
Approximate Inference in Structured Bayesian Networks

R. Kumar, K.S. Ng

College of Engineering and Computer Science

The Australian National University

3 August 2009

1 Introduction

We investigate Monte Carlo inference techniques for structured Bayesian networks. In particular,
we describe an algorithm for choosing the number of samples to make in static networks, and a
particle filter algorithm for dynamic networks.

A structured Bayesian network is a Bayesian network in which some of the nodes represent
variables over composite, structured domains such as lists or sets. Permitting structured domains
can reduce the number of nodes required for modeling, and can ease making a model intuitive.
A cost can be constructing densities over complex domains and sampling from those densities,
although these tasks are not always difficult.

In this paper we focus on three examples of problems solvable with structured Bayesian net-
works; two use static networks and one uses a dynamic network. We begin with a brief description
of inference problems in Bayesian networks, including the exact solution. In §3 we give a short
introduction to structured domains and our notation. In §4 we describe a sampling-based inference
algorithm for static networks and apply it to two example problems. In §5 we describe a different
sampling-based inference algorithm for dynamic networks, relate it to the static case, and apply
it to an example problem. In §6 and §7 we list further work and conclude.

2 Exact Inference

Consider a Bayesian network over the variables X = U ∪E, where U = {x1, x2, . . . , xn} (listed in
topological order) is the set of unknown variables and E = {y1, y2, . . . , ym} is the set of evidence
variables. Suppose we assign value vi to variable yi, i = 1, . . . , m. The partially instantiated joint
probability density function over X can be written down in the following form

( n
∏

i=1

fi(xi | pa(xi))

)( m
∏

i=1

gi(vi | pa(yi))

)

,

where fi and gi are (conditional) probability functions and pa(zi) denotes the parent nodes of
variable zi in X . Marginalising out the unknown variables yields

∑

x1

∑

x2

· · ·
∑

xn−1

∑

xn

( n
∏

i=1

fi(xi | pa(xi))

)( m
∏

i=1

gi(vi | pa(yi))

)

(1)

1



=
∑

x1

∑

x2

· · ·
∑

xn−1

n−1
∏

i=1

fi(xi | pa(xi))
∑

xn

fn(xn | pa(xn))

m
∏

i=1

gi(vi | pa(yi))

...

=
∑

x1

f1(x1 | pa(x1))
∑

x2

f2(x2 | pa(x2)) · · ·
∑

xn

fn(xn | pa(xn))

m
∏

i=1

gi(vi | pa(yi))

= Ex1∼f1(·|pa(x1))Ex2∼f2(·|pa(x2)) · · ·Exn∼fn(·|pa(xn))

m
∏

i=1

gi(vi | pa(yi)), (2)

where the last line can be further simplified by moving factors in the product outside expectations
when applicable.

A typical query asks for the conditional probability of some variable’s value given the values
of the evidence variables, that is

Pr(xq = vq | y1 = v1, . . . , ym = vm) =
Pr(xq = vq, y1 = v1, . . . , ym = vm)

Pr(y1 = v1, . . . , ym = vm)
,

which is (1) with xq an evidence variable divided by (1) as given. Clearly we can ask queries of
multiple variables by putting them all in the evidence set for the numerator. Furthermore we can
query the conditional probability of h(xq) = vq for some function h by multiplying the numerator
by an indicator function for h(xq) = vq.

3 Structured Domains

The variables in our Bayesian network models are over structured domains.

4 Static Bayesian Networks

4.1 Approximate Inference

In structured Bayesian networks like those presented in [NLU09], it is often infeasible to compute
expressions like (1) exactly for a given query. The equivalent form (2) does however suggest a
natural sampling-based approach. We approximate µf = Ex∼p(·)f(x) by drawing i.i.d samples
s = {x1, x2, . . . , xn} from p(·) and compute

µ̂f =
1

n

∑

x∈s

f(x).

From the Central Limit Theorem (see Appendix A), we know that the distribution of µ̂f converges
in distribution to N (µf , σ2

f/n) if the variance σ2 = Ex∼p(·)(f(x)−µf )2 is finite. This means with
probability 1 − α, we have

|µ̂f − µf | ≤ zα
σf√
n

,

where zα is the z-score chosen to put 1−α of the area under the normal curve between −zα
σf√

n
and

zα
σf√

n
. Suppose we want |µ̂f − µf | ≤ ǫ with probability 1− α for some given ǫ. Solving zα

σf√
n
≤ ǫ

for n yields

n ≥
(

σf
zα

ǫ

)2

. (3)

Replacing σf with the sample variance σ̂f in (3), which is not unreasonable for n sufficiently
large, gives us an empirically testable condition for ensuring the desired accuracy of µ̂f with high

2



confidence. [HGJ07] gives an algorithm that starts with some nmin number of samples needed to
put the sample mean in its asymptotic normal regime and then iteratively increases the sample
size until a condition similar to (3) is reached (they scale the error bound by |µf |). Using the fact
that the sample variance σ̂f is asymptotically distributed according to N (σ2

f , (µ4f −σ4
f )/n), where

u4f is the fourth central moment, they show that with probability at least 1 − 2α, the iterative
algorithm terminates with

n ≤ O

(

σ2
f

µ2
f

+
σf

µf

√

µ4f

σ4
f

− 1

)

.

Given that (2) can be written as

E(x1,x2,...,xn)∼f1(·|pa(x1))f2(·|pa(x2))···fn(·|pa(xn))

m
∏

i=1

gi(vm | pa(yi)),

we now have an algorithm that can approximately compute any posterior given any required
accuracy and confidence requirement, if the distribution from which we are sampling from has
finite variance.

Balls problem

Our first example is a main example in [MMR+05]. An urn contains an unknown number of
balls; the number is from a Poisson distribution with mean 6. The balls are equally likely to be
blue or green. We draw some balls from the urn, observing the color of each and replacing it.
The observed colors are wrong with probability 0.2. Given the list of observations, what is the
conditional density on the number of balls in the urn? What is the probability that a ball was
drawn more than once? We will consider the first question where the list of observations is either
10 or 15 blue balls in a row.

This problem was modelled as a structured Bayesian network in [NLU09]. Through a series of
rewrites of the query expression, exact inference for a particular class of observations was shown
to be tractable. We shall use the same Bayesian network but forego the rewrites, trading accuracy
for efficiency by using sampling.

There are four variables in the model: the number n of balls in the urn, the actual set s of
balls in the urn, the list d of balls drawn, and the list o of observations made. The length of the
lists d and o, which we shall call l, is a parameter to the model. The figure below illustrates the
graphical model.

�� ��

�� ��n //�� ��
�� ��s //�� ��

�� ��
dl

//�� ��
�� ��o

We define N , S(·), and Dl(·) as the sets of support for the numbers of balls, the sets of balls,
and the balls drawn (assuming as many were drawn as observed), and Pn(n), Ps(s | n), Pd,l(d | s),
and Po,l(o | d) as the relevant (conditional) probability distributions. The definitions are as implied
by the problem statement:

Pn(n) = Poisson(6, n),

Ps(s | n) = 2−|s|,

Pd,l(d | s) = |s|−l, and

Po,l(o | d) = 0.8c0.2l−c

where, in the last line, c is the number of places where the color of the ball in d agrees with the
observation o.

3



Given an observation o = [blue, blue, . . . ] of length l and a query value for n, the desired
probability in this problem is

Pr(n | o) =
Pr(n, o)

Pr(o)

=

∑

s∈S(n)

∑

d∈D(s) Pr(n, s, d, o)
∑

n∈N

∑

s∈S(n)

∑

d∈Dl(s)
Pr(n, s, d, o)

=
E(s,d)∼Ps(·|n)Pd,l(·|s)

Pr(n,s,d,o)
Ps(s|n)Pd,l(d|s)

E(n,s,d)∼Pn(·)Ps(·|n)Pd,l(·|s)
Pr(n,s,d,o)

Pn(n)Ps(s|n)Pd,l(d|s)
.

(4)

The denominator is a normalizing constant that only needs to be calculated once for a particular
value of o since it doesn’t depend on n. The joint probability distribution is Pr(n, s, d, o) =
Pn(n)Ps(n | s)Pd,l(s | d)Po,l(o | d).

We can sample from Pn(·), Ps(· | n), and Pd,l(· | s), assuming we can sample from U(0, 1)
and from any uniform categorical distribution. For Pn(·) we sample a Poisson distribution with
mean 6 using, for example, the algorithm in [Knu97]. For Ps(· | n) we create a set of n balls each
of whose color is sampled from {blue, green} uniformly. For Pd,l(· | s) we create a list of l balls
sampled from s uniformly.

We used the iterative sampling algorithm to evaluate (4) with o = blue10 = {blue, blue, . . . , blue}
and o = blue15 for n = 1, 2, . . . , 15. [NLU09] gives exact results for these queries that were cal-
culated by exploiting symmetries in the problem and in repeated observations of the same color.
With (ǫ, α, nmin) = (10−4, 10−3, 100) for the denominator and (ǫ, α, nmin) = (10−4, 10−1, 100) for
the numerator the estimated probabilities compare well to the exact ones as shown in Figure 1.
The figure also shows the number of samples required for each query.

Radar problem

Our second example is also from [MMR+05], but is more complicated. A volume of airspace
contains an unknown number of aircraft; the number is from a Poisson distribution. The state
of each aircraft at each time step is its position and velocity, and depends on the previous time
step. We observe the airspace with (two dimensional) radar. Each radar blip at each time step
gives the approximate position of an aircraft that generated it. Some blips are not generated by
aircraft (false alarms), and sometimes aircraft do not generate a blip. Given the time series of
observed blips, what is the conditional density on the state of the airspace (the number of aircraft,
their trajectories, and the sources of blips)? We can also do forward inference and ask for the
posterior density of a time series of observations. We will evaluate a backwards inference query of
the aircrafts’ velocities given their starting positions and observations.

We model this problem as a Bayesian network parameterized by the total number T of time
steps under consideration. We assume a simple version of the problem in which the acceleration
of each aircraft is known to be zero, and the number of aircraft remains constant over time. There
are nine variables in our model including the number of aircraft n, the initial positions of the
aircraft p0, the initial velocities v0, and six time series variables. The time series variables are of
aircraft positions p̄ = [p0, . . . , pT−1], of positions of aircraft that generate blips ḡ = [g0, . . . , gT−1],
of the number of false alarm sources m̄ = [m0, . . . , mT−1], of positions of false alarm sources f̄ =
[f0, . . . , fT−1], of apparent positions ā = [a0, . . . , aT−1], and of observed blips ō = [o0, . . . , oT−1].

Each pt is a list of length n of the positions of each aircraft at time t. v0 is a list of length n
of the velocities (change in each position coordinate) of each aircraft. Each gt is a subset of the
elements of pt. Each mt is an integer at least zero. Each ft is a list (possibly with duplicates) of
positions of false alarm sources. Each at is a list of apparent positions. Each ot is a set of observed
blip positions. The dependencies of the variables are illustrated in the graphical models in Figure
2.

4



P
r(
n
|o
)

0

0.05

0.1

0.15

0.2

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
r(
n
|o
)

0

0.05

0.1

0.15

0.2

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
a
m
p
le
s

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
a
m
p
le
s

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

n
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1: Accuracy of approximate inference in the Balls problem for a query of the number n of
balls when the observed sequence o is either 10 (left) or 15 (right) blue balls in a row. The number
of samples required for each approximated point, with a minimum of 100 samples, are shown in
the lower graphs. The graphs on the left represent a single run, on the right the average of two
runs.

5



�� ��

�� ��n //

��>
>>

>>
>>

>
�� ��

�� ��
p0 //�� ��

�� ��
p̄ //�� ��

�� ��
ḡ //�� ��

�� ��ā //�� ��
�� ��ō

�� ��

�� ��
v0

@@��������
�� ��

�� ��m̄ //�� ��

�� ��
f̄

OO
�� ��

�� ��n //

��?
??

??
??

?
�� ��

�� ��
p0 //

��

�� ��

�� ��
g0 //�� ��

�� ��
a0 //�� ��

�� ��
o0

�� ��

�� ��
v0

  A
AA

AA
AA

A

��*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

�� ��

�� ��
m0 //�� ��

�� ��
f0

OO

�� ��

�� ��
p1 //

��

�� ��

�� ��
g1 //�� ��

�� ��
a1 //�� ��

�� ��
o1

�� ��

�� ��
m1 //�� ��

�� ��
f1

OO

�� ��

�� ��
p2 //�� ��

�� ��
g2 //�� ��

�� ��
a2 //�� ��

�� ��
o2

�� ��

�� ��
m2 //�� ��

�� ��
f2

OO

Figure 2: Graphical models illustrating the Radar problem. On the right the time series lists are
flattened into the network, with T = 3, and the duplication of p0 (in p̄) is removed.

We can define the joint distribution over the variables in this problem with the density function

pdf(n, m̄, f̄ , p0, v0, p̄, ḡ, ā, ō) =

Pn(n)Pm̄(m̄)Pf̄ (f̄ | m̄)Pp0
(p0 | n)Pv0

(v0 | n)Pp̄(p̄ | p0, v0)Pḡ(ḡ | p̄)Pā(ā | f̄ , ḡ)Pō(ō | ā)

where the factors are the conditional densities of the variables given their parents in the Bayesian
network. The time series densities are defined as products of the densities at each time step.

Pp̄(p̄ | p0, v0) =

T−1
∏

t=0

Pp(pt | pt−1, v0) Pḡ(ḡ | p̄) =

T−1
∏

t=0

Pg(gt | pt)

Pm̄(m̄) =

T−1
∏

t=0

Pm(mt) Pā(ā | f̄ , ḡ) =

T−1
∏

t=0

Pa(at | ft, gt)

Pf̄ (f̄ | m̄) =

T−1
∏

t=0

Pf (ft | mt) Pō(ō | ā) =

T−1
∏

t=0

Po(ot | at)

The rest of the conditional densities are defined below. If the side conditions aren’t satisfied,
the densities are defined to be zero. µn and µf are the mean number of aircraft and of false alarm
sources, respectively. S = {(x, y) ∈ Z

2 | smin ≤ x, y < smax} and V = {(dx, dy) ∈ Z
2 | vmin ≤

dx, dy < vmax} represent possible initial positions and initial velocities, respectively.1 We use the
same set S for possible false alarm source positions and observed blip positions, however we allow
real (floating point) position coordinates after time step 0. σ2

p is the variance in each aircraft’s
position. λg is the probability that an aircraft generates a blip2. σ2

a is the variance in apparent
positions. We index the set s in the definition of Pa in component-wise ascending order. We treat

1to be more realistic, these could be subsets of R
2

2to be more realistic, this could depend on the aircraft’s position

6



pt as a set of its elements in defining Pg, and ft and at similarly in defining Pa and Po.

Pn(n) = Poisson(µn, n)

Pm(m) = Poisson(µf , m)

Pf (ft | mt) = mt! × (smax − smin)
−2mt , len(ft) = mt, ∀i.ft[i] ∈ S

Pv0
(v0 | n) = (vmax − vmin)

−2n, len(v0) = n

Pp0
(p0 | n) = (smax − smin)

−2n, len(p0) = n

Pp(pt | pt−1, v0) =

len(pt)−1
∏

i=0

1
∏

x=0

N (pt−1[i][x] + v0[i][x], σ2
p, pt[i][x]), len(pt) = len(pt−1) = len(v0)

Pg(gt | pt) = Binomial(|T |, λg, |gt|), T = {(x, y) ∈ pt ⊂ R
2 | smin ≤ x, y < smax}, gt ⊆ T

Pa(at | ft, gt) =
∏

s[i]∈ft∪gt

1
∏

x=0

N (s[i][x], σ2
a, at[i]), len(at) = |ft| + |gt|

Po(ot | at) = 1, ot = at ∩ S

We assume we can sample from Poisson, Gaussian, and uniform (and thereby binomial and
categorical) distributions. Then sampling from the above distributions is straightforward; we
describe two examples. To sample from Pḡ(· | p̄), for each pt we include pt[i] if, firstly, it is in S
and, secondly, according to a binary categorical sample with λg weight on inclusion. To sample
from Pa(· | ft, gt) we construct the ordered set of source positions s = ft ∪ gt, then for each source
position s[i], for each component s[i][x], we sample a Gaussian with variance σ2

a around s[i][x].
We tried the backward inference problem of estimating the posterior density on v0 given p0

and ō. The value of n is determined by the length of p0, so only the other five variables need to
be marginalized out. The desired probability is

Pr(v0 | p0, ō)

=
Pr(v0, p0, ō)

Pr(p0, ō)

=

∑

m̄

∫

df̄
∫

dp̄
∫

dḡ
∫

dā · pdf(. . . )
∑

m̄

∫

df̄
∫

dv0

∫

dp̄
∫

dḡ
∫

dā · pdf(. . . )

=
E(m̄,f̄,p̄,ḡ,ā)∼Pm̄(·)Pf̄|m̄(·)Pp̄(·|p0,v0)Pḡ(·|p̄)Pā(·|f̄ ,ḡ)Pp0

(p0 | n)Pv0
(v0 | n)Pō(ō | ā)

E(m̄,f̄,v0,p̄,ḡ,ā)∼Pm̄(·)Pf̄|m̄(·)Pv0
(·|n)Pp̄(·|p0,v0)Pḡ(·|p̄)Pā(·|f̄ ,ḡ)Pp0

(p0 | n)Pō(ō | ā)
, n = len(p0)

(5)

and as in the Balls example the denominator need only be calculated once for use with different
values of v0.

We used the following model parameters.

T = 2 µn = 3 µf = 0.1

(smin, smax) = (−5, 6) σ2
p = 0.1 σ2

a = 0.1

(vmin, vmax) = (−1, 2) λg = 0.9

As sampling parameters we used (ǫ, α, nmin) = (10−2, 10−2, 104) for the numerator and the de-
nominator. As evidence variables we used

p0 = [(−1, 0), (0, 1), (1,−1)],

o0 = {(−1, 0), (0, 1), (1,−1)}, and

o1 = {(0, 0), (0, 1), (1, 0)}.

With a little thought we can come up with some likely values of v0 given these two observations.

7



The following values would match a deterministic model without noise or false alarms.

v1
0 = [(1, 0), (0, 0), (0, 1)]

v2
0 = [(1, 1), (0,−1), (0, 1)]

v3
0 = [(1, 1), (1,−1), (−1, 1)]

The results of querying these values by sampling, averaged over three runs, are

Pr(v1
0 | p0, ō) ≈ 0.14,

Pr(v2
0 | p0, ō) ≈ 0.15, and

Pr(v3
0 | p0, ō) ≈ 0.16,

thus these values for v0 account for almost half of the probability. It’s not hard to see that these
are the only initial velocities that would match the observations in a deterministic model, so the
rest of the probability must be covered by false alarms, variance in p1 and in ā, and when some
of the aircraft do not generate blips. For example, consider the following variations on v1

0 .

Pr([(1, 0)(0, 1), (0, 1)]) ≈ 0.02

Pr([(1, 1)(0, 0), (0, 1)]) ≈ 0.05

Pr([(1, 1)(0, 1), (0, 1)]) ≈ 0.01

The number of samples required for each estimated expectation in the above queries was
nmin = 104; in other words, in each case nmin either was large enough to satisfy the accuracy
and confidence requirements or was not large enough to put the sample mean in its asymptotic
normal regime. Possibly in this example, and almost certainly in a more complicated example,
nmin = 104 would not be large enough, because the sample space is large but the probability
may be concentrated. An improvement to our method here may be to use importance sampling
to concentrate sampling in the areas of high probability. An instance of importance sampling is
described in the next section.

5 Dynamic Bayesian Networks

Dynamic Bayesian networks are used for representing sequences of variables parameterized by, for
example, time. A dynamic network can be cut off at a certain point (time) and the subnetwork
will be static and amenable to the treatment in §4. The Radar problem could be modelled using
a dynamic network, but we presented it as static because we only looked at queries after a single
number of time steps T .

When we wish to query the network at multiple time steps, then rather than applying static
inference techniques to each subnetwork, we can use a more efficient inference algorithm known as
Sequential Monte Carlo [JD08, AMGC02], or, in particular, particle filtering. Particle filtering is
applicable to hidden Markov models, that is, models in which the unknown variables at time T +1
depend only on the unknown variables at time T , and the evidence variables at time T depend
only on the unknown variables at time T . We shall only consider the case where there is a single
unknown (state) variable and a single evidence (observation) variable at each time step.

5.1 Approximate Inference

We consider the hidden Markov model with state variables xi ∈ Xu and observation variables
yi ∈ Xe for t = 0, 1, 2, . . . , and where f0(x0), f(xi | xi−1), and g(yi | xi) are the (conditional)
density functions. The dependencies are illustrated in the figure below.

�� ��

�� ��
x0 //

��

�� ��

�� ��
x1 //

��

�� ��

�� ��
x2 //

��

· · ·

�� ��

�� ��
y0

�� ��

�� ��
y1

�� ��

�� ��
y2 · · ·

8



Suppose we assign value vi to variable yi, i = 0, . . . . For several (usually consecutive) values of
T we wish to make a query of the subnetwork specified by i < T . As in §2 the partially instantiated
joint density function can be written

(

f0(x0)

T−1
∏

i=1

f(xi | xi−1)

)(

T−1
∏

i=0

g(vi | xi)

)

(6)

In this model, the same functions f and g are used at each time step. We define the function sT−1

by marginalizing out all but the latest unknown variable:

sT−1(xT−1) =
∑

x0

∑

x1

· · ·
∑

xT−3

∑

xT−2

(

f0(x0)

T−1
∏

i=1

f(xi | xi−1)

)(

T−1
∏

i=0

g(vi | xi)

)

.

The particle filter algorithm maintains an approximation of sT over time, and avoids recalculation
by using the relation

s0(x0) = f0(x0)g(v0 | x0),

sT (xT ) =
∑

xT−1

sT−1(xT−1)f(xT | xT−1)g(vT | xT )

= Ex∼sT−1(·)f(xT | x)g(vT | xT ).

We want to approximate sT (xT ) by sampling but usually we cannot sample from sT−1(·)
because a sampling procedure is difficult or impossible to devise. We can instead use importance
sampling. We define a sampling density qT−1 that is non-zero on the support of sT−1, then for
T > 0

sT (xT ) =
∑

xT−1

qT−1(xT−1)

qT−1(xT−1)
sT−1(xT−1)f(xT | xT−1)g(vT | xT )

= Ex∼qT−1(·)
sT−1(x)f(xT | x)g(vT | xT )

qT−1(x)

which we can approximate by sampling, assuming we apply this technique recursively to approxi-
mate sT−1(x).

Localization problem

Our third example is localization of an agent with range sensors in an environment consisting of
thin straight walls. Given the sensor readings at each time step, and its model of the sensors, the
environment, and its own movement, the agent must estimate its position. The Bayesian network
is dynamic with each variable parameterized by time.

For localization, the map of the world is fixed and known. The variables at each time step are
the (believed) location of the agent lt, and the data from the sensors ot. The joint density function
of the variables is conditioned on the movement actions taken by the agent at. We represent the
variables as follows. lt is a pair of coordinates (x, y). ot the is a list of pairs of the form (a, r)
where a is the angle relative to the world in which the sensor is pointed and r is the distance
recorded by the sensor which can be ∞ indicating out of range. at is a pair (a, d) where a is the
intended direction of movement as an angle relative to the world and d is the intended distance
of movement. The diagram below illustrates the dependencies. The model is conditioned on the
actions; they are shown in dashed boxes to indicate that they are not variables themselves although
they do affect the conditional probability densities of the variables.

9



_ _�
�

�
�

_ _
a0

��

_ _�
�

�
�

_ _
a1

��

· · ·

�� ��

�� ��
l0 //

��

�� ��

�� ��
l1 //

��

�� ��

�� ��
l2 //

��

· · ·

�� ��

�� ��
o0

�� ��

�� ��
o1

�� ��

�� ��
o2 · · ·

The conditional density functions f and g in the particle filter template are defined in this
problem by the “transition model”, f(lt | at−1, lt−1), and “sensor model”, g(ot | lt). For localiza-
tion, we can use a transition model that says the new location is distributed normally around the
intended location. We can sample this distribution directly, so qt in this case is the same as st.
The sensor model says that there is a laser reading distributed normally around the locations of
walls in the lasers’ ranges.

This problem can be extended to simultaneous localization and mapping, making the model
more complicated: the location variable is replaced by a compound variable containing both the
(believed) location and map of the world. The transition model must update a map of the world, so
the sampling density qt, which is (partially) over possible maps, benefits from careful construction.

6 Further work

Automation

The (conditional) density functions in the Balls and Radar models were mostly products or other
combinations of elementary densities (uniform, Poisson, etc.). A high-level specification of models
like these may be enough to generate code implementing the density functions themselves, or the
procedures to sample from them, or both.

Nested sampling

In our approach to approximate inference in static models, each sample is of all the unknown
variables at once, and the joint density is calculated for this tuple of values along with the evidence.
Specifically the sampling method suggests

E(x1,x2,...,xn)∼f1(·|pa(x1))f2(·|pa(x2))···fn(·|pa(xn))

m
∏

i=1

gi(vm | pa(yi)),

rather than the equivalent

Ex1∼f1(·|pa(x1))Ex2∼f2(·|pa(x2)) · · ·Exn∼fn(·|pa(xn))

m
∏

i=1

gi(vi | pa(yi)).

From informal experiments on the second approach, where sampling one variable may involve
recursive approximation by sampling, it seems that the first, unnested, approach performs better
(requires fewer total samples). This is worth investigating further, especially since the recursive
approach would be preferred for an exact calculation to avoid duplicating work.

In [HGJ07] the full recursive sampling algorithm is presented, because in general unnesting is
not possible. Furthermore they combine the nested approach with with multi-tree sampling as a
variance reduction technique, providing automatic concentration on difficult expectations.

Rao-Blackwellisation

Certain expectations can be calculated exactly efficiently. Whether these exact computations can
be easily combined with sampling for the intractable computations within the same query remains
to be seen.

10



7 Conclusion

This paper describes inference problems in structured Bayesian networks and standard sampling-
based techniques for approximate inference. We have showed that approximate inference by sam-
pling is appropriate for structured models that are either static or dynamic. The advantage of
using structured networks is that these models are relatively small and comprehensible.

References

[AMGC02] Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on
particle filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions

on Signal Processing, 50:174–188, 2002.

[HGJ07] Michael Holmes, Alexander Gray, and Charles Lee Isbell Jr. Ultrafast monte carlo for
statistical summations. In NIPS, 2007.

[JD08] A. M. Johansen and A. Doucet. A tutorial on particle filtering and smoothing: Fifteen
years later. In Crisan and Roszovskii, editors, Handbook of Nonlinear Filtering. Oxford
University Press, 2008. To appear.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2, Seminumerical

Algorithms. Addison-Wesley, 3rd edition, 1997.

[MMR+05] Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and
Andrey Kolobov. Blog: Probabilistic models with unknown objects. In L.P. Kaelbling
and A. Saffiotti, editors, Proceedings of the 19th International Joint Conference on

Artificial Intelligence, pages 1352–1359, 2005.

[NLU09] K. S. Ng, J. W. Lloyd, and W. T. B. Uther. Probabilistic modelling, inference and
learning using logical theories. Annals of Mathematics and Artificial Intelligence, 2009.
In press.

A Central Limit Theorem

Here we prove a version of the Central Limit Theorem that we use in this paper.

Theorem A.1. Let X1, X2, . . . , Xn be n random variables that are independently and identically

distributed according to a density p(·) on Ω and let f : Ω → R be a real-valued function on Ω. If

µf = Ex∼p(·)f(x) and σ2
f = Ex∼p(·)(f(x) − µf )2 are both finite, then the sample average

X̄f =
1

n
(f(X1) + f(X2) + · · · + f(Xn))

has a distribution that tends to a Gaussian distribution with mean µf and variance σ2
f/n as n → ∞.

Proof. We show that the distribution q(y) of Yf =
X̄f−µf

σf /
√

n
converges to the standard normal

distribution as n → ∞ from which the result for X̄f follows. Let Z(x) =
f(x)−µf

σf
. Since

n
∑

i=1

Z(Xi) =
1

σf

n
∑

i=1

(f(Xi) − µf )

=
n

σf
(X̄f − µf )

=
√

nYf

11



we have Yf = 1√
n

∑n
i=1 Z(Xi). Also

Ex∼p(·)Z(x) =
∑

x∈Ω

f(x) − µf

σf
p(x)

=
1

σf

(

∑

x∈Ω

f(x)p(x) − µf

∑

x∈Ω

p(x)

)

=
1

σf
(µf − µf )

= 0

and

Ex∼p(·)Z(x)2 =
∑

x∈Ω

(

f(x) − µf

σf

)2

p(x)

=
1

σ2
f

∑

x∈Ω

(f(xi) − µf )2p(x)

=
1

σ2
f

Ex∼p(·)(f(x) − µf )2

=
σ2

f

σ2
f

= 1

that is, the first two moments of Z(Xi) are 0 and 1 respectively. The moment generating function
for Yf is

mYf
(t) = Ey∼q(·) exp(ty)

= Ex1,...,xn∼pn(·) exp

(

t√
n

n
∑

i=1

Z(xi)

)

= Ex1,...,xn∼pn(·) exp

(

tZ(x1)√
n

)

. . . exp

(

tZ(xn)√
n

)

=

(

Ex1∼p(·) exp

(

tZ(x1)√
n

))

× · · · ×
(

Exn∼p(·) exp

(

tZ(xn)√
n

))

=

(

Ex∼p(·) exp

(

tZ(x)√
n

))n

=

(

1 +
tEx∼p(·)Z(x)√

n
+

t2Ex∼p(·)Z(x)2

2!n
+

t3Ex∼p(·)Z(x)3

3!n3/2
+ . . .

)n

=

(

1 + 0 +
t2

2n
+

t3Ex∼p(·)Z(x)3

3!n3/2
+ . . .

)n

=

(

1 +
1

n

(

t2

2
+

t3Ex∼p(·)Z(x)3

3!
√

n
+ . . .

))n

=⇒ lim
n→∞

mYf
(t) = lim

n→∞

(

1 +
u

n

)n

where u =
t2

2
+

t3Ex∼p(·)Z(x)3

3!
√

n
+ . . .

= exp
(

lim
n→∞

u
)

= exp

(

t2

2

)

12



since all but the first term of u have n in the denominator. But m(t) = exp( t2

2 ) is the moment
generating function for the standard normal distribution, therefore Yf has a standard normal
distribution by the Lévy continuity theorem.

13


