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Abstract. This paper discusses how to learn theories that are modal,
concentrating on the issue of how modal hypotheses are formed. Illustra-
tions are given to show the usefulness of the ideas for agent applications.

1 Introduction

This paper introduces the idea of learning theories that are modal. To moti-
vate the development, we first discuss why learning modal theories is useful,
particularly in agent applications.

Consider an agent situated in some environment that can receive percepts
from the environment and can apply actions to the environment. Included in
a state of the agent may be information about the environment or something
that is internal to the agent. The state may be updated as a result of receiving
a percept. As well as some state, the agent’s model includes its belief base,
which can also be updated. Each action changes the current state to a new
state. The agent selects an action that maximises its expected performance. An
agent architecture based on the rationality principle of choosing an action that
maximises expected utility is in [1] and discussion of the learning component of
such agents is in [2].

We now concentrate on action selection. Agents use their belief bases to
determine which action to select. It is common for the beliefs that are needed
for this to have a modal nature, usually temporal or epistemic. For example, on
the temporal side, it might be important that at the last time or at some time in
the past, some situation held and, therefore, a certain action is now appropriate.
Similarly, on the epistemic side, beliefs about the beliefs of other agents may be
used to determine which action to perform. The usefulness of modal beliefs for
agents is now well established, in [3] and [4], for example. Besides, introspection
reveals that people use temporal and epistemic considerations when deciding
what to do; essentially, we are exploiting here the fact that modal logic is a part
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of mathematics which is useful for building agents that aspire to have similar
capabilities.

While many beliefs can be built into agents beforehand by their designers,
it is also common for beliefs to be acquired by some kind of learning process
during deployment. Since beliefs can be modal, the hypothesis languages used
by the learning system need to be modal. We are thus led to the conclusion
that symbolic machine learning needs to be generalised beyond classical logics,
such as first-order logic, to modal logics. In fact, modal higher-order logic will
be employed in this paper.

This paper investigates the potential usefulness of modalities for learning
applications. Its two main contributions are machinery for specifying modal hy-
potheses and illustrations that show the usefulness of modal hypotheses in agent
applications. Given the generality of the agent paradigm and the ubiquity of
agent applications, we believe that agents will be a fertile application area for
symbolic machine learning techniques.

The next section contains a discussion of the logical machinery needed to
construct modal hypotheses. Section 3 contains two illustrations of the ideas for
agent applications. Section 4 gives some conclusions and discusses related work.

2 Modal Hypotheses

An approach to symbolic learning based on higher-order logic is presented in [5]
that introduces the concept of a predicate rewrite system which is a grammar
formalism for specifying search spaces of predicates that are used in hypothesis
languages. Thus, to achieve the desired generalisation to learning modal theories,
a key step is to extend predicate rewrite systems to the modal case. This is done
in this section. Along the way, we introduce a modal, higher-order logic which
provides a suitable setting for the development.

2.1 Modal Higher-order Logic

We outline the most relevant aspects of the logic, focussing to begin with on the
monomorphic version. We define types and terms, and give an introduction to
the modalities that will be most useful in this paper. Full details of the logic,
including its reasoning capabilities, can be found in [6].

Definition 1. An alphabet consists of three sets:

1. A set T of type constructors.
2. A set C of constants.
3. A set V of variables.

Each type constructor in T has an arity. The set T always includes the type
constructor Ω of arity 0. Ω is the type of the booleans. Each constant in C
has a signature. The set V is denumerable. Variables are typically denoted by
x, y, z, . . .. Types are built up from the set of type constructors, using the symbols
→ and ×.



Definition 2. A type is defined inductively as follows.

1. If T is a type constructor of arity k and α1, . . . , αk are types, then T α1 . . . αk

is a type. (Thus a type constructor of arity 0 is a type.)
2. If α and β are types, then α→ β is a type.
3. If α1, . . . , αn are types, then α1 × · · · × αn is a type.

The set C always includes the following constants.

1. > and ⊥, having signature Ω.
2. =α, having signature α→ α→ Ω, for each type α.
3. ¬, having signature Ω → Ω.
4. ∧, ∨, −→, ←−, and ←→, having signature Ω → Ω → Ω.
5. Σα and Πα, having signature (α→ Ω)→ Ω, for each type α.

The intended meaning of =α is identity (that is, =α x y is > iff x and y are
identical), the intended meaning of > is true, the intended meaning of ⊥ is false,
and the intended meanings of the connectives ¬, ∧, ∨, −→,←−, and←→ are as
usual. The intended meanings of Σα and Πα are that Σα maps a predicate to >
iff the predicate maps at least one element to > and Πα maps a predicate to >
iff the predicate maps all elements to >. The type {α} is a synonym for α→ Ω,
used when we are intuitively thinking of a term as a set of elements rather than
as a predicate.

We assume there are necessity modality operators �i, for i = 1, . . . ,m.

Definition 3. A term, together with its type, is defined inductively as follows.

1. A variable in V of type α is a term of type α.
2. A constant in C having signature α is a term of type α.
3. If t is a term of type β and x a variable of type α, then λx.t is a term of

type α→ β.
4. If s is a term of type α→ β and t a term of type α, then (s t) is a term of

type β.
5. If t1, . . . , tn are terms of type α1, . . . , αn, respectively, then (t1, . . . , tn) is a

term of type α1 × · · · × αn.
6. If t is a term of type α and i ∈ {1, . . . ,m}, then �it is a term of type α.

Terms of the form (Σα λx.t) are written as ∃αx.t and terms of the form
(Πα λx.t) are written as ∀αx.t (in accord with the intended meaning of Σα and
Πα). Thus, in higher-order logic, each quantifier is obtained as a combination of
an abstraction acted on by a suitable function (Σα or Πα).

If α is a type, then Bα is the set of basic terms of type α [5]. Basic terms
represent individuals. For example, BΩ is {>,⊥}.

The polymorphic version of the logic extends what is given above by also
having available parameters which are type variables (denoted by a, b, c, . . .).
The definition of a type as above is then extended to polymorphic types that
may contain parameters and the definition of a term as above is extended to
terms that may have polymorphic types. We work in the polymorphic version of



the logic in the remainder of the paper. In this case, we drop the α in ∃α, ∀α,
and =α, since the types associated with ∃, ∀, and = are now inferred from the
context.

An important feature of higher-order logic is that it admits functions that
can take other functions as arguments. (First-order logic does not admit these so-
called higher-order functions.) This fact can be exploited in applications, through
the use of predicates to represent sets and predicate rewrite systems that are used
for learning, for example.

The reasoning system employed by the learner combines a theorem prover
and an equational reasoning system. The theorem prover is a fairly conventional
tableau theorem prover for modal higher-order logic. The equational reasoning
system is, in effect, a computational system that significantly extends exist-
ing functional programming languages by adding facilities for computing with
modalities. The proof component and the computational component are tightly
integrated, in the sense that either can call the other. Furthermore, this synergy
between the two makes possible all kinds of interesting reasoning tasks. It turns
out that, for agent applications, the most common reasoning task is a compu-
tational one, that of evaluating a function call. In this case, the theorem-prover
plays a subsidiary role, usually that of performing some rather straightforward
modal theorem-proving tasks.

We remark that the treatment of modalities in a computation has to be
carefully handled. The reason is that even such a simple concept as applying a
substitution is greatly complicated in the modal setting by the fact that constants
generally have different meanings in different worlds and therefore the act of
applying a substitution may not result in a term with the desired meaning. A
similar problem occurs when the redex chosen for a computation step is in the
scope of a modality. A standard way to handle these problems is to insist that
some constants be rigid, that is, have the same meaning in each world (in the
semantics). In the modal higher-order logic setting, it is entirely natural for
some constants to be rigid; for example, all constants (data constructors and
functions alike) in the Haskell prelude can be declared to be rigid, except in
the most sophisticated applications. For non-rigid constants, of which there are
usually many in the belief bases of typical agents, great care must be taken to
ensure that they are only ever used in the correct modal contexts.

Theories in the logic consist of two kinds of assumptions, global and local.
The essential difference is that global assumptions are true in each world in
the intended interpretation, while local assumptions only have to be true in
the actual world in the intended interpretation. Each kind of assumption has a
certain role to play when proving a theorem.

As is well known, modalities can have a variety of meanings, depending on
the application. Some of these are indicated here; much more detail can be found
in [3], [4] and [6], for example.

In multi-agent applications, one meaning for �iϕ is that ‘agent i knows ϕ’.
In this case, the modality �i is written as Ki. The logic S5m is commonly used
to capture the intended meaning of knowledge.



A weaker notion is that of belief. In this case, �iϕmeans that ‘agent i believes
ϕ’ and the modality �i is written as Bi. The logic KD45m is commonly used
to capture the intended meaning of belief.

The modalities also have a variety of temporal readings. We will make use
of the (past) temporal modalities  (‘last’) and � (‘always in the past’). We
can also define the modality � (‘sometime in the past’), which is dual to �,
by �t ≡ ¬�¬t, where t is either a formula or a predicate. (The negation of a
predicate is defined below.)

Modalities can be applied to terms that are not formulas. Thus terms such
as Bi42 and  A, where A is a constant, are admitted. We will find to be par-
ticularly useful terms that have the form �j1 · · ·�jrf , where f is a function and
�j1 · · ·�jr is a sequence of modalities.

For a particular agent in some application, the belief base of the agent is a
theory. There are no restrictions placed on theories. Each assumption in a belief
base is called a belief. Typically, for agent j, local assumptions in its belief base
have the form Bjϕ, with the intuitive meaning ‘agent j believes ϕ’. Often ϕ is an
equation. Other typical local assumptions have the form BjBiϕ, meaning ‘agent
j believes that agent i believes ϕ’. Global assumptions in a belief base typically
have the form ϕ, with no modalities at the front since the fact that they are global
implicitly implies any sequence of (necessity) modalities effectively appears at
the front. Thus, in general, beliefs commonly have the form Bj1 · · ·Bjrϕ, where
r ≥ 0. If there is a temporal component to beliefs, this is often manifested by
temporal modalities at the front of beliefs. Then, for example, there could be a
belief of the form  2BjBiϕ, whose intuitive meaning is ‘at the second last time,
agent j believed that agent i believed ϕ’. (Here,  2 is a shorthand for   .)

The following schema can be used as a global assumption.

(�is t) = �i(s t),

where s is a syntactical variable ranging over terms of type α → β and t is a
syntactical variable ranging over rigid terms of type α. (A term is rigid iff every
constant in it is rigid.) This schema also holds for the dual modality � (when β
is Ω). Thus, under the rigidity assumption on t, the schemas

(Bis t) = Bi(s t)
(�s t) = �(s t)

are global assumptions. Assumptions like these are often used in evaluating pred-
icates generated by predicate rewrite systems.

2.2 Predicate Rewrite Systems

In this subsection, we extend the predicate rewrite systems defined in [5] to
the modal case. Predicates are built up by composing basic functions called
transformations. Composition is handled by the (reverse) composition function

◦ : (a→ b)→ (b→ c)→ (a→ c)

defined by ((f ◦ g) x) = (g (f x)).



Definition 4. A transformation f is a function having a signature of the form

f : (%1 → Ω)→ · · · → (%k → Ω)→ µ→ σ,

where any parameters in %1, . . . , %k and σ appear in µ, and k ≥ 0. The type σ is
called the target of the transformation. The number k is called the rank of the
transformation.

Example 1. The transformation ∧n : (a → Ω) → · · · → (a → Ω) → a → Ω
defined by ∧n p1 . . . pn x = (p1 x) ∧ · · · ∧ (pn x), where n ≥ 2, provides the
‘conjunction’ of n predicates. Disjunction (∨n) of predicates can be defined in a
similar fashion.

The transformation ¬ : (a→ Ω)→ a→ Ω defined by

¬p x = ¬(p x),

provides the negation of a predicate.
Consider the transformation setExists1 : (a→ Ω)→ {a} → Ω defined by

setExists1 p t = ∃x.((p x) ∧ (x ∈ t)).

The function (setExists1 p) checks whether a set has an element that satisfies p.
The transformation top : a → Ω is defined by top x = >, for each x. The

transformation bottom : a→ Ω is defined by bottom x = ⊥, for each x.

Many more transformations are given in [5].
Next the definition of the class of predicates formed by composing trans-

formations is presented. In the following definition, it is assumed that some
(possibly infinite) class of transformations is given and all transformations con-
sidered are taken from this class. A standard predicate is defined by induction
on the number of (occurrences of) transformations it contains as follows. Let ���
denote a (possibly empty) sequence of modalities �j1 · · ·�jr .

Definition 5. A standard predicate is a term of the form

���1(f1 p1,1 . . . p1,k1) ◦ · · · ◦���n(fn pn,1 . . . pn,kn
),

where fi is a transformation of rank ki (i = 1, . . . , n), the target of fn is Ω,
���i is a sequence of modalities (i = 1, . . . , n), pi,ji is a standard predicate (i =
1, . . . , n, ji = 1, . . . , ki), ki ≥ 0 (i = 1, . . . , n) and n ≥ 1.

Definition 5 extends that of a (non-modal) standard predicate in [5] precisely
in that the definition here allows modalities to appear.

Example 2. Let p and q be transformations of type σ → Ω. Then

Bi(setExists1 (∧2  Bjp �Bjq))

is a standard predicate of type {σ} → Ω. If t is a (rigid) set of elements of type
σ, then

(Bi(setExists1 (∧2  Bjp �Bjq)) t)



simplifies to

Bi∃x.(( Bj(p x) ∧ �Bj(q x)) ∧ (x ∈ t)),

which is true iff agent i believes that there is an element x in t satisfying the
property that at the last time agent j believed that x satisfied p and at some
time in the past agent j believed that x satisfied q.

Now we can informally define a predicate rewrite system. A predicate rewrite
is an expression of the form p � q, where p and q are standard predicates. The
predicate p is called the head and q is the body of the rewrite. A predicate
rewrite system is a finite set of predicate rewrites. One should think of a pred-
icate rewrite system as a kind of grammar for generating a particular class of
predicates. Roughly speaking, this works as follows. Starting from the weakest
predicate top, all predicate rewrites that have top (of the appropriate type) in
the head are selected to make up child predicates that consist of the bodies of
these predicate rewrites. Then, for each child predicate and each redex in that
predicate, all child predicates are generated by replacing each redex by the body
of the predicate rewrite whose head is identical to the redex. This generation
of predicates continues to produce the entire space of predicates given by the
predicate rewrite system. The details of the (non-modal) version of this can be
found in [5]; the modal version works in a similar fashion.

Example 3. Consider the following predicate rewrite system.

top � Bi(setExists1 (∧2 top top))
top �  Bjtop
top � �Bjtop
top � p

top � q

top � r.

The following is a path in the predicate space defined by the rewrite system.

top ; Bi(setExists1 (∧2 top top)); Bi(setExists1 (∧2  Bjtop top))
; Bi(setExists1 (∧2  Bjp top))

; · · · ; Bi(setExists1 (∧2  Bjp �Bjq)).

The set P� of predicates that can be generated from a predicate rewrite
system � is called a predicate language. Given some predicate language, it re-
mains to specify the hypothesis language, that is, the form of learned theories
that employ predicates in the predicate language. There are many possibilities.
For the purpose of this paper, we can restrict attention to the class of decision
lists [7] that can be formed. Each internal node in such a decision list would be
made up of a predicate in the predicate language. For learning, we can employ
standard rule-learning algorithms.



3 Illustrations

This section contains two illustrations of the usefulness of learning modal theories
for agent applications.

3.1 Majordomo Agent

Consider a majordomo agent that manages a household. There are many tasks
for such an agent to carry out including keeping track of occupants, turning
appliances on and off, ordering food for the refrigerator, and so on.

Here we concentrate on one small aspect of the majordomo’s tasks which is
to recommend television programs for viewing by the occupants of the house.
(See http://www.netflixprize.com for a related industrial problem.) Suppose
the current occupants are Alice, Bob, and Cathy, and that the agent knows the
television preferences of each of them. Methods for learning these preferences
were studied in [2]. Suppose that each occupant has a personal agent that has
learned (amongst many other functions) the function likes : Program → Ω,
where likes is true for a program iff the person likes the program. We also
suppose that the majordomo has access to the definitions of this function for
each occupant, for the present time and for some suitable period into the past.
Let Bm be the belief modality for the majordomo agent, Ba the belief modality
for Alice, Bb the belief modality for Bob, and Bc the belief modality for Cathy.
Thus part of the majordomo’s belief base has the following form:

BmBa ∀x.((likes x) = ϕ0)
 BmBa ∀x.((likes x) = ϕ1)

...

 n−1BmBa ∀x.((likes x) = ϕn−1)
 nBm∀x.(�Ba(likes x) = ⊥)

BmBb ∀x.((likes x) = ψ0)
 BmBb ∀x.((likes x) = ψ1)

...

 k−1BmBb ∀x.((likes x) = ψk−1)

 kBm∀x.(�Bb(likes x) = ⊥)

BmBc ∀x.((likes x) = ξ0)
 BmBc ∀x.((likes x) = ξ1)

...

 l−1BmBc ∀x.((likes x) = ξl−1)

 lBm∀x.(�Bc(likes x) = ⊥),



for suitable ϕi, ψi, and ξi. The form these can take is explained in [2].
In the beginning, the belief base contains the formula

Bm∀x.(�Ba(likes x) = ⊥),

whose purpose is to prevent runaway computations into the infinite past for
certain formulas of the form �ϕ. The meaning of this formula is “the agent
believes that for all programs it is not true that at some time in the past Alice
likes the program”. After n time steps, this formula has been transformed into

 nBm∀x.(�Ba(likes x) = ⊥).

In general, at each time step, the beliefs about likes at the previous time steps
each have another  placed at their front to push them one step further back
into the past, and a new current belief about likes is acquired.

Based on these beliefs about the occupant preferences for TV programs, the
task for the agent is to recommend programs that all three occupants would be
interested in watching together. The simplest idea is that the agent should only
recommend programs that all three occupants currently like. But it is possible
that less stringent conditions might also be acceptable; for example, it might be
sufficient that two of the occupants currently like a program but that the third
has liked the program in the past (even if they do not like it at the present time).
Here is a (simplified) predicate rewrite system suitable for such a learning task.

top � ∧3 top top top
top � ∨2 top top
top � Bi likes % for each i ∈ {a, b, c}
top � �Bi likes % for each i ∈ {a, b, c}.

Let group likes : Program → Ω be the function that the agent needs to
learn. Thus the informal meaning of group likes is that it is true for a program
iff the occupants collectively like the program. (This may involve a degree of
compromise by some of the occupants.) Training examples for this task look like

Bm((group likes P1) = >)
Bm((group likes P2) = ⊥),

where P1 and P2 are particular programs. The definition of a typical function
that might be learned from training examples and the hypothesis language given
by the above predicate rewrite system is as follows.

Bm∀x. ((group likes x) =
if ((∧3 �Ba likes Bb likes Bc likes) x) then >
else if ((∧3 Bc likes (∨2 Ba likes Bb likes) top) x) then >
else ⊥).



Now let P be some specific program. In Figure 1, we show the computation of
(group likes P ). The redex selected is underlined at each step in the computation.
The computation makes use of standard boolean functions defined in [5, Chap.
5] and axiom schemas like  Bi ϕ −→ Bi ϕ and �ϕ = ϕ∨ �ϕ. The former is
used to prove that formulas of the form

Bm iBa ∀x.((likes x) = ϕi)

are theorems of the belief base. These theorems are then used to simplify the
(likes P ) terms located in different modal contexts in the computation. It follows
from the computation shown in Figure 1 that Bm((group likes P ) = ⊥) is a con-
sequence of the belief base of the agent. On this basis, the agent will presumably
not recommend to the occupants that they watch program P together.

In practice, one would use a richer hypothesis language for this problem. For
example, the majordomo can also make use of beliefs held by the personal diary
agents of Alice, Bob and Cathy in the hypothesis language. To recommend a
program for common viewing, it is important, for example, that all three are
free at the program time slot. Other relevant information can be included.

3.2 Learning by Revising Past Beliefs

For agents, learning is usually a continual life-long affair. For example, a recom-
mender agent for television programs needs to track the changing preferences
of its user over a life time. Similarly, to achieve optimal performance, an adap-
tive traffic-light control agent needs to monitor the traffic at regular intervals to
keep its beliefs about current conditions updated. This section presents a general
framework for incremental belief revision.

We will start by considering the following simplified form of the general
problem. We want to track a function f : σ → τ that changes slowly over time.
We have access to the previous acquired definition  B (f = λx.ϕ) in the belief
base. (B is the belief modality of the relevant agent.) A new training set arrives
and now a new definition for f needs to be acquired. How do we proceed?

Obviously, in computing the current definition for f , we would like to reuse
those parts of the previous definition that are still valid in the light of new
evidence. One way to achieve that is to define an hypothesis language that
captures the different ways the old definition can be changed, or perturbed, in
small ways. We will show in stages how this can be done, starting with the
description of a variant of the standard decision-list learning algorithm that will
be needed.

The standard decision-list algorithm is a greedy algorithm. A set of exam-
ples is covered at every step, and an element of Bτ is used to label the leaf
node constructed, the exact choice being determined by the majority class of
the covered examples. This is equivalent to using a constant function to make
predictions in the covered subregion. We extend the algorithm to use more com-
plex functions for this purpose. In the new algorithm, a label language L is
specified, in addition to a predicate language P . Learning proceeds via greedy



(group likes P )

if ((∧3 �Ba likes Bb likes Bc likes) P ) then > else . . .

if (�Ba likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if �(Ba likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if �Ba(likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if (Ba(likes P ) ∨ �Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

...

if (Ba⊥ ∨ �Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if (⊥ ∨ �Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if  �Ba(likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if  (Ba(likes P ) ∨ �Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if ( Ba(likes P ) ∨ 2�Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

...

if ( Ba⊥ ∨ 2�Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if (Ba⊥ ∨ 2�Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if (⊥ ∨ 2�Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if  2�Ba(likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

...

if  n�Ba(likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if  n⊥ ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

...

if ⊥ ∧ (Bb likes P ) ∧ (Bc likes P ) then > else . . .

if ⊥ ∧ (Bc likes P ) then > else . . .

if ⊥ then > else . . .

...

⊥

Fig. 1. Computation using Bm of (group likes P )



search in the usual fashion. At every step, we seek arg maxp∈P s(Sp), where Sp

is the subset of the current set of examples covered by p and s(S) is defined
to be maxl∈L |{(x, y) ∈ S : (l x) = y}|. The maximising label function l∗ for
the maximising predicate p∗ is then used to label Sp∗ . Accuracy is used as the
heuristic function here; other measures can be used instead, of course.

We have described the algorithm. The next step is to define a suitable predi-
cate language for use with it. In doing that, first we have to consider the structure
of a decision list, which has the following general form:

λx.if (p1 x) then v1 else if (p2 x) then v2 . . . else if (pn x) then vn else v0. (1)

Writing qpi for ∧i ¬p1 . . . ¬pi−1 pi (where qp1 = p1 in the base case), this term
is equivalent to

λx.if (qp1 x) then v1 else if (qp2 x) then v2 . . . else if (qpn
x) then vn else v0,

which we will call the expanded form of (1). We will effectively work with the ex-
panded form of a decision list in designing a suitable predicate language. (This is
done implicitly; expanded forms of decision lists are never explicitly constructed.)

We now proceed with the definition of a predicate language. The following
transformation plays a key role.

covered : Int → Int → (a→ b)→ (a→ Ω)
covered i j λx.if (p1 x) then v1 else

if (p2 x) then v2 . . . else if (pn x) then vn else v0
= if (i = 1) then (∨j p1 . . . pj) else (∧i ¬p1 . . . ¬pi−1 (∨j−i+1 pi . . . pj)).

Thus, given a decision list f , ((covered i j f) x) evaluates to true iff the individ-
ual x falls into one of the nodes between the ith and jth nodes inclusively. Let �
be the original predicate rewrite system used to acquire the previous definition
for f . The desired hypothesis predicate language is obtained by adding to �
the following predicate rewrites:

top � (covered i j  f ) % for each i , j ∈ {1 , . . . ,N }, i ≤ j ,

where N is the number of nodes in the previous definition for f .
We have specified the predicate language P�. It remains to specify a suitable

label language. For that, the set Bτ ∪ { ( f x) } is adopted.
We now show that the space of functions defined by the given decision-

list algorithm in conjunction with the specified predicate and label languages
contains most of the ways we might want to modify an existing decision list.
For convenience, we write 〈(p1, v1), (p2, v2), . . . , (pn, vn), (top, v0)〉 as a notational
shorthand for a term having the form of (1) in the following. Suppose we have
the following formula in the belief base:

 B (f = 〈(p1, v1), (p2, v2), . . . , (p99, v99), (top, v0)〉). (2)



The following examples show how local surgery on (the expanded form of) the
decision list can be realised using the hypothesis language defined. More complex
operations can be achieved in a similar fashion.

Example 4. The operation of adding a node (r, v), where r ∈ P�, to the front
of (2) can be realised by the definition

B (f = λx.if (r x) then v else ( f x)).

Example 5. The operation of adding a node (r, v), where r ∈ P�, to the end of
(2) can be realised by the definition

B (f = λx.if ((covered 1 99  f) x) then ( f x) else if (r x) then v else v0),

which is equivalent to B (f = 〈(qp1 , v1), (qp2 , v2), . . . , (qp99 , v99), (r, v), (top, v0)〉).

Example 6. Consider the expanded form of (2). The operation of adding a node
(r, v), where r ∈ P�, between (qp29 , v29) and (qp30 , v30) and removing the node
(qp77 , v77) can be realised using

B (f = λx.if ((covered 1 29  f) x) then ( f x)
else if (r x) then v

else if ((covered 30 76  f) x) then ( f x)
else if ((covered 78 99  f) x) then ( f x) else v0),

which can be unfolded into the following equivalent definition:

B (f = 〈(qp1 , v1), (qp2 , v2), . . . , (qp29 , v29), (r, v), (qp30 , v30),
(qp31 , v31), . . . , (qp76 , v76), (qp78 , v78), . . . , (qp99 , v99), (top, v0)〉).

Extensions to the Basic Setup We now consider some extensions to the basic
setup. To begin with, we will record all past definitions for f in the belief base.
Thus our belief base will contain, among other things, the following formulas:

 B (f = λx.ϕ1)
...

 n−1 B (f = λx.ϕn−1)
 n �B (f = λx.ϕn).

We can add the following predicate rewrites to our rewrite system to pick
out parts of any old definition previously learned.

top � (covered j k  i f ) % for suitable values of i , j and k .

If desired, one can also enrich the predicate rewrite system with predicate rewrites
that capture conditions that have occurred at least once in the past or in the
recent past, or those that have always held in the past.



Example 7. Assume the function f changes in a cyclical manner. If we already
have a good definition for each phase of the cycle, the algorithm should return

B (f = λx.if (top x) then ( if x) else v0),

for some i, as the current definition.

Example 8. We can piece together parts from definitions obtained at different
times to form the current definition. For instance, we can have

B (f = λx.if ((covered 2 8  2f) x) then ( 2f x)

else if ((covered 6 9  4f) x) then ( 4f x) else v0).

4 Conclusions

This paper has introduced some key ideas needed to learn theories that are
modal. The first contribution is machinery for specifying modal hypothesis lan-
guages that extends the higher-order logic learning setting in [5]. Modalities have
obvious usefulness as a language feature; the general setup introduced here shows
a good way to incorporate them into the learning process. We would expect that
the more traditional ILP settings [8] can be ‘upgraded’ in an analogous fashion.

The two illustrations given constitute the second contribution of this paper.
Together they illustrate the kind of new possibilities opened up by having modal-
ities in the hypothesis language. The multi-agent-learning paradigm exemplified
by the majordomo agent is novel in ILP and has a lot of potential. The theory
revision example provides a fresh perspective on an old ILP problem. Its relation
to existing techniques is discussed below. A common thread that ties the two
illustrations together is learning from multiple sources of knowledge.

The technologies introduced here are new and more work needs to be done.
We have a prototype implementation of what is described here. The next step is
to carry out substantial experiments to confirm the effectiveness of the approach.
The complexity of learning modal theories can be analysed in the framework
given in [9]. We expect results, both positive and negative, similar to those
established in the non-modal setting to continue to hold in the modal setting.
In other words, modalities do not come at a significant cost.

Related work Description logic can be regarded as a form of modal logic [4].
Related work can be found in the literature on learning theories in description
logic. (See [10] and [11], for example, and the references therein.)

Incremental theory revision has long been studied in ILP following [12] and
[13]. The framework introduced here allows the new definition to be obtained
by revising previously acquired definitions going back multiple steps. Existing
frameworks are restricted to the revision of one previous definition. The other
noteworthy difference is that admissible revision operations are captured in the
hypothesis language in our framework, not in the actual theory revision algo-
rithm used as in existing setups.



There is an extensive literature on belief revision much of which was inspired
by [14]. In these works, if modal logic is employed at all it is usually as a logical
meta-language for the belief revision process itself, rather than the logic in which
the beliefs are expressed (which is usually propositional). We are not aware of
any works on belief revision in which the logic of the beliefs is as rich as modal
higher-order logic. Also existing belief revision frameworks do not consider gen-
eralisation, which is a key aspect of learning and, we would argue, an essential
component of any process by which a reasonably sophisticated agent might ac-
quire new beliefs. On the other hand, we have not explicitly addressed here the
important issue of inconsistency as frameworks for belief revision do.
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