On the Mathematical Relationship between Expected n-call@k and the Relevance vs. Diversity Trade-off

Kar Wai Lim
26 November 2012

Outline

Background and previous works

How to derive MMR

An example

Full coverage

NAB to customers: you're the voice on security

Sydney Morning Herald - 1 hour ago

National Australia Bank will begin using voice recognition **technology** to identify its phone customers in the latest move towards the use of biometric security among the big banks. The company said that the **technology**, which identifies a person by their speech ...

NAB speaks loud and clear on voice biometrics

Technology Spectator - 2 hours ago

National Australia Bank (NAB) has joined its peer ANZ Banking Group in touting biometrics as a viable replacement to PINs, with the bank's ambitions focused on voice rather than fingerprint recognition. The move comes hot on the heels of ANZ's recent ...

NAB to shift online banking platform

The Australian - 8 hours ago

NATIONAL Australia Bank's popular internet banking platform could have a new home within six months thanks to a significant **technology** upgrade, a senior company executive said. The development comes as the bank announced plans to further cement its ...

Voice recognition technology for NAB

Ninemsn - 11 hours ago

Voice recognition **technology** for NAB. 2:07am November 21, 2012. National Australia Bank will become the first major Australian company to roll out voice recognition **technology**, with plans to introduce it next year. Close calls for journalists caught on video ...

Money talks in hi-tech banking

Courier Mail - 7 hours ago

The **technology** is expected to save individual customers three minutes each phone call. NAB executive general manager Adam Bennett said, when fully deployed, Speech Security would save the bank's customers a combined 15 million minutes a year.

NAB deploys customer data aggregator

iT News - 7 hours ago

Chief **technology** officer Denis McGee said the bank had struck "consumption-based" managed services contracts with key suppliers IBM and Telstra. He told iTnews that the vendors typically already had excess capacity – such as bandwidth on existing fibre ...

NAB phone banking will match customers' voices

Banking Day (registration) - 6 hours ago

After first experimenting with the **technology** in 2009, NAB has quietly enrolled 140,000 customers to trial its system. Essentially, the system authenticates the identity of a person calling into NAB's contact centre by matching the person's voice against a voice ...

 Assume current top news is about NAB's voice recognition technology.
 We get the search results by querying "technology".

- Is this desirable?
- We don't want to get a page full of similar or duplicate news (variant from different sources).

Another example

Apple

Is this better?

Diversity

- From these examples we can see that diversity is important.
- How can we achieve this?
 - Maximum marginal relevance (MMR)
 - Carbonell & Goldstein, SIGIR 1998
 - Select set S (with K items) from all items set D
 - Choose item greedily until |S| = K

$$s_k^* = \underset{s_k \in D \setminus S_{k-1}^*}{\operatorname{arg\,max}} \left[\lambda(\operatorname{Sim}_1(\mathbf{q}, s_k)) - (1 - \lambda) \max_{s_i \in S_{k-1}^*} \operatorname{Sim}_2(s_i, s_k) \right]$$

Problem

- MMR is an algorithm, we don't really know what underlying objective that it is optimising.
- There are some previous attempts but full problem remained unsolved for 13 years.

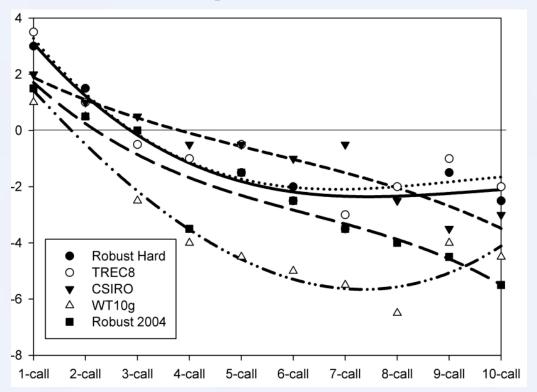
 What objectives would lead to diverse retrieval? (such as MMR)

Problem

- Probability Ranking Principle (PRP)
 - Greedily choose items that are most relevant (potentially gives us the first example before)
- Another extreme is 1-call@k
 - Happy as long as at least 1 item is relevant
 - Diverse!
- Previous work shows that 1-call@k corresponds to MMR with $\lambda = \frac{1}{2}$
 - But in MMR tuning λ is important, is there another objective that leads to tunable λ that modulates diversity?

Problem

What about n-call@k?



J. Wang and J. Zhu. Portfolio theory of information retrieval, SIGIR 2009

Hypothesis

- Start with 2-call@k
 - optimising this leads to MMR with $\lambda = 2/3$
- There seems to be a trend relating λ and n

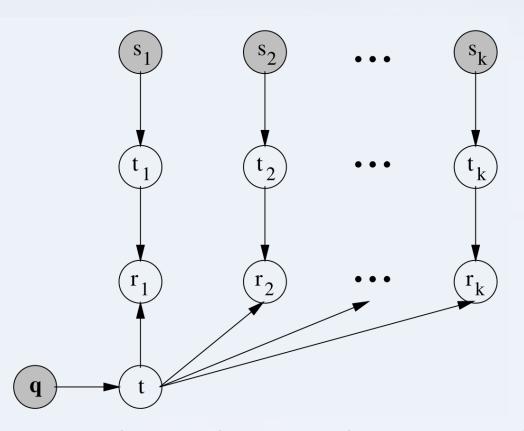
- Hypothesis
 - Optimising n-call@k leads to MMR with $\lambda = n/(n+1)$

Outline

Background and previous work

How to derive MMR

Graphical model of Relevance



s = selected docs

 $t = subtopics \in T$

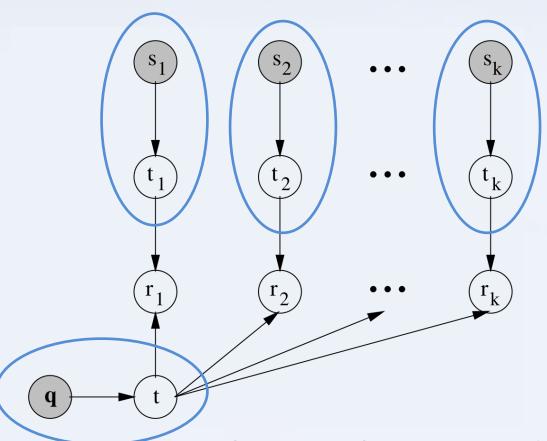
 \mathbf{r} = relevance $\in \{0, 1\}$

q = observed query

T = discrete subtopic set

Latent subtopic binary relevance model

Graphical model of Relevance



$$P(t_i = C | s_i)$$

= prob. of document s belongs to subtopic C

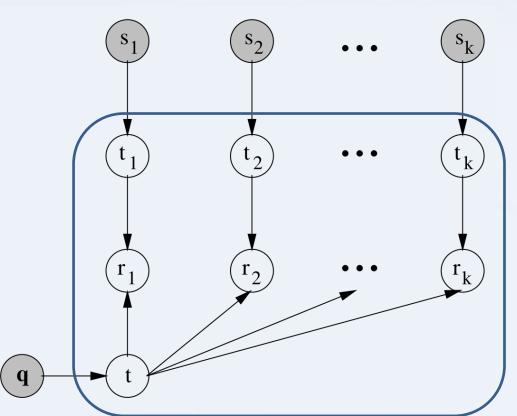
$$P(t = C|q)$$

= prob. of query **q** refer to subtopic C

Latent (unobserved)

Latent subtopic binary relevance model

Graphical model of Relevance



If
$$t_i = t$$
:
 $P(r_i=1|t_i,t) = 1$

Else:

$$P(r_i=1|t_i,t)=0$$

Latent subtopic binary relevance model

Latent (unobserved)

Optimising Objective

Expected n-call@k objective:

Exp-n-Call@
$$k(S_k, \mathbf{q}) = \mathbb{E}[R_k \ge n | s_1, \dots, s_k, \mathbf{q}]$$

 $R_k = \sum_{i=1}^k r_i$

- We want at least n out of the chosen k
 documents to be relevant, by choosing s that
 maximises the objective.
- Note that jointly optimise s is NP-hard.

Greedy approach

- We choose the documents consecutively with a greedy approach.
 - select the next document given all previously chosen documents.

$$s_k^* = \underset{s_k}{\operatorname{arg\,max}} \mathbb{E}[R_k \ge n | S_{k-1}^*, s_k, \mathbf{q}]$$

Nontrivial

- I will explain at high level and highlight the main mathematical tricks that are used.
- Rather than going through the details step by step.

$$s_k^* = \underset{s_k}{\operatorname{arg max}} \mathbb{E}[R_k \ge n | S_{k-1}^*, s_k, \mathbf{q}]$$
$$= \underset{s_k}{\operatorname{arg max}} P(R_k \ge n | S_{k-1}^*, s_k, \mathbf{q})$$

$$s_k^* = \underset{s_k}{\operatorname{arg\,max}} \mathbb{E}[R_k \ge n | S_{k-1}^*, s_k, \mathbf{q}]$$

$$= \underset{s_k}{\operatorname{arg\,max}} P(R_k \ge n | S_{k-1}^*, s_k, \mathbf{q})$$

$$= \underset{s_k}{\operatorname{arg\,max}} \sum_{T_k} \left(P(t | \mathbf{q}) P(t_k | s_k) \prod_{i=1}^{k-1} P(t_i | s_i^*) \right)$$

$$\cdot P(R_k \ge n | T_k, S_{k-1}^*, s_k, \mathbf{q})$$

Marginalise out all subtopics (using conditional probability)

$$T_k = \{t, t_1, \dots, t_k\}$$
 and $\sum_{T_k} \circ = \sum_t \sum_{t_1} \dots \sum_{t_k} \circ$

$$s_{k}^{*} = \arg\max_{s_{k}} \mathbb{E}[R_{k} \geq n | S_{k-1}^{*}, s_{k}, \mathbf{q}]$$

$$= \arg\max_{s_{k}} P(R_{k} \geq n | S_{k-1}^{*}, s_{k}, \mathbf{q})$$

$$= \arg\max_{s_{k}} \sum_{T_{k}} \left(P(t | \mathbf{q}) P(t_{k} | s_{k}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) \cdot P(R_{k} \geq n | T_{k}, S_{k-1}^{*}, s_{k}, \mathbf{q}) \right)$$

$$= \arg\max_{s_{k}} \sum_{T_{k}} P(t | \mathbf{q}) P(t_{k} | s_{k}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*})$$

$$\cdot \left(\underbrace{P(r_{k} \geq 0 | R_{k-1} \geq n, t_{k}, t)}_{1} P(R_{k-1} \geq n | T_{k-1}) \right)$$

$$+ P(r_{k} = 1 | R_{k-1} = n - 1, t_{k}, t) P(R_{k-1} = n - 1 | T_{k-1}) \right)$$

We write r_k as conditioned on R_{k-1} .

Note that relevance **r** are independent given the subtopics **t**.

$$s_{k}^{*} = \arg\max_{s_{k}} \mathbb{E}[R_{k} \geq n | S_{k-1}^{*}, s_{k}, \mathbf{q}]$$

$$= \arg\max_{s_{k}} P(R_{k} \geq n | S_{k-1}^{*}, s_{k}, \mathbf{q})$$

$$= \arg\max_{s_{k}} \sum_{T_{k}} \left(P(t | \mathbf{q}) P(t_{k} | s_{k}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) \cdot P(R_{k} \geq n | T_{k}, S_{k-1}^{*}, s_{k}, \mathbf{q}) \right)$$

$$= \arg\max_{s_{k}} \sum_{T_{k}} P(t | \mathbf{q}) P(t_{k} | s_{k}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*})$$

$$\cdot \left(\underbrace{P(r_{k} \geq 0 | R_{k-1} \geq n, t_{k}, t) P(R_{k-1} \geq n | T_{k-1})}_{1} \right)$$

$$+ P(r_{k} = 1 | R_{k-1} = n-1, t_{k}, t) P(R_{k-1} = n-1 | T_{k-1}) \right)$$

$$= \arg\max_{s_{k}} \left(\sum_{T_{k-1}} \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} \geq n | T_{k-1}) P(t | \mathbf{q}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} = n-1 | T_{k-1}) P(t_{k} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P($$

$$\sum_{t_k} P(t_k|s_k) P(r_k=1|t_k, t)$$

$$= \sum_{t_k} P(t_k|s_k) \mathbb{I}[t_k=t] = P(t_k=t|s_k)$$

Sum over t_k

$$s_{k}^{*} = \arg\max_{s_{k}} \mathbb{E}[R_{k} \geq n | S_{k-1}^{*}, s_{k}, \mathbf{q}]$$

$$= \arg\max_{s_{k}} P(R_{k} \geq n | S_{k-1}^{*}, s_{k}, \mathbf{q})$$

$$= \arg\max_{s_{k}} \sum_{T_{k}} \left(P(t | \mathbf{q}) P(t_{k} | s_{k}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) \cdot P(R_{k} \geq n | T_{k}, S_{k-1}^{*}, s_{k}, \mathbf{q}) \right)$$

$$= \arg\max_{s_{k}} \sum_{T_{k}} P(t | \mathbf{q}) P(t_{k} | s_{k}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) \cdot \left(\underbrace{P(r_{k} \geq 0 | R_{k-1} \geq n, t_{k}, t) P(R_{k-1} \geq n | T_{k-1})}_{1} \right)$$

$$+ P(r_{k} = 1 | R_{k-1} = n - 1, t_{k}, t) P(R_{k-1} \geq n | T_{k-1}) \right)$$

$$= \arg\max_{s_{k}} \left(\sum_{T_{k-1}} \underbrace{\sum_{t_{k}} P(t_{k} | s_{k}) P(R_{k-1} \geq n | T_{k-1}) P(t | \mathbf{q}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) + \underbrace{\sum_{t_{k}} P(t | \mathbf{q}) P(t_{k} = t | s_{k}) P(R_{k-1} = n - 1 | T_{k-1}) \prod_{i=1}^{k-1} P(t_{i} | s_{i}^{*}) }_{i=1} \right)$$

$$= \arg\max_{s_{k}} \sum_{t_{k}} P(t | \mathbf{q}) P(t_{k} = t | s_{k}) P(R_{k-1} = n - 1 | S_{k-1}^{*})$$

dropping the first line

We arrive at

$$= \underset{s_k}{\operatorname{arg\,max}} \sum_{t} P(t|\mathbf{q}) P(t_k = t|s_k) P(R_{k-1} = n-1|S_{k-1}^*)$$

 This is still a complicated term, but it can be expressed recursively.

Recursion

$$P(R_{k} = n | S_{k}, t) =$$

$$\begin{cases}
n \ge 1, k > 1 : & (1 - P(t_{k} = t | s_{k})) P(R_{k-1} = n | S_{k-1}, t) \\
+ P(t_{k} = t | s_{k}) P(R_{k-1} = n - 1 | S_{k-1}, t) \\
n = 0, k > 1 : & (1 - P(t_{k} = t | s_{k})) P(R_{k-1} = 0 | S_{k-1}, t) \\
n = 1, k = 1 : & P(t_{1} = t | s_{1}) \\
n = 0, k = 1 : & 1 - P(t_{1} = t | s_{1}) \\
n > k : & 0
\end{cases}$$

This is derived using method that are very similar to previous derivation.

Explicit expression

 We then unroll the optimising objective recursively to arrive at the explicit expression

$$s_k^* = \underset{s_k}{\operatorname{arg\,max}} \sum_{t} \left(P(t|\mathbf{q}) P(t_k = t|s_k) \sum_{j_1, \dots, j_{n-1}} \prod_{l \in \{j_1, \dots, j_{n-1}\}} P(t_l = t|s_l^*) \prod_{\substack{i=1\\i \notin \{j_1, \dots, j_{n-1}\}}} (1 - P(t_i = t|s_i^*)) \right)$$

$$n \leq k/2$$

$$s_k^* = \underset{s_k}{\operatorname{arg\,max}} \sum_{t} \left(P(t|\mathbf{q}) P(t_k = t|s_k) \sum_{j_n, \dots, j_{k-1}} \prod_{l \in \{j_n, \dots, j_{k-1}\}} \left(1 - P(t_l = t|s_l^*) \right) \prod_{\substack{i=1\\i \notin \{j_n, \dots, j_{k-1}\}}}^{k-1} P(t_i = t|s_i^*) \right)$$

n > k/2

where $j_1, \ldots, j_{n-1} \in \{1, \ldots, k-1\}$ satisfy that $j_i < j_{i+1}$

 To further simplify the objective, we assume that the subtopics of each document are known (deterministic), hence:

$$P(t_i|s_i) \in \{0,1\}$$

- where in general the probability is between 0 and 1.
- Example next slide.

Generally:

$$\begin{bmatrix}
P(t_i = C_1 | s_i) \\
P(t_i = C_2 | s_i) \\
\vdots \\
P(t_i = C_{|T|} | s_i)
\end{bmatrix} = \begin{bmatrix}
0.24 \\
0.62 \\
\vdots \\
0.01
\end{bmatrix}$$

• Deterministic:
$$\begin{bmatrix} P(t_i = C_1 | s_i) \\ P(t_i = C_2 | s_i) \\ \vdots \\ P(t_i = C_{|T|} | s_i) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

• This assumption allows us to convert a product \prod to a max:

$$x_i \in \{0, 1\}$$

 $\prod x_i = 0 \text{ iff at least } 1 \ x_i = 0$
 $\prod (1 - x_i) = 0 \text{ iff at least } 1 \ x_i = 1$
 $1 - \prod (1 - x_i) = 1 \text{ iff at least } 1 \ x_i = 1$

also $\max x_i = 1$ iff at least 1 $x_i = 1$ hence they are equivalent (when $x_i \in \{0, 1\}$)

• From the optimising objective when $n \le k/2$, we can write

$$\prod_{i=1 \atop i \notin \{j_1, \dots, j_{n-1}\}}^{k-1} \left(1 - P(t_i = t | s_i^*)\right) = 1 - \left(1 - \prod_{i=1 \atop i \notin \{j_1, \dots, j_{n-1}\}}^{k-1} \left(1 - P(t_i = t | s_i^*)\right)\right)$$

$$= 1 - \left(\max_{i \in [1, k-1] \atop i \notin \{j_1, \dots, j_{n-1}\}}^{k-1} P(t_i = t | s_i^*)\right)$$

$$i \notin \{j_1, \dots, j_{n-1}\}$$

After Trick 1

$$s_k^* = \underset{s_k}{\operatorname{arg\,max}} \sum_{t} \left(P(t|\mathbf{q}) P(t_k = t|s_k) \sum_{j_1, \dots, j_{n-1}} \prod_{l \in \{j_1, \dots, j_{n-1}\}} P(t_l = t|s_l^*) \prod_{\substack{i=1 \ i \notin \{j_1, \dots, j_{n-1}\}}}^{k-1} (1 - P(t_i = t|s_i^*)) \right)$$

$$= \underset{s_k}{\operatorname{arg\,max}} \sum_{t} \left(P(t|\mathbf{q}) P(t_k = t|s_k) \sum_{j_1, \dots, j_{n-1}} \prod_{l \in \{j_1, \dots, j_{n-1}\}} P(t_l = t|s_l^*) \right)$$
$$-P(t|\mathbf{q}) P(t_k = t|s_k) \sum_{j_1, \dots, j_{n-1}} \prod_{l \in \{j_1, \dots, j_{n-1}\}} P(t_l = t|s_l^*) \max_{\substack{i \in [1, k-1] \\ j \notin \{j_1, \dots, j_{n-1}\}}} P(t_i = t|s_l^*) \right)$$

Trick 2: combinatory simplification

 Assuming that m documents out of the chosen (k-1) are relevant, then

$$\sum_{j_1,\ldots,j_{n-1}}\prod_{l\in\{j_1,\ldots,j_{n-1}\}}^{P(t_l=t|s_l^*)}$$
 (the top term) are non-zero $\binom{m}{n-1}$ times.

Final form

 After applying trick 2 and some manipulation, we derive the objective

$$= \underset{s_k}{\operatorname{arg\,max}} \left(\frac{m}{n-1} \right) \underbrace{\sum_{t} P(t|\mathbf{q}) P(t_k = t|s_k)}_{\text{relevance: Sim}_1(s_k, \mathbf{q})} - \binom{m}{n} \underset{s_i \in S_{k-1}^*}{\operatorname{max}} \underbrace{\sum_{t} P(t_i = t|s_i) P(t|\mathbf{q}) P(t_k = t|s_k)}_{\text{diversity: Sim}_2(s_k, s_i, \mathbf{q})}$$

$$= \underset{s_k}{\operatorname{arg\,max}} \frac{n}{m+1} \operatorname{Sim}_1(s_k, \mathbf{q}) - \frac{m-n+1}{m+1} \underset{s_i \in S_{k-1}^*}{\operatorname{max}} \operatorname{Sim}_2(s_k, s_i, \mathbf{q})$$

Using Pascal rule to normalise:
$$\binom{m}{n-1} + \binom{m}{n} = \binom{m+1}{n}$$

Comparison to MMR

The optimising objective used in MMR is

$$s_k^* = \underset{s_k \in D \setminus S_{k-1}^*}{\operatorname{arg\,max}} \left[\lambda(\operatorname{Sim}_1(\mathbf{q}, s_k)) - (1 - \lambda) \max_{s_i \in S_{k-1}^*} \operatorname{Sim}_2(s_i, s_k) \right]$$

- We note that the optimising objective for expected n-call@k has the same form as MMR, with $\lambda = \frac{n}{m+1}$.
 - but m is unknown

Expected value for m

- Note that under expected n-call@k's greedy algorithm, we would expect m to be approximately equal to n after choosing k-1 documents (note that k >> n).
- Hence replacing m by n gives us $\lambda = \frac{n}{n+1}$.
 - Our hypothesis!

Our contributions

- We show the first derivation of MMR from first principle.
 - MMR optimises expected n-call@k
 - Analyse if MMR is appropriate for a given problem
- This framework can be used to derive new diversification algorithms by changing
 - the model
 - the objective
 - the assumptions

Under certain assumptions, MMR optimises expected n-call@k