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1 Introduction

This paper serves as a tutorial introduction to Alkemy, a decision-tree learner designed to induce
comprehensible theories from structured data. A short and clear account of the motivations behind
the development of the system is in [FGCL98]. [BGCL01] gives a more detailed discussion of the
relevant knowledge representation issues and presents the main algorithms. A rigorous treatment
of the logic underlying the system is in [Llo03]. Aspects of the theory of learning with Alkemy can
be found in [Ng05]. I refer the reader to these articles for more information on Alkemy. In this
paper, we will concentrate on the practice of learning how to use a prototype implementation.

The tutorial is organised as follows. In §2, we introduce in simple terms the central concepts
behind the learner. We review the standard decision-tree learning algorithm and point out the
essential differences between Alkemy and more conventional learners like Cart [BFOS84] and
C4.5 [Qui93]. In §3, we examine in some detail a recent implementation of Alkemy. Among
other things, we look at the input and output formats of the system, and explore some of its
functionalities. To make the ideas concrete, we use a classic problem in symbolic learning as a
running example throughout §2 and §3.

2 Alkemy: The Concept

The basic problem we are trying to solve is standard. The learner receives randomly drawn training
examples of the form (x, y), x ∈ X , y ∈ Y, where X is some set called the individual space, and
Y is either a finite set or (a bounded interval of) the real line R. There could be an underlying
target function f relating each x and y by y = f(x), and the examples are generated according to
an unknown probability distribution on X . More generally, we do not presuppose the existence
of a target function and simply assume that examples are generated independently according to
an unknown joint probability distribution on X × Y. In both cases, the learning task is to find
a hypothesis h from a class of functions H called the hypothesis space that generalizes well to
unseen examples.

To learn a decision tree from a set of labelled examples E = {(xi, yi)}
n
i=1, a set of (useful)

questions Q one can ask about the individuals (the xi’s) needs to be identified. Each question is
a function mapping X to some finite domain. The learning algorithm then proceeds as follows.
Starting from the single-node tree T with the whole training set E in it, a search is performed to
find a question q ∈ Q that best partitions, according to some pre-specified measure of success,
the initial set E into subsets E1, . . . , Ek. Here, the question q has k possible outcomes, and the
partition P = (E1, . . . , Ek) is in some sense purer than E . We then put q as the discriminating
function in T and attach k nodes to it, assigning Ei to the i-th node. The process is then repeated
on each of the newly-created leaf nodes and continued on recursively on its descendants. The
process terminates when the subset of examples falling in each leaf node in the tree has attained a
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certain minimum level of purity. Each leaf node is then labelled appropriately in accordance with
the examples falling in it.

Alkemy is different from conventional decision-tree learners in two important aspects — the
language that can be used to represent the xi’s, and the kind of questions Q one can pose about
individuals so-represented. For learners in the C4.5/Cart family, the xi’s are feature vectors with
categorical and/or continuous attributes. In the case of Alkemy, they are a special class of terms
called basic terms in a typed higher-order logic. The use of such a rich language allows us to
upgrade, in the sense expounded in [VD01], standard top-down decision-tree learning algorithms
to handle structured data. For example, Alkemy can accept as input just about every commonly
encountered data type in computer science. These include booleans, characters, string, integers,
floating-point numbers, lists, trees, sets, multisets, graphs, and composite types that can be built
up from these.

The fact that we are proposing to use a highly expressive language to represent the individuals
means that the kind of questions Q we can ask about them has to be correspondingly rich as
well. A class of predicates (boolean-valued functions) in the logic is identified for that purpose.
Associated with each simple type are some basic operations. For example, given a tuple, we can
project onto each of its components; given a set, we can compute its cardinality, among other
things; given a graph, we can pull out the set of all connected subgraphs with five vertices in it;
etc. The basic idea is that we can form complex predicates on individuals by composing these
simple functions. We will make concrete the ideas introduced so far with an example.

Consider the East-West challenge proposed by Michalski, as illustrated in Figure 1. We are
given 10 trains and the directions they are travelling in. The problem is to produce a rule that
can differentiate between those heading east and those heading west.

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Figure 1: Trains in Michalski’s East-West Challenge.

To solve the problem using Alkemy, one must first decide how the trains are to be represented.
Here, we model a train as a list of its carriages. A carriage is in turn modelled using a tuple made
up using six of its properties: shape, length, number of wheels, open air or closed, roof shape,
and the load the carriage is carrying. From that initial analysis, we introduce the following data
constructors

Rectangular ,DoubleRectangular ,UShaped ,BucketShaped ,Hexagonal ,Ellipsoidal : Shape

Long,Short : Length

Closed ,Open : Kind

Flat , Jagged ,Peaked ,Curved ,None : Roof

Circle,Hexagon,Square,Rectangle,LRectangle,Triangle ,UTriangle,Diamond ,Null : Object

East ,West : Direction
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and the following type synonyms

NumWheels = Int

NumObjects = Int

Load = Object ×NumObjects

Car = Shape × Length ×NumWheels × Kind × Roof × Load

Train = List Car .

A note on notation. In the declaration of the data constructors, the string appearing after the
colon denotes the type of the constants appearing before it. Type synonyms allows us to give
meaningful names to types.

We want to learn a function direction having the following signature.

direction : Train → Direction .

The first trains travelling in each direction are shown below.

direction [(Rectangular ,Long, 2,Open,None, (Square, 3)),

(Rectangular ,Short , 2,Closed ,Peaked , (Triangle, 1)),

(Rectangular ,Long, 3,Open,None, (Hexagon, 1)),

(Rectangular ,Short , 2,Open,None, (Circle , 1))] = East

direction [(Rectangular ,Long, 2,Closed ,Flat , (Circle, 3)),

(Rectangular ,Short , 2,Open,None, (Triangle , 1))] = West .

Having decided on the representation, the next step is to identify the set Q, i.e., the hypothesis
language. We first give the definition of a transformation. The class of transformations identified
for a particular application forms the basic class of functions with which we compose to form more
complex predicates on individuals.

Definition 2.1. A transformation f is a function having a signature of the form

f : (ρ1 → Ω)→ · · · → (ρk → Ω)→ µ→ σ,

where any parameters (i.e., type variables) in ρ1, . . . , ρk and σ appear in µ, and k ≥ 0. The
type µ is called the source of the transformation, while the type σ is called the target of the
transformation. The number k is called the rank of the transformation.

What transformations are suitable for the learning task? We note here that the type we
have chosen to represent the trains gives strong clues about the possible transformations. At the
top-level, a train is a list of carriages. Some useful transformations on lists are:

head : Train → Car

head (# x y) = x

tail : Train → Train

tail (# x y) = y

listToSet : Train → {Car}

listToSet [] = {}

listToSet (# x y) = {x} ∪ (listToSet y)

Here, we use a functional logic programming language called Escher [Llo95, Llo99] to define the
functions. Escher can be most straightforwardly understood as a simple extension of Haskell
[Tho99] to incorporate logic programming. Appendix A contains a short introduction to Escher.
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The function head returns the head of a list; the function tail returns the tail of a list; and
finally, the function listToSet takes as input a list and converts it into a set.

Given a set of carriages, we find the following transformation helpful.

setExists1 : (Car → Ω)→ {Car} → Ω

setExists1 p t = ∃x.(x ∈ t ∧ (p x))

The transformation returns true given a set iff the set has at least one element that satisfies
the predicate p. Here and in the following, the symbol Ω denotes the type of the booleans.
Sets are identified with predicates in the logic. Thus, both p and t are predicates on Car . In
that sense, there is no mathematical distinction between Car → Ω and {Car}. The notation is
introduced here to emphasise the intuitive roles the corresponding terms are playing. The former
is a condition, the latter a collection of objects. So we could have written (t x) in place of x ∈ t in
the above and the meaning of the function would stay unchanged. For a more detailed discussion
on this point, the reader is referred to page 25 and page 136 of [Llo03].

Corresponding to the types Car and Load , which are tuples, are projection transformations.

projShape : Car → Shape

projShape (t0, t1, t2, t3, t4, t5) = t0

. . .

projLoad : Car → Load

projLoad (t0, t1, t2, t3, t4, t5) = t5

projObject : Load → Object

projObject (t0, t1) = t0

projNumObjects : Load → NumObjects

projNumObjects (t0, t1) = t1

We may also be interested in testing the conjunctions of several predicates defined on Car .

∧2 : (Car → Ω)→ (Car → Ω)→ Car → Ω

∧2 p1 p2 = λx.((p1 x) ∧ (p2 x))

Finally, corresponding to the data constructors and integers, we have the following transfor-
mations that check for equality of terms.

(= Rectangular) : Shape → Ω

(= Rectangular) x = (x = Rectangular)

. . .

(= Null) : Object → Ω

(= Null) x = (x = Null)

(= 2) : NumWheels → Ω

(= 2) x = (x = 2)

(= 3) : NumWheels → Ω

(= 3) x = (x = 3)

In preparation for discussions on predicate rewrite systems, we also define here the transformation
top : µ→ Ω that always return true, that is, top x = ⊤.
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As mentioned earlier, predicates on individuals are built up through compositions of transfor-
mations. Composition is handled by the (reverse) composition function.

◦ : (ρ→ σ)→ (σ → τ)→ (ρ→ τ)

(f ◦ g) x = (g (f x)).

We next state the class of predicates we want to generate, the standard predicates. It is defined
by induction on the number of transformations taken from a class identified for a particular
application under consideration.

Definition 2.2. A standard predicate is a term of the form

(f1 p1,1 . . . p1,k1
) ◦ · · · ◦ (fn pn,1 . . . pn,kn

),

where fi is a transformation of rank ki (i = 1, . . . , n), the target of fn is Ω, pi,ji
is a standard

predicate (i = 1, . . . , n, ji = 1, . . . , ki), ki ≥ 0 (i = 1, . . . , n) and n ≥ 1.

As an example, listToSet ◦ (setExists1 (projLength ◦ (= Short))) is a standard predicate that
takes as input an individual of type Train, converts it into a set of carriages, and returns true iff
there exists a short carriage in the set.

Having identified the class of predicates we want to construct, the next question of interest
is how do we (compactly) define and (efficiently) enumerate the predicates? A grammar-like
construct called a predicate rewrite system is employed for this purpose. This is introduced next.

To define a space of predicates, we first need to make some conjectures about the form of the
hypothesis. Suppose we speculate that the definition of direction has the following general form:
a train travels east (or west) iff there exists a carriage in the train that satisfies some (as yet
unknown) properties. Based on that, we can define the following predicate rewrite system.

top ֌ listToSet ◦ (setExists1 top)

top ֌ ∧2 top top

top ֌ projShape ◦ top

top ֌ projLength ◦ top

top ֌ projNumWheels ◦ top

top ֌ projKind ◦ top

top ֌ projRoof ◦ top

top ֌ projLoad ◦ top

top ֌ projObjects ◦ top

top ֌ projNumObjects ◦ top

top ֌ (= Rectangular)

. . .

top ֌ (= Null)

Each s ֌ t can be most straightforwardly understood as a rewrite rule. Given a predicate on
the LHS, we can replace it with the RHS provided certain conditions hold. For example, given
a predicate p = q ◦ r ◦ s, we can use the rule s ֌ t to rewrite p, denoted p[s/t], to produce
p′ = q ◦ r ◦ t, provided the resulting p′ is a term in the logic. In that sense, the set of rewrites
defines a structured search space as shown in Figure 2.

Rewrite systems are usually built based on equality. In the case of Alkemy, the basic concept
is not equality, but implication. In simplistic terms, given a rewrite r ֌ s where s logically implies
r (denoted s −→ r) and a predicate p where r is a subterm in p, when we use r ֌ s on p to
obtain a new predicate p[r/s], it is always the case that p[r/s] −→ p. Looking back at Figure 2,
we note that if there is an arc from a predicate p to a predicate q, then it follows that q −→ p.
This property allows us to do general-to-specific hypothesis searches. This property, combined
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listToSet . setExists1 (And2 top top)

top

listToSet . setExists1 (And2 projShape . top top) listToSet . setExists1 (And2 projLoad . top top)listToSet . setExists1 (And2 projKind . top top)

listToSet . setExists1 (And2 projKind.top projShape.top) listToSet . setExists1 (And2 projKind.top projRoof.top) listToSet . setExists1 (And2 projKind.top projLoad.top)

listToSet . setExists1 top

Figure 2: The search space illustrated.

with predicate selection heuristics described in [NL05], is also important for effective pruning of
search spaces during learning.

Given the representation, transformations and predicate rewrite system above, Alkemy found
the following definition for the function direction .

direction t =

if listToSet ◦ (setExists1 (∧2 (projLength ◦ (= Short)) (projKind ◦ (= Closed)))) t

then East

else West .

In a more ‘brain-friendly’ language: “A train is eastbound if and only if it has a short closed car”.

Bibliographical Notes Most early pioneering work on decision-tree learning are well covered in
the classic textbooks [BFOS84] and [Qui93]. Two systematic generalisations of the algorithm to the
first-order relational setting, work similar in spirit to Alkemy, are described in [Blo98, BD98] and
[KW01, Kra96]. The subfield of machine learning most relevant to the present work is Inductive
Logic Programming (ILP), an area of research concerned with learning comprehensible rules. If
ILP is defined as the intersection of inductive learning and logic programming [MD94], then our
work can be thought of as one of the first children in the marriage between inductive learning and
functional logic programming [Llo95, Llo99].

3 Alkemy: An Implementation

3.1 Obtaining Alkemy

Alkemy is available for download from http://rsise.anu.edu.au/~jwl/LogicforLearning.
The file README.1ST contains installation instructions and (potential) solutions to some antic-
ipated problems. A complete listing of Alkemy’s source code in the form of a literate program
[Ng06] comes equipped with the system. It is the file alkemy.ps.gz in the top-level directory.

The Alkemy system can be accessed in the usual way from the command line. Thanks to
Matt Gray, we also have a graphical user interface. It is implemented in TCL/TK, and can be
found in the gui directory. Versions for MacOS X and XWindows are available. For some, this
may be the preferred mode of operation.

3.2 A Whirlwind Tour

This section gives a quick tour of the user interface, using the now familiar East-West challenge
as an example. We first describe the format of the input specification file, followed by the format
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and meaning of system outputs.

3.2.1 The Input Specification File

In Alkemy’s language, this is what the East-West challenge classification task looks like. The
now familiar Escher syntax is employed for declaring data constructors and defining functions.

%% -- Data declarations

Circle, Hexagon, Square, Rectangle, LongRectangle, Triangle, UTriangle,

Diamond, Null : Object ;

Flat, Jagged, Peaked, Curved, None : Roof ;

Rectangular, DoubleRectangular, UShaped, BucketShaped, Hexagonal,

Ellipsoidal : Shape ;

Long, Short : Length ;

Closed, Open : Kind ;

East, West : Class ;

type NumWheels = Int ;

type NumObjects = Int ;

type Load = (Object * NumObjects) ;

type Car = (Shape * Length * NumWheels * Kind * Roof * Load) ;

type Individual = (List Car) ;

LEARN direction : Individual -> Class ;

%% -- Training examples

direction [ (Rectangular, Long, 2, Open, None, (Square, 3)),

(Rectangular, Short, 2, Closed, Peaked, (Triangle, 1)),

(Rectangular, Long, 3, Open, None, (Hexagon, 1)),

(Rectangular, Short, 2, Open, None, (Circle, 1)) ] = East ;

direction [ (UShaped, Short, 2, Open, None, (Triangle, 1)),

(BucketShaped, Short, 2, Open, None, (Rectangle, 1)),

(Rectangular, Short, 2, Closed, Flat, (Circle, 2)) ] = East ;

direction [ (Rectangular, Short, 2, Open, None, (Circle, 1)),

(Hexagonal, Short, 2, Closed, Flat, (Triangle, 1)),

(Rectangular, Long, 3, Closed, Flat, (UTriangle, 1)) ] = East;

direction [ (BucketShaped, Short, 2, Open, None, (Triangle, 1)),

(DoubleRectangular, Short, 2, Open, None, (Triangle, 1)),

(Ellipsoidal, Short, 2, Closed, Curved, (Diamond, 1)),

(Rectangular, Short, 2, Open, None, (Rectangle, 1)) ] = East;

direction [ (Rectangular, Long, 2, Closed, Flat, (Circle, 3)),

(Rectangular, Short, 2, Open, None, (Triangle, 1)) ] = West ;

direction [ (DoubleRectangular, Short, 2, Open, None, (Circle, 1)),

(UShaped, Short, 2, Open, None, (Triangle, 1)),

(Rectangular, Long, 2, Closed, Jagged, (Null, 0)) ] = West ;

direction [ (Rectangular, Long, 3, Closed, Flat, (LRectangle, 1)),

(UShaped, Short, 2, Open, None, (Circle, 1)) ] = West ;

direction [ (BucketShaped, Short, 2, Open, None, (Circle, 1)),

(Rectangular, Long, 3, Closed, Jagged, (LRectangle, 1)),

(Rectangular, Short, 2, Open, None, (Rectangle, 1)),

(BucketShaped, Short, 2, Open, None, (Circle, 1)) ] = West;

? [ (DoubleRectangular, Short, 2, Open, None, (Triangle, 1)),

(Rectangular, Long, 3, Closed, Flat, (LRectangle, 1)),

(Rectangular, Short, 2, Closed, Flat, (Circle, 1)) ] ;

? [ (UShaped, Short, 2, Open, None, (Rectangle, 1)),

(Rectangular, Long, 2, Open, None, (Rectangle, 2)) ] ;
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%% -- Trans info

import booleans.es ;

import lists.es ;

import systrans.es ;

eq2 : NumWheels -> Bool ;

(eq2 x) = (== x 2) ;

eq3 : NumWheels -> Bool ;

(eq3 x) = (== x 3) ;

projShape : Car -> Shape ;

(projShape (t1,t2,t3,t4,t5,t6)) = t1 ;

projLength : Car -> Length ;

(projLength (t1,t2,t3,t4,t5,t6)) = t2 ;

projNumWheels : Car -> NumWheels ;

(projNumWheels (t1,t2,t3,t4,t5,t6)) = t3 ;

projKind : Car -> Kind ;

(projKind (t1,t2,t3,t4,t5,t6)) = t4 ;

projRoof : Car -> Roof ;

(projRoof (t1,t2,t3,t4,t5,t6)) = t5 ;

projLoad : Car -> Load ;

(projLoad (t1,t2,t3,t4,t5,t6)) = t6 ;

projObject : Load -> Object ;

(projObject (t1,t2)) = t1 ;

projNumObjects : Load -> NumObjects ;

(projNumObjects (t1,t2)) = t2 ;

head : Individual -> Car ;

(head (# x y)) = x ;

last : Individual -> Car ;

(last (# x [])) = x ;

(last (# x y)) = (last y) ;

import sets.es ;

listToSet : Individual -> (Car -> Bool) ;

(listToSet []) = \x.False ;

(listToSet (# y z)) = (union \x.(ite (== x y) True False) (listToSet z)) ;

setExists1 : (alpha -> Bool) -> (alpha -> Bool) -> Bool ;

(setExists1 p t) = \exists x.(&& (t x) (p x)) ;

and2 : (Car -> Bool) -> (Car -> Bool) -> Car -> Bool ;

(and2 p q) = \x.(&& (p x) (q x)) ;

top : alpha -> Bool ;

(top x) = True ;
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%% -- Predicate rewrite system

top >-> listToSet . setExists1 (top) ;

top >-> and2 (top) (top) ;

top >-> projShape . top ;

top >-> projLength . top ;

top >-> projNumWheels . top ;

top >-> projKind . top;

top >-> projRoof . top ;

top >-> projLoad . top;

top >-> projObject . top ;

top >-> projNumObjects . top;

top >-> eqObjectCircle ; top >-> eqObjectHexagon ; top >-> eqObjectSquare ;

top >-> eqObjectRectangle; top >-> eqObjectLongRectangle ;

top >-> eqObjectTriangle ; top >-> eqObjectUTriangle ;

top >-> eqObjectDiamond ; top >-> eqObjectNull ;

top >-> eqRoofFlat ; top >-> eqRoofJagged ;

top >-> eqRoofPeaked ; top >-> eqRoofCurved ; top >-> eqRoofNone ;

top >-> eqShapeRectangular ; top >-> eqShapeDoubleRectangular ;

top >-> eqShapeUShaped ; top >-> eqShapeBucketShaped ;

top >-> eqShapeHexagonal ; top >-> eqShapeEllipsoidal ;

top >-> eqLengthLong ; top >-> eqLengthShort ;

top >-> eqKindClosed ; top >-> eqKindOpen ;

top >-> eq2 ; top >-> eq3 ;

%%

As can be seen, a problem spec file has four parts — data declarations, data sets, universe
of transformations (the equivalent of a background theory in relational learning), and predicate
rewrite system. These are separated by %%. Each statement in the file ends with a semi-colon.
Comments are preceded with --. The last %% token marks the end of the specification. Everything
after that is ignored.

Data declarations The data declarations section defines the type of the individuals in the
problem setting. Two language constructs are available for this purpose. Data constructors can
be defined in the usual way: a list of constants followed by their common signature. Examples
include the declarations for Object , Roof , Shape , etc given in the spec file above. Recursive
algebraic types can be declared in the usual way. For example, we can declare the list constructors
using these two statements.

[] : (List a) ;

# : a -> (List a) -> (List a) ;

The second language construct allows us to define type synonyms. Examples of these include the
declarations of Car and Individual above.

The system supports the following basic data types: Bool , Int , Float . Product types can be
defined using the symbol ∗. See, for example, the declaration of Car above. All these language
facilities provide users with a convenient way to define complex composite types, of which the
declaration of Individual is a simple example.

There are two required elements in this section.

• The declaration of type Individual . This is the type of the individuals in the learning task.

9



• The LEARN directive. This specifies the name and signature of the function to be learned.

Data sets This section lists the training and test data sets. Training examples have the form
f x = y, where f is the function declared using the LEARN directive, x is a term of type Individual ,
and y is a term of type Class . The test data set is specified by commands of the form ? x, where
again x is a term of type Individual . The learner will construct a decision tree using only the
training set. The induced decision tree is then used to predict the labels of examples in the test
data set. The test data set is useful if you want to participate in competitions like the KDD Cup,
where there is a real unknown test set that is withheld from the participants initially.

To achieve better modularity, data sets can be defined in a separate file and then imported
into the spec file. For example, we can put all the training examples in a file called “trains.es”
and write “import trains.es ;” in this section of the spec file.

Universe of transformations This section lists the transformations that are used in the pred-
icate rewrite system. A transformation is declared by providing an identifier, followed by its
signature and definition. The identifier can be any alphanumeric string starting with a lower case
letter. This is the actual name used in the definition of the predicate rewrite system. Signatures of
transformations can be either monomorphic or polymorphic. The declaration of setExists1 above
is an example of a polymorphic transformation. Parameters (type variables) are alphanumeric
strings starting with a lower case letters. Normal types are alphanumeric strings that begins with
an upper case letter.

Functions defined in standard Escher libraries like the booleans module can be used to define
transformations. Simple import statements like “import booleans.es ;” make these available.

The use of polymorphic transformations is discouraged for two reasons. Firstly, the system
runs faster when it only has to deal with monomorphic transformations. (The unification algo-
rithm wouldn’t have to work so hard then.) Secondly, polymorphic transformations can cause
‘undesirable’ predicates to be generated if the predicate rewrite system is not defined carefully to
constrain the parameters properly.

There is an order defined on the transformations and the order has implications on the regu-
larisation algorithm (see [Llo03, §4.3]). The system orders the transformations in the order they
are declared in the specification file. For that reason, top must be listed as the last entry in this
section. This is checked by the system.

The system comes equipped with some generic transformations that can be readily used.

Predicate Rewrite System The hypothesis search space is defined using a predicate rewrite
system, which is simply a collection of predicate rewrites. A predicate rewrite is a statement of the
form p ֌ q, where both p and q are standard predicates. In the default LR predicate enumeration
mode, each of p and q must be a regular predicate. This is also checked by the system. The
regularity of a predicate is dependent on the order defined on the transformations (see above).

There is one limitation in the current implementation: the head of a predicate rewrite can only
be a transformation of rank 0. We see no need to extend this at present, but this can be fixed in
future versions if necessary.

The (context-free) grammar for the input specification file is given in Appendix B.

3.2.2 System Output

It’s time to put Alkemy through its paces. Assuming you have set up the system without trouble
(see §3.1), the following command issued in the directory alkemy/SRC should do.

> alkemy ../TUTORIAL/eastwest.spec

If everything went well, one should get something similar to the following:

Learning Parameters

Command Line : ../TUTORIAL/eastwest.spec
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Search Strategy : N/A

Enumeration Strategy : LR

Statistical Test : N/A

Tree Structure : tree

Total predicates tested : 248

Total predicates in FAPtable : 249

Decision tree on training set..

direction x =

IF listToSet.setExists1 (and2 (projLength.eqLengthShort) (projKind.eqKindClosed)) x THEN

East 4/4 (4,0)

ELSE

West 4/4 (0,4)

Train Acc = 8/8 (100%)

Predictions on the test set.

direction [(DoubleRectangular,Short,2,Open,None,(Triangle,1)),

(Rectangular,Long,3,Closed,Flat,(LRectangle,1)),

(Rectangular,Short,2,Closed,Flat,(Circle,1))] = East

direction [(UShaped,Short,2,Open,None,(Rectangle,1)),

(Rectangular,Long,2,Open,None,(Rectangle,2))] = West

End predictions

Total elapsed time (sec) 10.9237

The first part Learning Parameters reports the setting under which the experiment was performed.
The induced decision tree is presented in the form of if-then-else rules. Three pieces of information
are given for each terminal node: the majority class, the accuracy of the node, and the class
distributions. The accuracy of the tree on the training set is given at the end. (In the case of
regression-tree learning, the empirical mean of the examples falling in each node and the squared
error achieved by the tree are reported instead.) Also reported is the predictions for examples in
the test set. Finally, the time spent building the tree is given.

The verbosity option can be set to get a more detailed reporting of the actual search in progress
(alkemy -vv ../EXPERIMENTS/eastwest.spec). In this mode, a complete trace of the learning
process will be sent to the screen. The following is a sample entry:

listToSet.(setExists1 (and2 (projLoad.projObject.eqLRectangle) (top)))

l: (1,2) r: (4,3) Ap = 6 Bp = 7 OL = 46 Tested = 203 Best = 8 PRUNED.

It reports that the predicate p given in the first line can be used to induce a binary tree as shown
in Figure 3. The letters l and r stand for the left and the right subtrees respectively. The 2-tuple

p                           ~p

(5,5)

(1,2)                                     (4,3)

Figure 3: An induced binary tree.

(m, n) indicates that there are m instances in the first class and n instances in the second class.
The classes follow the order in which they are declared. In this case, the first class is East, the
second, West.

The system uses a best-first search algorithm, aided by efficient pruning algorithms, to find
the best predicate to split a given node. The details can be found in [NL05]. The rest of the
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trace entry is related to the accuracy-based heuristic used for classification and the progress of the
search algorithm. The number Ap is the accuracy of the induced partition, and Bp its refinement
bound. OL = 46 means that there are 46 nodes on the open-list. The next field is the total number
of predicates examined thus far. Best records the current best score. Right at the very end, the
system reported that this predicate has been pruned. Interesting predicates are KEPT. Also, the
best predicates found at any stage are recorded as such with the word BEST before the predicate.
EQUAL BEST predicates are also marked as such.

The very verbose option is useful for debugging. Normally, one is only interested in the major
milestones in the learning process. The command alkemy -v ../TUTORIAL/eastwest.spec can
be used to do that.

3.2.3 Learning Parameters

There are many learning parameters one can set/tune to get different system behaviours. The
command alkemy -h will produce the full list of parameters supported by the system. I describe
here some of the more useful ones.

• verbosity (-v) - This sets the level of detail the learner will report its progress.

• prune (-p) - This sets the pruning parameter. The value can be a floating point number
between 1 and 100. The default is 0. The effect of setting this parameter is to throw away
those predicates whose refinement bound is lower than the prune parameter. This pruning
mechanism can be used to shorten search time, at the price of incompleteness. The prune
parameter is updated if the current best accuracy is larger than its value. In the output, the
first number listed for this parameter is the user-specified value. The number in brackets
is the final updated prune value. [NL05] contains more information about the behaviour of
this parameter.

• stump (-n) - This specifies that a decision stump, i.e., a single-split decision tree, is to be
learned.

• cutout (-c) - This sets the cutout parameter. A search is terminated if the current best
accuracy cannot be improved upon within n steps, where n is the cutout value. Further, this
parameter is always reinitialised to n upon the discovery of a new best predicate. Setting
this can speed up the learning process a lot, at the price of throwing away a potentially large
proportion of the search space.

• cross validation (-C) - Do an n-fold cross-validation.

• leave-n%-out (-t) - Do a leave-n%-out experiment. This can be repeated with a different
random test set multiple times by setting the -m option.

• random seed (-s) - This number is used to seed the random number generator to produce
different random partitioning of the data set into training, validation and test sets.

• post pruning (-P) - This specifies that the induced decision tree should be post-pruned.
The validation set parameter (-V) should be set accordingly. The default is 10%.

• enumerate (-e) - This returns the size of the search space.

There are many other more advanced options. These are left to the user to explore.

3.2.4 System-Generated Transformations

The task of writing the universe of transformations can be a tedious affair, especially for large
problems. The implementation alleviates this pain by generating certain transformations auto-
matically. These can be imported from the file “systrans.es” in the universe of transformations
section and used in the predicate rewrite system. The rules of generation are as follows, and may
be extended in future versions:

• For every constant, an equality transformation is provided. For example, given the decla-
ration Long, Short : Length, the system will generate the following two transformations
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automatically:

eqLengthLong :: Length -> Bool ;

(eqLengthLong x) = (== x Long) ;

eqLengthShort :: Length -> Bool ;

(eqLengthShort x) = (== x Short) ;

• For every tuple declaration, the projection transformations are generated. For example,
given Load = Object * NumObjects ; the system will generate

projLoad_0 :: Load -> Object ;

(projLoad_0 (t0,t1)) = t0 ;

projLoad_1 :: Load -> NumObjects ;

(projLoad_1 (t0,t1)) = t1 ;

3.2.5 Other Examples

All the examples in [BGCL01] and a few others in the UCI repository have been implemented,
and are available for study and experiments. Those spec files can be found in the EXPERIMENTS

directory.

4 Exercises

Exercise 1. In 1994, Donald Michie et al. proposed a new East-West challenge [MMPS94]. A
copy of the paper can be found in alkemy/TUTORIAL/NewEastWest/. Figures 3.1 and 3.2 show the
20 trains for Competition 1 of the challenge. The first ten came from the original challenge. The
remaining were obtained from Stephen Muggleton’s random train generator. The first exercise is
to use Alkemy to induce a rule to differentiate between the east-travelling and west-travelling
trains. One has the freedom to choose the preferred train representation and the corresponding
hypothesis language. The following representation language, used by Muggleton’s program to
describe the carriages, may be useful.

Ellipse ,Hexagon,Rectangle,UShaped ,Bucket : Shape

Long,Short : Length

NotDouble,Double : Double

None,Flat , Jagged ,Peaked ,Arc : Roof

Circle,Diamond ,Hexagon,Rectangle,Triangle,UTriangle : LoadShape

NumWheels = Int

NumObjects = Int

Load = Object ×NumObjects

Car = Shape × Length ×Double × Roof ×NumWheels × Load

A copy of his Prolog representation can be found in the same directory (20trains.pl). Note the
use of negation to denote west-bound trains. The challenge is to find the simplest solution. It is
not hard to find a two-split solution. Can you find a single-split solution?

Exercise 2. The second exercise is intended for those readers who solved the first exercise with
the help of Google. © Pick one of the five groups of trains from Competition 3 of [MMPS94] and
repeat Exercise 1. The file 100trains.pl contains the full data set.

Exercise 3. Use Alkemy to solve the Chess KRK problem. The data set can be found in
alkemy/TUTORIAL/Chess. The file lessons2.ps.gz contains an account of a successful attempt
on the problem.
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Figure 4: Michalski's original set of trains.
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5.Figure 5: A new set of 10 trains concocted with the aid of Muggleton's traingenerator.
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5 Help Needed

We are in the process of building up the library of transformations. If you have implemented a
new transformation which you think might be useful for other people, please send it to the author.
We are also willing to entertain requests from users to implement new transformations that we
deem are interesting and potentially useful.

Bug reports/fixes and suggestions to improve any aspect of the system are always welcome.
Please send your email to the same address. Help of any form will be greatly appreciated.
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A A Short Introduction to Escher

Escher is a functional logic programming language first introduced in [Llo95] and [Llo99]. It was
designed with the intention to provide in a simple computational mechanism the best features of
functional and logic programming. The basic approach taken in the desgin of Escher is simple:
start from Haskell and add logic programming facilities. (There are other approaches one can take
in the design of functional logic programming languages; see, for example, [NM] and [Han94].)

To understand Escher, we need to understand two things. The first is the form of a valid
Escher program. The second is the underlying computational mechanism of the language. These
are covered in §A.1, which is essentially a summary of [Llo03, Chap. 5]. In §A.2 the relationships
between Escher, Haskell and Prolog are clarified. We give some example Escher programs in §A.3.

A.1 Logical Foundation

The logic underlying Escher is a polymorphically typed higher-order logic. The terms of the logic
are the terms of the typed λ-calculus, formed in the usual way by application, abstraction, and
tupling from the set of constants and a set of variables. An Escher program is a theory in the
logic in which each formula is a particular kind of equation, namely, a statement.

Definition A.1. A statement is a term of the form h = b, where h has the form f t1 . . . tn, n ≥ 0,
for some function f , each free variable in h occurs exactly once in h, and b is type-weaker than h.

The term h is called the head and the term b is called the body of the statement. The statement
is said to be about f .

Definition A.2. The definition of a function f is the collection of all statements about f , together
with the signature for f .

Definition A.3. An Escher program is a collection of definitions.

Example A.1. Here are two Escher programs for performing list concatenations.

concat1 : List a → List a → List a

concat1 [] x = x

concat1 (# x y) z = (# x (concat1 y z ))

concat2 : List a × List a × List a → Ω

concat2 (u, v ,w) = (u = [] ∧ v = w) ∨

∃r.∃x.∃y.(u = (# r x) ∧ w = (# r y) ∧ concat2 (x , v , y))

The first is written in the functional programming style. (It is in fact a valid Haskell program.)
The second is written in the relational or logic programming style. The term concat2 (x , y, z )
evaluates to ⊤ iff z is a concatenation of x and y. We will look at concat2 in more details to see
how logic programming is supported in Escher shortly.

Definition A.4. A redex of a term t is a subterm of t that is α-equivalent to an instance of the
head of a statement.

Recall that two terms are α-equivalent iff they differ only in the names of bound variables. A
subterm s of t is a redex if we can find a statement h = b and a term substitution θ mapping
variables to terms such that hθ is α-equivalent to s.

A redex is outermost if it is not a proper subterm of another redex. Two outermost redexes
are by definition disjoint. We are interested primarily in outermost redexes because we want the
evaluation strategy to be lazy.

Given an Escher program and a term t, a redex selection rule S maps t to a subset of the set
of outermost redexes in t. A standard redex selection rule is the leftmost selection rule SL. Given
a term t, the rule SL picks out the (single) leftmost outermost redex in t. This is the selection
rule implemented in the current Escher interpreter.
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Definition A.5. A term s is obtained from a term t by a computation step using the selection
rule S if the following conditions are satisfied.

1. S(t) = {ri} is non-empty.
2. For each i, the redex ri is α-equivalent to an instance hiθi of the head of a statement hi = bi

for some term substitution θi.
3. s is the term obtained from t by replacing each redex ri by biθi.

Definition A.6. A computation from a term t is a sequence {ti}
n
i=1 of terms where t = t1 and

ti+1 is obtained from ti by a computation step. The term t1 is called the goal of the computation
and tn is called the answer.

As is standard in typed declarative languages, run-time type checking is not necessary in
Escher. The fact that the body of every statement is type weaker than its head and that every
free variable in the head of a statement occurs exactly once ensures that every computation step
produces a new term that is well typed.

Central to Escher are some basic functions defined in the booleans module. These functions,
together with the term rewriting mechanism described above, provide logic programming facilities
in the functional programming setting. I list here some of these boolean functions.

⊤ ∧ x = x (1)

⊥ ∧ x = ⊥ (2)

∃x.⊥ = ⊥ (3)

u ∧ ∃x.v = ∃x.(u ∧ v) (4)

∃x1.∃x2. · · · .∃xn.(x ∧ (x1 = u) ∧ y) = ∃x2. · · · .∃xn.(x{x1/u} ∧ y{x1/u}) (5)

∀x.(⊥ → u) = ⊤ (6)

∀x1.∀x2. · · · .∀xn.(x ∧ (x1 = u) ∧ y→ v) =

∀x2. · · · .∀xn.(x{x1/u} ∧ y{x1/u} → v{x1/u}) (7)

Most of these equations are fairly straightforward. One thing is worth noting though. Variables
typeset in bold above are actually syntactical variables. So an equation like (4) actually stands
for a (possibly infinite) collection of Escher statements with u and v instantiated to all possible
terms of type boolean. The use of syntactical variables usually come with side conditions. For
example, for (4) to be applicable, the syntactical variable u must not contain a free occurrence of
x. Similarly, x1 must not occur free in u for (5) and (7) to work.

Example A.2. The following is an example Escher computation using the SL redex selection
rule. The redex selected at each time step is highlighted. Note how Equation (5) given above is
used to get rid of the existential quantifiers.

concat2 ([1 ], [2 ],w)

= ([1] = [] ∧ [2] = w) ∨ ∃r.∃x.∃y.([1] = (# r x) ∧ w = (# r y) ∧ concat2 (x , [2 ], y))

= (⊥ ∧ [2] = w) ∨ ∃r.∃x.∃y.([1] = (# r x) ∧ w = (# r y) ∧ concat2 (x , [2 ], y))

= ⊥ ∨ ∃r.∃x.∃y.([1] = (# r x) ∧ w = (# r y) ∧ concat2 (x , [2 ], y))

= ∃r.∃x.∃y.([1] = (# r x) ∧ w = (# r y) ∧ concat2 (x , [2 ], y))

= ∃r.∃x.∃y.(r = 1 ∧ x = [] ∧ w = (# r y) ∧ concat2 (x , [2 ], y))

= ∃x.∃y.(x = [] ∧ w = (#1 y) ∧ concat2 (x , [2 ], y))

= ∃y.(w = (#1 y) ∧ concat2 ([], [2 ], y))

. . .

= ∃y.(w = (#1 y) ∧ y = [2])

= (w = [1, 2])
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Example A.3. Given the goal concat2 (x , y, [1 , 2 ]), Escher will return with the following answer

(x = [] ∧ y = [1, 2]) ∨ (x = [1] ∧ y = [2]) ∨ (x = [1, 2] ∧ y = []),

which is computed using the same mechanism described in the previous example.

A.2 Escher, Haskell and Prolog

We first explore the relationship between Escher and Haskell. At the logic level, every Haskell
program is an Escher program 1, and every Escher program is a (syntactically-correct) Haskell
program which may not compile. In that sense, Escher is a superset of Haskell. The difference
between Escher and Haskell comes down to the following two points.

• Haskell allows pattern matching only on data constructors. Escher extends this by allowing
pattern matching on function symbols as well as data constructors. Examples of equations
that Haskell cannot handle but Escher can are those in the booleans module given earlier.

• The second thing that Escher can do but Haskell can’t is reduction of terms inside lambda
abstractions. This mechanism allows Escher to handle sets (and similar data types) in a
natural and intensional way. This is usually achieved with the use of syntactical variables.

The extra expressiveness afforded by Escher comes with a price tag, however. Some common
optimisation techniques developed for efficient compilation of Haskell code (see [Pey87]) cannot
be used in the implementation of Escher. In other words, efficiency is at present still a non-trivial
issue for Escher.

We next explore the relationship between Escher and Prolog. Perhaps suprisingly, there is
actually a significant overlap between the two languages. In fact, any Prolog program defined
without using cuts can be mechanically translated into Escher via Clark’s completion algorithm
[Cla78]. For example, the Escher program concat2 given earlier is just the completion of the
following Prolog definition.

concat2 ([],L,L).

concat2 ([X |L1 ],L2 , [X |L3 ]) ←− concat2 (L1 ,L2 ,L3 ).

Procedurally, there is a difference between Escher and Prolog in that Prolog computes alter-
native answers one at a time via backtrackking whereas Escher returns all alternative answers in
a disjunction (a set). This point is illustrated in Example A.3 above.

A.3 Example Programs

I end this short introduction with some example Escher programs. The aim here is to showcase
the different styles of declarative programming supported by Escher. An Escher interpreter is
available for download as a separate program from http://rsise.anu.edu.au/~kee.

Example A.4. Here is how quick sort can be written in Escher. This is just a vanilla Haskell
program that doesn’t make use of special logic programming facilities in Escher.

qsort : List a → List a

qsort [] = []

qsort (# x y) = concat1 (qsort (filter (≤ x ) y)) (# x (qsort (filter (> x ) y)))

filter : (a → Ω)→ List a → List a

filter p [] = []

filter p (# x y) = if (p x ) then (# x (filter p y) else (filter p y)

1This is not exactly true at the practical level, however, since Haskell has several advanced language features

not currently available in Escher. But this is only a software maturity issue. Given more development time, these

language features will be implemented and Escher will then be able to run any valid Haskell program.
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Example A.5. The following is an example of an Escher program for computing permutations
of lists. The function permute returns true iff the two input arguments are permutations of each
other. The function delete is a subsidiary function of permute that returns true iff the third
argument is the result of removing the first argument from the second argument.

permute : (List a)× (List a)→ Ω

permute ([], x ) = (x = [])

permute ((# x y),w) = ∃u.∃v .∃z .(w = (# u v) ∧ delete (u, (# x y), z ) ∧ permute (z , v))

delete : a × (List a) × (List a)→ Ω

delete(x , [], y) = ⊥

delete(x , (# y z ),w) = (x = y ∧ w = z ) ∨ ∃v .(w = (# y v) ∧ delete (x , z , v))

Given permute ([1 , 2 , 3 ], [2 , 1 , 3 ]), Escher will return ⊤. Given permute ([1 , 2 , 2 ], x ), Escher will
return the answer

x = [1, 2, 3] ∨ x = [1, 3, 2] ∨ x = [2, 1, 3] ∨ x = [2, 3, 1] ∨ x = [3, 1, 2] ∨ x = [3, 2, 1].

Example A.6. Here are some standard functions defined on sets.

union : (a → Ω)→ (a → Ω)→ (a → Ω)

union s t = λx .((s x ) ∨ (t x ))

intersect : (a → Ω)→ (a → Ω)→ (a → Ω)

intersect s t = λx .((s x ) ∧ (t x ))

minus : (a → Ω)→ (a → Ω)→ (a → Ω)

minus s t = λx .((s x ) ∧ ¬(t x ))

subset : (a → Ω)→ (a → Ω)→ Ω

subset s t = ∀x .((s x )→ (t x )))

Similar functions for multisets can be just as easily defined.
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B Syntax

We look at the syntax of the input specification in this appendix. The grammar given below makes
use of tokens like IDENTIFIER1, IDENTIFIER2, DATA CONSTRUCTOR, etc. The regular expression for
each of these can be found at the end of this appendix.

As mentioned earlier, an input specification consists of four parts separated by %%.

input : declaration examples transinfo rewrites "%%" ;

In the declaration section, two kinds of type declarations (typedecls) are allowed. Data con-
structors (constructordecl) are declared by giving a list of constants (alphanumerics starting with
a capital letter) followed by their common signature. Type synonyms (typedecl) can be used to
give shorter names to types.

The function to be learned (funcdecl) is declared in this section as well.

declaration : "%%" typedecls funcdecl ;

typedecls : typedecl | typedecls typedecl ;

typedecl : syndecl | constructordecl ;

syndecl : IDENTIFIER2 ’=’ type ’;’

constructordecl : dataconstructors ’:’ type ’;’

dataconstructors : dataconstructor | dataconstructors ’,’ dataconstructor ;

dataconstructor : IDENTIFIER2 | DATA_CONSTRUCTOR ;

funcdecl : "Learn" IDENTIFIER1 ’:’ IDENTIFIER2 "->" codomain ’;’ ;

codomain : IDENTIFIER2 | "Bool" | "Int" | "Float" ;

Training examples and test individuals are declared in the second section. Training examples
come in the form of f x = y, where f is the function being learned, and y the label of x. Test
examples come in the form of ?x. We can import these from external files as well.

examples : "%%" individuals ;

individuals : individual | individuals individual ;

individual : IDENTIFIER1 term ’=’ label ’;’

| ’?’ term ’;’

| "import" FILENAME ’;’

;

label : IDENTIFIER2 | DATA_CONSTRUCTOR | DATA_CONSTRUCTOR_FLOAT ;

Transformations used in the predicate rewrite system are declared in the third section. Escher
is used to define the transformations and their subsidiary functions. Each statement is an Escher
statement, possibly with syntactic variables in it. Data constructors can be declared in this section
as well.

transinfo : "%%" alkemy_statements ;

alkemy_statements : /* empty */ | alkemy_statements alkemy_statement ;

alkemy_statement : statement | typedecl | "import" FILENAME ’;’ ;

statement : iden ’:’ type ’;’ term ’=’ term ’;’

iden : IDENTIFIER1 | FUNCTION ;
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The next section deals with the predicate rewrite system. A predicate rewrite system is just a
collection of predicate rewrites. The head of a predicate rewrite is a rank-0 transformation. The
tail of a predicate rewrite is a standard predicate. Standard predicates are defined by induction
on the declared transformations for the current application.

rewrites : "%%" rewrite_list ;

rewrite_list : rewrite | rewrite_list rewrite ;

rewrite : IDENTIFIER1 ">->" stdPredicate ’;’

stdPredicate : transformation

| stdPredicate ’.’ transformation

| stdPredicate ’.’ ’(’ transformation ’)’

| ’(’ stdPredicate ’)’

;

transformation : IDENTIFIER1 | IDENTIFIER1 arguments ;

arguments : ’(’ stdPredicate ’)’ | ’(’ stdPredicate ’)’ arguments ;

We next look at the grammar for terms. A term is a term possibly with syntactic variables
in it. The grammar for term is defined inductively as follows. Each syntactic variable is a term.
Each variable is a term. Each constant, which can be either a function or a data constructor,
is a term. If t1 and t2 are terms having appropriate types, then (t1 t2) is a term. If x is a
variable and t is a term, then \x.t is a term. If t1, t2, . . ., tn are terms, then (t1,t2,. . .,tn) is
a term. Syntactic variables can come with side conditions. These are stated using sv condition.
There are four kinds of condition we can state. We can specify that a syntactic variable must be a
variable or a constant. We can also require that the instantiation of a syntactic variable be equal
or not equal to the instantiation of an earlier syntactic variable.

term : SYNTACTIC_VARIABLE | SYNTACTIC_VARIABLE sv_condition

| VARIABLE

| FUNCTION | DATA_CONSTRUCTOR | DATA_CONSTRUCTOR_INT

| DATA_CONSTRUCTOR_FLOAT | DATA_CONSTRUCTOR_STRING

| IDENTIFIER1 | IDENTIFIER2

| ’(’ term term ’)’

| ’\’ VARIABLE ’.’ term

| ’(’ terms_product ’)’

| term_sugar

;

terms : term | terms term ;

terms_product : /* empty */ | terms_product ’,’ term ;

sv_condition : ’/’ VAR ’/’ | ’/’ CONST ’/’

| ’/’ EQUAL ’,’ SYNTACTIC_VARIABLE ’/’

| ’/’ NOTEQUAL ’,’ SYNTACTIC_VARIABLE ’/’

;

Terms as defined can be cumbersome to work with. To ease the writing of the spec file,
syntactic sugars are provided for sets, lists, and the quantifiers. This is how they works.

• A set like {t1, t2} will be turned into the term

\x.(ite (== x t) True (ite (== x t2) True False))

before Escher can process it. Here ite is the familiar if -then-else function.
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• A list like [ t1, t2 ] will be turned into the term (# t1 (# t2 [])).

• In accordance with the mathematics (see [Llo03, pg. 43]), a formula like \exists x.t will
be turned into the term (sigma \x.t) and a formula like \forall x.t will be turned into
the term (pi \x.t).

Another syntactic sugar we provide is the ability to enclose terms obtained from multiple applica-
tions within a single pair of brackets. So, a term like (((f x) y) z) can be more simply written
as (f x y z).

term_sugar : ’(’ term term terms ’)’

| ’{’ terms_product ’}’

| ’[’ terms_product ’]’

| ’\’ "exists" VARIABLE ’.’ term

| ’\’ "forall" VARIABLE ’.’ term

;

We now look at the grammar for types. A parameter (type variable) is a type. These are
alphanumerics that start with a lower case letter. Each of the basic nullary type constructors like
Bool, Number and String is a type. If T is a n-ary type constructor and t1, t2, . . ., tn are types,
then (T t1 t2 . . . tn) is a type. If t1 and t2 are types, then t1 -> t2 is a type. If t1, t2, . . .,
tn are types, then (t1 * t2 * . . . * tn) is a type.

type : IDENTIFIER1

| "Bool" | "Number" | "String" | IDENTIFIER2

| ’(’ IDENTIFIER2 types ’)’

| ’(’ products ’)’

| type "->" type

| ’(’ type ’)’

;

products : products ’*’ type | type ’*’ type ;

types : type | types type ;

Here are the regular expressions for the tokens used in the grammar. IDENTIFIER1 are
alphanumerics that start with a lower case letter. IDENTIFIER2 are alphanumerics that start
with an upper case letter. System-defined data constructors and functions are declared here. A
file that can be imported into the spec file must end with “.e”. Variables and syntactic variables
are also governed by fixed rules here. Care should be taken with variables. A lot of programming
errors are associated with the use of variable names that does not actually conform to the grammar.

IDENTIFIER1 = [a-z][a-zA-Z0-9\_\’]*

IDENTIFIER2 = [A-Z][a-zA-Z0-9\_\’]*

DATA_CONSTRUCTOR = (True | False | # | [])

DATA_CONSTRUCTOR_FLOAT = -?[0-9]+\.[0-9]+

DATA_CONSTRUCTOR_INT = -?[0-9]+

DATA_CONSTRUCTOR_STRING = \"[a-zA-Z0-9\-\_\+\: ]*\"

FUNCTION = (== | /= | <= | < | >= | > | && | ||)

FILENAME = [a-zA-Z\/0-9\_\.]+\.es

VARIABLE = [m-z][0-9]*

SYNTACTIC_VARIABLE = [a-zA-Z][0-9]*\_SV
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