Twitter Opinion Topic Model: Extracting Product Opinions from Tweets by Leveraging Hashtags and Sentiment Lexicon

Presenter: **Peter Christen** Authors: Kar Wai Lim, Wray Buntine

6 November 2014

Aspect-based Opinion Aggregation

- Opinion Aggregation for reviews.
 - A process to collect reviews of products and services to analyze in aggregate.
- Aspect-based.
 - Groups reviews based on "aspects".
 - Example:
 - Product types
 - Game consoles
 - Mobile phones
 - Product specs
 - Computer specs
 - Flight quality

Aspect	Examples	
Game console	PS4, Xbox One, Wii U	
Mobile phone	iPhone, Samsung Note	
Computer spec	CPU, RAM, GPU	
Flight quality	Food, customer service	

Existing Method

- Independent Latent Dirichlet Allocation (ILDA).
 - Current state-of-the-art for aspect-based opinion aggregation (Moghaddam, 2012).
 - ILDA is a type of topic model.
 - Perform analysis on target-opinion pairs.
- Target-opinion pairs are extracted during preprocessing using Stanford dependency parser.
 - Examples:

Target	Opinion	
iPhone	Awesome	
Service	Good	
Weather	Hot	

ILDA

Aspects and sentiments are discrete labels learned by the model.

ILDA

• Graphical model:

Note: Shaded = observed Unshaded = latent

They capture the interaction between the variables, tell us about the corpus.

- What ILDA does:
 - Automatically groups target-opinion pairs into various aspects.
 - Learns the opinions corresponding to various sentiments.
- Limitation of ILDA:
 - Sentiment labels are arbitrary.
 - Need to manually inspect the associated opinions to know whether they are positive, neutral or negative.
 - Targets and opinions are related only via latent variables.
 - Interaction between targets and opinions are not considered.
 - The pair 'friendly dumpling" is perfectly reasonable under ILDA.

* Picture stolen via Google search.

Opinion Aggregation on Tweets

- Why?
 - More opinions lying around, but less structured.
 - Easier to create than proper review.
 - Less targeted by fake review companies.
 - Tweets are usually written for friends and family.
- How?
 - Design Twitter Opinion Topic Model (TOTM) for Tweets.
 - Extension of ILDA but address its limitation.
 - Make use of emoticons (common in Tweets).
 - Use hashtags to aggregate Tweets.
 - Incorporate existing sentiment lexicons.

• Graphical model:

• Graphical model:

 $\begin{array}{c} H_{\theta} & \theta_{d} & \phi_{dn} & \phi_{dn}$

• Graphical model:

Model target-opinion interaction directly. This improves opinion prediction significantly.

• Graphical model:

target word distributions H_{θ} H_{ψ} $\overline{d}n$ opinion word distributions O_{dn} N_d V_t, R γ_e ER Incorporate sentiment lexicon as prior.

Incorporating Sentiment Lexicon

- Existing approach (He, 2012):
 - Rule-based system for topic models.
 - Modify the Dirichlet prior for opinion word distributions.
 - Note we have 3 opinion word distributions:
 - Positive-opinion distribution.
 - Neutral-opinion distribution.
 - Negative-opinion distribution.
 - The prior parameter is initialised as 0.33 for each opinion word of any sentiment-opinion distribution (uniform Dirichlet).
 - The prior parameter is then adjusted to 0.9 or 0.05 depending on the sentiment of a given opinion word (according to lexicon).

Incorporating Sentiment Lexicon

- Our approach:
 - Introduce a tunable parameter b to control the strength of sentiment prior.
 - The prior for the sentiment-opinion distribution is given by:

$$\phi_{rv}^* \propto (1+b)^{X_{rv}}$$

- X_{rv} is the sentiment score of an opinion word determined from lexicon.
- b is strictly positive, so positive X_{rv} enhances the prior while negative X_{rv} lowers the prior. (see details in paper)
- Why exponential in the formula?
 - Ensures positivity of the priors.
 - Gives a simple learning algorithm for *b*.

Experiments

- Dataset:
 - Subset of Twitter 7 dataset (Yang & Leskovec, 2011).
 - 9 millions tweets on Electronic Products.
 - And 2 smaller corpus.
- Compare TOTM against
 - ILDA;
 - LDA-DP [Vanilla LDA but modify prior according to He (2012)].
- Evaluations:
 - Perplexity;
 - Sentiment prior evaluation;
 - Sentiment classification.

Perplexity

- Commonly used to evaluate topic models.
- Measure topic model's goodness of fit.
 - Negatively related to log likelihood so lower perplexity is better.

	Target	Opinion	Overall
LDA-DP	N/A	510.15 ± 0.08	N/A
ILDA	$594.81 \pm \textbf{13.61}$	$519.84 \pm \textbf{0.43}$	$556.03 \pm \scriptstyle 6.22$
TOTM	$592.91 \pm {\scriptstyle 13.86}$	137.42 ± 0.28	285.42 ± 3.23

Better fit for opinion words by modelling the target-opinion interaction directly.

Qualitative Analysis

Inspect the top words from target word distributions.

Aspects (a)	Target Words (t)
Camera	camera, pictures, video camera, shots
Apple iPod	ipod, ipod touch, songs, song, music
Android phone	android, apps, app, phones, keyboard
Macbook	macbook, macbook pro, macbook air
Nintendo games	nintendo, games, game, gameboy

Inspect the top words from opinion word distributions.

Target (t)	+/-	Opinions (<i>o</i>)	
nhone	_	dead damn stupid bad crazy	
phone	+	mobile smart good great f***ing	
battery life	_	terrible poor bad horrible non-existence	
	+	good long great 7hr ultralong	
game	—	addictive stupid free full addicting	
	+	great good awesome favorite cat-and-mouse	
sausage	_	silly argentinian cold huge stupid	
	+	hot grilled good sweet awesome	

* Words in **bold** are more specific and can only describe certain targets.

Qualitative Analysis

 For comparison purpose, we can analyze hashtags that correspond to electronic companies such as #sony, #canon, #samsung...

Brands	Sentiment	Aspects / Targets' Opinions		
Diands	Sentiment	Camera	Phone	Printer
Canon	_	$camera \rightarrow$ expensive small bad		$printer \rightarrow$ obscure violent digital
		$lens \rightarrow prime$ cheap broken		$scanner \rightarrow cheap$
Canon		<i>camera</i> \rightarrow great compact amazing		$printer \rightarrow \text{good great nice}$
	T	<i>pictures</i> \rightarrow great nice creative		$scanner \rightarrow \text{great fine}$
Sony	_	<i>camera</i> \rightarrow big crappy defective	$phone \rightarrow $ worst crappy shittest	$printer \rightarrow stupid$
		<i>lens</i> \rightarrow vertical cheap wide	<i>battery life</i> \rightarrow low	
	+	<i>photos</i> \rightarrow great lovely amazing	$phone \rightarrow \text{great smart beautiful}$	
		<i>camera</i> \rightarrow good great nice	$reception \rightarrow perfect$	
Samsung	_	$camera \rightarrow digital free crazy$	$phone \rightarrow$ stupid bad fake	$scanner \rightarrow worst$
		<i>shots</i> \rightarrow quick wide	<i>battery life</i> \rightarrow solid poor terrible	
	+	$camera \rightarrow$ gorgeous great cool	<i>phone</i> \rightarrow mobile great nice	
		$pics \rightarrow$ nice great perfect	service \rightarrow good sweet friendly	

Major Contributions

- Introduce TOTM for aspect-based opinion aggregation on Tweets.
 - Makes use of auxiliary information on Tweets.
- Novel way of incorporating sentiment prior information into topic models.
 - Simple to implement and allow automatic learning of the hyperparameter (b).

Please email Kar Wai (<u>karwai.lim@gmail.com</u>) if you have any questions, thank you.