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ABSTRACT

The aim of this project was to develop the state estimation system for an autonomous
underwater vehicle called Kambara.  This project took place at the Research School of
Information Sciences in cooperation with the Department of Engineering at the ANU.  The
purpose of the state estimation system was the filtering of data from a triaxial accelerometer,
rate gyroscope, depth sensor and compass/inclinometer to track the position, orientation,
linear velocity and angular velocity of the Kambara.

To accomplish this, an extended Kalman filtering algorithm was proposed.  Nonlinear models
were derived for both the sensors and the dynamics of the Kambara.  Device drivers for the
underlying hardware architecture were developed so that data could be logged from the
sensors onto computer.  Static testing of the sensors has begun for the sake of modelling noise
processes and temperature sensitivities.  The performance enhancements of prefiltering the
sensor outputs with analog filters were investigated.

Plenty of scope is left for future work on the state estimation system.  Further characterisation
of the sensors will be required.  Coding of the Kalman filter algorithm and parts of the sensor-
sampling algorithm are still required.  Eventually, the state estimator will be implemented
onto the Kambara computer and the whole system tested and tuned.  All the while,
hydrodynamic and geometric parameters need to be estimated for implementation of the
dynamic model.
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STUDENT CONTRIBUTIONS

As part of my project, I have completed the following works.

•  A dynamic model of AUV and sensors was researched and developed.  Both a literature
survey and much hand derivation have gone into it.  This model has been implemented in
Matlab for calculation of Jacobian derivatives.

•  Attendance of the lectures of a Kalman Filtering course at ADFA has enhanced my
understanding and allowed me to make several important decisions in the design of the
Kalman filter.

•  Suitable sensor mounting was designed for mounting into the Kambara environment and
onto the WAM arm.

•  Work has been completed on three device drivers.
- Code has been contributed to the PCI-9080 carrier board driver of David

Wettergreen so as to allow processing of interrupts.
- The IP-Precision ADC device driver of Bob Edwards has been completely re-

written for the IP-ADIO module.
- The IP-Serial device driver of Bob Edwards was bugfixed and extended.

Both the IP-ADIO and IP-Serial drivers has been adapted for use on a little endian
machine and for use with the carrier board driver.

•  Code has been developed for state estimation algorithm.  The matrix/vector library was
adapted for use under the VxWorks operating system and its functionality extended.  A
TCM2 compass layer has been coded but still requires testing and addition of few more
functions.

•  Help was given to Chris Gaskett in development of his dynamic model of the Kambara.

•  A simple constant acceleration Kalman filter was designed for the state estimation of the
velocity of the Nomad tour-guide robot.  This filter was written in C.  Further work in
filter tuning and implementation are required however.

•  Experiments on properties of the ADC’s, Summit Instruments triaxial accelerometer and
MotionPak were conducted through the use of a series of static sensor tests.  The
temperature dependence of zero point offsets and noise distributions were investigated.
The dependence of noise in ADC’s was studied as a function of sampling rate.

•  The use of RC filters in filtering the output from the MotionPak was explored.

•  Several properties of the TCM2 compass module were investigated.  In particular the
affects of powering the thrusters in its presence were studied.  Compass accuracy was also
explored.
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CHAPTER 1 - INTRODUCTION

1.1 Project Background

The Robotic Systems Laboratory (RSL), located within the Research School of Information
Sciences and Engineering (RSISE) at the Australian National University (ANU), is concerned
with the research and implementation of robots working in real time for real world
applications.  Some of the projects that the RSL have undertaken involve mobile robot
navigation, active vision, and robot learning systems.  Over the last two years, the RSL has
been developing an underwater vehicle suitable for tasks in exploration and inspection.

The ocean covers 70% of the earth’s surface.  However up until now, relatively few resources
have been put into its exploration.  This contrasts starkly with the huge amounts of time and
money put into space exploration.  In the coming decades, a large growth in underwater
exploration is expected.

This growth is to be assisted by the development of
underwater vehicles.  A vehicle able to map out
underwater regions could result in the discovery of many
biological and mineralogical resources.  Capabilities of
following and observing marine life could assist in
gaining a better understanding of our oceans.  Delicate
underwater environments such as the Australian Great
Barrier Reef could be monitored to check whether
tourist-produced pollution levels are acceptable.  Also,
substantial underwater structures such as oilrigs are often
in need of inspection and maintenance.  Underwater
vehicles or robots are appropriate for application in all these areas.

At the moment, a relatively large number of underwater
robots are in use around the world.  However, they are
typically of the remotely operated vehicle (ROV) variety,
such as the Romeo research ROV shown in figure 1.2.  (See
Bono [4] for details of this ROV.)  The control of such robots
requires constant human supervision by specially trained
personnel.  So it is desirable to design a vehicle that is
autonomous. That is to say, instead of having its every
movement controlled by human, only occasional supervisory
commands need be provided, such as ‘hold current position’
and ‘swim after target’.

Figure 1.2: The Romeo

research ROV

Figure 1.1: The Great Barrier
Reef, a resource in need of

protection
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The RSL has undertaken the construction of such an autonomous underwater vehicle (AUV).
The main objectives of the project are to enable the AUV to autonomously search in regular
patterns, follow along static features, observe the surrounding dynamical features and swim
after moving targets.  Key aims are to further the research work in the realm of underwater
vehicle control and visions systems.  In particular, the challenges of implementing a model-
free reinforcement learning system for motion control and visual servo-control are to be
investigated (Gaskett C., Wettergreen D., Zelinsky A [8]).

The AUV has been named Kambara, an aboriginal
word for crocodile. The Kambara’s mechanical
structure is an aluminium open frame suitable for the
mounting of five thrusters and two cylindrical
enclosures.  The frame has length, width, and height of
1.2m, 1.5m and 0.9m, respectively.  The assembled
vehicle displaces approximately 120 litres of water.

Mounted in the upper enclosure are a computer system,
frame grabber, analog-to-digital converters (ADCs),
and communications equipment.  A pan-tilt-zoom
camera looks out the front endcap.  Also in the upper enclosure is a sensor suite consisting of
a triaxial accelerometer, compass, biaxial inclinometer, rate gyroscope and temperature
sensor.

The lower enclosure contains six lead acid batteries, power distribution and charging
circuitry, a depth sensor and a leak sensor.  The batteries are 12V and capable of supplying up
to 1200W of power.  Mounted on the bottom plate are five watertight boxes, each containing
an amplifier for boosting the control signals to the thrusters.  Mounted on the front frame is a
pair of stereo cameras.

The majority of the processing power required for operation of Kambara is present on-board.
This is principally composed of a G3 PowerPC running on CompactPCI backplane
architecture.  VxWorks is used as the operating system.  Its main tasks are simultaneous
filtering, vision computation and communication.  Eventually, autonomous control will be
moved on-board too.  The important hardware components for the scope of this project are
industry pack (IP) modules for analog to digital conversion, digital I/O and serial
communication.  The state estimation system uses a combination of ADCs and a serial port
for logging of sensor data.  These modules interface with the PowerPC through a carrier board
plugging into the PCI backplane.  A Motorola 68332 module is also present.  This processor
manages servo control of the five thrusters through pulse width modulated control signals.

Figure 1.3: Kambara front view
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1.2 Project Overview

Work on the inertial navigation system (INS) of the Kambara was commenced by Beswick
[2].  The purpose of the INS was to provide adequate sensor data to estimate the current state
of the AUV in real time.  State refers to the position, orientation, linear velocity and angular
velocity of the AUV.  This state information is utilised by the motion control system to
navigate the vehicle.

Beswick’s work involved the selection, acquisition and testing of several sensors for
integration into the INS.  The following sensor units were selected:

•  Summit Instruments triaxial accelerometer unit

•  Precision Navigation TCM2 compass unit integrating a biaxial inclinometer and
magnetic compass

•  Sensor Technics pressure sensor, enabling depth measurements of up to 3m,

•  Systron Donner MotionPak combining a rate gyroscope and triaxial accelerometer

This thesis is concerned with the design and implementation of a state estimation system.
Such a system converts raw sensor data into estimates of the state of the AUV.  It must tackle
a number of different problems.  Sensor readings contain both noise and zero offset biases. It
is desirable to reduce the noise levels and correct for any biases in these sensor outputs.  Also,
the sensors do not provide state estimates directly.  For example, the triaxial accelerometer
provides the acceleration at the position of the sensor, so this data must be processed to
determine the velocity at the centre-of-mass of the AUV.  A model (ie. a set of governing
equations) must be used to convert the sensor readings into state estimates.  A particular type
of state estimation algorithm that uses a model to filter the sensor data is called a Kalman
filter.

Beswick proposed the use of a Kalman filter incorporating a linear model of the AUV and the
sensors.  In doing so, he was forced to make small angle approximations, as well as ignore
hydrodynamic added mass and gyroscopic acceleration terms in the modelling of the AUV. In
this thesis, a more realistic, nonlinear model is developed and incorporated into a modified
version of the Kalman filter called an extended Kalman filter.

Integral to the Kalman filter is a model of the sensors.  Not only must the kinematics involved
with the positioning of the sensors be considered, but also factors such as sensor sensitivity,
noise characteristics and temperature sensitivity must be determined.  In this thesis, the
deterministic components of this model have been derived.  The noise characteristics of two
of the sensors have been characterised.  From these results, the statistical component of the
model has been developed.

Furthermore, for the implementation of the state estimator into a real time environment,
coding of the sensor sampling algorithm and underlying drivers must be implemented.   Over
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the duration of the project, device drivers for the carrier board, ADCs and serial port have
been either written or adapted to the purpose of sampling the sensors.  As a part of the ADC
device driver work, a significant amount of performance testing has been achieved.

Finally, the sensors must be physically mounted on the Kambara.  Suitable mounting has been
designed and implemented as part of the project work.  This mounting was also designed for
attachment to the wrist of the Whole Arm Manipulator for future dynamic testing of the
sensors.

1.3 Thesis Overview

This thesis is concerned with laying down the foundations for the design and implementation
of an accurate and robust state estimation system.  Brief descriptions of each chapter and
appendix follow.

Chapter 2 derives a dynamic model of the AUV.  It includes application of Newton’s second
law, consideration of the major forces, and discretisation of the resulting differential
equations.

Chapter 3 discusses the important features of the sensors and their final implementation.  It
describes their distinguishing features and lists data on the most important sensor
characteristics.  It also documents power distribution and the design of physical mounting.

Chapter 4 derives the equations describing the behaviour of the sensors.

Chapter 5 describes the extended Kalman filter algorithm, as it applies to Kambara.

Chapter 6 documents the current hardware and software heirarchy used for the state
estimator.  In particular, it describes the current implementation of the analog-to-digital
converter and serial drivers.

Chapter 7 describes the sensor testing that has been performed as part of the project.

Chapter 8 outlines a number of conclusions coming out of the project, as well as the future
work required for final implementation of the state estimation system.

Appendix 1 contains tables of all the symbols used in the sensor and system models.

Appendix 2 describes the thruster model developed by Silpa-Anan [11].

Appendix 3 tabulates the sensor sensitivity and bias data so far obtained.
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CHAPTER 2 - PROCESS MODELLING

2.1 Introduction

An integral part of the Kalman filtering algorithm is the process model.  A process model is a
set of equations describing the current state of the AUV as a function of the state at a previous
time and the control inputs.  By state, one refers to the parameters that are important to
measure for estimation of the position, attitude, linear velocity, and angular velocity of the
AUV.  In the case of Kambara, the control inputs are the thruster forces and torques.

An accurate process model is desirable.  The Kalman filter uses such a model to make future
predictions from estimates of the current state.  The better the model is at predicting future
states, the more the model can be relied upon to filter out measurement noise, and the more
effective the Kalman filter will be at removing such noise from the sensor readings.

The ultimate aim of process modelling is to estimate the next state xk+1 of the AUV by a
stochastic difference equation in terms of the current state vector xk, control inputs uk and
noise process vk.  That is, the vector function

xk+1 = f(xk, uk, vk) (2.1)

is to be determined.  This chapter focuses on developing the deterministic component of the
process model.  I.e. it develops an equation of form xk+1 = f(xk, uk, 0).  Incorporation of the
noise component vk is discussed briefly in chapter 5.  It is better discussed after
implementation of the state estimator, as vk will need to be tweaked for filter tuning.

2.2 Steps in Model Derivation

As the process model basically describes the motion of the AUV, it must include in itself the
dynamics of the system.  The system dynamics are obtained by application of Newton’s
second law. However, before Newton’s second law can be applied, suitable reference frames
and attitude representations must be defined, and the significant forces and moments
identified.  Since the model is implemented in a digital system, it must be discretised.  The
major steps involved are

•  define the reference frames (section 2.5),

•  define the attitude representations (section 2.6),

•  apply Newton’s law (section 2.7),

•  identify the forces and moments (section 2.8), and

•  discretise the resulting equations (section 2.9).

The final equations are summarised in sections 2.8.5 and 2.9.
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2.3 State Vector Definition

The very first step in developing any model is to decide which variables are to be modelled.
The variables that become a part of the state vector xk must be identified.  In case of the
Kambara, all variables describing the motion of the AUV must be included.  In particular,
these will be the position, attitude, linear velocity, and angular velocity of the AUV.

Another decision is in how exactly these state variables are specified.  For example, one must
decide which reference frame the velocity and acceleration are represented.  Is it better to
represent them in terms of the inertial reference frame, or a body-fixed reference frame (ie. a
frame attached to the AUV)?  This is an important design decision, as a bad choice of state
vector can significantly increase model complexity.  It turns out in the case of the Kambara,
that since the sensors remain fixed in the local reference frame, the equations are simpler if
linear velocity and angular velocity are specified in terms of a body-fixed reference frame.

The means of representing attitude (or orientation) also has several choices.  Two common
conventions used are Z-Y-X Euler angles and vector quaternions (see Craig [5]).  As is
explained in section 2.6, quaternions provide a more robust and computationally efficient
representation of attitude so they have been chosen as the attitude representation.

In consideration of all these factors, the state vector xk to be used is

x = (vT, ωT, rT, qT, T)T . (2.2)

The vector components of x are defined in table 2.1 below.  For convenience, the time-step
subscript k has been dropped.  Note the inclusion of temperature in the state vector.  The
reason for this becomes apparent in chapter 4 where the temperature variable is used to

correct for the temperature dependence of some of the sensors.  As the vectors are each 3×1

and the quaternion is 4×1, the state vector contains 14 elements. (2.1) will hence be a system

of 14 equations.

Symbol Definition Frame
v Velocity of centre of mass of AUV Body-fixed

ω Angular velocity of AUV Body-fixed

r Position vector of centre of mass of AUV Inertial

q Attitude quaternion of AUV −
T Average temperature of AUV sensors −

Table 2.1: Definition of state vector variables, and the reference frames in
which they are measured.  Reference frames are fully defined in section 2.5.
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2.4 Temperature Modelling

Before going on to develop the dynamic model, the temperature state variable T will first be
considered.  The importance of estimating T lies in its ability to correct for temperature-
induced biases in sensor readings.

In general, the temperature inside the AUV will be a complicated function of the inside
geometry, outside water temperature, the power dissipation properties of the electrical
components and the heat transfer properties of the enclosure.  However, a couple of fans are
to be mounted inside the upper enclosure for the purpose of evening out the temperature
distribution inside.  Temperature should be approximately constant throughout this enclosure.

Fortunately, only a simple model is required.  The sole purpose of this model is the smoothing
out the temperature readings coming from the temperature sensor.  As the temperature in the
AUV will vary only slowly with time, taking hours to reach it’s steady state value, it is

reasonable to approximate temperature as constant.  Ie. 0=T� .

2.5 Reference Frames

It is convenient to use two coordinate systems to describe the motion of the AUV.  An inertial
reference frame {I} is used to describe the position of the AUV in global coordinates.  A local
or body-fixed reference frame {B} is useful for specifying the parameters such as velocity and
thruster forces, as these have much simpler representations in terms of such a reference frame.
To simplify the kinematic equations, it is convenient for frame {B} to be attached to the
centre of mass of the Kambara.  Both frames {I} and {B} are shown in figure 2.1.  Note that
XB points towards the front of the AUV, ZB points to the bottom of it, and YB points in a
direction appropriate for forming a right handed coordinate system.  The state vector
component r = (x, y, z)T then represents position vector of frame {B} in frame {I}.

ZB

XB

YB

YI

XI

ZI

{B}

{I}

r

Figure 2.1: Definition of the inertial and body-fixed reference
frames {I} and {B}, and the vector r locating the origin of {B}
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2.6 Attitude Representations

As indicated in section 2.3, there are different ways of representing the attitude (or
orientation) of the AUV.  Two common forms are Z-Y-X Euler angles and quaternions.
These are described below.  The reasoning for the choice of quaternions is mentioned.

2.6.1 Euler Angles

The orientation of frame {B} in frame {I} is commonly specified in terms of three Z-Y-X

Euler angles: roll (φ), pitch (θ) and yaw (ψ).  Figure 2.2 shows the definition of these angles.

It is necessary to be able to convert parameters stated in terms of frame {B} into inertial
reference frame parameters.  In particular, one needs to convert velocity v=(u,v,w)T and

angular velocity ω=(p,q,r)T both expressed in terms of frame {B}, into inertial

velocity Tzyx ),,( ���� =r  and Euler angle parameters T),,( ψθφ �

��� =Φ .  This can be performed by

using the transformations vRr ),,( ψθφ=�  and ωΦ ),,( ψθφT=� .  The transformation matrices

are

















−
−+
+−

=
φθφθθ

ψφψφθψφψφθψθ
ψφψφθψφψφθψθ

ψθφ
ccscs

csscsccssssc

ssccssccsscc

),,(R , (2.3)
















−=

φφ
φθφθ

φθφθθ

θ
ψθφ

cs0

sccc0

csssc

c

1
),,(T . (2.4)

Note that c and s represent cosine and sine functions.  See Craig [5] for details on the
derivation of these matrices.

Figure 2.2: Definition of roll, pitch and yaw angles in terms of {I}, {B} and
two intermediate reference frames {A} and {A’}.  The positive sense of such

angles is given by the right hand rule.

ZB

YA

YI

XI

ZI, ZA

XA

ZA’

YA,YA’

XA

ZA

YA’

ZA’

XC, XA’

Yaw angle ψ
(rotation about Z-axis)

Pitch angle θ
(rotation about Y-axis)

Roll angle φ
(rotation about X-axis)

XA’

YB
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2.6.2 Quaternions

Euler angle representations such as the one above have several disadvantages.  All Euler angle

representations contain singularities.  That is to say, the transformation ωΦ ),,( ψθφT=�  will

be undefined for some angles ),,( ψθφ .  In the Z-Y-X Euler angle transformation matrix (2.4),

a singularity occurs at θ = 90°.  As θ approaches 90°, cos(θ) approaches 0° and four elements

of the transformation matrix approach infinity.  This results in a loss of numerical accuracy of

near 90°.

Another problem of Euler angles is in computation time.  Every computation of matrices (2.3)
and (2.4) requires the calculation of 6 trigonometric functions.  Unless some form of lookup
table is implemented, trigonometric functions are computationally slow to evaluate.
Consequently Euler angles are slow to implement.

An alternate representation of the attitude that avoids the above problems can be obtained by
use of the quaternion.  A quaternion representation uses a fourth parameter to eliminate the
singularity problems of Euler angles. It also eliminates the problem of evaluating
trigonometric functions.  Once the first quaternion is calculated, quaternions need only be
updated with a sequence of multiplications and additions – no further evaluation of
trigonometric functions is necessary.

A quaternion represents an orientation as follows.   Consider a quaternion q = (η, εT)T where

η is a scalar and ε is a 3 element vector.  Define unit vector a and angle α to be defined such

that rotation of frame {I}  about a by angle α yields frame {B}. A quaternion representing

such a rotation is









=








)2/sin(

)2/cos(

α
α

ε
η

a
. (2.5)

Then, for example, a quaternion representing an orientation with frames {I} and {B}

coincident (ie. angle α = 0°) is (1, 0, 0, 0)T.

The relevant transformation equations are now vqRr )(=�  and ω)(2
1 qUq =�  where, from

Fjellstad [6], the transformation matrices are given by

R(q) = I3×3 + 2ηS(ε) + 2 [S(ε)]2

        = 
















−−+−
−−−+
+−−−

2
2

2
1132231

132
2
3

2
1321

231321
2
3

2
2

221)(2)(2

)(2221)(2

)(2)(2221

εεηεεεηεεε
ηεεεεεηεεε
ηεεεηεεεεε

, (2.6)



CHAPTER 2 - Process Modelling 10



















=







+

−
=

×

ηεε−
ε−ηε

εε−η
ε−ε−ε−

η

12

13

23

321

)(
)(

33 ε
ε

SI
qU

T

. (2.7)

The skew symmetric1 matrix operator S(⋅) is defined as

















−
−

−
=∆

0

0

0

)(

12

13

23

aa

aa

aa

aS . (2.8)

The significance of such a matrix operator is that baSba )(=× .  A vector cross product is

reduced down to matrix multiplication.

Now as R(q) and U(q) have full rank, the kinematics equations contain no singularities.  Note
the elimination of trigonometric functions from these transformation matrices.

2.7 Newton’s Law

Newton’s second law can now be applied to the AUV.  Summing moments about the centre
of mass of the AUV, the general expressions for Newton’s second law for a body of constant
mass m are

( )B
I

I

dt

d
m VF =∑ , (2.9)

( )B
I

B
I

I

dt

d Ωτ ⋅=∑ I . (2.10)

The notation used courtesy of Craig [5].  The superscripted letter is the frame in which the
particular quantity is taking respect to.  For example IIB is the AUV inertia tensor about the

origin of frame {B} with respect to frame {I}.  Similarly, IΩB is the angular velocity of frame

{B} in frame {I}.

Expanding the derivatives of equations (2.9) and (2.10) in terms of state variables,

( ) )( vvVVF ×+=×+=∑ ωΩ �mm
dt

d
m B

I
B

I
B

I
B

, (2.11)

                                               
1 A skew symmetric matrix is a matrix with property S = −ST
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( ) ( ) ( )ωωωΩΩΩτ 00 IIII ×+=×+=∑ �B
I

B
I

B
I

B
I

B
I

B

dt

d
, (2.12)

where it has been noted that IVB = v, IΩB = ω and IIB = I0.  I0 is the inertia tensor of the AUV

about its centre of mass.  Recall that v and ω are the linear and angular velocities expressed in

frame {B} coordinates.  As the Kambara possesses symmetry about the XZ plane, several
terms in the inertia tensor are zero.  Also, since the Kambara is fairly symmetrical about the
YZ plane, the Ixz product of inertia term can be neglected.  The resultant expression for I0 is
hence
















≅

















−

−
=

z

y

x

zxz

y

xzx

I

I

I

II

I

II

00

00

00

0

00

0

0I . (2.13)

Using the skew symmetric operator S(⋅), equations (2.11) and (2.12) are more conveniently

expressed as

fCM 0 =+ νν�0 , (2.14)

where 







=

×

××

033

3333

I0

0I
M0

m
, 








−−
−

= ×

)()(

)(

0

33

ωISvS

vS0
C0 m

m
, 








=

ω
ν

v
, and 








=

∑
∑

τ
F

f .

The –mS(v)v = 0 term is added to C0 for future convenience.

2.8 Acting Forces and Moments

The f term on the right hand side of equation (2.14) represents the net force and moment
acting on the AUV.  It can be considered as a ‘generalised force’, as it places both force and
moment in the same vector.  The main terms contributing to such a generalised net force come
from several sources:

•  the thrusters

•  hydrodynamic added inertia

•  hydrodynamic drag

•  gravity and buoyancy

Equations for these generalised force terms are developed separately below.
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2.8.1 Thrusters

Motion is imparted to the Kambara through 5 thrusters.  As each thruster operates, it exerts a

net force Fi and torque τi (1 < i < 5).  A separate model is used to evaluate the values of these

forces and torques.  This model is currently in the process of development.  At present, only

the model gives the thruster forces Fi.  The thruster torques τi will be determined as a future

extension to the model.  For the details of the thruster model at present, see Silpa-Anan [11].
A summary of this model is present in appendix 2.  The lines of action of these forces and
torques are specified through 5 lengths l1 … l5.  These lengths are defined in figure 2.3 below.

For the moment, the thruster torques τi have been ignored.  From the positions of the thruster

lines of action shown in figure 2.3, the generalised force vector exerted by the thrusters is
given by Lu where

XB YB

ZB

l1

l2

l4

l3
F1

F3

F4

F5

l5

τ2

τ1

F2

τ5

τ5

τ4

{B}

Figure 2.3: Positions of the lines of action of forces Fi and

torques τi generated by the 5 thrusters in frame {B}.  Note that the

thruster positions are symmetrical about the XB-ZB plane.
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























−
−−−

−
−−−=








=

000

000
11100

00000

00011

22

43355

112

1

ll

lllll

llL

L
L ,   (2.15)

u = (F1, F2, F3, F4, F5)
T. (2.16)

u is the vector of control inputs for the process model.

2.8.2 Hydrodynamic Added Inertia

The movement of the AUV through a fluid causes motion to be imparted to the fluid.  The
pressure-induced forces and moments that result can be modelled as a virtual addition to the
mass and inertia of the AUV.  Such an added inertia is a function of fluid density and the
body shape of the vehicle.

The contribution to the net force of this effect is ννν )(AA CM −− �  (see Fossen [7] for

derivation details).  The most general form of the added inertia matrix is the 6×6 matrix









=

2221

1211
A MM

MM
M

AA

AA (2.17)

where MAij are 3×3, MA=MA
T, and the gyroscopic acceleration term νν )(AC−  has









+−+−
+−

= ×

)()(

)(
)(

22211211

121133

ωω
ω

ν
AAAA

AA

MvMSMvMS

MvMS0
C A . (2.18)

As the shape of the Kambara is symmetrical about one plane and near symmetrical about the
other two, the off-diagonal terms will be very small compared with the diagonal elements.
Hence a reasonable approximation is make MA diagonal,









≅

×

×

22

11

A

A

M0

0M
M

33

33
A (2.19)

where MA11 and MA22 are now diagonal 3×3 matrices.
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2.8.3 Hydrodynamic Drag

As the AUV moves through the water, it experiences a drag force from the surrounding fluid.
The model of this drag force is dependent upon the nature of the fluid flow around the AUV.
If the AUV moves through the fluid sufficiently slowly, the fluid flow is laminar.  Under such
conditions, the drag force could be modelled as proportional to velocity.  However Toh [14]
has shown that at reasonable operating speeds (say 0.5m/s) fluid flow is turbulent, causing the
drag force to possess an approximately quadratic dependence on velocity.  The generalised

drag force term is hence approximated by −Diag|ν|Dν where Diag converts a vector into a

diagonal matrix and D is a positive definite matrix of drag coefficients.  The absolute value in
this expression and positive definite nature of D reflects the dissipative nature of drag forces.

In general, movement in some directions will create drag forces in orthogonal directions.  For
example, the lift force acting on an airfoil acts perpendicular to the direction of movement.
As a result, one expects D contain nonzero off-diagonal terms.  In spite of this, a rough
approximation is to make D diagonal,









≅

×

×

22

11

D0

0D
D

33

33 (2.20)

where D11 and D22 are diagonal 3×3 matrices.

2.8.4 Gravity and Buoyancy

Gravity and buoyancy both apply forces to the AUV.  If m is the mass of the AUV and g is
acceleration due to gravity, gravity produces a force at the centre of mass of the AUV

pointing downward in the inertial reference frame.  This force is given by I
BZqf mgg =)(

where I
B Z  is the Z unit vector of frame {I} represented in frame {B} coordinates,

















−−
+
−

=















=
















=

2
2

2
1

132

231

221

)(2

)(2

1

0

0

)(

1

0

0

εε
ηεεε
ηεεεB

T

I

qRZ I
B . (2.21)

Note the application of the inverse of the rotation matrix R−1(q)=RT(q) to convert from body-

fixed to inertial coordinates.

Archimedes principle states that when a body is immersed in a fluid, it experiences a force
equal to the weight of fluid displaced by that body.  If the volume of fluid displaced is V and

density of fluid is ρ, the buoyancy force is given by I
BZqf gVb ρ−=)( .  This force acts at the

centre of buoyancy (or centroid) of the AUV.
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The centre of mass and centre of buoyancy are in general not the same point.  The centre of
mass is dependent on the mass distribution within the AUV, while the centre of buoyancy is
not.   In fact, in the Kambara, the 60kg battery pack sits in the bottom compartment, making
the centre of gravity about 100mm below the centre of buoyancy.  The buoyancy force will

hence generate a righting moment rb×fb(q) about the centre of mass where rb is the position of

the centre of buoyancy in frame {B}.

The net contribution from gravity and buoyancy is summarised in the generalised force term
g(q) where









−

−
=








×
+

=
I

B
b

I
B

bb

gb

gV

Vmg

ZrS

Z

fr

ff
qg

)(

)(
)(

ρ
ρ

. (2.22)

2.8.5 Final Equations

Substituting the terms from the thrusters, hydrodynamic added mass, hydrodynamic drag,

gravity and buoyancy from sections 2.8.1 - 2.8.4, equation (2.14) becomes

)()( qgDCLuM +−−= ννννν Diag� . (2.23)

where in the case that MA and D are approximated as diagonal









=+=
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×
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11
0 M0

0M
MMM

33
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A , (2.24)



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=+= ×

)()(

)(
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0 ω

ννν
MSvMS

vMS0
CCC A . (2.25)

Finally, equation (2.23) can be solved for state vector variables v and ω.  The result is

( ){ ( ) ( ) }I
BVmgDiag ZvvDvMSuLMv 1 ρω −+−+= −

1111
1

11  � , (2.26)

( ){ ( ) ( ) }I
BgViagD ZrSDMSvvMSuLM B )(2222112

1
22 ρωωωωω −−++= −

� (2.27)

Recall from section 2.6.2 the equations relating the derivatives of the other state variables are

vqRr )(=� , (2.28)

ω)(2
1 qUq =� , (2.29)

0=T� , (2.30)
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where R(q) and U(q) are defined in (2.6) and (2.7).  Equations (2.26) - (2.30) summarise the
continuous time equations describing the motion of the Kambara.

2.9 Discretisation

Before equations (2.26) - (2.30) can be used in the (digital) Kalman filtering algorithm, they
must be discretised.  The first step in the discretisation process is the integration to convert the
differential equations into integral equations.  The integrals must then be evaluated.  For
linear systems, these integrals can be evaluated exactly through calculation of the state
transition matrix.  However, this system is highly nonlinear with no analytical solution.
Instead, the backward Euler approximation is made:

)()()( 1

1

kkk

t

t

tttdtt
k

k

ff −≅ +∫
+

(2.31)

Better approximation techniques are available (eg. a trapezoidal integration technique could
be used) but these techniques significantly increase the complexity of the discretised
equations and will result in greater demands on processing power.

Integration between t=kTS and (k+1)TS  and application of the backward Euler approximation
yields:

kSkk T xxx �+=+1 (2.32)

where TS is the sampling period used.  The smaller TS is, the better the Euler approximation
becomes.
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CHAPTER 3 - THE SENSOR SUITE

3.1 Introduction

Before jumping into the sensor model in chapter 4, the sensors themselves and their
implementation into the Kambara will be summarised.  This includes both the physical
mounting onto the AUV and the distribution of power to the sensors.  But firstly the sensors
themselves and their basic properties will be described.

3.2 Sensor Descriptions

The sensors selected for the inertial navigation system (INS) are

•  a Summit Instruments triaxial accelerometer,

•  a SensorTechnics depth sensor,

•  a Systron Donner MotionPak and

•  a Precision Navigation TCM2.

The model numbers of these sensors are summarised in table 3.1 below.  The TCM2
communicates with the outside world through RS-232 signals.  It is to be interfaced with a
serial port module.  All other sensors produce analog output signals.  These signals are read
through an analog-to-digital converter (ADC) module. The sensor output interfacing is
discussed in chapter 6.

Table 3.1: Sensor names and models.

Sensor Name Manufacturer Model No. Output type
Accelerometer Summit Instruments 34103A Analog
Depth SensorTechnics PTE2005G1A Analog
MotionPak Systron Donner MP-GDDDQBBB-100 Analog
TCM2 Precison Navigation TCM2-50 RS-232*

* The TCM2 also outputs in analog format, but only after passing the digital
signal through an internal 8 bit ADC.

Each sensor module is discussed briefly in the separate sections below.  In each section,
sensitivity and bias data is listed.  A more accurate and complete listing of values are listed in
appendix 3.  The power distribution to these sensors is described in section 3.4.
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3.2.1 Summit Instruments Trixial Accelerometer

A triaxial accelerometer measures acceleration in three mutually
perpendicular directions.  It does by using a single accelerometer unit
measuring the acceleration along each axial direction.  The principle
of operation is measurement of the force-induced displacement acting
on a mass along the direction of interest.  Because gravity always
exerts a force on any mass, acceleration due to gravity will be seen
superimposed onto acceleration measurements.  Keeping this in mind,

an accelerometer with a full scale range ±1.5g was chosen for use in

the Kambara.  Important accelerometer characteristics are shown in table 3.2 below.

3.2.2 SensorTechnics Depth Sensor

Important sensor characteristics are shown in table 3.3.  This sensor
actually measures pressure.  As a result, it will possess different
sensitivities in media with differing densities.  This is of little concern
however, as water density stays relatively constant with temperature and

water composition, only varying by 0.4% over a 0−30°C temperature range.

Sensitivity of the depth sensor stated in table 3.3 consequently will increase
by up to 0.4% under minimum temperature conditions.  Also, the zero point
is slightly dependent on atmospheric pressure.  As atmospheric pressure
typically varies over a 0.5kPa range, offset bias will vary over a 5mm or
7mV range

Figure 3.1: Triaxial

accelerometer

Table 3.2:  Summit Instruments
accelerometer characteristics.
Full scale range ±1.5g

Output voltage swing 0.25 ... 4.75V

Sensitivity

     At 25°C 1.43V/g

     Drift TMIN to TMAX ±0.5V/g

Bias

     At 25°C 2.5V

     Drift TMIN to TMAX ±0.2V/g

Linearity 0.2% FSR

Cutoff frequency > 7Hz

Noise density < Hz/mg 1

Operating range −40°C … 80°C

Table 3.3: Sensor Technics depth
sensor characteristics.
Full scale range 0 … 3.5m*

Output voltage swing 1 … 6V*

Sensitivity (25°C) 1.42V/m

Bias 1.0V

Drift TMIN to TMAX

(incl. both bias &  span)
±2.5% FSR

Linearity < ±0.5% FSR

Noise density ±0.04% FSR

Cutoff frequency 1kHz

Operating range 0°C … 70°C

* for water

Figure 3.2:

Depth sensor
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A major concern with the current sensor is the 3.5 metre full scale range.  The pressure sensor
starts taking damage above 15psi (10m depth).  For final implementation, this sensor will
have to be replaced by one with a larger full scale range.

3.2.3 Systron Donner MotionPak

The MotionPak is a not a single sensor but an integrated sensor
package.  It contains an on-board triaxial accelerometer, triaxial
rate gyroscope, and temperature sensor.  These shall all be used as
part of the state estimation system.  The temperature sensor will be
used to correct for the temperature dependence of the other
sensors.

The relevant characteristics of the accelerometer and rate
gyroscope are shown in table 3.4.  The AD590 temperature sensor

on-board has a sensitivity of 1µA/°C.  A complete set of sensor

sensitivity and offset biases for all sensors is listed in appendix 3.

Before feeding the MotionPak accelerometer and gyroscope outputs into an analog to digital
converter, they require low pass filtering.  The results of experimenting with simple low pass
filters are shown in chapter 7.

Figure 3.3: Motionpak

Table 3.4: MotionPak accelerometer and rate gyroscope
characteristics.

Gyroscope Accelerometer
Full scale range ±2g ±2g

Output voltage swing ±2.5V ±7.5V

Sensitivity
     At 22°C 25mV/°/s 3.75V/g

     Temperature < 0.03%/°C < 0.03%/°C

Bias
     At 22°C 0°/s 0g

     Drift 22°C to TMAX < 3°/s < 100µg/°C

Linearity < 0.05% FSR < 10µg/g2

Bandwidth (-90°) > 60Hz > 300Hz

Noise density < Hzsec//01.0 ° < 7.0 mVRMS

Operating range −40°C … 80°C
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3.2.4 TCM2 Compass / Biaxial Inclinometer

The TCM2 provides a measure of attitude up to an angle of

inclination of 50°. It contains on-board a triaxial magnetometer,

biaxial inclinometer, and temperature sensor. The
magnetometers feed out magnetic field strength data used to
orient the TCM2 with respect to the magnetic field of the earth.
An on-board Kalman uses this magnetometer and inclinometer
to estimate heading.  Key TCM2 characteristics are summarised
in table 3.5 below.

A major influence on the accuracy on the compass heading
readings is the background magnetic field.  All compasses can perform well in an
environment containing only the earth’s magnetic field.  However in practical situations the
compass module will be mounted into environments containing large sources of magnetic
fields such as ferrous metal components, electric currents and the permanent magnets of
electric motors.

Because of interfering magnetic fields in practical situations, the TCM2 compass module
possesses a user calibration procedure for compensation.  In particular, the compass module is
able to compensate for hard iron effects.  Hard iron effects are due to fields that are fixed in
the frame of the compass module.  As a result, the field due to the electrical circuitry in the
upper enclosure of the Kambara can be corrected for.

Soft iron effects cannot be corrected unfortunately.  These effects are created by the
amplification of magnetic fields by highly permeable materials. In particular ferrous metals
are a major concern.  Fortunately, the only major sources of ferrous metals on the Kambara
are the thrusters.  As soft iron effects drop off with distance by an inverse square rule, soft
iron effects will not be a major concern.

As mentioned above, the TCM2 contains a temperature sensor on-board.  For the purposes of
state estimation, this sensor is redundant on the TCM2.  The TCM1 required a temperature

Figure 3.4: TCM2

Compass

Table 3.5: TCM2-50 compass / inclinometer characteristics.
Heading Tilt Magnetometer

Full scale range 0 … 360° ±50° ±80µT

Accuracy ±1.5°* ±0.4° ±0.2µT

Resolution 0.1° 0.3° 0.01µT

Repeatability ±0.3° ±0.3° ±0.2µT

Operating range −20°C … 70°C

*when tilted; heading accuracy is ±1.0° when level
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sensor for temperature compensation by the user, but the TCM2 compensates for temperature
automatically.

Several limitations not mentioned in table 3.5 pertain to the presence of the accelerometer
fluid.  Firstly, sudden changes in heading will cause the inclinometer fluid to slosh.  Settling
time of such sloshing is 300msec.  Also, acceleration the inclinometer fluid will cause it to

tilt, decreasing compass accuracy.  For example, an acceleration of 0.84ms−2 will produce a

tilt error of 1° and a compass 1 – 8° error in heading, depending upon the strength of the

earth’s magnetic field at the position of measurement.

3.3 Physical Sensor Mounting

Eventually, the sensors will be fixed into the enclosures of the Kambara.  Before this occurs,
dynamic testing of the MotionPak and TCM2 compass modules will be accomplished.  To
accomplish this testing, the sensors will be attached to a 7 degree of freedom manipulator arm
called the Whole Arm Manipulator (WAM arm) so that their position can be controlled and
recorded.  Suitable mounting was to be designed for both of these situations.

The depth sensor could not be included as part of the sensor suite.  As it measures pressure, in
the Kambara, it must be contact with the water outside the enclosure.  As a consequence, a
previous design decision dictated the depth sensor to be mounted into the front-end cap of the
lower enclosure.  Mounting onto the WAM arm would still possess some merit, as the
performance of the depth sensor may degrade under acceleration or vibration.  However, as
appropriate sensor mounting is already in existence, the inconvenient of designing an
additional mounting was deemed excessive.

Important considerations for the design of the sensor mounting were:

•  the secure mounting of accelerometer, TCM2 and MotionPak,

•  minimisation of sensor vibration so as to
minimise sensor noise,

•  the rigidity of the mounting under the
900gm load of the MotionPak,

•  a suitable screw thread attachment for
mounting onto the wrist of the WAM arm
and

•  choice of a non-ferrous mounting material.

Rigidity was important to prevent sagging in the
mounting, which in turn could cause the sensors to
change their orientations slightly without notice.  As

Figure 3.5: Sensors and DC-DC
converter mounted fixed onto

mounting plate.
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mentioned in section 3.2.4, choice of non-ferrous mounting material was necessary to prevent
soft iron effects from interfering with the TCM2 compass module.

The final design involved the mounting of the three sensors on a 200×150×8mm aluminium

plate, as shown in figure 3.5.  Figure 3.8 overleaf shows an AutoCAD drawing of this plate.
The plate is then mounted into the aluminium ‘cage’ shown in figure 3.6 and made secure by
use of six M3 screws.  This cage then slides through a pair of aluminium rails into the
Kambara.

Appendix 4 shows the final design drawing of the
adaptor plate used to attach the sensor suite onto the
wrist of the WAM arm.  The adaptor plate was also
machined out of aluminium.

A major problem with the current sensor suite design is
its weight.  The combined weight of the sensor suite is
almost 2kg.  It was later found that the WAM arm could
not support the weight of the sensor suite without risk of
damaging the wrist.  This doesn’t mean that the WAM
arm mounting was useless.  It will still prove useful in
logging sensor position.  However the WAM arm
cannot be used for position control.

3.4 Power Distribution System

The Kambara contains on-board a power distribution system to supply the necessary power to
the sensors.  Four 12V batteries are present in the lower enclosure of the Kambara for
powering of all the electrical equipment and the thrusters.  These batteries are used to supply
5V and 12V power lines to the sensors.

It will be shown in chapter 7 that the MotionPak triaxial accelerometer performs significantly
better than the Summit Instruments accelerometer.  Furthermore, it will be seen that little is
gained by using both sensor units together.  As a consequence, though the Summit
Instruments accelerometer was included as part of the sensor suite, it will not be wired in the
physical implementation of the Kambara.

Figure 3.6: Positioning of the
sensor suite in the hardware

‘cage’.
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The sensor power requirements are shown in table 3.6

below.  Note that the MotionPak requires ±15V supply

voltages.  A suitable switch-mode power supply
(shown in figure 3.7) has been chosen to produce these
supply voltages from the 12V battery sources.  The
total power usage from all sensors (excluding the SI
accelerometer) is 7 Watts.

A problem of using switch-mode power supplies such as the DC-DC converter mentioned
above is the introduction of noise.  Switch-mode power supplies are notoriously noisy.  In
particular, there is concern is that the noise it introduced may have detrimental effects on the
operation of the MotionPak.  However, experimentation with the MotionPak with and without
the DC-DC converter has shown this not to be a problem.  The noise standard deviations
observed were approximately equal.

Table 3.6: Sensor power requirements.
Sensor name Supply voltage

(V)
Supply current

(mA)
Kambara power

usage (W)
Output type

Accelerometer 5 ±5% 25 0.125 Analog

Depth 12 … 20 20 0.24 Analog
MotionPak ±15 430 6.5 Analog

TCM2 6 … 25* 20 0.25 RS-232**

* The TCM2 possesses a power input 5V±5% for a regulated power supply
** The TCM2 also outputs in analog format, but only after passing the digital signal through
an internal 8 bit analog-to-digital converter.

Figure 3.7: DC-DC converter

for MotionPak sensor.
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CHAPTER 4 - SENSOR MODELLING

4.1 Introduction

The other major component of the Kalman filtering algorithm besides the process model is the
measurement equation.  The measurement equation is basically a model of the sensors.  It
describes the expected sensor outputs in terms of the current state estimate and the control
inputs.  A model of the noise outputs of the sensors is an important component of this
equation.  Mathematically, the measurement equation can be expressed in form

zk = h(xk, uk, wk),  (4.1)

where zk is the vector of sensor outputs or measurement vector, xk is the current state vector,
uk the current control input (thruster forces) and wk is the vector of noise processes.

As in chapter 2, this chapter focuses on developing the deterministic component of the sensor
model.  That is to say, it develops an equation of form zk = h(xk, uk, 0).  Suitable models of the
noise processes are explored in chapter 6 where actual data from the sensors is analysed.

The measurement vector zk contains the outputs from all the sensors being sampled at a given
time.  It is hence given by:

z = (aT, ΩT, R, P, ψ, d, Tm)T. (4.2)

The components of z are described in table 4.1.  As the two vectors are 3×1 and the other

parameters are scalars, equation (4.1) will be a system of 11 equations.  These equations are to
be derived in the sections to follow.

Symbol Sensor quantity Sensor name
a Acceleration MotionPak triaxial accelerometer

Ω Angular velocity MotionPak rate gyroscope

P Inclinometer roll TCM2 biaxial inclinometer
R Inclinometer pitch TCM2 biaxial inclinometer

ψ Compass yaw TCM2 compass

d Depth SensorTechnics pressure sensor
Tm Temperature MotionPak temperature sensor

Table 4.1: Description of measurement vector variables.

These equations contain several common elements.  All sensors with analog outputs will
contain a sensitivity term Si and zero offset bias bi.  Any temperature dependencies in offset
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bias are taken up in kiT terms.  Ie. the offset bias is approximated as a linear function of
temperature bi+kiT.

In general S is a matrix2 and b & k are vectors.  This matrix-vector representation proves
useful for sensors that output vector quantities (such as acceleration).  For example, any
difference in the alignment of the accelerometer axes from frame {B} can be accounted for in
the S matrix.

4.2 Trixial Accelerometer

A triaxial accelerometer measures acceleration in three mutually perpendicular directions.  On
Kambara, the three axes are approximately aligned with the body-fixed frame {B}.

Recall from chapter 3 that gravity is superimposed on the sensor output.  This is unfortunate,
as the gravity term must be subtracted from the accelerometer output before a true indication
of acceleration can be given.  The accelerometer readings can hence be no more accurate than
the attitude estimates coming out of the Kalman filter, because the attitude needs to be
accurately known for subtracting gravity completely.  In fact they will be very sensitive to
errors in attitude.  A small error in attitude translates to a large error in acceleration.

Another influencing factor on the output of the accelerometer is temperature.  Testing of the
accelerometer has shown that the zero point offset is slightly temperature dependent.  As
chapter 7 will show, this zero point offset can successfully be modelled as a linear function of
temperature and that different axes of the same sensor have significantly different temperature
coefficients.

Although the axes of the accelerometer are aligned with those of {B}, the accelerometer will
be offset from the centre of mass.  Calling the offset vector ra, the acceleration of the sensor
Iaa will be slightly different from that at the centre of mass IaB,

( ) ( )
aa

aa

rSrSv

rraa

)()(         2 ωω

ΩΩΩ

+−=

××+×+=

��

B
I

B
I

B
I

B

B
I

a
I

dt

d
(4.3)

Expressions for v�  and ω�  were derived in chapter 2.  In terms of these expressions, the

equations relating the accelerometer output readings a are

[ ] aaI
B

aaa bkZrSrSvSa ++++−= Tg)()( 2 ωω�� (4.4)

                                               
2 The sensitivity matrix Si is not to be confused with the skew symmetric operator S(⋅)
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where ba are the zero offset biases and ka are temperature drift rates.  An expression for BZI

was given in chapter 2.

4.3 Compass / Biaxial Inclinometer

The TCM2 compass module possesses a biaxial inclinometer and a triaxial magnetometer.
The purpose of this module is measurement of attitude.  Two sets of equations have been
derived for the modelling of this sensor module.  The first set (section 4.3.1) provides a basic
model that is most accurate when the TCM2 undergoes no acceleration. The second set of
equations (section 4.3.2) removes this assumption and enhances filter performance.  However,
it also results in a more complicated model and the addition of two variables to the state
vector.

4.3.1 Basic Compass Model

The biaxial inclinometer is a fluid-filled tilt sensor used to measure the orientation of the
compass with respect to gravity.  Provided the compass module is not accelerating, the tilt
sensors measure the angles between the compass and the gravity vector.  These angles are
called the pitch angle P and roll angle R.  They are not to be confused with the pitch and roll

Euler angles θ and φ.

The pitch and roll angles are defined in figure 4.1.  In figure 4.1(a), the reference frame of the
compass {C} has been defined.  In terms of defined reference frames, the pitch angle P is the
angle between the gravity vector and ZC measured in the XC-ZC plane (see figure 4.1(b).

TCM2
compass
plane

ZI

YC

XC

ZC

XC

ZC

ZI

P

YC

ZC

ZI

R

(a)

(c)

(b)

Gravity

γ

Figure 4.1: Definition of TCM2 pitch angle P, roll angle R and

inclination angle γ. The TCM2 compass frame {C} is shown in

(a).  ZC is perpendicular to the plane of the TCM2 compass.  (b)

and (c) show angles P and R.
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Similarly, roll angle R is the angle between the gravity vector and ZC measured in the YC-ZC

plane.  Assuming {C} is aligned with {B}, the mathematical expressions for P and R are

( ) ( )2
2

2
12

1
231   ,Atan2  ,Atan2 εεηεεε −−−=⋅⋅= CICIP ZZXZ , (4.5)

( ) ( )2
2

2
12

1
132   ,Atan2  ,Atan2 εεηεεε −−+=⋅⋅= CICIR ZZYZ , (4.6)

where Atan2 is a two-argument arc tangent function3.

If {B} and {C} are not aligned, the rotation matrix

RB
C  between these reference frames must be taken

into account.  However in the case of Kambara,
frames {B} and {C} do align, at least
approximately.  (No attempt has been made at
precision alignment.)

The TCM2 also outputs the compass bearing angle

ψ.  In terms of state variables, the compass bearing

angle ψ is given by the angle between XI and the

projection of XC onto the XI-YI plane.  From figure
4.2,

( )ICIC XXYX ⋅⋅=   ,Atan2ψ (4.7)

( )2
2

2
12

1
321   ,Atan2    εεηεεε −−+= .

The final important angle of the TCM2 compass is the tilt angle γ defined in figure 4.1.  A

major limitation on the TCM2 is that attitude cannot be measured above a tilt angle of 50°.  It
is important to obtain an expression for tilt angle.  In terms of measurement variables P and R,
tilt angle is given by








++
= −

RP 22

1

tantan1

1
cosγ . (4.8)

4.3.2 Improved Compass Model

The TCM2 sensor model derived in the previous section possesses two drawbacks.  The first
drawback is associated with the noise properties of the compass bearing readings of the
TCM2.  On the TCM2, compass bearing estimates are obtained by passing the inclinometer

                                               
3 Atan2(y,x) computes tan–1(y/x) but uses the signs of both x and y to determine the quadrant in which the
resulting angle lies.

projection
onto XI-YI

plane

XC

ψ XI

ZI

YI

Figure 4.2: Definition of compass

bearing angle ψ .
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and magnetometer sensor outputs through it’s own Kalman filter. This filtering colours the
noise in the bearing estimates and correlates them with inclinometer measurement noise.  A
more complicated noise model is required.

The larger problem, however, has to do with the exclusion of acceleration effects.  The pitch
and yaw angle equations do not account for these effects.  These erroneous angle
measurements propagate through to the TCM2 Kalman filter, producing even larger
estimation errors in compass bearing.  Such problems can be avoided by compensating
inclinometer equations and filtering the triaxial magnetometer readings directly.

In the case of non-zero acceleration, the tilt sensor readings will no longer be in reference to
the gravitational vector, but the net acceleration at the compass including gravity.  Similar to
equation 4.2, the net acceleration at the compass is given by

cc rSrSva )()( 2 ωω +−= ��

C
I , (4.9)

where rc is the position of the TCM2 inclinometer.  The new equations for pitch and roll
angles become

( )CC
I

CC
IP ZaXa ⋅⋅=   ,Atan2 , (4.10)

( )CC
I

CC
IR ZaYa ⋅⋅=   ,Atan2 . (4.11)

The expression for pitch angle γ in equation (4.8) is still valid, as it is purely based on sensor

readings.  However as mentioned previously, the compass bearing readings coming from the

TCM2 compass are not accurate in an accelerating system.  An equation for ψ is no longer

useful.

A means of incorporating magnetometer readings directly into the Kalman filter is suggested
in Smith [12].  This paper suggests modifying the measurement vector z to replace the

compass bearing measurement ψ with the flux density B measured by the magnetometer.  An

equation can then be written to express the measured magnetic field in terms of the magnetic
field of the earth Be and local fields on-board the Kambara BI,

Ie BBqRB += α)(T  (4.12)

where R(q) is the rotation matrix converting from frame {B} to frame {I}, α is a 3×3 matrix

used to model shielding, and Be is given in table 4.2.  Note that this definition of Be sets the
unit vector XB of frame {B} at magnetic north.
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The shielding matrix α describes how the magnetic

field of the earth is attenuated and distorted in space
as a function of position.  The biggest amounts of
distortion of the earth’s magnetic field occur around
ferromagnetic structures such as steel frames.
There is no way to model this matrix unless the AUV environment has been pre-mapped.  As

this is unfeasible, the α matrix must be estimated on-line through the Kalman filter.

In general, all 9 elements of α are non-zero.  However, to keep the system completely

observable, only 2 elements can be estimated.  The best choice of shielding matrix to estimate
turns out to be:

α 
















=

z

x

x

α00
0α0
00α

(4.13)

Writing the shielding matrix in this form assumes the field stays aligned in the XI-ZI plane in
the presence of any ferromagnetic materials.  It also assumes the shielding is isotropic in the
horizontal plane.  This means that we cannot differentiate between a rotation of the earth’s
field, possibly due to a nearby magnet, from an actual rotation of the vehicle.

Since the shielding matrix terms are estimated by the Kalman filter, αx and αz must be added

to the state vector.  The appropriate process model is to estimate them as constants (ie.

xα� = zα� =0).

4.4 Triaxial Rate Gyroscope

The triaxial rate gyroscope on the MotionPak measures angular velocity in three mutually

perpendicular directions.  A straightforward model for rate gyroscope readings Ω can be

proposed:

ΩΩΩ ++=Ω bkS Tω (4.14)

In chapter 6, the temperature coefficient kΩ has been shown to be small yet measurable.

Table 4.2: Components of the
earth’s magnetic field in free space.

Bex Bey Bez

19.16µT 0µT 43.98µT
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4.5 Depth Sensor

The depth sensor is used to measure the z-coordinate of the centre of mass of the AUV. It is to
be located on the front-end cap of the lower enclosure, about 250mm away from the centre of
mass.  As the depth sensor is not actually located at the centre at the centre of mass, the
displacement rd from it must be accounted for:

( ) ddd bzSd +⋅+= rZ I
B (4.15)

If it could be assumed that the depth from the sensor to the centre of mass (ie. drZI
B ⋅ ) was

constant, this equation could be simplified to

dd bzSd += . (4.16)

Such an approximation seems reasonable, as the large righting moment of the AUV causes it

to be oriented in or near the horizontal position. For example, a tilt of 15° can cause no more

than a 50mm error.  Errors of this magnitude may be significant.  The resolution of the
analog-to-digital converter channel used to log depth sensor readings is 1.2mV or 1mm, so the
effects of making the approximation will definitely be seen.  It may well be important to
obtain accurate z-position readings to correct for drift in integrated accelerometer readings.
But the actual effect of this on the state estimator will have to be investigated in final
implementation.

4.6 Temperature Sensor

The temperature sensor on board the MotionPak will be used to correct for temperature
effects.  In contrast to the other analog sensors, it supplies its sensor output as a current.  This
current will be converted to a voltage through use of a resistor.  The sensitivity ST and bias bT

both depend on the choice of resistance R.  The resultant equation is

TTm RbTRST += (4.17)
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CHAPTER 5 - KALMAN FILTER ALGORITHM

5.1 Overview

The Kalman filter is a set of mathematical equations that provides a recursive least squares
solution to the problem of estimating state variables in the face of sensor noise and an
imperfect system model. The Kalman filter is a very powerful tool.  Not only does it allow the
estimation of present state, but also of past and future states.  It also allows predictions of the
position and velocity of the Kambara to be made. The Kalman filter is adaptive to time-
varying situations, such as the changing accuracy of the sensors and components of the
system model.  This is a useful property as the accuracy of the sensors can change with time.

For example, the TCM2 compass cannot measure inclinometer readings past 50°, causing it to

rapidly lose accuracy past this angle of inclination.

The Kalman filter requires the model incorporated to be linear.  As seen from chapters 2 and
4, the dynamic model and sensor model equations derived are highly nonlinear.  To deal with
these nonlinear equations, a modified Kalman filtering algorithm called the extended Kalman
filter (EKF) must be applied.  A critical component of this algorithm is the calculation of
Jacobian matrices so that the nonlinear equations can be linearised.  The calculation of such
Jacobian matrices is made in section 2.3.

Another important consideration in the filter design is the modelling of the noise processes in
the sensor model and dynamic model.  Up until this chapter, these noise processes have not
been discussed.  However, they form an integral part of the model.

5.2 The Kalman filtering problem

Before describing the algorithmic details of the EKF, the problem that the discrete time
Kalman filter addresses will be described.  The discrete-time Kalman filter solves the problem
of estimating the state x of a discrete-time process governed by the stochastic difference
equation

kkkkkk wuBxAx ++=+1 , (5.1)

with a set of measurements z related to the state by

kkkk vxHz += . (5.2)

As A, B and H depend upon k, there is no assumption of time invariance.  Recall that u is the
control input, w is the process noise random variable and v is the measurement noise random
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variable.  The standard Kalman filter models these random variables as white Gaussian noise
with zero mean.  Furthermore, they are assumed to be independent of each other.

The properties of the noise processes are dictated by their covariance matrices Qk and Rk.  A

covariance matrix is analogous to the variance of a scalar random variable.  If E(⋅) is the

expectation operator and δ(k) is the discrete-time delta function, these are defined by the

equations,

)(][ kiE k
T
ik −= δQww (5.3)

)(][ kiE k
T
ik −= δRvv (5.4)

The presence of the delta function reflects the white nature of these random variables, as
white noise is uncorrelated in time.

If these assumptions are unreasonable in a real system, all is not lost.  Techniques are
available for transforming such systems into forms that do have independence of
measurement and process noise, as well as expressing the coloured noise processes in terms of
white noise.  (See Brown & Hwang [3] for details.)  Fortunately, consideration of coloured
noise has not yet been necessary.

The Kalman filtering algorithm operates in two distinct phases, a time update phase and a
measurement update phase.  In each phase, the error covariance matrix Pk is updated to keep
track of the accuracy of the state estimate.  The smaller the elements are in Pk, the more
accurate is the state estimate.  In the time update phase, the process model is used to predict

the state at the next time step −
+1kx  from the current state estimate xk. In the measurement

update phase, the sensor readings are incorporated to obtain a better current state estimate xk

from −
kx .  To do this, calculation of the Kalman gain matrix Kk must be made.  Kk dictates

how strongly state estimates depend on sensor measurements.  For a sensor suite with little
noise, Kk will be large.  However, if the process model is significantly more accurate than the
sensor measurements, Kk will be small.  The above algorithm is iterated to obtain successive
state estimates.

5.3 Extended Kalman filtering

As previously mentioned, the extended Kalman filter (EKF) allows the process and
measurement equations to be nonlinear.  This introduces a linearisation phase into the filter
algorithm.  It still contains a time update phase and a measurement update phase.  A
covariance matrix Pk is still used to keep track of the accuracy of current state estimates.

In the nonlinear case, the process and measurement equations are written in the form of xk+1 =
f(xk, uk, wk) and zk = h(xk, uk, vk).  The EKF requires the linearisation of these equations to be
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made about the current state estimate kx̂ .  The state and measurement vectors can then be

approximated without knowledge of the noise by )0,,ˆ(ˆ 1 kkk uxfx =−
+  and )0,,ˆ( kkk uxhz −− = .

The resulting linearised equations about the current state are

kkkkkkk wWxxAxx +−+≅ −
++ )ˆ(ˆ 11 , (5.5)

kkkkkkk vVxxHzz +−+≅ −− )ˆ( , (5.6)

where A, W, H and V are Jacobian matrices.  These matrices are defined as
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For convenience, the time step index k has been dropped from the Jacobian matrices, even
though they are different at each time step.

The time update equations are

)0,,ˆ(ˆ 1 kkk uxfx =−
+ , (5.11)

T
kkk

T
kkkk WQWAPAP +=−

+1 . (5.12)

Pk is updated to reflect the drop in accuracy of the new state estimate.  The measurement
update equations are

1)( −−− += T
kkk

T
kkk

T
kkk VRVHPHHPK , (5.13)

)]0,,ˆ([ˆˆ kkkkkk uxhzKxx −− −+= , (5.14)
−−= kkkk PHKIP )( . (5.15)

In this case, Pk is updated to reflect the improvement in the state estimate.

The whole EKF algorithm is summarised in figure 5.1 below.
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5.4 Jacobian Matrices

For the linearisation steps in the EKF algorithm to proceed, the Jacobian matrices need to be
determined.  Obviously, on-line symbolic differentiation in the final implementation is
infeasible.  As a result, the derivatives of the process and measurement model equations must
be present in the final Kalman filter algorithm.  Matlab code that utilises the Symbolic
Toolbox to compute the Jacobian matrix derivatives is present in appendix 6.  Once the
relevant equations have been symbolically defined, this code uses the jacobian function to
generate the Jacobian matrices.  For final implementation, the matrices that are generated can
be converted directly to C code through the ccode function.

Time Update
(1) Linearise process equation
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(2) Project state ahead
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+

(3) Project error covariance ahead
T
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T
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Measurement Update
(1) Linearise measurement equation
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(2) Compute Kalman gain
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(3) Update estimate with measurement zk

)]0,,ˆ([ˆˆ kkkkkk uxhzKxx −− −+=

(4) Update error covariance
−−= kkkk PHKIP ][

Initial estimates
−
0x̂  and −

0P
−
kx̂ , −

kP

kx̂ , kP

Figure 5.1: High level operation of the extended Kalman filter.
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CHAPTER 6 - HARDWARE / SOFTWARE HIERARCHY
A multitude of hardware and software has to be put into place before the state estimator
becomes operational.  This brief chapter outlines the hardware and software modules required
for physical implementation of the Kalman filtering algorithm.  It describes the device drivers
that have been adapted or written as part of the project work.

6.1 Hardware / Software Heirarchy Overview

A block diagram of the components and software modules required for state estimator
implementation is shown in figure 6.1.  The sensor output signals are to feed into the
computer system through ADC’s and a (RS-232) serial port. The iPADIO and iPSerial
modules implement these functions. Both of these modules run off a carrier board that in turn
plugs into a PCI bus.  A 233MHz PowerPC running under the VxWorks operating system
controls these three modules.  The state estimation algorithm also runs on the PowerPC.
Required for its operation is an appropriate matrix/vector library that has been developed from
existing code.

6.2 Device Drivers

The carrier board, iPSerial module, iPADIO module and carrier board all require device
drivers for functionality.  All device drivers were developed in C on a Pentium II machine.
For implementation, endian issues will have to be addressed, as PCs are little endian while

PCI
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Acceler-
ometer

ADC’s
(iPADIO
module)

Compass

Rate
Gyro

Depth
Sensor

Sensor Suite

Serial Port
(iPSerial
module)

ADC
Device
Driver

Serial
Device
Driver

Carrier
Board

Carrier
Device
Driver

Hardware
Interface

Software
Interface State Estimator

Process
Model

Sensor
Model

Kalman
Filter

Algorithm

Sensor
Sampler

State
Estimates

Control Inputs
(thruster model)

Figure 6.1: Block diagram of components and software modules in final state estimator
implementation.  Prefiltering of the analog sensor outputs has not been shown.
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PowerPCs are big endian.  The current state of the device drivers is described below.  The
relevant code is listed in appendix 5.

6.2.1 Carrier Board Driver

The carrier board transfers information between the PowerPC and the industryPack modules
mounted onto it (such as the iPSerial module).  An important function of the carrier board is
the piping of interrupts from industryPack modules such as the iPSerial module to the central
processor.

iPpci9080Lib.c contains code relevant to the carrier board driver.  It is initialised by calling
iPpci9080Init().  This routine must be called before any industryPack modules are intialised.
Useful debugging information can be obtained by calling iPpci9080Show(). Before unloading
this driver from memory in VxWorks, it is important to disable carrier board interrupts with
iPpci9080DisableInts().

6.2.2 iPADIO Module Driver

The iPADIO module provides 16 single-ended ADC inputs and upto 64 digital input/outputs .
12 of these input lines are connected to the differential outputs of the MotionPak rate
gyroscope and accelerometer.  Another 2 are connecting to the pressure sensor and
MotionPak temperature sensor, leaving 2 ADC channels to spare.  Currently, the driver to this
module allows manual logging of the ADC and 48 digital I/O lines up to 67Hz, as well as
automatic logging of sensor data up to 1kHz.  Unfortunately, significant noise is introduced
by sampling in automatic mode, rising rapidly in magnitude as sampling rate is increased
above 100Hz.  However, automatic mode reduces jitter.

Critical driver code is contained within iPADIO.c.  Calling iPADIOInit() initialises the device
driver.  iPADIOAutoOn() and iPADIOAutoOff() turns automatic data logging on and off.
iPADIOReadADC() manually polls an ADC channel.   Please see iPADIO.c for further
details.

6.2.3 iPSerial Module Driver

The iPSerial module utilised the 8530 chipset to allow asynchronous transfers of up to 38400
baud.  The device driver has been configured to send with 1 start bit, 8 data bits, 1 stop bit and
no parity.  Baud rate defaults to 9600.  Relevant driver code is present in iPSerial.c and
z8530Lib.c.  It is initialised by calling iPSerialInit() and removed by calling iPSerialUnInit().

Unfortunately at the moment the serial port places considerable load upon the CPU.  Unlike
the 16550 chipset, the 8530 provides no FIFO buffering.  If it did, serial port interrupts would
be generated less frequently.  It does however possess DMA capabilities that could be
activated to automate the serial driver operation more.  However, the carrier board driver
would have to be extended as well.
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CHAPTER 7 - SENSOR TESTING

7.1 Introduction

For full functionality of the sensor model developed in chapter 4, the sensor parameters must
be estimated.  Specifically, these sensor parameters are

•  sensor sensitivity Si

•  zero input offset voltage bi, and its dependence on temperature ki

•  statistical models of the noise distributions measuring the noise covariances Rij

In the case of the rate gyroscope and triaxial accelerometers, sensitivities have been
accurately determined experimentally by the manufacturers.  Also, Beswick [2] contributed
accurate measurement of the sensitivity of the depth sensor.  However, the temperature
dependent bias has not been determined.  The temperature coefficients have been estimated in
section 7.2.

The Kalman filter equations assume the statistical models of the sensor noise distributions to
be white Gaussian.  It is desirable either to justify these assumptions, or otherwise create
sensor noise models expressed in terms of white Gaussian noise.  The noise distributions for
the rate gyroscope and triaxial accelerometers have been explored in section 7.3.

Finally, the performance of the TCM2 compass module is investigated in section 7.4.  In
particular, the influence of thruster magnetic fields on compass operation is explored.

7.2 Temperature Coefficient Measurement

The temperature coefficients ka and kΩ of the

accelerometers and rate gyroscope were
measured by logging sensor data over extended
periods of time.  The temperature of the
MotionPak and Precision Instruments
accelerometer was measured using the AD590
temperature sensor on-board the MotionPak.  In
doing so, the Precision Instruments
accelerometer was assumed to be in sufficient
thermal contact with the MotionPak for both
units to be at approximately the same
temperature.  This assumption was found to be
reasonable, as the aluminium mounting plate is a good conductor of heat.

R

I

AD590
IC

+15V Tm

Figure 7.1: AD590 current to voltage

conversion circuit.
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As the output signal of the temperature sensor is a current, and the ADCs measure voltages,
the current of the temperature sensor had to be converted to a voltage.  This was achieved by
inserting a resistor between the sensor output and ground (figure 7.1).  The specifications for
this resistor are:

1. The resistor should not drain excessive current from the AD590 IC (definitely no
more than it can source).

2. The resistor current should be large enough for the ADC current drain to be
negligible.

Given a typical AD590 output current I of 300µA and ADC current drain of approximately

1µA, and ADC full scale range of 10V, R=20kΩ has been chosen as appropriate.  This

resistor has been found to set the voltage at ambient temperature to ~6V.

In testing temperature dependence, no attempt was made to map temperature sensor readings
to actual temperatures.  The temperature readings have all been left in units of volts.  Besides
accounting for changes in resistance R (see figure 7.1 above), the actual units of temperature

are unimportant.  For all experiments, a value of R of 21.2kΩ has been used.

The first test constituted of leaving the sensor suite on in the RSISE undergraduate laboratory
overnight and logging sensor data to disk.  The temperature within this room is prone to

considerable variation (at least 10°C) over a 24-hour period.  The x-axis of the Summit

Instruments triaxial accelerometer was found to exhibit the most sensitivity to temperature.
The result of logging the data from this sensor over an 18-hour period is shown in figure 7.2.
This graph shows a significant (0.3V) variation of zero bias voltage with temperature.  It also
shows the value in using the MotionPak temperature sensor in estimating the temperature of
the Summit Instruments triaxial accelerometer.

Figures 7.3 – 7.5 show the relationship between temperature and accelerometer bias.  From
these graphs, an estimate of the temperature coefficient ka can be made.  The slopes of the
lines of best fit suggest ka = (0.391, 0.184, 0.031)T.  As anticipated, the elements of ka vary
significantly between the three axes.

In comparison to the Summit Instruments accelerometer, the accelerometer and rate
gyroscope on the MotionPak were found to be relatively temperature insensitive.  In fact, the
temperature sensitivity was so small that it could not be measured with the above means of
testing.  Zero point voltage needed to be measured over a larger temperature range.  To
achieve this, another test was run, this time by placing the 50W light bulb of a desk lamp
above the MotionPak.
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Figure 7.2: Graphs of MotionPak temperature data and Summit
Instruments accelerometer x-axis data versus time.  The accelerometer
data has been filtered with a 5th order Butterworth filter to reduce
noise.

Figure 7.3: Dependence of Summit Instruments triaxial accelerometer

x-axis on temperature.  The slope of the line of best fit is 0.3912V/V
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Figure 7.4: Dependence of Summit Instruments triaxial
accelerometer y-axis on temperature.  The slope of the line of best fit

is 0.1836V/V.

Figure 7.5: Dependence of Summit Instruments triaxial accelerometer

z-axis on temperature.  The slope of the line of best fit is 0.0309V/V.
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Similarly, the temperature coefficient of the MotionPak rate gyroscope was determined to be

kΩ=(−0.0041, −0.0074, −0.0187)T.  The fact that it is so much smaller than that for the

Summit Instruments accelerometer (and negative) suggests some temperature compensation
circuitry is used on-board the MotionPak.

Unfortunately the temperature coefficients of the MotionPak accelerometer have not been
determined.  In the second test, RC filter circuits were introduced between the sensor outputs
and the ADC input lines.  The purpose of these circuits will become apparent in section 7.3
below.  Moreover, in this configuration, the accelerometer outputs reverse biased the unipolar
capacitors used in the RC circuitry, shorting the ADCs to ground and voiding the
accelerometer results.

7.3 Noise Distribution Testing

A complete sensor model requires the modelling of the statistical noise distributions of the
sensors.  This section develops such models for the accelerometers and the rate gyroscope
from experimental data.

The models of noise distributions were obtained as follows:

1. Each sensor was sampled for 7 – 8 minutes at a fast rate.  The sampling rate
chosen was no less than the expected maximum sampling rate of the final state
estimator (ie. 40Hz).

2. The power spectral density of the resulting sensor data was estimated using the
Matlab psd command.  The graphs of such power spectral density were used to
determine whether sensor noise could be well approximated by white noise (which
has constant power spectral density).  Note that the DC component of the noise has
been subtracted from all power spectral density graphs.

3. The noise covariances were estimated by calculating the standard deviations of the
sensor data.  These standard deviations are present in table 7.1.

The power spectral density of the Summit Instruments triaxial accelerometer is shown in
figure 7.6 below.  The origin of the frequency spikes at 16Hz is unknown.  However it looks
like the spike at 33Hz is the second harmonic of the 16Hz spike.  Since these spikes possess
only a small fraction of the noise power, their presence should not be too significant.

The more important characteristic of the power spectral density is attenuation of higher
frequency noise.  This noise distribution obviously cannot be modelled as simply as a white
Gaussian noise.  A better approximation is to model the noise with a Gauss Markov process.
A Gauss Markov process is a white Gaussian noise process passed through a low pass filter.
The simplest type of Gauss Markov process is produced with a first order low pass filter.  If
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implemented, an extra variable would need to be added to the process model4. However, as
the MotionPak accelerometer will be used instead, it is unnecessary to develop such a model
any further.

The power spectral density of the rate gyroscope noise is presented in figure 7.7. Three large
frequency spikes (one for each axis) are shown in this graph.  These spikes are significant
sources of noise, as their magnitudes are around 100 times the size of the background noise.
Figure 7.8 demonstrates their significance, as the presence of a low frequency component can
clearly be seen.  If it were not for the presence of these spikes, the rate gyroscope noise could
be well modelled as white Gaussian.  This is because the power spectral density curve is
otherwise (approximately) constant.

The spikes in figure 7.8 are actually the result of high frequency noise aliasing onto the 0 –
52Hz frequency spectrum.  The fact that the spikes do result from aliasing becomes obvious
by sampling at a different frequency.  The frequency spikes will shift, each by the same
amount (see figure 7.11 for an example of this).

                                               
4 The process model for the added state m(t) would be )()()( tntkmtm +=�  where n(t) is a white Gaussian noise

process and k is the corner frequency of the low pass filter through which the Gaussian noise is passed.

Figure 7.6: Power spectral density from the unfiltered Summit

Instruments accelerometer data logged at 67Hz.
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Figure 7.7: Power spectral density from the unfiltered rate

gyroscope data logged at 52Hz.

Figure 7.8: Oscillation in the unfiltered y-axis rate gyroscope data.
The low frequency oscillations are caused by aliasing of a high

frequency noise component.
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Because the spikes in the rate gyroscope power spectral density are high frequency, they can
be successfully removed by low pass filtering. The higher frequency white Gaussian noise
would also be removed by a low pass filter, reducing the noise covariances and increasing
state estimator performance.  The design of a suitable low pass filter is hence desirable.

The simplest type of low pass filter to use is a first order
one, generated by the RC circuit presented in figure 7.9.
The critical design constraints of this circuit are:

(1) R is small enough for the voltage drop between
Vin and Vout to be negligible.

(2) C is not too large, as capacitor size begins to

increase rapidly after ~1µF.

(3) Cutoff frequency f is given by f =1/2πRC.

This should be at least double the sampling
frequency.  If cutoff frequency is low, the RC
circuit would have a significant effect on the
sensor outputs

Using a corner frequency of

120Hz, R=380Ω and C=3.3µF

were chosen.  The resulting
frequency response of the circuit is
shown in figure 7.10.  The
improvement in the power spectral
density of the rate gyroscope was
significant.  Figure 7.11 below
shows the magnitude of the
frequency spikes to be attenuated
by a factor of 10. This degree of
attenuation indicates the high
frequency noise component
occurring around 1kHz.

Figures 7.12 and 7.13 below show
the difference the RC circuits
makes to the MotionPak
accelerometer noise.  Insertion of the RC circuit allows this sensor output to be well
approximated by white noise too.

R

Vin Vout

C

Figure 7.9: RC circuit

configuration.
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Figure 7.10: Magnitude response of the RC circuit

used for testing of the MotionPak sensors.
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Figure 7.11: Power spectral density from the RC-filtered MotionPak

rate gyroscope data logged at 40Hz.

Figure 7.12: Power spectral density from the unfiltered MotionPak

accelerometer data logged at 52Hz.
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A summary of the noise standard deviations is presented in table 7.1 below.  All data upon
which these are based was taken with the ADC driver set in manual mode.  An important
observation to make is the decrease in noise that results in filtering the sensor outputs.

Figure 7.13: Power spectral density from the RC-filtered MotionPak

accelerometer data logged at 40Hz.

Table 7.1: Noise standard deviations, with and without filtering.

Sensor name Filtered? Standard deviation (V)
X Y Z

Summit accelerometer N 7.2 5.4 4.3
MotionPak rate gyroscope N 6.2 5.5 5.3
MotionPak accelerometer N 6.3 6.6 5.3
MotionPak rate gyroscope Y 2.3 3.1 2.6
MotionPak accelerometer Y 2.7 3.7 4.5



CHAPTER 7 - Sensor Testing 47

7.4 TCM2 Compass Investigation

For estimation of the heading, the TCM2 compass uses a triaxial magnetometer to determine
the direction of the (rather weak) magnetic field of the earth’s core.  Electrical devices on
board the Kambara are likely to produce magnetic fields comparable to the earth’s field.
Much of this interfering field will be constant and can be corrected by calibrating the TCM2

correctly.  For example, the DC-DC converter was found to introduce a small 0.5µT constant

field component.

A major concern was that the thrusters would produce a significant dynamic field component
that would interfere with compass readings.  This was found not to be the case. The influence
of the thrusters on the compass readings was quantified by placing the compass in several
different positions about one of the thrusters of Kambara, and for each position, to observe the
change in compass bearing as a function of thruster angular speed. Compass to thruster
distance ranged between 200 – 400mm.

The results showed that the dynamic field component of the thruster magnetic field was
relatively minor.  By varying thruster speed between 100 and 1800rpm, magnetic field

strength was observed to change by only 1µT in magnitude, with a corresponding change of

1° in measured bearing angle.

A much larger contribution to the magnetic field came from the static field of the thruster.  At
a distance of 400mm down the axis of the thruster, the static field component was so large as

to saturate the TCM2 magnetometer.  In this position, it exceeded the 80µT full scale range of

the magnetometer.  Fortunately, a 200mm offset from the axis of the thruster produced more

readily measurable results.  Magnetometer readings were 60µT or below, fitting within full

scale range.
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CHAPTER 8 - FURTHER DISCUSSION

8.1 Water Current Effects

The equations describing the behaviour of the Kambara derived in chapter 2 are highly
nonlinear. However, even though a number of nonlinear effects are accounted for, several
important ones have been ignored completely on the basis of difficulty of modelling. The
dynamic model makes assumptions on the nature of the body of water through which the
AUV moves.  The body of water is assumed to be infinite in all directions, and to contain no
currents (except for those generated by the AUV itself.)

In practical applications, the AUV will encounter wave disturbances and water currents.  The
process model developed does not correct for them.  Indeed it would be difficult to factor
them into the model, as the water flow properties obviously depend upon the body of water in
which the AUV is operating.  These water flow properties would have a detrimental effect to
the operation of the state estimator.  A constant water flow would cause the acceleration,
hence position and velocity estimates to become biased.   Waves would introduce oscillation
into the state estimates.

The body of water will not be infinite in all directions either, as the AUV will be operating
around other underwater structures.  Moving close to underwater structures would modify
added mass or drag characteristics.  However, at reasonable distances from underwater
structures (say 1m), the effect from this factor should be negligible.

Fortunately, for lake and deep-sea operation, the effects of waves can be considered
negligible.  Waves are really only a surface phenomenon.  At depths below about 20 metres,
the presence of wave disturbances is minimal.

8.2 Usage of Both Accelerometers

It was suggested that incorporation of readings from both accelerometers would increase the
accuracy of state estimates.  The general philosophy of Kalman filtering is that the more
sensor data is available, the better will be the state estimates.  However, in consideration of
the implementation difficulties that result and an only minor enhancement, exploration of this
idea below shows it to be infeasible.

One can expect two types of improvements in state estimates by using both accelerometers.
Firstly, the noise in the filtered output can be reduced.  For example, for 2 identically
distributed and independent Gaussian random processes, the effect of averaging reduces noise
covariance down by 30%.
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Secondly, by separating the two sensors so that they are as far as possible away from each
other, estimates of the angular velocity could be obtained by taking the difference between
these two sensor readings.  In the simple case of the AUV moving with a constant angular

speed ω with the accelerometers separated by length l, the difference in acceleration

experienced between the two accelerometers is given by a = lω2.  For example, if the

accelerometers were separated by 1 metre (which is the maximum they can be separated in
Kambara), a 30mV reading on a rate gyro axis will be measured as a 6mV difference in
accelerometer readings.  The signal to noise ratio is 5 times less.  And this figure assumes
both accelerometers to be of same quality as the one on the MotionPak.  They are not.

After considering the enhancements to state estimation above, there are a couple of
inconviencies that make using both sensor difficult. It is inconvient to locate different sensors
on opposite sides of the enclosure, both for wiring and mounting.  The analogue to digital
converter currently on-board does not possess enough input lines for measurement of the data
of both sensors.  In consideration of these factors, it is not planned to sample data from both
sensor simultaneously.

8.3 Prefiltering of Sensor Inputs

Unfortunately, it was found that the simple RC filter network designed in chapter 6 had a
significant impact on the accuracy of the ADCs.  Each ADC was found to significant
quantities of current from each sensor output.  The net result of this current drain is a drop
across the resistor of the RC circuit used for filtering.  The drop was 4mV with a 4V input
voltage, which is noticeable.

There are several possible solutions for this problem.  The first is to reduce the size of the RC
circuit resistor.   However, this increases cutoff frequency, attenuating the high frequency
noise spikes in rate gyroscope readings less.  It is infeasible to increase the capacitance, as at

3.3µF, capacitor sizes begin to grow rapidly.  Besides, capacitors above 1µF are only really

available in unipolar form when bipolar capacitors are required.

The second alternative is to perform some type of active filtering.  For example, a buffer
could be placed between the RC circuit and ADC input.  A bonus to this method is that as the
voltage drop of the RC circuit resistor suddenly becomes negligible, smaller capacitor and
larger resistor values could be used.  Unfortunately, to implement such filtering, 12
operational amplifier circuits (two for each sensor output) will have to be used.  Wiring would
be messy.
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CHAPTER 9 - CONCLUSION & FUTURE WORK

A solid foundation for the design and implementation of an accurate and robust state
estimation system has been layed.  Although not as many project goals were achieved as
initially planned, a considerable amount has been accomplished.

•  A dynamic model of the Kambara and sensors has been researched, developed and
implemented in Matlab.

•  Suitable sensor mounting was designed for mounting into the Kambara
environment and onto the WAM arm for future dynamic testing.

•  A significant portion of coding work has also been done.  Work has been
completed on three device drivers.  A matrix/vector library was adapted for use
under the VxWorks operating system and its functionality extended.  A TCM2
compass layer has been coded.

•  Static testing of the sensors has begun for the sake of modelling noise processes
and temperature sensitivities.  Prefiltering of the sensor outputs was shown to yield
sizable reduction in sensor noise.  Filtered MotionPak rate gyroscope and
accelerometer noise was shown to be well modelled as white Gaussian.

•  The MotionPak accelerometer has been identified as superior to the Summit
Instruments accelerometer.

A large amount of work is still needed for final implementation, however.  The sensors must
be further tested, both statically (to determine more noise properties and temperature
coefficients) and dynamically (to measure zero point offsets and sensor sensitivity).  The rest
of the sensor sampler algorithm and whole of the Kalman filter algorithm still must be coded.
Hydrodynamic parameters of the dynamic models need estimating, either through physical
testing or computer-based modelling.  A Proengineer model of the Kambara’s geometry has
been provided.5  This model needs to be extended to estimate the centres of gravity and
buoyancy of the Kambara.  Final implementation will require tuning of the Kalman filter
covariance matrices for optimum performance.

                                               
5 Courtesy of Harley Truong
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APPENDICES

9.1 APPENDIX 1 – Tables of Symbols Used

Tables A1.1 to A1.4 below summarise the many symbols used to represent quantities in the
process and measurement models.

Table A1.1: Definition of symbols used in the state vector x. Inclusion
of the shielding matrix parameters is only relevant in the extended
TCM2 compass sensor model.

Physical quantity Symbol Unit Frame
Linear velocity at centre of mass v = (u v w)T m/s {B}

Angular velocity ω = (ωx ωy ωz)
T rad/s {B}

Position of centre of mass r = (x y z)T m {I}
Attitude quaternion q = (η ε1 ε2 ε3)

T − −
Sensor suite temperature T °C −
Shielding matrix parameters (α1 α2)

 T − {I}

Table A1.2: Definition of symbols used in the sensor reading vector z.
Inclusion of magnetometer readings (and exclusion of bearing readings)
is only relevant in the extended TCM2 compass sensor model.

Sensor name Sensor quantity Symbol(s) Unit
MotionPak Acceleration a = (ax ay az)

T V
MotionPak Angular velocity Ω = (Ωx Ωy Ωz)

T V

MotionPak Temperature Tm V
TCM2 Inclinometer roll R °
TCM2 Inclinometer pitch P °
TCM2 Compass bearing ψ °
SensorTechnics Pressure d V

TCM2 Magnetometer B = (Bx By Bz)
T µT
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Table A1.3: Definition of geometric & hydrodynamic parameter symbols.  These parameters
must be determined (experimentally or otherwise) for implementation of the AUV model.

Parameter Symbol Units Frame
Mass m kg −
Volume V m3 −
Inertia tensor about
centre of mass
















≅

















−

−
=

z

y

x

zxz

y

xzx

I

I

I

II

I

II

00

00

00

0

00

0

0I

kg⋅m4 {B}

Accelerometer
position vector

ra = (xa ya za) m {B}

Buoyancy vector rb = (xb yb zb) m {B}
Compass position
vector

rc = (xc yc zc) m {B}

Depth sensor
position vector

rd = (xd yd zd) m {B}

Thruster position /
orientation matrix 








=

2

1

L

L
L L2 in m

{B}

Added mass matrix








≅

×

×

22

11

A

A

M0

0M
M

33

33
A

11AM  in kg

22AM  in kg⋅m4

{B}

Total mass matrix








≅

×

×

22

11

M0

0M
M

33

33 11M  in kg

22M  in kg⋅m4

{B}

Drag matrix








≅

×

×

22

11

D0

0D
D

33

33
D11 in N⋅m−2s2

D22 in N⋅m⋅rad−2s2

{B}

Table A1.4: Miscellaneous symbols.

Parameter Symbol Units Frame
Fluid (water) density ρ kg⋅m−3 −
Filter sampling period TS s −
Rotation matrix from {I} to {B}
coordinates

R(q) − −

Transformation matrix from ω to q� U(q) − −
Thruster forces u = (F1 F2 F3 F4 F5)

T N {B}
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9.2 APPENDIX 2 – Thruster Model

Silpa-Anon [10] performed experimentation on the five thrusters of the Kambara so as to
develop a thruster model.  This model describes the force generated by each thruster as a
function of shaft velocity.  The shaft velocity has, in turn, been described as a function of the
voltage across and current drained by the electric motor of the thruster.

The governing equation for the thrust force Fi under steady state was shown to be

Fi = k|Ωi|Ωi, (A2.1)

where Ωi is the shaft velocity of thruster i.  The constant of proportionality k was found to

differ significantly between the forward and reverse directions.  In the forward direction k was

found to be (4.4±0.2)N⋅sec2rad−2 over all thrusters, while in the reverse direction k was

(3.15±0.1)N⋅sec2rad −2.  This difference in forward and reverse k values was to be expected, as

thrusters are usually optimised for forward motion.

The typical features associated with fitting equation (A2.1) to experiment data are shown in
figure A2.1 above.  Although significant oscillation was found in the measured response of
the motor, this was probably due to the vibration in the thrust measurement method.  The
actual response is expected to possess a much smaller overshoot and settling time.  Once these
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Figure A2.1: Typical thruster step response.  Both experimental data and
the thruster model have been graphed against time.
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transients had died out of the experimental data, the thruster model was found to predict the
thruster force to within 5%.

The equation for the shaft velocity Ωi was shown to be

Ωi 
emf

wii

K

RiV −= , (A2.2)

where Vi and ii are the voltage across and current drained by thruster i, Rw is the winding

resistance (0.208Ω), and Kemf is the motor back emf constant.  Kemf varies between 0.124 and

0.138 sec⋅rad−1V−1 over the five thrusters.

Equation (A2.2) too makes steady state assumptions, as it ignores the motor winding
inductance.  The consequence of this will be poor estimates of motor thrust for when the
power supplied to the thrusters changes rapidly.
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9.3 APPENDIX 3 – Sensor Sensitivity and Bias Data

Table A4.1: Sensitivity and zero point bias information gained from

sensor data sheets.  MotionPak bias readings were taken at 22°C and

Summit Instruments accelerometer bias readings at 24°C.

Sensor name Sensitivity Bias ki

MotionPak rate gyroscope
     x-axis 24.804 mV/°/s 0.10 °/s 2.48 mV

     y-axis 24.922 mV/°/s 0.01 °/s 0.25 mV

     z-axis 24.943 mV/°/s 0.07 °/s 1.75 mV

MotionPak accelerometer
     x-axis 3.753 V/g −2.52 mg 9.46 mV

     y-axis 3.747 V/g 3.76 mg 14.09 mV
     z-axis 3.760 V/g −1.93 mg -7.26 mV

MotionPak temperature 1 µA/°C

Summit Accelerometer
     x-axis 1.421 V/g 1.778 g 2526.4 mV
     y-axis 1.424 V/g 1.723 g 2454.0 mV
     z-axis 1.433 V/g 1.779 g 2549.2 mV

Pressure 1.42* V/m 0.725 m 1.03 V

*taken from Beswick [2]
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9.4 APPENDIX 4 – Sensor Mounting Drawings

The design of the sensor mounting plate and WAM arm adaptor plate is shown in the
AutoCAD technical drawing over the page.
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9.5 APPENDIX 5 – Jacobian Matrix Matlab Code
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9.6 APPENDIX 6 – Original Project Proposal

9.6.1 Abstract

Over the next 32 weeks, a state estimation system is to be implemented on a submersible
robot.  A system of sensors, models and algorithms will be used to estimate current and future
state (ie. position, orientation and velocity) of the robot.  Such state estimates will be used by
the robot for navigation purposes.  To accomplish this, work will need to be done in testing
and installing sensors, refining a previously developed dynamic model1, choosing and
implementing a filtering algorithm and in the software development of device drivers under a
real-time operating system.

A draft project schedule is provided in table 1.  It is hoped that, by the end of the project, the
state estimation system will have been experimentally proven to accurately predict the state of
the submersible robot.

9.6.2 Background

For the past year, the Research School of Information Sciences and Engineering (RSISE),
Australian National University (ANU), has been working on the design and implementation
of an underwater vehicle for use in marine environments.

The major feature of this vehicle is that it is autonomous.  This is to say that instead of having
its every movement controlled by a human, only occasional supervisory commands need be
provided, such as ‘hold current position’ and ‘swim after target’.

The aim of constructing such an autonomous underwater vehicle (AUV) is to allow further
research work to be undertaken on the problems of the control of an underwater vehicle and in
vision systems.  Eventually, it is hoped that such robotic technology could be used to
undertake monitoring, inspection and maintenance tasks in Australia’s vast coastal
environment.

The AUV has been named Kambara, which is an aboriginal word for crocodile.  The original
submarine robot frame was purchased from the University of Sydney, who had already
developed an AUV called Oberon.  The Kambara differs from Oberon in that the central
computer and power source are both on-board, and a vision system implemented.  At the
moment, communication with the outside world occurs along an optical fibre cable.
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9.6.3 Introduction

Last year, Dale Beswick completed some work on the inertial navigation system (INS) of the
Kambara6.  The purpose of the INS was to estimate the present and future state, (ie. position,
orientation and velocity) of the Kambara in real time. Dale’s work involved the selection,
acquisition and testing of several sensors used for the navigation system.  The sensors chosen
included a triaxial accelerometer, pressure/depth sensor, combined magnetic compass &
biaxial inclinometer and a triaxial rate gyroscope.  He derived a linear dynamic model of the
Kambara and used it in a Kalman filter.  Kalman filtering provides an algorithm which
converts the raw sensor data and what we know about the dynamics of the AUV into state
estimates (of both present and future).  Dale also did some basic simulation testing on the
Kalman filter to show it was working.

My task, to a large extent, is to continue development of the state estimator.  The dynamic
model and filtering algorithms will have to be extended, the sensors further tested and
calibrated, a device driver for an analog to digital converter (ADC) implemented, the sensors
integrated into the Kambara, and the whole system tested.

9.6.4 Project Proposal

Implementation of the state estimation system can be broken down into the following major
areas:

9.6.4.1 Sensor Testing, Calibration & Characterisation

Dale performed thorough testing on the depth sensor, but minimal testing on the
compass/inclinometer.  Furthermore, neither the triaxial accelerometer nor the triaxial rate
gyroscope have been examined.  Accuracy, sensitivity, drift error and other tests must be
performed on these three sensors.  Careful note of the triaxial accelerometer’s resolution
should be made, as it is suspected that this may not be fine enough.  Temperature effects
should be investigated.  Where appropriate, sensors should be calibrated.

Furthermore, the operation of the sensors in the AUV environment needs to be investigated.
In particular, the magnetic fields produced by thruster operation are anticipated to
significantly degrade the accuracy of the magnetic compass.

Eventually, the sensors must be tested in a complete package.  Such testing will allow the
sensor-sensor interactions to be gauged, and allow evaluation of the accuracy of the INS.

                                               
6 D.Beswick, Inertial Navigation System for an Autonomous Underwater Vehicle, Research
School of Information Sciences and Engineering, Australian National University, 1998.
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9.6.4.2 Sensor - Software Interface Implementation

The sensor signals are fed into the computer system through ADC’s.  A device driver must be
written under VxWorks to interface the ADC card with the PowerPC.  The driver will be
based on code written by Bob Edwards for a similar ADC card.  Such a driver will facilitate
accurate measurement of sensor signal values, and hence aid sensor testing.

9.6.4.3 Dynamic Model Development

At the moment the dynamic model ignores fluid forces and models the thrusters as point
forces.  The dynamic model of the AUV used in the filtering algorithm should be extended to
cover non-linear effects such as hydrodynamic forces.  The thrusters will have to be modelled
so that the output thrust can be determined as a function of input motor current and thruster
velocity.  This work will be undertaken in cooperation with Chanop Silpa-Anan.

9.6.4.4 Filter Design and Implementation

To cope with the non-linear terms introduced into the dynamic model, an Extended Kalman
filter will have to be designed and take the place of the current Kalman filter.  Consideration
of other possible filtering algorithms would be useful.  The filtering algorithm must be
designed to utilise all of the information outputted by the above-mentioned sensors.  The final
filter will be implemented in C++ on a PowerPC running VxWorks.

9.6.4.5 Sensor Integration

Suitable mountings for the sensors must be investigated, designed and implemented.  The
sensors should be easily attached and detached, and placed in appropriate locations that
minimise interference from other devices in the AUV.  An option is to create a board onto
which all sensors are mounted.  The electrical wiring of the sensors must at least be checked.

9.6.4.6 Underwater System Testing

Half way through the year,  full immersion testing of the AUV will commence.  This will
allow experimental testing of the filtering algorithm to make sure the prediction/estimation
algorithm works correctly and accurately in an underwater environment.  In particular, the
accuracy of the thruster and AUV physical models will be determined.  The results of these
experiments may in turn lead to further refinement in the models.
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9.6.5 Project Schedule

As other people in the Kambara team are assigned to work on different subsystems of the
AUV, scheduling our work will be very important.  With the help of the Kambara team
project schedule, the draft schedule in table 1 below has been prepared.

Table 1: Project schedule.  Boldfaced dates represent assessment submission dates.

March April May June July Aug Sep Oct

Finalise project specifications 15..19

Submit project proposal 19
Develop dynamic model of
vehicle

15 30

Develop dynamic model of
thruster

15 30

Test & calibrate sensors 22 30

Implement sensors on AUV 1 31

Code state estimation
algorithm

1 31

Write progress report 5…1
9

Submit progress report 19
Prepare seminar 20..2

6

Hold seminar 26..2
8

Test inertial navigation 15 30

Write thesis 30 25 1 27

Submit draft thesis 5
Submit thesis & notebook 27

9.6.6 Conclusion

This project is highly interdisciplinary.  It will allow me to utilise a wide range of skills.  I
will gain experience in real-time device interfaces, filtering algorithms, hardware assemblies,
and in testing and refining a state estimation system.  Not to mention device driver coding in
C++ and dynamic model development incorporating some fluid mechanics.  However, the
emphasis shall be on real-time sensor filtering and state estimation of underwater vehicles.

9.6.7 References

[1] D.Beswick, Inertial Navigation System for an Autonomous Underwater Vehicle, RSISE,
ANU, 1998.



APPENDICES 68


