.
Here are three examples to illustrate the matching algarith

Example 1. Letsbelz.(f = (g y z)) andt beXz.(f z (¢ A B)),
wheref, g, A, and B are constants with suitable signatures. Then
the successive steps of the algorithm are as follows.

0. A%”«(f z(gy2)) Ag‘(f z (9 A B))
L dw.(fw(gyz) Mo(fwl(g 1;1 B)) {y/A}

2 w(fwlgdz) w(fw(gAB) {=/B)
3. Mw.(fw(gAB)) Mu.(fw(gADB))

(The arrows indicate the points of disagreement and thetisubs
tutions in the last column are the substitutions appliedhat t
step in the algorithm.) Thudz.(f = (¢ y z)) is matchable to
Az.(f z (g A B)) with matcher{y/A} - {z/B}.

Example 2. Lets be(f = (¢ «)) andt be(f y (g A)). Then the
successive steps of the algorithm are as follows.

0. (fan(g:v)) (sz/(gA)) {z/y}
1. (fyl(g ?T/)) (fy(gz;l))

Thus(f = (g x)) is not matchable tdf v (g A)), since there is
a free occurrence af in s to the left of the point of disagreement.
Note that, in contrask and¢ are unifiable.

Example 3. Let s be \z.(f = y z) andt be \z.(f =z A (g x)).
Then the successive steps of the algorithm are as follows.

0.)\l”-(fSCZT/Z) Az (fed(ge)) {y/A}
1.)\m.(f:cA%) Am.(f:cAgg:c))

ThusAz.(f = y z) is not matchable tox.(f = A (g x)), since
x has a free occurrence {ig =) but this occurrence is not free in

Ae.(fz A(gx)).

3.2 Standard Equality Theory

Computations generally require use of definitions-0the connec-
tives and quantifiers, and some other basic functions. Tdeffe-
tions, which constitute what we call the standard equaligoty,
are discussed next.

Given the intended meanings of equality, the connectives an
the quantifiers, it is natural that their definitions wouldmally be
taken to beglobal assumptions in the theories of applications.

In general, a schema is intended to stand for the collection o
formulas that can be obtained from the schema by replac@syit-
tactical variables with terms that satisfy the side coondj if there
is any. (Syntactical variables are typeset in bold in thefahg.)
Thus a schema is a compact way of specifying a (possibly iajini
collection of formulas. When using a schema in a computaon
choice of terms to replace its syntactical variables isfivatle. The
resultant formula is then handled as before.

Now we give a series of definitions ef, connectives, quan-
tifiers, and so on, that constitute the standard equalitgriheill
substitutions appearing in these definitions are assumée -

3 2007/5/25

missible. The first definition is that fee.
=:a—a—
Cz1...2n=Cuy1...yn)=(x1=9y1) A+ A (T = yn)
% whereC is a data constructor of arity.
Cz1i...en=Duy1...ym)=1
% whereC is a data constructor of arity, D is a data
% constructor of arityn, andC # D.
(@1, wn) = (Y1, yn)) = (@ = Y1) Ao A (T = yn)
% wheren = 2,3,....
(Az.u = Ay.v) = (less Ax.u Ay.v) A (less Ay.v Az.u)
The first two schemas in the above definition simply captuee th
intended meaning of data constructors, while the third wagt
an important property of tuples. (Note that for the first soheif
n = 0, then the body iF".)
The fourth schema is more subtle. In formulations of higher-

order logics, it is common for the axioms for equality to umbé
the axiom of extensionality:

(f =9)=Vz.((f z) = (g ®)).

This axiom is not used in the computational part of the reason
ing system because it is not computationally useful: shgvtfrat
vVz.((f =) = (g x)) is not generally possible as there can be in-
finitely many values of: to consider. Instead, a special case of the
axiom of extensionality is used. Its purpose is to provideethod

of checking whether certain abstractions representintgfgats, fi-
nite multisets and similar data types are equal. In suchscase
can check for equality in a finite amount of time. The fourthesoa
relies on the two following definitions.

less : (a—b) — (a—b) — 2
less \ed z =T % whered is a default term.
less (Ax.if u then v else w) z =

(Vz.(u — v=1(zx))) A (less (remove Ax.u \z.w) 2)

remove : (a — 2) — (a — b) — (a — b)

remove s A\x.d = \x.d % whered is a default term.

remove s Ax.if u then v else w =

Az.if uw A (s x) then v else ((remove s Axz.w))

There is a default term for each type. For example, the detiauh
of type 2 is | and that of typelnt is 0. The intended meaning of
less is best given by an illustration. Consider the multiset&nd
n. Thenless m n is true iff each item in the support af is also in
the support of, and has the same multiplicity there. For sétss
is simply the subset relation.

The following definitions are for the connectivesV, and—.

AN 2—02—(

TAz==z

1l Az=1

(xVyhz=(xAz)V(yA=z)

(if u then v else w) At =if uw At then v else w At

uA (Jz1.-- - Fzpv) = Jz1. - Jzn (W A V) (C1)
% wherew does not contain a free occurrence of any ofithe
uA(x=t)ANv=u{z/t} N (x=t) Nv{z/t} (C2)

% wherex is a variable free inu or v or both, but not free irt,
% andt is not a variable.

short description of paper

Vi 22— 02—

TVe=T

lVvez==x

(if w then T else w) Vt = if u then T else w V't
(if w then L elsew)Vit=(—muAw)Vt

- 02— 1
~1=T
~T=1

- (nx)==

“(@Ay)=(na)Vi(my)
~(@vy)=(ma)A(my)

= (if u then v else w) = if u then = v else = w

Symmetric versions of some of the above equations have been

omitted for brevity here.

These definitions are straightforward, except perhapsiolast
two schemas in the definition @f. The second last schemas allow
the scope of existential quantifiers to be extended proviidgoes
not result in free variable capture.

The last schema allows the elimination of some occurrentes o

a free variable#, in this case), thus simplifying an expression. A
similar schema allowing this kind of simplification also acg in
the definition of® below. However, a few words about the expres-

sionu A (x = t) A v are necessary. The intended meaning of

this expression is that it is a term such tat= t) is ‘embedded
conjunctively’ inside it. More formally, a termhis embedded con-
junctively int and, ift is embedded conjunctively in(or s), then
t is embedded conjunctively in A s. So, for examplez = s is
embedded conjunctively ilp A ¢) V) A ((x = s) A (tV u)).

Next come the definitions of andIl. Recall thatz.t stands
for (X Az.t) andVz.t stands for(II Ax.t).

Y :i(a—N2)— N
de. T =T
dr.l =1
Jz1.- - Frn (A (z1=u) ANy) =

Fxo. - - Jxp . (x{z1/u} ANy{zi/u}) (E)

% wherez is not free inu.
Jz1.--- Fzp(uw Vo) = 3z1. - Fzpw) V (Tzr. - - - Japv)
Jz1. - Fxn.(if w then T else v) =
if dx1.--- 3z then T else zq. -+ - Jxy.v

Jz1. -+ Fxn.(if w then L else v) = z1.- - Fzn. (- u Av)

II:(a—0)— 1N
V.o Ve (L —u)=T
V.o -Vep (@ A (z1 =u) Ay — v) =

Vag. - Vaon.(x{zi/u} Ay{z1/u} — v{z1/u}) (A)

% wherez is not free inu.

Vzi. Ve (uVo — t) =

(Vz1.- - Von.(u — t)) A (Vo1 - Ven.(v — t))
Vz1. .- Voo ((if w then T else v) — t) =

(Vz1.- - Von.(u — t)) A (Vo1 - Ven. (v — t))
V1. Voo ((if u then L else v) — t) =

Vei. o -Vep.(cuAv — t)

4 2007/5/25

Next comes the definition for thg_then_else function.

if then_else : 2 XaxXa—a
if T then uelse v=1u
if L then uelsev="v
Note that a term of the forrif z then y else z is really a syntactic
sugar forif _then_else (z,y, z).
The next two equations involve function application and the
if _then_else function.
(w (if = then y else z)) = if x then (w y) else (w z) (I1)
((if = then y else z) w) = if x then (y w) else (z w) (12)
There is also the definition correspondingzaeduction.

Azu o — T

At =u{z/t} % whereo — T is the type of\z.u.

(B)
Also included in the standard equality theory is the schema
(DZ‘S t) = Di(s t), (Ml)

wheres is a syntactical variable ranging over terms of type- 3
andt is a syntactical variable ranging ovegid terms of typea.
A similar schema holds for the dual modality; (when g is (2).
Another useful schema in the standard equality theory is

Oit = ¢, (M2)

wheret is a syntactical variable ranging ovegid terms.

3.3 Examples of Computation
Here are a few examples to illustrate computation.

Example 4. Consider the following definitions of the functions
append, permute and delete, which have been written in the
relational style of logic programming.

append : List a X List a X List a — 2

(append (u,v,w)) = ((u=[) A (v=w)) v
Ir3zJy.(u=rfz) A(w=rty) A (append (z,v,y)))

permute : List a X List a — 2

(permute ([], z)) = (z = [])
(permute (zfy,w)) = Ju.Fv.3z.(w = ufv) A
(delete (u,xty,z)) A (permute (z,v)))

delete : a x List a X List a — §2

(delete (z,[],y)) = L

(delete (z,yfz,w))=((z=y) AN (w=2))V
Fv.((w =y fv) A (delete (z, z,v)))

The intended meaning afppend is that it is true iff its third argu-
ment is the concatenation of its first two arguments. Thenotee
meaning ofpermute is that it is true iff its second argument is a
permutation of its first argument. The intended meaning@éte

is that it is true iff its third argument is the result of déhet its first
argument from its second argument.

The notable feature of the above definitions is the presence
of existential quantifiers on the RHS of the input equatists,
not surprisingly the key statement that makes all this wark i
concerned with the existential quantifier. To motivate ,tlrisn-
sider the computation in Figure 2 that results from the goal
(append (1£[],24]],z)). At one point in the computation, the

short description of paper

following term is reached:
I’ 3 I (L= YA =2") A

(z =7"1y") A (append (z',24[],y"))).

An obviously desirable simplification that can be made te ttim
is to eliminate the local variable since there is a ‘value’ (that is,
1) for it. This leads to the term

3’ 3y ([= 2") A (x = 18y') A (append (¢, 28]],y))).-
Similarly, one can eliminate’ to obtain

Jy'((z = 14y") A (append ([],24],9)))-

After some more computation, the answer 1424 [] results. The
input equation that makes all this possible is Equation \{&ich
comes from the definition oF : (a — 2) — 2 in the standard
equality theory and has-abstractions on the LHS of the equation.
This example illustrates how the definitions in the standard
equality theory allow the traditional functional prograimg style
to be extended to encompass the relational style of logigrpro-
ming. This general technique is callpcbgramming with abstrac-
tions(Lloyd 2003).
Another feature of Bach-style logic programming is that al-
ternative answers are returned as a disjunction. Thus tlaé go
(append (x,y,1424]])) will be reduced to the answer

(z=MDAy=1828]) v (=180 Ay =28]))
((=18280) A (y = 1)),

and the goa(permute (1424][], z)) will be reduced to the answer
(z=(1g2¢[)) v (z = (2414]])
Example 5. Consider the following definition of : ¢ — Nat:
(f) = if x = A then 42 else if © = B then 21
else if x = C then 42 else 0,

where A, B, C : o. With such a definition, it is straightforward to
compute in the ‘forward’ direction. Thus, for examplg, B) can
be computed in the obvious way to produce the answer 21.

Less obviously, the definition can be used to compute in the
‘reverse’ direction. For example, consider the computataf
{z | (f =) = 42 } in Figure 3, which produces the answet, C'}.
(The notation{ = | ¢ } is syntactic sugar for the termz.t.) The
computation makes essential use of Equations (I11) andWi2h
comes from the definition off _then_else in the standard equality
theory.

Vv
V

Example 6. Consider a theory that includes definitions of the
function f : ¢ — Nat at the current time and some recent times.

V. ((f z) = if (paz) then (@f x) else (@°f x))
OVr.((f x) =if (ps x) then (@f x) else 0)
®°Va.((f x) = if (p1 x) then 42 else 21)

@’V ((f x) =0).

Now supposet is a rigid term of typesc and consider the
computation of(f ¢) in Figure 4. Note how earlier definitions for
f get used in the computation: at the s@ff ¢), the definition at

the last time step gets used, and at the @éff ¢), the definition
from two time steps ago gets used. T

Also needed in this computation are the global assumptions
(M1) and (M2) from the standard equality theory.

3.4 A Comparison with Escher, Haskell, and Prolog

The equational reasoning component of Bach is essentialgxa
tension of Escher. We end this section with a comparison dxtw

2007/5/25

(append (14[],2¢[],x))
(gl =MA@tl=2) VI 32" 3 (1] ="t
(LA@E]=2)vI' 32"y (1] =r"§2") A

LV 3 I (i =7t YA (x=r"ty) A

Axz=r"1y)A
(z=r"ty) A
(append («',241],4")))

(append (z',24],9)))
(append (z',241],4")))

I’ 32" 3y (L4 =" §2") A (@ = 7" 8y") A (append («',24[],4")))
I’ 3" Y (L=)A ([=2)A (@ =7r"8y) A (append (',21[],4)))
32’ 3y (| =2") A (@ =14y") A (append (=',24]),y)))

Jy' ((z =14y") A (append ([,241],9)))

I (. =18y) A =280)

z=1424]]

Figure 2. Computation of append (14]],24]],

x)). Redexes underlined.

{z](=(2)42) }
{z]((=

if © = A then 42 else if x = B then 21 else if x = C then 42 else 0) 42) }

{z| (if x = A then (= 42) else (=

if © = B then 21 else if x = C then 42 else 0) 42) }

{z|if x = A then (42 = 42) else ((=

if © = B then 21 else if © = C then 42 else 0) 42) }
{z|if x=Athen T else (= if x = B then 21 else if x = C then 42 else 0) 42) }

{z|if x =Athen T else (if x = B then (= 21) else (= if x = C then 42 else 0) 42) }

{z|if x =Athen T else if x = B then (21 = 42) else ((=

if © = C then 42 else 0) 42) }
{z|if x =Athen T else if x = B then L else ((= if = C then 42 else 0) 42) }

{@|if x =Athen T else if v = B then L else (if x = C then (= 42) else (= 0) 42) }

{@|if x =Athen T else if x = B then L else if x = C then (42 = 42) else (0 = 42) }
{x|if v =Athen T else if v = B then L else if x = C then T else (0 =42) }
{z|if x =Athen T else if x = B then L else if x = C then T else L }

Figure 3. Computation of = | (f) =42 }

Escher and Bach. Before examining how Bach is different fimn
cher, it will be helpful to first understand the relationshigtween
Escher and Haskell, and that between Escher and Prolog.

Escher vs Haskell At the logic level, every Haskell program is
an Escher prograrh and every Escher program is a (syntactically-
correct) Haskell program which may not compile. In that sens
Escher is a superset of Haskell. The difference betweeneEsctul
Haskell comes down to the following two points.

e Haskell allows pattern matching only on data constructess.
cher extends this by allowing pattern matching on function
symbols and lambda abstractions in addition to data canstru
tors. Examples of equations that Haskell cannot handl@decl
Equation (E) and several others in the standard equalityryhe

1This is not exactly true at the implementation level, howesiace Haskell
has several advanced language features not currentlyalleain Escher.
But this is only a software maturity issue. Given more dewelent time,
these language features will be implemented and Eschethgitl be able
to run any valid Haskell program.

short description of paper

Thus Haskell cannot perform the kind of logic-programming-
style computations illustrated in Example 4.

e Escher allows reduction of terms inside lambda abstragtion
an operation not permitted in Haskell. This mechanism alow
Escher to handle sets (and similar data types) in a natucal an
intensional way. Thus Haskell cannot perform the kind of set
processing computations illustrated in Example 5.

The extra expressiveness afforded by Escher comes withce, pri
however. Some common optimisation techniques developed fo
efficient compilation of Haskell code (see (Peyton Jone¥ 1 §&

a survey) cannot be used in the implementation of Eschethiero
words, efficiency is at present still an issue for Eschehoaigh

we expect this to become less of a problem over time as congputi
power increases and new implementation techniques aréogede

Escher vs Prolog We next explore the relationship between Es-
cher and Prolog. The general relationship between Proldgtam-
dard functional programming languages is well understowobvéll

not be explored further here. Instead, we will concentratéogic-
programming facilities. Perhaps surprisingly, there tsialty a sig-

6 2007/5/25

(ft)

(pa t) then (@f t) else (@°f t)

<

if T then (@f t) else (@°f t)
(@f 1)

o(/1)

O (if (pst) then (@f t) else 0)

(if T then (@f t) else 0)
(@ft
(Y

2(if (p1 t) then 42 else 21

~—

®°(if T then 42 else 21)
0’42

@42
42

Figure 4. Computation of f ¢)

nificant overlap between Escher and Prolog. In fact, anyognoto-
gram defined without using cuts can be mechanically treeiato
Escher via Clark’s completion algorithm (Clark 1978). Fram-
ple, the definition ofuppend given in Example 4 is essentially the
completion of the following Prolog definition:

append ([], L, L).
append ([X|L1], L2,[X|L3]) «— append (L1,L2,L3).

There is of course nothing that can be done with a cut thatatdren
done in a more natural way in the functional programmingrsgtt
so nothing is lost here.

Procedurally, there is also a difference between Escher and
Prolog in that Prolog computes alternative answers one iate t
via backtrackking whereas Escher returns all alternatigsvars in
a disjunction (a set). This point is illustrated in Example 4

Bach vs Escher We can now compare Bach and Escher. An
Escherstatemenis a term of the formh = b, whereh has the
form f t1...t,, n > 0, for some functionf. In contrast, a Bach
input equation is a term of the form

Ojy -+ 05, ¥ (u = v),

where [0;, ---0;, is a sequence of modalities which may be
empty, andu andwv are arbitrary terms in the logic, possibly with
modalities in them. There are thus two main differences betw
Escher and the equational-reasoning component of Bach:

e The restriction on the form of the LHS of an Escher statemgent i
dropped in Bach. Equation (11), which we have seen serves an
important role in supporting ‘reverse’-direction comgidas in
Example 5, is an example of an equation supported in Bach but
not in Escher. The extra flexibility afforded in Bach comes at

short description of paper

a small price in the form of a more computationally expensive
pattern matching algorithm.

e Modalities are only supported in Bach; Escher cannot perfor
the kind of computations illustrated in Example 6.

We have concentrated on the equational-reasoning componen
of Bach so far. There is a significant difference in theoraoving
capabilities between Escher and Bach as well. Theorenifgov
support in Escher is provided through theandII rules in the
standard equality theory. Although sufficient for a wideiesr of
tasks, this is fundamentally a limited set. In contrast,Bhas a
full-scale theorem prover as a subsystem and the interabge
tween computation and proof makes possible all kinds oféste
ing computational tasks. The proof component is descrilesd n

4. Theorem Proving

In general, an input equation to a computation can be a thethrat
is proved by the theorem-proving component of Bach. Heré¢rere
details of a tableau proof system that can, given a th8oaynd a
formulap, determine whethep is a consequence 6f.

The system employs prefixed formulas as is often the case for
modal logics. We concentrate on the (multi-modal) loKig, (m
refers to the number of modalities) which has the tableatesys
given by the rules in Figures 5 and 6. Generally speakingsethe
rules are well known (see, for example, (Fitting and Menalahs
1998) and (Fitting 2002)), but the versions here differ imeso
details, in particular, in the use of admissibility assuimptn the
universal, abstraction, and substitutivity rules.

Definition 6. Let T be a theory. Aproof with respect td is a se-
quenceTh, . .., T, of trees labelled by prefixed formulas satisfying
the following conditions.

1. Ty consists of a single node labelled by, for some formula

®.
2. Fori=1,...,n—1,thereis
(a) a tableau ruler from Figure 5 or 6 such thaf;;; is
obtained from;,

i. if R is a conjunctive rule, by extending a branch with
two nodes labelled by the prefixed formulas in the de-
nominator ofR,

i. if Ris adisjunctive rule, by splitting a branch so that the
leaf node of the branch has two children each labelled by
one of the prefixed formulas in the denominatorhf
otherwise, by extending a branch with a node labelled
by the prefixed formula in the denominator Bf
provided that any prefixed formulas in the numeratoiRof
already appear in the branch and any side-conditiong of
are satisfied.
(b) there is a resulj of a computation and a branch is extended
with the prefixed formuld 7.
3. Each branch of’, contains nodes labelled ky) ando —),
for some prefixc and formulai).

EachT; is called atableau A branch of a tableau islosedif
it contains nodes labelled by ¢ ando —), for some prefixo
and formulay; otherwise, the branch @pen A tableau isclosedif
each branch is closed; otherwise, the tableaapien The formula
p is called thetheoremof the proof; this is denoted by - ¢.

The following soundness result can be proved.

Theorem 3. Let T be a theory. Then the theorem of a proof with
respect tdl’ is a consequence 6f.

Here are some examples of proof.

2007/5/25

(Conjunctive rules) For any prefix,

o pNY o ~(pVv) o (g —1)
g ¥ g~y g ¢
oY o) o)
(Disjunctive rules) For any prefix,
o vy o ~(pAY) cp—1
cploi oo o | o

(Double negation rule) For any prefix
g —|—\Q0
g ¥
(Possibility rules) If the prefix.n; is new to the branch, wherg
1e{l,...,m},
g <>in
on; @

g ﬁDigO
on; TP

(Necessity rules) If the prefix.n,; already occurs on the

branch, wheré € {1,...,m},
o Uip o =00
a.n; @ a.n; e

(Existential rules) For any prefix, if y is a variable of typex
new to the branch,

o Jdz.p
o o{z/y}

o Vx.p
o —p{x/y}

(Universal rules) For any prefix, if ¢ is a formula andz /t}
is admissible w.r.tp,

o Vzr.p
o plz/t}

(Abstraction rules) For any prefix, if ¢ is a formula and
{z/t} is admissible w.r.tp,

o (Az.p t)
o p{z/t}

(Reflexivity rule) If ¢ is a term of typea and the prefixo
already occurs on the branch,

o —dz.p
o —p{z/t}

o ~(Az.p t)
o —p{z/t}

ot=t

(Substitutivity rule) For any prefix, if is a formula contain-
ing a free occurrence of the variabiteof type o, and{x/s}
and{z/t} are admissible with respect g

o s=t
o p{z/s}
o plz/t}

(Global assumption rule) I is a global assumption and th
prefix o already occurs on the branch,
oY
(Local assumption rule) If is a local assumption,
19
(T introduction rules) For any prefix,
o T o L

A%

Figure 5. Tableau rules

short description of paper

(Derived rule for global implicational assumption) For any
prefixo, if ¢ —) is a global assumption,
o @ o
o P)

(Derived rule for local implicational assumption)f — 1)
is a local assumption,

1 ¢ 1 =
1’¢} 1‘\@

Figure 6. More tableau rules

Example 7. Suppose we have a theory that includes the following
as global assumptions.

proje : String X Int — Int
(projz (z,y)) =y
evenperfect : Int — (2
(evenperfect) = 3In.(n € NA (z = 2" (2" —
Consider the problem of simplifying the term
((proje) = 496) N (evenperfect (projs x)). (1)

(This kind of problem arises naturally in belief acquisitiapplica-
tions (Lloyd and Ng 2007a).) There is not much the computatio
system can do other than to expand out the second conjunet. Ho
ever, we can show using the proof system that

Vz.(((projz) = 496) — (evenperfect (projz z))). (2)
The proof is in Figure 7. An explanation of the proof follovitem

1))

=Vz.(((proje) = 496) — (evenperfect (projs x))) 1.
=((projz y) = 496) — (evenperfect (projs y)) 2.
((projz y) = 496) 3.

—(evenperfect (projs y)) 4.

—(evenperfect 496) 5.

(evenperfect 496) =T 6.

_|—|— 7-

T 8.

I e T e T S S =

Figure 7. Proof of Formula (2)

1 is the negation of the formula to be proved; 2 is from 1 by an
existential rule; 3 and 4 are from 2 by a conjunctive rule; am
3 and 4 by the substitutivity rule; 6 is by lemma introductfoom
a computation of(evenperfect 496); 7 is from 5 and 6 by the
substitutivity rule; 8 is by thé introduction rule; the tableau now
closes by 7 and 8.

Recognising the fact thdp — ¢) = ((p A q) = p), we can
construct a new input equation

((projz z) = 496) A (evenperfect (projs x))
= ((proje ©) = 496),
from which (1) can be simplified tQ(proje z) = 496).
Example 8. Suppose we have a theory that includes the following

@By, .2B<,027 .334,037 .4B<,047 .534,05
as local assumptions. Using the global assumption
@By — Bey ®3)

it is easy to show that, for each € {1,...,5}, B@®'y; is a
theorem of the belief base. Figure 8 shows the prooB@>y-.

8 2007/5/25

An explanation of the proof is as follows. Item 1 is the negawf
the formula to be proved; 2 is a local assumption; 3 is from A by
derived rule from the global implicational assumption @ijs from
3 by a possibility rule; 5 is from 4 by a derived rule from (3)is6
from 2 by a necessity rule; the tableau now closes by 5 and 6.

1 -Be’p 1.
1 ®’By 2.
1 -@Bey 3.
1.1 —Bey 4.
1.1, —@By 5.
1.1. @By 6.

Figure 8. Proof of B@?¢.

Theoremhood is, of course, undecidable in the case of higher
order logic, but it is still possible to prove theorems in man
cases of practical interest. For any one application, itossible
to examine the kind of theorem-proving tasks that will aitsthat
application and show that they will all terminate. (Othesavithe
application has to be redesigned and re-implemented irr ¢ode
achieve this.) What we have in mind here is that each apicat
is a substantial system and that it makes sense to expentl@ffo
ensuring the desired termination, in the same way as it msese
to use conventional software engineering techniques torertee
correctness of the software that implements an application

5. Applications
We look at some larger-scale applications in this section.

5.1 Logic Puzzles

Bach can be used to express and solve all kinds of logic psizzle
We present here a beautifully declarative Sudoku solvettemrin
Bach, using the puzzle in Figure 9 for illustration.

6 1 8|2 3
2 4 9

8 3 54

5 4|6 7 9

7 8 3|1 2

8 3 2
3 219 4 5

Figure 9. A Sudoku puzzle: Fill in the grid so that every row, every
column and every 83 block contains the digits 1 — 9.

We represent the puzzle as a tuple of integers. The problem th

is to find a suitable instantiation of the variables.
Square = Int X --- x Int -- dimension = 81

puzzle : Square

puzzle - (67 1, T2, 17 3, 87 27 T4, 37
Ts, 27 e, I7, 47 xrg, T9, 97 210,
8, 11,3, ®12,713,5, 4, =14, T15,
5, z16,4, 6, x17,7, T18, T19, 9,
T20, 3, T21, T22, T23, T24, T25, O, T26,
7, @7, 2s, 8, 29,3, 1, w30, 2,
31, 32, 1, 7, x33,34,9, x35,6,
Z36, 8, X37, T39, 3, Tao, Ta1, 2, Taz,
37 T43, 27 97 T44, 47 T45, T46, 5)

short description of paper

Specific rows, columns, and blocks can be retrieved fpanzie
using the following operations.

row : Int — Square — List Int

(row = z) = (map \y.(proj (y + 9z) z) idzs)

col : Int — Square — List Int

(col z z) = (map Ay.(proj (9y + z) z) idzs)

block : Int — Square — List Int

(block x z) =

(map Ay.(proj ((proj y offsets) + (start_cell x)) z) idzs)
idxs : List Int

idzs = [07 1727 3747 57 67 77 8]

offsets : Int x --- x Int --dimension =9
offsets = (0,1,2,9,10,11, 18,19, 20)

start_cell : Int — Int

(start_cell) = 9(3|z/3]) + 3(z % 3)

Blocks are numbered from left-to-right, top-to-bottom.dktg the
index into the top-left cell §tart_cell) of any given block with
the numbers inffsets gives us the indices into all the cells in the
block.

Every row, column, and block must be a permutation of the
numbers 1 to 9. This translates into a total of 27 constraintthe
variables. These constraints can be folded together ustogorm
one big constraint on the variables, which when simplifieggius
the answer to the Sudoku puzzle. This kind of reasoning leads
the following solver.

sdkConstraint : List Int — §2
(sdkConstraint x) = (permute ([1,2,8,4,5,6,7,8,9],1))
solve : Square — (2
(solve x) = (fold N (map \y.(fold A
[(sdkConstraint (row y z)), (sdkConstraint (col y z)),
(sdkConstraint (block y z))]) idzs))
Given the tern{solve puzzle), Bach returns the following answer:
(1= AN (x2=b)A(z3=9) A (xa=T)AN (x5 = 1) A
(e =T)N -+ A (Taa = 6) A (z45 = 8) A (w46 = 1).
The Sudoku solver just described makes essential use of the
programming with abstractions technique presented in Biavh
5.2 Databases

We next look at databases. Consider a TV agent that maingains
TV guide, that is, a database about television programseTére
different ways a TV guide can be represented. A standard sviay i
represent it as a relation, either in the form of a relatiatsthbase

or a Prolog program. But this standard relational represiemt

is not a good one because it ignores a functional dependency i
the data: each date, time and channel triple uniquely datesa
program. Here we represent a TV guide as a function defintitian
correctly models this functional dependency:

tv_guide : Occurrence — Program,
where

Occurrence = Date x Time x Channel

Program = Title x Duration X Genre

X Classification X Synopsis.

9 2007/5/25

Here is a typical definition fotv_guide.
B Vz.((tv_guide z) =

if (x=((1,1,2007), (21, 30), ABC))
then (“The Bill”, 50, Drama, M, “Sun ..
else if (z = ((1,1,2007), (19,00), ABC))
then (“ABC News”, 30, News, G, “The ...”)
else if (x = ((1,1,2007), (20,30), TEN))
then (“Numb3rs”, 60, Crime, M, “When ..

)

)

else (“7,0, NA, NA, “7)),

whereB; is the belief modality of the TV agent, and the last entry
(“7,0, NA, NA, “7) is the default term of typérogram.

Listed below are some typical queries we can answer using the
definition. Each query is stated formally and the answer adeth
is given. The computational mechanism with which the ans\aex
computed is explained earlier in Example 5. All computatiane
done in the context aB;.

1. Find the program at occurrengg, 1, 2007), (20, 30), TEN).
Query:(tv_guide ((1,1,2007), (20,30), TEN)).
Answer: (“NumbS8rs”, 60, Crime, M, “When ...”).
2. Find the time and channel “The Bill” is screened on 1 Jary200
Query:Jy.((y = (tv_guide ((1,1,2007),t,¢)))
A ((projTitle y) = “The Bill”)).
Answer:(t = (21,30)) A (¢ = ABC).
3. Find all M -rated programs in the database.
Query:{ z | Jy.((z = (tv_guide y)) A
((projClassification x) = M)) }.
Answer:{ (“The Bill”,50, Drama, M, “...”),
(“Numb8rs”, 60, Crime, M, “...7), ...
4. Find all current-affairs programs in the database.
Query:{ z | Jy.((z = (tv_guide y)) A
(currentAffairs (projGenre x))) }.
Answer:{ (“ABC News”, 30, News, G, “...”), ... }.
This last example shows how _guide can be used in conjunc-

tion with other functions, in the same way relational dasasa
can be joined to answer complex queries.

1.

The definition fortv_guide given above has a linear structure.
This is clearly not the best way to represent a database. \tée no
here that the same data can be captured in a better datastrlilot
a red-black tree and the same set of queries can still be aegwe
using essentially the same basic underlying mechanisnridedc
in Example 5, albeit more efficiently.

5.3 Belief Acquisition in Multi-Agent Systems

We end the section with an application in belief acquisition
multi-agent systems. In particular, we'll look at a TV recoender
agent described in (Cole et al. 2005). Suppose the curreapaats

of a household are Alice, Bob, and Cathy, and that our TV agent
has acquired from training examples their television pefees

in the form of current and past definitions for the functigkes :
Program — §2 for each of them, wherg&kes is true for a program

iff the person likes the program.

short description of paper

Let B; be the belief modality for the TV agenB, the belief
modality for Alice, B;, the belief modality for Bob, and. the
belief modality for Cathy. Thus part of the TV agent’s belpefse
has the following form:

BB, Vx.((likes z) = ¢o)
@B:B, Vz.((likes z) = ¢1)

®" 'B.B, Va.((likes ©) = @n_1)
@"BVx.(#B,(likes x) = 1)

BBy, Vx.((likes) = o)
@B B, Vx.((likes x) = 1)

0" 'B.B, Va.((likes) = thy_1)
"B .Vx.(4 By (likes z) = 1)

B.B_. Vx.((likes x) = &)

®B:B. Vx.((likes ©) = &1)

@' 'B.B. Va.((likes x) = &_1)
®'BVx.(¢B.(likes x) = L),

for suitabley;, 1;, and¢;. The form these can take is explained in
(Cole et al. 2005).
In the beginning, the belief base contains the formula

B\Vz.(¢B,(likes) = 1),

whose purpose is to prevent runaway computations into firétan
past for certain formulas of the forip. After n time steps, this
formula has been transformed into

@' BVz.(¢B,(likes x) = 1).

In general, at each time step, the beliefs aligits at the previous
time steps each have anothermplaced at their front to push them
one step further back into the past, and a new current bedmita
likes is acquired.

Based on these beliefs about the occupant preferences for TV
programs, the task for the agent is to recommend progrants tha
all three occupants would be interested in watching togeffe
achieve this, a (current) definition for the function

group_likes : Program — {2

needs to be acquired. The informal meaninggebup_likes is
that it is true for a program iff the occupants collectivekel the
program. (This may involve a degree of compromise by some of
the occupants.) Training examples for this function caneonihe
form of individual examples and/or rules. Here are two exasip

B\Vz.((x = (“ABC news”, 30, News, G, “..."))
— (group_likes z))
B\Vz.(((projGenre x) = Sports) — (group_likes x)).

10 2007/5/25

The following is a typical definition foyroup_likes acquired
from training examples.

B Vz. ((group_likes x) =
if ((As Balikes Bylikes B likes) x) then T
elseif (A3 ®B,likes Bylikes ¢ B likes) x) then T

else 1).

The algorithm used to acquire the definition is a generatisaif
Rivest's decision-list learning algorithm (Rivest 198¥ye shall
not be concerned with the actual algorithm here, details la€thv
can be found in (LIoyd and Ng 2007b) and (Lloyd and Ng 2007a).
Instead we will look at the kind of computational tasks thatsm
be solved in support of the algorithm. The most importantete
involve simplifying terms of the form

(x = (“ABC news”, 30, News, G, “...")) A
((As Byglikes Bylikes B likes) x)
and

((projGenre x) = Sports) A
((Ns #Bylikes Bylikes ¢ B likes) x)

in the context ofB., using the previously acquired definitions of
likes, the standard equality theory, and global assumptions like

bo=pVeoey
@B,y — B;@y.

It should be clear that all the different computational (safks
illustrated in Examples 6, 7 and 8 are needed in tight integraf
each other to solve the above computational problems.

6. Implementation Issues

Implementation Language We have a prototype implementation
of a Bach interpreter written ig++. An industrial-strength imple-
mentation is currently being developed using Lisp. We opted
Lisp as the implementation language because it has a goaddeal
of computational efficiency and language expressivenessma
portant feature given our limited programming resourcé®re is
arich set of library functions in Lisp. Bootstrapping frohete pro-
vides us with a mature and efficient low-level system calidil.
We find the following two features of Lisp particularly uskifuour
development:

e built-in support for garbage collection and symbolic types

e strong support for numeric computation, most notably large
integers and complex numbers.

Another noteworthy advantage that comes from using Lisp is
the ease with which the existing interpreter can be congént® a
compiler once it reaches a more mature state. The macrayaifil
Lisp can be used to transform performance-critical postisicode
into specialised Lisp routines that can then be compiledaptd
mised by the Lisp environment. Orders-of-magnitude imprognt
in efficiency can be obtained with minimal effort this way.

Standard Equality Theory Most of the equations in the standard
equality theory can be accepted as is by the Bach interpigter
more complex ones are implemented as system-level subesuti
These include the first three equations for: « — a — (2 and
Equations (C1), (C2), (E), (A), and (B). These equationstiaeel
before any other equations in pattern matchings.

short description of paper

Syntactical Variables In theory, syntactical variables in a schema
must first be instantiatdokeforethe schema can be pattern-matched
against a candidate redex. This is realized in practice dingdo
the pattern matching algorithm (Figure 1) a special casevfan

s|o Is @ syntactical variable, in which casg is instantiated with
t|o, subject tat|, satisfying all the side conditions (if there are any)
on the syntactical variable,.

Redex Selection The overall redex-selection strategy is leftmost-
outermost reduction, which gives lazy evaluation. Thisdsyever,
not strictly followed. Input equations can be graded, inchhtase
we perform leftmost-outermost reduction using only levéhdut
equations to begin with, and in general moving from level level
i+ 1 only when no redex can be found using lev&lput equations.
Fine-grained control over evaluation order can be achiexsiag
this mechanism.

TheoremProver The tableau theorem proving system was imple-
mented using the framework presented in (del Cerro and @asqu
2002). Most of the tableau rules in Figures 5 and 6 can beyeasil
implemented. The main exception is the universal rule.it en-
eral very hard to know what is a good choice of term to instdeti

a universally quantified variable. We use a variant of theemen-

tal closure algorithm described in (Giese 2001) to implentba
universal rule. Backtracking algorithms can be used imstea

Interactions between Computation and Proof The rules and
strategies governing the interactions between computadiod
proof are not well developed at the moment. We are investigat
ing the use of tactics and tacticals to improve this aspechef
system.

We plan to release the system later in the year.

7. Related Work

This section contains a discussion of related work.

Modal computation has been studied for 20 years or so, mostly
in the logic programming community in the context of episiem
or temporal logic programming languages. Useful surveythisf
work are in (Orgun and Ma 1994) and (Gergatsoulis 2001). A re-
cent paper showing the current state of the art of modal lpgie
gramming languages is (Nguyen 2006). What is common between
these works and this paper is the emphasis on epistemic izupdte
ral modalities. What is different is that almost all are lthea Pro-
log and are, therefore, first order, and it seems they eittige
epistemic modalities or temporal modalities, but not bB#ch ex-
tends typical modal higher-order theorem proving systemsh as
those in (Fitting and Mendelsohn 1998) and (Fitting 200&)gé¢ly
in that it also has an equational reasoning component.

Modal logic has also been studied in the functional program-
ming community in the context of type systems. In particular
modal (propositional) logics have been used to formulathise
ticated type systems that capture complex properties dafanv
ments in which programs are executed. Useful introductionisis
line of work include (Nanevski 2004) and (Fairtlough et &02).
Bach differs from these works in that modalities appearatlye
inside the language, not in a (meta-level) type system.

We turn now to related work in higher-order logic. The tradi-
tional foundation for functional programming languages baen
the A-calculus, rather than a higher-ordiegic. However, it is
possible to regard functional programs as equational tbean a
higher-order logic and this also provides a useful semsnBech
extends the core computational mechanisms of existingitural
languages in that it also contains a theorem-proving sysiteis
modal, and it admits logic programming idioms through peogr
ming with abstractions.

11 2007/5/25

In the 1980s, higher-order programming in the logic program
ming community was introduced through the languad&olog
(Nadathur and Miller 1998). The logical foundations Xfrolog
are provided by almost exactly the same logic as that underly
ing Bach (with the modal facilities removed). However, datif
ent sublogic is used fokxProlog programs than the equational the-
ories proposed here. INProlog, program statements are higher-
order hereditary Harrop formulas, a generalisation of tb#énide
clauses used by Prolog. The language provides an elegaf use
A-terms as data structures, meta-programming facilitieivensal
quantification and implications in goals, amongst othetuies. A
more modern and well developed higher-order logic progralgm
system is Mercury (Henderson et al. 2006).

A long-term interest amongst researchers in declaratiee pr
gramming has been the goal of building integrated functiona
logic programming languages. Probably the best develoged o
these functional logic languages is the Curry languagety:
//wuw.informatik.uni-kiel.de/~ curry), which is the result
of an international collaboration over the last decade. Aeyuof
functional logic programming up to 1994 is in (Hanus 1994).

8. Conclusion

This paper has introduced a novel modal functional logig@am-

ming language called Bach. The main innovation in Bach iptbe
vision of native support for modalities as a basic languagstuct
in the functional programming context. As shown in the pafes

increased expressiveness can be put to good use in the pi@ezid
of dynamic and multi-agent systems.

A second contribution of Bach is the integration of equation
reasoning and theorem proving in a unified computationaksys
The resultant enhanced support for logic programming irfihe-
tional context represents another useful step in the dexedat of
functional logic programming languages.

Future work Much remains to be done on the development of
Bach. New algorithms and design approaches need to be gedelo
to speed up performance-critical aspects of the langudgebdsic
language also need to be extended with constructs like res@ud
1/0 to make it a practical programming language.

Acknowledgments

Many thanks to Joshua Cole and Rajeev Goré for numeroufuhelp
discussions. We are particularly grateful to Joshua Calepfo-
viding an early implementation of the theorem prover. NIGSA
funded through the Australian Government’s Backing Auitia
Ability initiative, in part through the Australian Reselar€ouncil.

References

K. Clark. Negation as failure. In H. Gallaire and J. Minketiters,
Logic and Databasegages 293—-322. Plenum Press, 1978.

J. J. Cole, M. Gray, J. W. Lloyd, and K. S. Ng. Personalisation
for user agents. IfProceedings of the 4th International Joint

Conference on Autonomous Agents and Multi Agent Systems

pages 603-610, 2005.

L. F. del Cerro and O. Gasquet. A general framework for patter
driven modal tableaux.ogic Journal of the IGPL.10(1):51-83,
2002.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. VardReasoning
about KnowledgeMIT Press, 1995.

M. Fairtlough, M. Mendler, and E. Moggi. Special issue: Meda
ities in type theory.Mathematical Structures in Computer Sci-
ence 11:507-509, 2001.

short description of paper

M. Fitting. Types, Tableaus, and Godel's Godluwer Academic
Publishers, 2002.

M. Fitting and R. L. Mendelsohrkirst-order Modal Logic Kluwer
Academic Publishers, 1998.

D. M. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschdany-
Dimensional Modal Logics: Theory and Application®lume
148 of Studies in Logic and The Foundations of Mathematics
Elsevier, 2003.

M. Gergatsoulis. Temporal and modal logic programming lan-
guages. In A. Kent and J. Williams, editoEscyclopedia of Mi-
crocomputersvolume 27, pages 393-408. Marcel Dekker, 2001.

M. Giese. Incremental closure of free variable tableauxPror
ceedings of International Joint Conference on Automatea Re
soning, Siena, Italynumber 2083 in LNCS, pages 545-560.
Springer-Verlag, 2001.

M. Hanus. The integration of functions into logic programmi
From theory to practicelournal of Logic Programmingl9&20:
583-628, 1994.

M. Hanus (ed.). Curry: An integrated functional logic laage.
http://www.informatik.uni-kiel.de/~curry.

F. Henderson, T. Conway, Z. Somogyi, D. Jeffery, P. Schachte
S. Taylor, C. Speirs, T. Dowd, R. Becket, and M. Browhhe
Mercury Language Reference ManuaD06.

P. M. Hill and J. W. Lloyd. The Godel Programming Language
MIT Press, Cambridge MA, 1994.

J. W. Lloyd. Logic for Learning: Learning Comprehensible Theo-
ries from Structured DataSpringer, 2003.

J. W. Lloyd. Knowledge representation and reasoning in hoda
higher-order logichttp://rsise.anu.edu.au/~ jwl, 2007.

J. W. Lloyd. Foundations of Logic ProgrammingSpringer, 2nd
edition, 1987.

J. W. Lloyd. Programming in an integrated functional andidog
language. Journal of Functional and Logic Programming,
1999.

J. W. Lloyd and K. S. Ng. Belief acquisition for agents.
preparation, 2007a.

In

J. W. Lloyd and K. S. Ng. Learning modal theories. In S. Muggle
ton and R. Otero, editor®roceedings of the 16th International
Conference on Inductive Logic Programmjraf07b.

G. Nadathur and D. Miller. Higher-order logic programminig
D. Gabbay, C. Hogger, and A. Robinson, editéiandbook of
Logic in Al and Logic Programming, Volume 5: Logic Program-
ming Oxford, 1998.

A. Nanevski.Functional Programming with Names and Necessity
PhD thesis, School of Computer Science, Cargenie Mellor Uni
versity, 2004.

L. A. Nguyen. Multimodal logic programmingTheoretical Com-
puter Science360:247-288, 2006.

M. A. Orgun and W. Ma. An overview of temporal and modal logic
programming. In D. Gabbay and H. Ohlbach, editéhgceed-
ings of the First International Conference on Temporal losgi
(ICTL'94), volume 827 oL NAI, pages 445-479. Springer, 1994.

S. L. Peyton JonesThe Implementation of Functional Program-
ming LanguagesPrentice-Hall, 1987.

R. L. Rivest. Learning decision list™Machine Learning2(3):229—
246, 1987.

12 2007/5/25

