
The Australian National University

WWeebb  BBaasseedd  OOppeerraattoorr  IInntteerrffaaccee  ffoorr  aann  UUnnddeerrwwaatteerr  RRoobboott

By

Sunil Rao
(3073691)

A thesis submitted in partial fulfilment of the requirements for the degree of
Bachelor of Engineering

June 2000

Supervisors

Mr. Samer Abdallah (FEIT)
Dr. David Wettergreen (RSISE)

Prof. Alexander Zelinsky (RSISE)

RSISE – Research School of Information Sciences and Engineering, Australian National University
FEIT – Faculty of Engineering and Information Technology, Australian National University



AACCKKNNOOWWLLEEDDGGEEMMEENNTTSS

The author wishes to thank Alex Zelinsky, Samer Abdallah and David Wettergreen for giving

me the opportunity to work on this project as well as for their continuous assistance and

guidance throughout the project.

Thanks to Chris Gaskett and Chanop Silpa-Anan for their help, ideas and tips on various

aspects of the project.  Big thanks also to Peter Brown for his help in establishing the

connection to Kambara and communicating with it.    I do not believe that I would have been

able to make much progress without their assistance.

I also wish to thank Seungjun Oh, Matthew Bryant, Harley Truong, Jordan Cvetanovski,

Colin Thomsen and Orson Sutherland for their excellent company, their ideas, motivation and

help when things were not going smoothly.  Thanks to Colin and Matthew again for the lively

games of chess.

Thanks also to Arvind Venkataraman and Chaitanya Kuber for proof reading my thesis and

providing me with valuable comments.  Thanks to my sister Sneha as well for her help

throughout these last four months.  And finally to my parents – thanks for your

encouragement and understanding through these last four months.  Could not have done it

without you.



AABBSSTTRRAACCTT

This thesis examines the continued development of the operator interface for Kambara, an
Autonomous Underwater Vehicle being developed at the ANU.  The interface receives state
information from the robot and presents it to the operator in intuitive graphical
representations.  It is also supposed to provide means for the operator to send commands to
the robot.

The project goal was to develop a web-based interface that would provide adequate guidance
for the robot to perform useful tasks.  To this end, the project has developed a system that can
be executed on a web browser such as Netscape.

The system developed also aids direct teleoperation of the robot through the use of a software
joystick for manipulating the five degrees of freedom of the AUV.  The redesign of the
existing GUI has aided the process by having the camera controls in constant view of the
operator.  An investigation has also been conducted regarding the use of VRML 3D models
for better visualisation of the rotation and translation state of the robot.

The system uses RMI communication methods in Java 2 to develop cross-network
capabilities.  The current network design conforms to the long-term goal defined for the
interface. The interface receives telemetry router data in real time from the robot.  The update
of the GUI is at the rate of 1.24 Hz if the server is located on the system but 6.58 Hz if the
server is on a separate machine.  In an ideal Ethernet environment with no traffic the values
are 3.5 Hz with the server on the system and 9.57 Hz when the server is on a separate
machine.

Camera commands have also been developed for the client and can be sent to the camera on-
board Kambara.  These were tested using a Sony D-230 camera, which was located on-board
as well as off-board Kambara during various stages of implementation and testing.
Enhancement of the existing control system has also been achieved with progress made in the
development of teleoperation and individual control.



Page I

GGLLOOSSSSAARRYY

3D – Three Dimensional

ANU – The Australian National University

API – Application Programming Interface

Applet – A program that is designed to be run using a Web browser

Application – A program that is run from a command line

AUV – Autonomous Underwater Vehicle

Double – A "primitive" Java datatype that represents a 64-bit floating-point value

    (IEEE 754- 1985)

GUI – Graphical User Interface

JDK – Java Developers Kit

JVM – Java Virtual Machine

Long – Another "primitive" datatype representing a 32-bit floating-point value

 (IEEE 754-1985)

NCSA – National Centre for Supercomputing Applications, University of Illinois, USA

Packet – Bundle of information that is sent across a network connection.  It is the simplest

    form of a data unit that carries the address of the destination and the data that is to

    be sent to that destination

RMI – Remote Method Invocation

RSISE – Research School of Information Sciences and Engineering, ANU

TCP / IP – Transmission Control Protocol / Internet Protocol.  A connection-oriented

       approach of communication between entities

Thread – Objects that are used to have more than one set of operations executing in the same

      program at one time.

UDP – User Datagram Protocol.  A connectionless approach of transmitting data between

entities

VRML – Virtual Resource Modelling Language



Page II

LLIISSTT  OOFF  FFIIGGUURREESS

Figure 1: Life on the Great Barrier Reef 1

Figure 2 Kambara 2

Figure 3: Kambara Software Architecture 3

Figure 4: Original GUI Software Architecture 7

Figure 5: Current GUI Software Architecture 10

Figure 6: ThreeDFrame 11

Figure 7: Camera Panel 12

Figure 8: Data Panel (combines Raw and Derived Data) 13

Figure 9: Kambara Applet Software Architecture 14

Figure 10: Kambara Wavefront Model 15

Figure 11: VRML Model 16

Figure 12: Robot Navigation Controls (1999) 18

Figure 13: NavigationPanel Software Architecture 19

Figure 14: Top View of Kambara 20

Figure 15: Simulation of the movements of the joystick (in the 3D model) 20

Figure 16: Side View of Kambara 21

Figure 17: Current Translations and Rotations 21

Figure 18: Original Network Design 24

Figure 19: Long-Term Goal for Network Design 27

Figure 20: Current Interface Network Design 28

Figure 21: Kambara Applet 31

Figure 22: Co-ordinate System (Kambara and Joystick Panels) 32

Figure 23: Relative movements in the TopPanel and the SidePanel 33

Figure 24: Sony D-230 Camera 38

Figure 25: Sony Camera on-board Kambara 39



Page i

TTAABBLLEE  OOFF  CCOONNTTEENNTTSS

GLOSSARY...............................................................................................................................I

LIST OF FIGURES................................................................................................................. II

CHAPTER 1: INTRODUCTION ........................................................................................... 1

1.1 Description and Contribution........................................................................................... 2

1.1.1 Kambara Software Architecture ............................................................................. 2

1.1.2 Project Goals........................................................................................................... 3

1.2 Thesis Outline ................................................................................................................... 4

CHAPTER 2: GUI ANALYSIS AND DESIGN..................................................................... 6

2.1 Background....................................................................................................................... 6

2.2 GUI Layout....................................................................................................................... 8

2.2.1 Design Principles .................................................................................................... 8

2.2.2 Software Architecture............................................................................................. 9

2.3 Applet.............................................................................................................................. 14

2.3.1 Software Architecture........................................................................................... 14

2.4 VRML Model of Kambara .............................................................................................. 15

2.4.1 Loading Problems................................................................................................. 16

2.5 Chapter Summary........................................................................................................... 16

CHAPTER 3: SOFTWARE JOYSTICK............................................................................. 17

3.1 Control Modes ................................................................................................................ 17

3.1.1 Observer Mode ..................................................................................................... 17

3.1.2 Individual Control Mode ...................................................................................... 17

3.1.3 Teleoperation Mode.............................................................................................. 18

3.1.4 Supervisory Control Mode ................................................................................... 18

3.2 Requirements and Analysis............................................................................................. 18

3.3 Design ............................................................................................................................. 19

3.3.1 Considerations ...................................................................................................... 19

3.3.2 Software Architecture........................................................................................... 19

3.4 Chapter Summary........................................................................................................... 22



Table of Contents

Page ii

CHAPTER 4: NETWORK ANALYSIS AND DESIGN..................................................... 23

4.1 Background..................................................................................................................... 23

4.1.1 Server.................................................................................................................... 23

4.1.2 Client..................................................................................................................... 24

4.2 Requirements and Analysis............................................................................................. 25

4.2.1 Camera Commands............................................................................................... 25

4.2.2 Telemetry Router .................................................................................................. 26

4.3 Design ............................................................................................................................. 27

4.3.1 Long Term Goal for Network Design................................................................... 27

4.3.2 Conformance to Long-term Goal.......................................................................... 28

4.4 Chapter Summary........................................................................................................... 29

CHAPTER 5: IMPLEMENTATION ................................................................................... 30

5.1 GUI Layout..................................................................................................................... 30

5.2 Applet.............................................................................................................................. 31

5.1.1 Java Plug-In for Web Browsers............................................................................ 31

5.1.2 HTML Conversion................................................................................................ 32

5.3 Software Joystick ............................................................................................................ 32

5.3.1 Co-ordinate System............................................................................................... 32

5.3.2 Rotation Angles and Quaternions ......................................................................... 33

5.3.3 Manipulations using MovementsPanel................................................................. 34

5.4 Networking ..................................................................................................................... 34

5.4.1 Data Interpretation................................................................................................ 34

5.4.2 Conversion to Bytes.............................................................................................. 34

5.5 Control Modes ................................................................................................................ 35

5.6 Chapter Summary........................................................................................................... 36

CHAPTER 6: VALIDATION AND VERIFICATION....................................................... 37

6.1 Testing Procedures ......................................................................................................... 37

6.2 GUI................................................................................................................................. 37

6.3 Applet.............................................................................................................................. 38

6.4 Software Joystick ............................................................................................................ 38

6.5 Communication with Kambara ...................................................................................... 38

6.5.1 Camera Commands............................................................................................... 38



Table of Contents

Page iii

6.5.2 Telemetry Router Data ......................................................................................... 39

6.6 Control Modes ................................................................................................................ 40

6.7 Chapter Summary........................................................................................................... 40

CHAPTER 7: CONCLUSION AND FURTHER WORK.................................................. 41

7.1 Conclusion ...................................................................................................................... 41

7.2 Contributions.................................................................................................................. 41

7.3 Further Work .................................................................................................................. 42

7.2.1 Video Feed............................................................................................................ 42

7.2.2 Supervisory Control.............................................................................................. 42

7.2.3 Network Architecture ........................................................................................... 42

7.2.4 Logging information............................................................................................. 43

BIBLIOGRAPHY................................................................................................................... 44

APPENDIX A: NCSA PORTFOLIO.................................................................................... 45

APPENDIX B: USER DATAGRAM PROTOCOL............................................................ 47

APPENDIX C: VECTOR OF SIMULATOR DATA.......................................................... 48

APPENDIX D: SOFTWARE JOYSTICK DESIGN........................................................... 49

APPENDIX E1: SCREENSHOT OF TELEMETRYPANEL............................................ 50

APPENDIX E2: SCREENSHOT OF POSITIONPANEL.................................................. 51

APPENDIX E3: SCREENSHOT OF DATAPANEL.......................................................... 52

APPENDIX E4: SCREENSHOT OF MESSAGESPANEL............................................... 53

APPENDIX E5: SCREENSHOT OF NAVIGATIONPANEL........................................... 54

APPENDIX F: CONTENTS OF CD .................................................................................... 55



Page 1

CCHHAAPPTTEERR  11::  IINNTTRROODDUUCCTTIIOONN

Oceans cover over 70% of the earth’s surface.  Yet, not much is known about the underwater
environment with 94% of the ocean floor never having been explored or charted in a detailed
manner.  As the world’s population increases, the world-wide consumption of natural
resources will also increase leading to an inevitable exploration of the oceans.  For people to
better understand and manage this environment, it is vitally important that accurate and
detailed information can be obtained.

Figure 1: Life on the Great Barrier Reef

This is particularly important for Australia with its vast areas of coastal waters containing vast
biological and mineralogical resources, which are largely unexplored and unknown. They
must be investigated to allow wise development and proper protection.  The task of preserving
these resources brings with it the problem of development of vehicles that would assist in
fulfilling such objectives.

At the ANU1, an Autonomous Underwater Vehicle (AUV) is under development for tasks in
exploration and inspection.  It is named Kambara and would help provide convenient, cost
effective solutions for developing and preserving areas such as the Great Barrier Reef.  The
main objectives of this effort are to enable underwater robots to autonomously maintain their
position, follow along fixed natural and artificial features, search in regular patterns, and
ultimately, to swim after dynamic targets.  These capabilities are essential to tasks like
cataloguing reefs, exploring geologic features, and studying marine creatures, as well as
inspecting pipes and cables, and assisting divers.

Kambara’s mechanical structure, shown in Figure 2, is an open-frame rigidly supporting five
thrusters and two watertight enclosures.  It is a simple, low-cost vehicle suitable as a test-bed
for shallow water research in underwater robot autonomy [2].   Kambara’s thrusters enable
roll, pitch, yaw, heave, and surge manoeuvres.  It is underactuated and not able to perform
direct sway (lateral) motion; it is non-holonomic.

                                                
1 More specifically, the Department of Systems Engineering in the Research School of Information Sciences and
Engineering (RSISE)



Chapter 1 Introduction

Page 2

Figure 2 Kambara

Kambara is also equipped with power, electronics on-board sensing and computing resources.
The system on-board Kambara can learn to distinguish relevant sensor information and to co-
ordinate the action of its thrusters to move purposefully [3].

This project involves the design and development of advanced web-based operator interfaces
for underwater robots.  The aim of this project is to develop a specific instance for Kambara.
The interface will receive state information from the robots and present it to the operator in
intuitive graphical representations.

The interfaces will also have mechanisms for the operator to define and send commands to the
robot.  This would be done via mouse, keyboard or a combination, to indicate the desired
actions.  The variations in the state of Kambara are then viewed via the state information
displayed on the interface.

The Operator Interface development was started in 1999.  The foundations for the basic
interface and network architecture have already been laid [1].  The key software goals
achieved included:

• Presenting robot telemetry information to the operator in intuitive graphical
representations.

• Development of a 3D model and the use of Java3D in displaying the model to the
operator.

• Basic client-server network architecture development cross-network capabilities built into
the interface, thus allowing more than one user to connect to the robot.

1.1 Description and Contribution

1.1.1 Kambara Software Architecture

Kambara’s software architecture is designed to allow autonomy at various levels:

ο at the signal level for adaptive thruster control,
ο at the tactical level for competent performance of primitive behaviours and,
ο at strategic level for complete mission autonomy [4].

The software architecture details the overall structure and collective behaviour of the software
system.  The software modules are designed as independent computational processes that



Chapter 1 Introduction

Page 3

communicate as shown in Figure 3.  As can be seen in the figure, the operator interface is
only a small part of the architecture.

Figure 3: Kambara Software Architecture

The Robot Manager is the downstream communication module, directing commands to the
modules running on-board.  The Peripheral Controller drives all other devices on the robot,
for example the cameras or scientific instruments.  The Telemetry Router moves Robot State
and acquired image and science data upstream to any number of public consumers and
telemetry archives.

The Visualisation Interface transforms robot telemetry into a description of Robot State that
can be rendered in a three-dimensional view.  The Operator Interface interprets telemetry and
presents a numerical expression of the Robot State.  It provides methods for generating
commands to the Robot Manager for direct teleoperation of robot motion and for supervisory
control of the on-board modules.  The Operator Interface can operate in conjunction with the
Visualisation Interface to preview robot actions.

1.1.2 Project Goals

o The Kambara project has been designed so that the robot can be manipulated using a web
browser.  The existing interface is constructed as an application and therefore needs to be
converted to an applet.  While in-house development will necessitate the use of the



Chapter 1 Introduction

Page 4

application, the essential long-term objective for the operator interface is to be able to use
it over the Internet.

o A feature of the operator interface is the use of a Wavefront 3D model for representing the
current vehicle state (from the state information received).  However, the model is
simplistic, as it represents just the frame of the robot.  Investigations need to be conducted
with regard to using VRML models that will better represent the state of the robot (with
thrusters and cameras).

o A feature of AUVs and an aim of the operator interface is direct teleoperation of robot
motion.  To this end, the development of a software joystick needs to be considered in
order to facilitate the operator to manipulate the robot in any or a combination of its five
degrees of freedom.

o One of the major shortcomings of the GUI layout at the end of 1999 was that it was not as
flexible as desired.  Automatic resizing was not a feature with most of the components
requiring fixed dimensions to obtain the desired layout.  Therefore, making improvements
to the GUI involves a redesign of the layout.  This also aids the goals stated above,
especially the development of a software joystick for aiding direct teleoperation.

o Currently, the interface receives state information from a robot simulator. However, the
overall objective of the Kambara project is for the robot to send state information to the
interface while navigating areas such as the Great Barrier Reef.  The robot must also
accept commands to enable the operator to map a route for it.  To those ends, the existing
network design needs to be changed to allow:

- Kambara's on-board system can receive commands from the operator interface and act
on it.

- The operator interface can receive the updated telemetry information from Kambara
and display it.

o Enhancement of control modes is considered to ensure only one client can control the
robot at a particular time.

1.2 Thesis Outline

The goals of the project necessitate examining of the GUI followed by the software joystick
and the network architecture.

Chapter 2 provides a background about the existing GUI layout and follows on to describe the
redesign of the GUI layout.  The conversion of the existing application to an applet follows
the redesign with the investigation of the use of VRML 3D models concluding the chapter.

Chapter 3 details the process of the software development of a software joystick to be used by
operators to manipulate the direction of the robot.  The software joystick is to be developed as
part of the improvements designated for the GUI layout.



Chapter 1 Introduction

Page 5

In Chapter 4, the network architecture of the interface is discussed with particular emphasis
on the changes required to conform to the long-term goal of the Operator Interface aspect of
the Kambara project.

Chapters 2,3 and 4 discuss the analysis and design of the applet, the GUI layout, the software
joystick and the network architecture.  Chapter 5 discusses the implementation of the above,
followed by Chapter 6, which describes the testing procedures developed and used during the
project.

Conclusions from this project are drawn in Chapter 7 including a summary of this thesis, my
contribution in terms of the work done and a discussion of the work that could continue using
this project as a basis.



Page 6

CCHHAAPPTTEERR  22::  GGUUII  AANNAALLYYSSIISS  AANNDD  DDEESSIIGGNN

The existing operator interface is constructed as a Java application. Since the aim of the
Kambara project is to enable the clients to view state information and send commands to the
robot using a web browser, the current application should be converted to a Java applet that
can subsequently be viewed on a web browser.

The 3D model is an important aspect of the interface.  The current application makes use of a
simplistic Wavefront model, which just depicts the frame of Kambara.  While this is adequate
for viewing the state of Kambara, it can be improved upon by using more complicated
models.

As mentioned in Section 1.1.2, the GUI needs to be redesigned to better represent the state
information of the robot.  Improvements also need to be made with regard to navigation or
teleoperation of the robot.

This chapter provides a background of the original GUI software architecture.  It follows up
with a description of the improvements made and the subsequent redesign of the GUI.  A
discussion is then presented on issues relating to the conversion of the existing application to
an applet.  The chapter concludes by outlining the investigation of the usage of a VRML
3Dmodel in place of the current model.

The chapter is organised as follows:

• Section 2.1 provides a background of the existing software architecture of the GUI.  This
is important because provides a basis for the remaining sections of the chapter.

• Section 2.2 describes the improvements made to the GUI layout including changes to the
software architecture.

• Section 2.3 describes the reasons for converting the application to an applet and the design
including the software architecture.

• Section 2.4 outlines the investigation conducted to replace the Wavefront 3D Kambara
model with a VRML model.

• Section 2.5 provides a summary of the chapter detailing the major results of this chapter.

2.1 Background

The Java programming language used for the software development of the operator interface
[1].  Java was chosen because:

• It is portable and has cross-platform capabilities.
• It has convenient APIs for networking and 3D programming.
• It is easy to use for GUI development.

The interface has predominantly been developed using Java2 and Java3D API1.1.  Java2
contains Swing libraries, which are used for GUI development in this project.



Chapter 2 GUI Analysis and Design

Page 7

The software architecture of the original GUI is shown in Figure 4.  MainKambaraClient is
the main module and just an object in which three subcomponents; KambaraClient,
KambaraMainFrame and OutputKambaraData are created.  KambaraData represents the
state information being received from the robot.

Figure 4: Original GUI Software Architecture

KambaraClient deals primarily with the network details of the client.  It is responsible for
establishing a connection between the client and a Java web server via Remote Method
Invocation (RMI)2 [1], and for setting up communication between the client and the server.  It
also has a thread object that continually receives state information from the server.

OutputKambaraData is a thread object that runs when a network connection is established.
This is responsible for continually updating the GUI components with any new state
information received.  It is started when KambaraClient receives state information packets
from the server.

KambaraMainFrame holds the panel containing all the GUI components; KambaraMain.
KambaraMain is a panel that has been divided into a tabbedPane, a 3D model, a video feed
placeholder, a menubar and a message area.  Within the tabbedPane, information was divided
into separate panels, based on the type of information being displayed.  These include a

                                                
2 RMI and the networking aspects of the Operator Interface are discussed further in Chapter 4



Chapter 2 GUI Analysis and Design

Page 8

TelemetryPanel, CameraPanel, PositionPanel, RawData Panel, DerivedData Panel,
MessagesPanel and NavigationPanel.

The TelemetryPanel provides the user with the general information about the vehicle.  The
PositionPanel provides a two-dimensional view of the position of Kambara and the relative
position of the target.

The CameraPanel shows the current pan, tilt and zoom values of the camera on-board
Kambara.  It is also supposed to be used in case the operator wants to change the pan, tilt or
zoom of the camera.  This aspect is further discussed in Chapter 4 (Section 4.2.1).

The RawData and DerivedData panels show the sensor data and data computed on-board
Kambara, respectively.  These panels along with the TelemetryPanel provide all the numerical
data to the client.

The MessagesPanel lists all the warning and error messages that are transmitted to the client
while the NavigationPanel is used for manipulating the robot in any or a combination of its
five degrees of freedom.

The 3D model and the video feed placeholder are in constant view of the client.  The video
feed had not been implemented due to the Kambara software development not having reached
the desired stage.  The 3D model is a Wavefront model and depicts the current rotational and
translation state of the AUV.

After providing the background for the existing software architecture of the GUI, it is now
worthwhile to discuss the improvements that were made, resulting in the redesign of the GUI.

2.2 GUI Layout

The interface depicts most of the state information received from the robot.  However,
improvements need to be made for viewing the 3D model, the use of the CameraPanel that
can manipulate the pan, tilt and zoom of the camera on-board Kambara and also in the
NavigationPanel, which is used for manipulating the robot itself.

2.2.1 Design Principles

The interface had been designed based on the design principles of space, proximity, alignment
and contrast [8].  These are related to the way in which users perceive information.  The same
principles were used while redesigning the layout of the interface.

• Space

Space is the most effective element that can be used to provide support for your audience
in their cognitive processing of visual displays. Spatial relationships are perceived
precognitively - that is, without conscious effort. They do not have to be decoded and
interpreted, as do colour cues, typographical cues, and so on.



Chapter 2 GUI Analysis and Design

Page 9

• Proximity

Elements that are close together in a visual display will be assumed to be related.
Elements that are far apart will not be seen as related to each other. When elements are not
clearly differentiated by proximity, the user has to group them consciously by focusing on
them, taking in their meaning, and deciding which ones go together.

• Alignment

Humans perceive items that are aligned vertically and/or horizontally to be more
organised than those that are not, and people process, learn and remember organised
information better than unorganised information.

• Contrast

Use contrast to make elements more or less dominant in the display, influencing the order
in which they are processed and their perceived importance or urgency.  The primary
forms of contrast are size, colour and shape.

2.2.2 Software Architecture

The architecture was changed to implement and incorporate the improvements designated for
the GUI layout.  The changes are highlighted in Figure 5, which illustrates the current
software architecture of the GUI.

A new subcomponent, ThreeDFrame is created in MainKambaraClient.  This component is a
frame that holds the 3D Wavefront model (loaded into the ThreeDPanel) and is separate to the
main interface.  In the original implementation, the 3D model was viewed in
KambaraMainFrame.  While the panel incorporates the model, ThreeDPanel is still created in
KambaraMain; it is just not shown in KambaraMainFrame.

Also, the CameraPanel component is no longer a part of the tabbedPane.  It now occupies the
position of the ThreeDPanel and the video feed placeholder.  It is created as a subcomponent
of KambaraMain and not that of the tabbedPane.

The DataPanel is now a new subcomponent of the tabbedPane.  It incorporates the
information contained in the RawData panel and DerivedData panel into one panel.  While
the Raw and Derived Data panels have not been deleted, they have just been made into
subcomponents of the DataPanel.  Another improvement was to completely redesign the
Navigation panel to facilitate an easier and more intuitive manipulation of the movements of
the robot.



Chapter 2 GUI Analysis and Design

Page 10

Figure 5: Current GUI Software Architecture

The rest of the architecture is inherited from the original software design.  While the above
was a brief overview of the improvements made, it is now best to understand all the issues
associated with the decisions that led to these changes.

• Kambara 3D Model

In the original architecture, the 3D model is viewed in a panel in KambaraMainFrame.
This panel is small and hard to navigate.  This inadequacy caused it to be rendered
virtually useless as the user could not obtain or gather sufficient information from it.  That
is, while the panel could show the state changes when the interface received information
from the robot (or the simulation), it was not very user-friendly in terms of manipulating
the model.  This aspect becomes more evident when the model traverses the boundaries of
the view and the panel needs to be navigated.



Chapter 2 GUI Analysis and Design

Page 11

An option to rectify this problem was to incorporate the ThreeDPanel module into the
tabbedPane.  But one of the essential requirements of the panel was for it to be in view of
the user at all times.

Therefore, it was decided that the model should have its own separate frame,
ThreeDFrame, which is shown in Figure 6. The panel is still one of the subcomponents of
KambaraMain.  This makes it easier to update the 3D model when the interface receives
state information.

The creation of ThreeDFrame also presented us with more options, especially when
developing the software joystick.  Apart from viewing the vehicle state obtained from the
robot, it can be used to simulate the orientation of the robot for a move command.  These
details as well as other aspects of the development of the software joystick are further
discussed in Chapter 3.

Figure 6: ThreeDFrame

• Camera Panel

The Kambara model and the video feed placeholder were supposed to be constantly
visible to the user.  It was planned that the digitiser would be used to continually refresh
an image, which would be presented in the GUI.  Unfortunately, the AUV development
has not reached the stage where a video stream could be obtained and this feature could be
tested.



Chapter 2 GUI Analysis and Design

Page 12

It is also useful to have the camera in constant view as this gives the operator an
opportunity to know the state of the camera at all times and therefore adequately know
which direction the camera is pointing to.

The panel also has utilities for sending camera commands to the robot that would help
map a route for Kambara.  This will help the operator change the pan, tilt or zoom
anytime, based on the state of the robot.  This also provides an opportunity to plan ahead,
avoid obstacles and map a route for the robot.

Therefore, the video feed placeholder was removed and replaced with a visualisation of
the pan, tilt and zoom values of the camera (see Figure 7).

Figure 7: Camera Panel

• Data Panel

As mentioned before, the RawData panel contains data that is obtained directly from the
sensors.  On the other hand, the DerivedData panel contains information that is computed
on-board Kambara.  The Data panel incorporates both these forms of data onto one panel
as shown in Figure 8.  This gives users an opportunity to compare similar sets of values
and thereby ascertain the effect of factors such as gravity.

The raw data depicted in the panel includes:

1. Motor torque, current and voltage values for each of the five thrusters.



Chapter 2 GUI Analysis and Design

Page 13

2. Compass values including the roll, pitch and yaw, magnetic disturbances, temperature
and field distortion.

3. Velocity and accelerometer values.

Figure 8: Data Panel (combines Raw and Derived Data)

The derived data is the data computed on-board Kambara.  The data depicted includes:

1. Accelerometer values.
2. Current vehicle position and estimated target position.
3. Current quaternion value of the vehicle computed using the compass roll, pitch and

yaw values (raw data).

This along with the Telemetry panel provides a general picture of the information being
received from Kambara and makes it much easier to analyse.

• Navigation Panel

The implementation for navigating the robot in its five degrees of freedom was minimalist
and laborious for the operator.  All those components were deleted and the need for
improvements led to the investigation, design and development of a software joystick.
The joystick allows the operator to use mouse clicks and / or keyboard events to change
the direction of the robot.

With a picture of the current GUI software architecture in mind (for an application), the
details of the conversion of the existing application to an applet can be explained.



Chapter 2 GUI Analysis and Design

Page 14

2.3 Applet

To allow multiple clients to connect to the robot and view the state information, a web-based
operator interface is required.  Of these clients only one will be able to control Kambara.

Hence, the application is converted to an applet while allowing the interface to also be viewed
as an application.  The main reason for this was the ease of use associated with applications
for in-house development, especially for testing purposes.

2.3.1 Software Architecture

The main factor associated with the design was to be able to start the interface from the
applet.  That is, the applet would serve as a starting point or as a link to the interface.  The
software architecture was developed and modified accordingly.

The software architecture of the applet is given in Figure 9.  KambaraMainApplet is the main
module that holds the applet and has four subcomponents; KambaraMainFrame,
KambaraClient, OutputKambaraData and ThreeDFrame.  Essentially, KambaraMainApplet
takes the role of MainKambaraClient in the application.

Figure 9: Kambara Applet Software Architecture

KambaraClient handles all the network details of the client while OutputKambaraData
updates the state information on the interface.  KambaraMain is the panel that holds all the
GUI components and is a subcomponent of KambaraMainFrame3.

                                                
3 Section 2.1 provides more details about KambaraClient, KambaraMainFrame, KambaraMain and
OutputKambaraData



Chapter 2 GUI Analysis and Design

Page 15

The only difference between the architectures of the application (shown in Figure 5) and the
applet (Figure 9) is that KambaraMainApplet assumes the role of MainKambaraClient.  This
facilitates the development of the interface as an application as well as an applet.

The next stage in the development of the GUI is the investigation of a VRML 3D model for
the interface.

2.4 VRML Model of Kambara

The Wavefront model used in the interface was developed from a VRML model. Due to
conversion problems, the model is very simplistic and consisted of just the frame of the robot
[see Figure 10].

The model is visualised using the Java3D API [10][14].  Pictures rendered with Java3D are
called scenes (or “virtual universe”) that are in turn broken into subcomponents, namely
behaviour, model, object characteristics, 3D co-ordinate, math.  These create a complex world
of 3D objects and are a major cause in the decrease in the speed and performance of the
interface.

It was felt that having a more complicated model including thrusters and cameras would
greatly enhance the operator’s understanding of the robots’ behaviour.  This would be best
achieved by directly loading a VRML model and not converting it into any other format.

Figure 10: Kambara Wavefront Model

A VRML model depicting the cameras and the thrusters along with the frame of Kambara
[see Figure 11] had been developed at the Systems Engineering Department in RSISE.  But,
one of the major considerations to be taken into account was again the performance and the
speed with which the client would update its GUI.  That is, use of the VRML model should
not come at the expense of further reduction in performance.

It was found that the Java3D API in it current form, does not support the loading of VRML
models into a scene.  To this end, the Internet was scanned for any software packages
(preferably developed in Java) that would help us achieve the objective.  This led us to the
NCSA Portfolio [12, Appendix A].  This utility is used in conjunction with the Java3D API to
load models of different formats including Wavefront and VRML.



Chapter 2 GUI Analysis and Design

Page 16

Figure 11: VRML Model

But, NCSA Portfolio could not be used to load VRML models due to problems encountered
with the VRML model and the utility itself.  These are discussed in the following section.

2.4.1 Loading Problems

The problems encountered with the VRML model and NCSA Portfolio were serious enough
for me to stop the investigation and continue using the Wavefront model.  They were:

• NCSA Portfolio supports the loading of only VRML97 models.
• The loader in NCSA Portfolio, used to load the models does not possess any parameters to

properly position the model in the ThreeDFrame.  We could also not use the Java3D API
methods, as they do not support VRML models.

• The simplest VRML model available [Figure 11] was 1 Megabytes in size.  Loading a file
of such size led to a drastic reduction in the performance, which was unacceptable.  As
mentioned in the previous section, use of the model could not come at the expense of
speed or performance.

Therefore, it was decided that the existing Wavefront model would continue to be used till
technologies improved and facilitated easier and faster use of the VRML model.

2.5 Chapter Summary

The redesign of the GUI included creation of a separate frame for just the 3D model,
incorporation of the raw sensor data and the derived data into one panel and the separation of
the CameraPanel from the tabbedPane that was made a part of the main interface.  The applet
architecture is very similar to the application thereby facilitating the execution of the interface
as an application as well as an applet.  Currently, he VRML 3D model cannot be used in place
of the Wavefront model due to constraints imposed by Java3D and NCSA Portfolio.

It was mentioned earlier in the chapter that the NavigationPanel was completely redesigned
with all the existing components deleted and a software joystick developed in place.  The next
chapter discusses the software joystick in detail including the analysis and the design.



Page 17

CCHHAAPPTTEERR  33::  SSOOFFTTWWAARREE  JJOOYYSSTTIICCKK

Chapter 2 was concerned with the redesign of the operator interface GUI.  This included the
redesign of the NavigationPanel.  This chapter details the reasons for the changes in the
NavigationPanel and the development of a software joystick to be incorporated as part of the
navigation mechanism of the interface.  The software joystick is to be used by the operator to
be able to manipulate the robot in any or a combination of its five degrees of freedom.

However, as the mechanisms for actually moving the robot have not yet been developed, this
chapter will concentrate on the requirements and the associated design involving the joystick.
It will first provide a background about why the interface needs a software joystick followed
by detailed explanations about what functions the joystick needs to perform and the design
used to implement those functions.

This chapter is organised as follows:

• Section 3.1 describes the control modes that were set in place for the operator interface in
1999 [1].  These help determine why the software joystick needs to be developed.

• Section 3.2 outlines the requirements of the joystick including the constraints.
• Section 3.3 discusses the design including a detailed explanation of the software

architecture of the joystick.
• Section 3.4 explains the major outcomes of this chapter as a summary.

3.1 Control Modes

Four control modes for the operator interface have been defined.  These would facilitate
multiple users to view the state information being sent from the robot, even if only one of
them is in control of it.  The four control modes are Observer, Individual control,
Teleoperation and Supervisory control.

3.1.1 Observer Mode

Users that do not control the robot are in Observer mode.   It enables them to watch the
activities of the operator and view all state information sent by Kambara.  This is the state in
which users should be in, if they have not successfully gained control of the robot.

3.1.2 Individual Control Mode

This mode is used when it is necessary to fire individual thrusters.  This mode would come
into use when say; Kambara is in an awkward position next to a rock.  It would also be useful
if the operator wants to manipulate the camera (pan, tilt and zoom).



Chapter 3 Software Joystick

Page 18

3.1.3 Teleoperation Mode

This mode is used to enable the operator to move Kambara in any or a combination of its five
degrees of freedom.  All of the thrusters will be co-ordinated to carry the specified motion
out.

3.1.4 Supervisory Control Mode

This control mode is similar to that used on the rover that landed on Mars in 1998 [13].  It
essentially allows the operator to plan a route.

The joystick is meant to be a stepping-stone in implementing the Teleoperation control mode
and as a major improvement to the previous navigation utilities provided in the interface.

3.2 Requirements and Analysis

The implementation for the teleoperation mode in the existing application was basic and non-
intuitive.  The user had to laboriously select one of ten directions and separately manipulating
the roll, pitch and yaw as shown in Figure 12.

Figure 12: Robot Navigation Controls (1999)

To make navigating the robot easier, the concept of a software joystick was investigated.  The
basic idea is to allow:

• Mouse clicks and / or keyboard events to determine the surge, heave, roll, pitch and yaw
in a non-laborious manner.

• Not slow down the interface any more than its current state.
• Be able to type specific values of the above-specified degrees of freedom and change

them.
• Be able to abort the prospective change if the operator is unsatisfied with the changes.



Chapter 3 Software Joystick

Page 19

• Have a view of the changes in the orientation of Kambara.  This would be done using the
existing 3D model.

3.3 Design

3.3.1 Considerations

It is human nature to get frustrated when updates of information are slow and the interface is
not easy to use.   The 3D model of Kambara uses the Java3D API that results in a substantial
decrease of speed and decrease in the performance.  It was necessary that the joystick did not
slow the interface any further.  Having another 3D view would necessitate a similar use of
Java3D, which would make the interface unusable due to its poor performance.

As mentioned before, the ease of use for the operator is another major consideration.  The
joystick will not be useful if the operator is unable to grasp its intricacies in a short span of
time.  It was for these above-mentioned reasons that two two-dimensional views were used to
manipulate the robot.  They help keep the different components of the joystick, simple and
easy to use. Having taken into account the factors used in determining the design, the software
architecture of the joystick can now be described.

3.3.2 Software Architecture

The main module that contains the joystick is NavigationPanel, which in turn is a
subcomponent of the tabbedPane 4.  It is just a panel that holds 3 subcomponents; TopPanel,
SidePanel and MovementsPanel.  The architecture is shown in Figure 13.

Figure 13: NavigationPanel Software Architecture

                                                
4 See Chapter 2, Section 2.2 for more details about the current software architecture of the GUI



Chapter 3 Software Joystick

Page 20

• TopPanel

The TopPanel lets the operator manipulate three of the five possible degrees of freedom.
This is accomplished through the use of mouse clicks.  The panel provides the operator
with a perspective of the top view of the robot, which is shown in Figure 14.  The changes
in some selective movements can be generated based on this view.

The view allows the operator to set the surge, yaw and roll of the robot.  That is, the
translation in the X direction (surge) and the rotations in the X and Z directions (roll and
yaw respectively) are set using this panel.  These can be set intuitively through mouse
clicks and / or a combination of the keyboard and mouse.

Figure 14: Top View of Kambara

The 3D model is used concurrently with the panel to provide a simulation of the change in
the orientation of the robot.  This change will occur on the completion of the desired
surge, yaw or roll.  This gives the operator a better idea of the robot’s movements.  It also
acts as a feedback so that the operators can correct the values and be able to map a route
for the robot.  An example of the use of the 3D model to view the change in the
orientation through the use of the TopPanel is given below in Figure 15.

Figure 15: Simulation of the movements of the joystick (in the 3D model)



Chapter 3 Software Joystick

Page 21

• SidePanel

The Side view of the robot is depicted in this panel.  This is illustrated in Figure 16.  The
pitch and heave movements5 are set using this component of the joystick.  These are
changed or set through the use of mouse clicks.

Figure 16: Side View of Kambara

The usage of the 3D model is the same as in the TopPanel with the types (directions) of
movement being different.

• MovementsPanel

Another method of changing any degree of freedom is through the MovementsPanel.
There are textfields that accept key entries and implement the specified changes in the
orientation.  The changes are the same, as one would expect from the TopPanel or the
SidePanel.

But the textfields are also used to show the latest changes implemented through the use of
the TopPanel or the SidePanel [see Figure 17].

Figure 17: Current Translations and Rotations

The Send the Abort buttons shown in Figure 17 are present to facilitate the sending and
aborting of move commands to the robot, taking the required changes as parameters.

                                                
5 Pitch is the rotation in the Y direction while heave is the translation in the Z direction



Chapter 3 Software Joystick

Page 22

3.4 Chapter Summary

A software joystick has been analysed and designed for facilitating direct teleoperation of the
robot.  It consists of two two-dimensional views (top view and side view) and manipulates the
designated five degrees of freedom through keyboard and / or mouse inputs.  There is a panel
for manual numerical changes as well (MovementsPanel).

The 3D model is used to simulate the prospective changes in the translations and the rotations.
Due to the overall Kambara software development not having reached a stage where the robot
accepts move commands, the joystick does not send or abort any commands.

In the event that the joystick is used to send the commands, we need to further our
understanding of the networking aspects of the operator interface.  The next chapter discusses
these aspects and provides explanations about how the clients can send commands to the
robot.



Page 23

CCHHAAPPTTEERR  44::  NNEETTWWOORRKK  AANNAALLYYSSIISS  AANNDD  DDEESSIIGGNN

The previous chapter discussed one of the first stages of teleoperation, that is, the
development of a software joystick.  The next stage essentially involves the transmission of
commands to it and for Kambara to act on those commands.  This involves a detailed
discussion of the network architecture of the operator interface.

This chapter starts off by describing the architecture that was in place at the end of 1999.  The
chapter goes on to discuss the requirements and analysis for sending commands to the robot
and receiving Telemetry data from it.  It then concludes with a discussion of the long-term
goal for the interface network design and the conformance to the long-term goal.

The rest of the chapter is organised as follows:

• Section 4.1 gives a background of the Network Architecture including the architecture that
was already in place at the beginning of the project and the functions of the server and the
client side.

• Section 4.2 outlines the requirements and analyses the transmission of camera commands
to the robot and reception of telemetry router data from the robot.

• Section 4.3 describes the long-term goal for the interface network design and the changes
used to make the current architecture conform to it.

• Section 4.4 gives a summary of the main outcomes of the network analysis and design.

4.1 Background

The system depicted in Figure 18 was the implementation at the beginning of the project.
There are multiple clients (applications) connecting to a Web server that is written in Java.

4.1.1 Server

The essential role of the server is to receive state information from the robot and distribute it
to the clients and issue commands to the robot from 'one' of its clients.  Clients register with
the server via an RMI connection and thereby request state information.  All the clients
registered with the server then receive UDP 6 packets containing the latest state information.

RMI allows an application to call methods and access variables inside another application,
which may be running in a different Java environment or a different system altogether, and to
pass objects back and forth over a network connection.  The primary goal of RMI was to
make interacting with a remote object as easy as interacting with a local one.

In addition, however, RMI includes more sophisticated mechanisms for calling methods on
remote objects to pass objects or parts of objects either by reference or by value, as well as

                                                
6 See Appendix B for more details about User Datagram Protocol (UDP)



Chapter 4 Network Analysis and Design

Page 24

additional exceptions for handling network errors that may occur while a remote operation is
occurring.

Figure 18: Original Network Design

The server is also responsible for ensuring that only one client at a time has the ability to
control the vehicle, via the ControlState object stored on the server.  Therefore the client can
issue commands at any time even while the server is receiving and distributing the state
information packets.

4.1.2 Client

The basic role of the client is to register with the server and receive the latest state information
of the robot, from it.  The client is currently an application that can be executed on any
machine supporting the Java runtime environment.  In the event that the client is also in
control of the robot the ability to issue commands such as changing the pan, tilt or zoom of
the camera on-board Kambara and moving the robot in any or a combination of its five
degrees of freedom, is provided.

To receive state information from the server, the client uses the RMI connection to access the
server's method addStateInfoListener, which stores the client's address and port number.  The
information received by the client is in the form of UDP packets, which are unreliable and can



Chapter 4 Network Analysis and Design

Page 25

get lost.  But this disadvantage is compensated by the fact that the Kambara system is
continually sending information.  Also, UDP is very fast and does not require a confirmation
of each packet.

As mentioned in the previous subsection, the methods for issuing commands are defined in
the server's object ControlState.  But, while this ability is provided to the client, the
functionality for sending commands has not been provided.  This needs to be addressed
because ultimately, the manipulation of the robot is going to be achieved only via the operator
interface.

Another issue to be addressed is that the client receives state information from a simulator and
not the actual robot.  For the operator interface to be operational, this aspect needs to be
corrected as the aim of the interface is to present data that is either produced on-board
Kambara or from its components.

Having described the roles of the server and the client, it is now useful to analyse the changes
that need to be made in order for the operator interface to properly interact with the robot.

4.2 Requirements and Analysis

4.2.1 Camera Commands

While the joystick commands can be simulated using the 3D model as discussed in Chapter 3
(Section 3.3), the overall aim is to be able to communicate with the system on-board the robot
and send the joystick commands to it.

The definition and sending of camera commands is the first part in that process.  Based on the
software development on-board Kambara, a vector of camera command data was defined.
This is listed in Table 1 where the pan, tilt and zoom values are absolute values.

Range (Bytes) Data Type Data Represented

0-7 Long Initialise (boolean; always = 1)

8-15 Double Pan Value

16-23 Long Absolute Pan (boolean)

24-31 Double Tilt Value

32-39 Long Absolute Tilt (boolean)

40-47 Double Zoom Value

48-55 Long Absolute Zoom (boolean)

Table 1: Vector of Camera Command Data



Chapter 4 Network Analysis and Design

Page 26

The telemetry data received by the client from the robot (via the server) contains the updated
pan, tilt and zoom values of the camera.  Therefore, the requirement is to send the commands
quickly through UDP packets, with the client using the updated values to determine if the
command was received properly or lost.  Considering that the client receives simulator data, a
means to get data from the Telemetry Router on-board the AUV needs to be analysed.

4.2.2 Telemetry Router

If the clients are to receive proper telemetry data and actually determine the status of
Kambara, the server needs to communicate with the Telemetry Router in real time instead of a
simulator [Appendix C].  A vector of the data received from the Telemetry Router is given in
Table 2.

Some of the variables such as computer status and target velocity are not represented in GUI.
These have no bearing currently, with their values constantly set to zero.  It was determined
that corresponding changes to the GUI would be made when the Kambara software
development reached a stage where it defined such variables.

Also, considering that Kambara will continuously send telemetry data, speed will be a bigger
consideration than reliability.  Therefore, it was decided to continue using the UDP protocol
(in a similar manner to receiving simulator data)

Range of data in doubles Data Represented

0-2 Robot position x, y, z values

3-6 Robot position – Quaternion

7-9 Kambara velocity u, v, w values

10-12 Kambara angular velocity p, q, r values

14-16 Target position x, y, z values

17-20 Target position – Quaternion

21-23 Target velocity u, v, w values

24-26 Target angular velocity p, q, r values

28-32 Motor torque (5 thrusters)

34-38 Motor voltages

39-43 Motor currents

45 Camera Pan value

46 Camera Tilt value

47 Camera Zoom value

48 Computer Status (64 bits of unsigned chars)

Table 2: Vector of Telemetry Router Data received from Kambara



Chapter 4 Network Analysis and Design

Page 27

The essential goal of implementation of the camera commands and telemetry router data is for
the Network Design to conform to the long-term goal that has already been defined.  The
design issues relating to the implementation of sending camera commands and receiving
telemetry data are discussed next.

4.3 Design

4.3.1 Long Term Goal for Network Design

The long-term goal for the Interface Network Design [1] is depicted in Figure 19.  As is
evident from the figure, the design shown in Figure 18 bears a few differences to it.  The
essential idea was to interface the client with the server and have that in turn communicate
with the AUV.

Figure 19: Long-Term Goal for Network Design

The Web server in the figure is used for initialisation of the applet.  From that point on
though, all client-server communication will be between the client applet and the Java server
via RMI.  A simple socket connection will be used between the Java server and the computer
on-board the AUV, since RMI is only used between two Java objects.



Chapter 4 Network Analysis and Design

Page 28

4.3.2 Conformance to Long-term Goal

The major differences between the original design and the long-term goal (Figures 18 and 19)
are given below.  The long-term view for the interface network design included the execution
of the client as an applet and proper communication with the robot.  This would be in the form
of commands from the client to the robot and state data from the robot to the client.  The
conformance criteria are

1. The clients are constructed as applets as opposed to applications.
2. The server gets state information from the Telemetry Router on-board Kambara as

opposed to a simulator.
3. Mechanisms need to be constructed for a client to send commands to the robot.   While

there are methods defined for sending commands, these have not been implemented.

As mentioned in Section 2.3, the client application has been converted to be used as an applet
as well.  This achieves the first of the three goals stated above.  The network architecture had
to be changed so as to allow proper communication between the client and the robot.  The
current network design is shown in Figure 20.  Currently, the software used to run the camera
on-board Kambara does not accept socket connections.  It only listens for UDP packets.

Figure 20: Current Interface Network Design



Chapter 4 Network Analysis and Design

Page 29

The KambaraServer takes the robot machine address and the camera port number as
parameters and uses them to create UDP socket connections to the robot.  The client uses the
ControlState object on the server to send camera commands and the server listens for
telemetry router data, which is then passed on to all the clients.  The camera values are
contained in the telemetry data (Table 2) and therefore it can be determined if the camera
command was transmitted and implemented.

A typical flow of commands throughout this system is as follows.

1. A client sends a registration command through a RMI connection, indicating that they
wish to receive state information

2. The server registers the client taking the address and port number and puts that
information onto a vector of clients.

3. Each telemetry router data packet received by the server is sent to all the clients.  The
packets are continuously received by the server and are sent to the clients without any
decoding.

4. The client receives the telemetry data, decodes the UDP packets and updates the GUI
based on the data.

5. The client then requests control of the vehicle.
6. The server sends an error message back to the client if another client is already in control

of the AUV.  In the event that no one is controlling the vehicle, the client is given control
and GUI is updated to reflect the adequate mode.

7. On obtaining control of the vehicle, the client can send commands to manipulate the
camera on-board Kambara.  The state information packets reflect the changes, which are
updated on the GUI.

8. The client can relinquish control of the vehicle and go back to the Observer mode at any
time.

4.4 Chapter Summary

The original network design had shortcomings with respect to sending proper commands to
the robot and receiving actual telemetry data from the robot.  The long-term goal for the
interface network design was defined in 1999 [1].  The Network design was changed to
improve the deficiencies in the original design and conform to the long-term goal.

The previous chapters (Chapters 2 and 3) along with this chapter, discussed the analysis and
design aspects of the project.  We should now discuss the implementation of the stated
designs.  This is discussed further in the next chapter titled "Implementation".



Page 30

CCHHAAPPTTEERR  55::  IIMMPPLLEEMMEENNTTAATTIIOONN

This chapter discusses one of the most important aspects of the project.  The software goals
outlined in Chapter 1 have been analysed and adequately designed as described in Chapters 2,
3 and 4.  But these need to be implemented for the successful completion of the project.  The
software objectives achieved and discussed in this chapter include,

1 Conversion of the application to an applet.
2 Improvements and redesign of the GUI layout.
3 Development of a software joystick to aid in the manipulation of the surge, roll, pitch,

yaw and heave movements of the robot.
4 Sending commands to the robot, in this case, camera commands.
5 Receiving telemetry router data continuously from Kambara.

The rest of the chapter is organised as follows,

• Section 5.1 outlines the improvements made to the GUI layout and describes the new
structure.

• Section 5.2 discusses the implementation of the applet and the problems associated with it.
• Section 5.3 details the issues associated with the implementation of the software joystick.
• Section 5.4 describes the implementation of the network improvements that will be a

stepping stone to conforming to the long-term goal of the Interface Network Design.
• Section 5.5 summarises the chapter concentrating on the outcomes of the implementation

stage.

5.1 GUI Layout

As discussed in Section 2.3.2, the software architecture of the GUI was improved upon.  This
resulted in the state information being displayed as follows:

1) TelemetryPanel: relating to the general information about the vehicle.
2) PositionPanel: a two-dimensional indication of the position of the vehicle and the

comparative position of the target.
3) DataPanel: depicts two sets of values; the numerical values coming directly (raw) from

the sensors on the vehicle and the numerical values that have been derived on-board the
vehicle.

4) MessagesPanel: any error, status or warning messages that are transmitted to the client.
5) NavigationPanel: controls used to navigate the robot when in teleoperation mode.

Currently, this is implemented using a software joystick.
6) ThreeDFrame: A separate frame holding the 3D model of Kambara and depicting its

current rotation and translation state.
7) CameraPanel: shows and manipulates the current pan, tilt and zoom values of the camera.

The first five panels were constructed using a tabbedPane and implemented using GUI
components developed using source code found on the Internet or developed originally.  As



Chapter 5 Implementation

Page 31

mentioned in Section 2.3.2, the CameraPanel is in constant view in the current interface.  The
snapshots of the panels are provided in Appendix E.

The only problem encountered with the GUI was the instability of the ThreeDFrame,
especially on Solaris machines.  This was predominantly due to Java3D, which is still in its
infancy in terms of development.  It is believed that future versions of Java3D would be much
more stable and should solve the problem.  But in case this problem still persists, there should
be a reassessment of the use of the 3D model.

5.2 Applet

The Java applet used to load the operator interface is given in Figure 21.  The applet contains
a brief description of the Kambara project and has four buttons that have varying purposes.

Figure 21: Kambara Applet

1) Start Client is used to start an instance of the interface.
2) 3D Panel starts the ThreeDFrame holding the Wavefront model (Figure 10).  It is

activated when the user starts the client.
3) Quit Client will be used when the client wants to end the session.  It hides the interface

and the client can then quit the applet.
4) Kambara shows the user an image of the robot (Figure 2).

But there were problems associated with loading the applet into a web browser such as
Netscape.  The problems are discussed in the following Sections 5.1.1 and 5.1.2.

5.1.1 Java Plug-In for Web Browsers

Current web browsers do not support Swing libraries used in Java 2 [9], the version of Java
used in the development of the interface.  Java Plug-Ins [11] need to be installed and run with



Chapter 5 Implementation

Page 32

the present versions of Internet browsers, notably Netscape.  This is in order for them to not
only display Java3D objects, but also support Swing libraries.

5.1.2 HTML Conversion

Another problem was that the HTML document loading the applet needs to have tags that will
specify the browser to use the Java Plug-In and not its own Java Virtual Machine (JVM).  By
default, browsers such as Netscape use their own JVM and need to be specifically informed to
use the Java Plug-In.  Therefore, a Java Plug-In HTML Converter [11] needs to be used to
convert standard HTML pages to a form that specifies the usage of the Java Plug-In.

The above problems added to the slow performance of the applet, especially in loading the
interface.  This aspect is further discussed in the next chapter that describes the testing
procedures used during the project.

5.3 Software Joystick

The joystick implementation was quite time consuming with issues needing to be addressed at
every juncture.  Therefore, the joystick had to be implemented in a number of steps based on
the issues.  These issues are detailed in the following subsections.

5.3.1 Co-ordinate System

Because the joystick was implemented as two 2D panels, TopPanel and SidePanel, issues
corresponding to the Co-ordinate system needed to be addressed.  Specifically, we needed to
address the fact that in 2D, Java only recognises the X and Y-axes.  Therefore, depending on
the view being used, we needed to include the Z-axes in place of either the X or the Y-axes.

Another issue was that the view might not necessarily interpret the horizontal direction to be
the X-axes with the vertical direction as the Y-axes.  This is evident in Figure 22, which
shows the orientation of Kambara in its three axes and the corresponding interpretation
required for the Top and Side Views.

Figure 22: Co-ordinate System (Kambara and Joystick Panels)



Chapter 5 Implementation

Page 33

5.3.2 Rotation Angles and Quaternions

The second problem faced during the implementation of the joystick was the computation of
the angles.  These could not be computed in four quadrants, as is normally the case.  It had to
vary depending on the view.  For example, for either of the panels, the yaw, pitch or roll
angles will have a range of ± 180°.  But while the roll and yaw angles are computed with
respect to the vertical axis in the TopPanel, the pitch is computed with respect to the
horizontal axis in the SidePanel.  This is depicted in Figure 23.

Figure 23: Relative movements in the TopPanel and the SidePanel

The other problem concerning the angles was the conversion to Quaternions.  Quaternions are
used for a singularity-free representation of the attitude of the robot.  In the operator interface,
the 3D model uses quaternions to represent the orientation of the robot.  While Java3D has
methods and constructors to create quaternions, there are none for creation using three angles
(roll, pitch and yaw).

The solution to the problem was to create individual quaternions for the roll, pitch and yaw
and then multiply them together to compute the overall quaternion for the 3D model.  That is,
methods were developed that would compute the quaternion given one angle at a time.
Therefore for the roll, pitch and yaw, the individual quaternions computed were as follows:

The quaternion was computed using the Quat4D class available in the javax.vecmath library
in Java3D API 1.1.

For Roll:  Quat4d{sine(Roll/2), 0, 0, cosine(Phi/2)}

For Pitch: Quat4d{0, sine(Pitch/2), 0, cosine(Theta/2)}

For Yaw:   Quat4d{0, 0, sine(Yaw/2), cosine(Yaw/2)}

These individual quaternions are then multiplied together to get the final quaternion.  Java3D
provides methods for this very purpose.



Chapter 5 Implementation

Page 34

5.3.3 Manipulations using MovementsPanel

The last problem encountered was concerning the manipulations the operator would make
using the MovementsPanel.  The question was whether the MovementsPanel would act as a
correction mechanism for the operations made using the TopPanel and the SidePanel or
whether it would have a similar role to those panels, albeit a much more specific role.

It was decided that the MovementsPanel could perform both roles.  For example, if the user
wanted to correct a pitch of 45 degrees to 30 degrees, a manual change of –15 degrees could
be implemented using the MovementsPanel.  Alternatively, if the operator wanted to change
the pitch by a further 50 degrees, which usually accomplished using the SidePanel the
MovementsPanel could implement that as well.  In the end, the ultimate interpretation lies
with the operator.

5.4 Networking

The implementation of the network design was relatively easy.  Use of the UDP protocol
ensured that the confirmation of packets or commands was not necessary.  The only
foreseeable problem lay in the Java Virtual Machine allowing socket connections to listen,
connect and accept information.  But the policy file (java.policy) that determines what code is
permitted to perform each action already allowed the use of socket on the defined ports.

There were two major problems associated with the network communication with the robot.
The first problem was concerning the interpretation of the Telemetry Router data while the
second problem was about the conversion of the camera values into bytes.

5.4.1 Data Interpretation

The GUI components were developed using the simulator data in mind.  The Telemetry
Router data is similar to the simulator with a few minor differences.  But currently, the only
meaningful information that the operator receives in the telemetry router data is the vehicle
state (position and orientation), vehicle velocity and the camera values.  Therefore, it was
determined that a reassessment of the GUI components will be done once the telemetry data
contains more useful information.

The vehicle state in the telemetry data is determined from a compass installed as part of the
Kambara hardware.  It computes the position and the quaternion that is subsequently viewed
on the ThreeDFrame.

5.4.2 Conversion to Bytes

Problems arose when the camera command needed to be created in the form of UDP packets.
The problem was with the conversion of the double and long values into bytes.  Because a
packet is the simplest form of data, all the information contained in it is in the form of bytes.
Doubles and longs are 64 and 32-bit floating point datatypes respectively.



Chapter 5 Implementation

Page 35

The only solution to the problem lay in conversion of all the values into one standard 64-bit
value and subsequently splitting the values into groups of 8 bits each.  This would require bit
shifting, which was difficult because only 32 bits can be shifted at a time in Java.  Therefore,
the shifting was accomplished in two stages.  The following was the method employed for
shifting the values.

data[j+4] = (byte) (( value & 0xff000000) >> 24);

data[j+5] = (byte) (( value & 0x00ff0000) >> 16);

data[j+6] = (byte) (( value & 0x0000ff00) >> 8);

data[j+7] = (byte) (( value & 0x000000ff));

value >>= 32;

data[j] =   (byte) (( value & 0xff000000) >> 24);

data[j+1] = (byte) (( value & 0x00ff0000) >> 16);

data[j+2] = (byte) (( value & 0x0000ff00) >> 8);

data[j+3] = (byte) (( value & 0x000000ff));

The two sets of 32 bits are shifted such that their values are stored at the Least Significant bit
of each byte.  The actual value itself needs to be shifted by 32 after the first set so as to access
the remaining 32 bits.

5.5 Control Modes

The basic control modes had already been implemented in the system.  On loading the
operator interface the user is in the control mode, "Disconnected".  The options under the
Control Mode pulldown menu are disabled at this stage.  Once the user establishes a
connection to the server, the control mode switches to the "Observer Mode".  At this
particular stage, the user can only view state information that is received from the robot.

On selecting "Individual Control" mode in the pulldown menu, the user can manipulate the
state of the camera and the motors on the robot.  This is achieved by providing several
components in the CameraPanel and the TelemetryPanel.

The "Teleoperation Control" mode provides navigation mechanisms to the robot.  That is, it
shows the NavigationPanel to the operator.  "Supervisory Control" mode is supposed to allow
the user to plan or map a route for the robot, or execute a series of commands in sequence.

The shortcomings at the beginning of the project were related to improper and simplistic
implementation of the Teleoperation and Individual control modes.  With the implementation
of the camera commands, the Individual control mode has been greatly enhanced.  And the
implementation of the software joystick has contributed to enhancement of the Teleoperation
control mode.  Also, the implementation of camera commands has paved the way for
subsequent implementation of navigation commands.  This is discussed further in Chapter 7.

The supervisory control mode has not been implemented.  But, with the development of the
camera commands, a means to planning a route for the robot can be designed and



Chapter 5 Implementation

Page 36

implemented.  This would require the use of live video, which incidentally is also part of the
NavigationPanel.  This is also discussed further in Chapter 7.

5.6 Chapter Summary

While the creation of the applet did not pose any problems, the loading of the applet onto a
web browser was a different matter entirely.  The problems were associated with Java Plug-In
for Java 2 and HTML conversion relating to the Java Plug-In.

The GUI has been redesigned and along with the menubar and the message area, it now
consists of five tabbedPanes, a ThreeDFrame for the 3D model and a CameraPanel that is in
constant view of the user.  The main problem concerning the GUI was the instability of the
ThreeDFrame, especially on Solaris machines.

The joystick was successfully implemented with the majority of the problems confined to co-
ordinate and angle conversions.  The network design developed in Chapter 4 (Section 4.3)
was also implemented with camera commands sent to the robot and feedback received
through the telemetry router data.

The control modes were also properly implemented and enhanced.  This was partially
achieved through the development of the software joystick and the enhancement of the
network design.

The next step in the process of successfully completing the project is to validate and verify the
correctness of the implementation with respect to the analysis and the design.  The testing
procedures used for this purpose are detailed in the next chapter.



Page 37

CCHHAAPPTTEERR  66::  VVAALLIIDDAATTIIOONN  AANNDD  VVEERRIIFF IICCAATTIIOONN

The implementation needs to be validated and verified so as to determine if it conforms to the
analysis and the design.  This chapter discusses the testing of the implementation, thereby
determining whether it satisfies the objectives of the project as stated in Section 1.1.2.  This
chapter is organised as follows,

• Section 6.1 describes the testing procedures that were central to the implementation.
• Section 6.2 details the testing of changes implemented in the GUI
• Section 6.3 outlines the testing issues related to the implementation of the applet.
• Section 6.4 discusses the testing of the joystick and the validation issues related to it.
• Section 6.5 details the testing concerning communication with the robot.
• Section 6.6 explains the testing conducted for determining if control modes have been

correctly implemented.
• Section 6.7 summarises the chapter concentrating on the outcomes of the testing process.

6.1 Testing Procedures

The operator interface was predominantly tested on a Solaris machine.  This is because the
Windows operating system poses constraints on the location of the client and the server.  That
is, on a Windows machine, both the client and the server needed to be run on the local host,
and this leads to a poorer performance.

Another reason for the preference of Solaris was because the server had to be executed on
hughes.anu.edu.au, which could not be achieved with a client running on Windows.  The
reason being that Kambara would only accept or listen for camera commands from that
particular machine.  While this scenario is not ideal, it had to suffice for testing purposes,
especially concerning camera commands and the client receiving telemetry data.

Also, the camera was predominantly plugged onto nozomi.anu.edu.au and tested there.  This
was not ideal, as one could only observe the status at the beginning and the end and thereby
determine the changes in the pan, tilt and zoom.

6.2 GUI

It is necessary to test changes implemented in the GUI to ensure that newly added
components still get updated with state information.  This is especially important for the
DataPanel that incorporates the raw sensor data and the derived data that is computed on-
board Kambara.  These were tested by using simulator data (Appendix C) as the telemetry
router data does not contain meaningful sensor values currently.  The redesign also satisfied
the design principles listed in Section 2.2.1 with space, proximity and alignment used to
maximum effect.



Chapter 6 Validation and Verification

Page 38

6.3 Applet

Due to reasons mentioned in Chapter 5 (Section 5.1), Applet was predominantly tested using
the Java AppletViewer [6], which is part of the Java Developers Kit (JDK1.2.1).  The applet
was loaded onto a browser that had the Java 2 Plug-In installed.  The only problem was the
poor performance associated with loading the applet.    This would be due to the large number
of objects that need to be loaded, HTML conversion and the use of Java 3D in the interface.

The applet was tested to connect to a web server and thereby, receive state information from
the robot.  Tests were also conducted with respect to sending camera commands to the robot.
The above was achieved successfully.  In the above cases, the web server was located locally
as well as on a separate machine.

6.4 Software Joystick

Majority of the testing concerning the joystick was associated with computation of the roll,
pitch and yaw angles, from the keyboard and mouse inputs (on the TopPanel and the
SidePanel)

As the values were displayed on the MovementsPanel, it acted as a good feedback and testing
mechanism for the translation and rotation manipulations.  The 3D model also acted as a good
testing mechanism as well through the MovementsPanel.  By negating the values, the model
should go back to its original state, which was achieved successfully.

6.5 Communication with Kambara

There were two stages of testing in regard to communication with Kambara.  The first stage
was concerned with sending commands to the camera on-board the robot.  The second stage
was related to obtaining Telemetry Router data from the robot.

6.5.1 Camera Commands

The camera commands were tested using the Sony D-230 Camera shown in Figure 24.  As
mentioned before, in the earlier stages of development, the camera was not on-board the
robot.

    Figure 24: Sony D-230 Camera



Chapter 6 Validation and Verification

Page 39

At the latter stages of development though, the camera was installed on-board Kambara and
the commands were then successfully tested as well (see Figure 25).  The camera values are
also constantly transmitted as part of the telemetry router data.  These are subsequently
displayed on the CameraPanel thereby informing the operator whether the command was
successfully transmitted and implemented.

Figure 25: Sony Camera on-board Kambara

6.5.2 Telemetry Router Data

The Telemetry Router data contained meaningful values of just the vehicle state apart from
the camera values.  The vehicle state was determined from the compass on-board the robot.
The data was sent as a continuous stream of packets.

Tests were conducted to determine the update frequency of the GUI under a number of
conditions.  These were conducted under two different environments

ο An ideal Ethernet environment with no network traffic associated with it.
ο A real world situation where performance will be affected due to network traffic.

The results are listed in Table 3.

TEST Number of
packets sent by

Kambara

Number of packets
received by the

client

Time taken
(s)

Update
frequency (Hz)

With server
present

1779 638 500 1.24

Without server
present

5913 3951 570 6.58

Ideal Ethernet
environment
(server present)

4462 1586 450 3.52

Ideal Ethernet
environment
(Without server
present)

6247 3973 415 9.57

Table 3: Telemetry Data Update Rate



Chapter 6 Validation and Verification

Page 40

The performance was not satisfactory when both the client and the server are located on the
same machine.  The performance as expected is much better in an ideal Ethernet environment
with an increase of around 2.5 to 3 Hz.  This is primarily due to the network traffic, which is
not present in an ideal environment.

The server also affects the rate of GUI updates.  This is due to the threads executed by the
server for obtaining information from the robot and passing that information onto the clients.

6.6 Control Modes

The observer, individual and teleoperation control modes were successfully implemented and
tested.  The first stage was examining the disconnected state.  In this state, the user is unable
to select any of the control modes on the pulldown menu.

Once the user is connected to the server, only the components relating to viewing the state
information were made visible.  On selecting the Individual control mode, the user was able to
manipulate the motor torque values and also send camera commands to the robot through
buttons that are added on the TelemetryPanel and the CameraPanel.  In the Teleoperation
mode, the NavigationPanel was made available to the operator as another tabbedPane.

Finally, the control and network aspects were combined and tested.  Two clients were
connected to the server with one of them given control of the robot.  The other client made a
request for control by selecting the Individual Control option in the pulldown menu.  This
client was refused control as expected.  Also, control was relinquished when the controlling
client returned to the observer mode and the second client was subsequently able to
successfully obtain control of the robot.

6.7 Chapter Summary

This chapter detailed the testing procedures used for validating and verifying the
implementation of various aspects of the project.  The applet was predominantly tested using
Java AppletViewer but it was loaded into a Java 2 compliant browser.  The joystick testing
was concentrated on the computation of the rotations angles (roll, pitch, and yaw) with the
MovementsPanel acting as a good feedback mechanism for determining the values.

A Sony D-230 camera was used for testing the camera commands and only during the latter
stages of the implementation was the camera on-board the AUV.  Telemetry router data was
received from Kambara.  Network traffic and local execution of the Kambara server seriously
affect the GUI updates based on the telemetry data.

The next step is to draw conclusions including summarising the thesis and discussing my
contribution to the Kambara project (more specifically, the development of the operator
interface).  This is detailed in the next chapter, which also includes discussion about further
work that should be accomplished in order to successfully complete the operator interface.



Page 41

CCHHAAPPTTEERR  77::  CCOONNCCLLUUSSIIOONN  AANNDD  FFUURRTTHHEERR  WWOORRKK

7.1 Conclusion

This project has continued the development of the operator interface for the Kambara project.
Design and implementation of an applet has accomplished one of the main aims of
manipulating Kambara over the Internet.

The redesign of the GUI along with increased use of Java 2 Swing libraries have increased the
flexibility of the different components of the interface.  The investigation of NCSA Portfolio
for using a VRML model of Kambara in place of the Wavefront model was unsuccessful
because of constraints imposed by the Java 3D API and NCSA Portfolio itself.

A software joystick has been developed to assist with the navigation of the robot.  It will
ultimately also help with direct teleoperation of the AUV.  The manipulations of the joystick
are simulated using the 3D model.  Because the development on-board Kambara has not
reached a stage where it accepts navigation commands, these have not been implemented.

The interface receives telemetry router data from the robot in real time as opposed to a
simulator7.  Experiments were conducted for determining the update rate of the GUI.  It is
found to be 6.58 Hz without server executing locally and 1.24 Hz with the server present on
the system.  Network traffic also affects the updates as similar tests on an ideal Ethernet
environment give update rates of 3.5 Hz (with the server present) and 9.57 Hz (without the
server on the system).

The network capabilities now also include the ability for the client to send camera commands
to the robot.  These have been successfully tested with the Sony D-230 camera on-board
Kambara.

The different control modes have also been implemented and successfully tested.  The
individual and teleoperation control modes have been enhanced as a result of the development
of the software joystick and the successful implementation of the camera commands.

7.2 Contributions

One of the major contributions of my project is the development of the software joystick.
Similar interfaces do not use such a mechanism for navigation.  The joystick will be
extremely useful in the areas of teleoperation and even supervisory control.

The implementation of obtaining state information data from Kambara is the second major
contribution of my project.  To date, the communication with Kambara had been simulated

                                                
7 The original system obtained its input from a simulator RSISE.  A vector of the simulator data is provided in
Appendix C



Chapter 7 Conclusion and Further Work

Page 42

with state information packets being received from an artificial source.  Obtaining real time
telemetry router data and updating the GUI from that data has been one of the motivations
behind the Kambara project.

Development of a means of sending commands to the robot is another important aspect of the
operator interface, a part of which has been accomplished through this project.

7.3 Further Work

There is still much work to be done in order to get the interface properly operational.  This
project has focussed on the development of navigation mechanisms for moving the robot and
also ensuring that there is proper communication between the client and the robot.  These
features, especially the camera commands have enhanced the control mode mechanisms
available to the client.  However, more work needs to be done especially in regard to
obtaining live video from the robot.

7.2.1 Video Feed

The NavigationPanel8 contains the joystick but it has also been designed to provide live video
to the operator.  With the camera commands having been implemented, images can be
obtained depicting the current view of the camera. Live video is required to aid direct
teleoperation and in order to map a route for the robot (supervisory control).

7.2.2 Supervisory Control

A plan needs to be made for supervisory control mode especially now that the robot accepts
commands from the client.  The use of the CameraPanel along with live video can facilitate
planning of a route for the robot, or execution of a series of commands in sequence.  This
should be done in anticipation of future robot operations when an optic fibre tether is no
longer present.

7.2.3 Network Architecture

The current design is similar to the long-term goal that has been described in Chapter 4
(Section 4.3), with one major difference.  The protocol used for communication between the
Kambara server and the robot is UDP.  While this protocol suits our purpose of getting the
commands easily and quickly to the robot and is extremely useful for testing, it is not
adequate in the long term.  This is because a much more reliable protocol is necessary in real
time situations.

Once Kambara is operational, it is imperative that most of the commands are received by the
robot and acted upon.  Therefore, further improvements with regard to the existing design
need to be implemented.

                                                
8 A snapshot of the NavigationPanel is available in Appendix E5



Chapter 7 Conclusion and Further Work

Page 43

7.2.4 Logging information

Presently, the logging system is in its primitive stages, with the menu option having been
established, but no logging actually commencing.  The method of logging needs to be
examined.  When the client is running as an applet, the Java security arrangements will not
allow writing on a client’s system without their permission.  Therefore, it may be desirable to
have a separate logging process running at the server end.  File storage will also be a problem
due to the frequency and the amount of data being transmitted.



Page 44

BBIIBBLLIIOOGGRRAAPPHHYY

[1] McPherson, C., 1999.  Network-based Operator Interface for an Underwater Robot.
Department of Engineering Honours Project Thesis, ANU.

[2] Gaskett, C., Wettergreen, D., Zelinsky, A., 1998.  Development of a Visually guided
Autonomous Underwater Vehicle.  Oceans’ 98

[3] Gaskett, C., Wettergreen, D., Zelinsky, A., 1999.  Reinforcement Learning for a
Visually guided Autonomous Underwater Vehicle.  International Symposium on
Unmanned Untethered Submersibles Technology.  New Hampshire, USA

[4] Kambara Software Design:
http://wwwsyseng.anu.edu.au/rsl/sub/software/software_design.html

[5] Couch, J., 1999.  Java 2 Networking.  McGraw-Hill. New York

[6] Flanagan, D., 1996. Java in a Nutshell.  O’Reilly and Associates. USA

[7] Lewis, J., Loftus, W., 1998. Java Software Solutions.  Addison Wesley. USA

[8] Visual Design Resources
http://www.indiana.edu/%7Eiirg/ARTICLES/VIZRES/resource_page.html

[9] Java 1.2 API specification: http://java.sun.com/products/jdk/1.2/docs/api/index.html

[10] Java3D 1.1 API specification:
http://java.sun.com/products/java-media/3D/forDevelopers/j3dapi/index.html

[11] Java Plug-in for Browsers: http://java.sun.com/products/plugin/

[12] NCSA Portfolio: http://www.ncsa.uiuc.edu/~srp/Java3D/portfolio/

[13] Web Interface for TeleScience: http://wits.jpl.nasa.gov/

[14] Bouvier, DJ., 1999.  Getting started with the Java3D API.  Sun Microsystems.

[15] Tanenbaum, AS., 1996, Computer Networks.  Prentice-Hall of India Private Limited



Page 45

AAPPPPEENNDDIIXX  AA::  NNCCSSAA  PPOORRTTFFOOLLIIOO

NCSA Portfolio is a collection of utility objects to use within your Java3D programs.  Some
of the newer features available with NCSA Portfolio include,

• Input devices for Flock of Birds, Cave Wand, Spacetec SpaceOrb 360, Microsoft
Force Feedback Sidewinder, and mouse.

• Unified InputDevice Interface introduced

• New PickTool features for use with the Wand or SpaceOrb.

• New VTK ASCII loader

• New VTK binary loader (big endian only)

• New NFF loader

• New TextureCache object

Other NCSA Portfolio features include:

• Universal model loader interface: All supported 3D model types can be loaded
through a single call to a ModelLoader object that acts as an interface to all 3D model
readers.  Supported loaders include

o NCSA's 3D Studio (3DS) loader
o NCSA's AutoCAD DXF loader (Version 12)
o NCSA's Protein Data Bank (PDB) loader
o NCSA's Digital Elevation Map (DEM) loader
o NCSA's Imagine (IOB) loader
o NCSA's TrueSpace (COB) loader (Version 2)
o NCSA's VRML 97 (WRL) loader
o NCSA's PLAY loader
o NCSA's VTK ASCII loader
o NCSA's VTK binary loader (big endian only)
o NCSA's NFF loader
o NCSA's Wavefront OBJ (including material files for colours) loader
o Sun’s Lightwave 3D Scene loader

You can also add your own loader interfaces, and the ModelLoader will automatically
recognise them.

• Unified InputDevice Interface: Starting in NCSA Portfolio release 1.3 beta 1, there
is support for a unified input device interface. Using this interface, we can create a
way to interchange input devices in programs without having to recompile the
program itself.  This is really useful if you are working on one device (say a desktop),
and have to move the program to another type of device (such as a four-screened
Portal).  Future releases are expected to individually address how buttons are mapped
on input devices.



Appendix A NCSA Portfolio

Page 46

• Event management: The object library provides a mechanism for managing events
within Java 3D programs through the ToolManager and its Tools.  Using
ToolManager, application developers can easily switch between operating modes. In
this release of NCSA Portfolio, we include a PickTool to manipulate 3D models in a
scene and a ViewTool for changing the View within a scene. Application developers
can also write their own Tools to use with the ToolManager.

• Collaborative real-time updates: Imagine two people starting Java 3D programs on
two different machines, and have either of them control the program!  NCSA Portfolio
includes networking objects that allow you to easily create real-time collaborative
applications.

• Canvas snapshots: Take a snapshot of the current Canvas3D view and save it as a
JPEG file!

• Record and replay of application events: The NCSA Portfolio library can record the
actions of Tools controlled by the ToolManager. Once the actions are recorded and
saved, they can be loaded and replayed. You can use this to script live animations.



Page 47

AAPPPPEENNDDIIXX  BB::  UUSSEERR  DDAATTAAGGRRAAMM  PPRROOTTOOCCOOLL

UDP (User Datagram Protocol) is a connectionless protocol that provides a way for
applications to send encapsulated raw IP Datagrams and sends them without having to
establish a connection.  Many client-server applications that have one request and one
response use UDP rather than go to the trouble of establishing and later releasing a
connection.

In UDP, you create a message to be sent, then create a UDP socket and tell it to send the
message to the destination.  Once you have sent it, the socket cannot be used again.  You will
need to create a new socket if you want to send more data (or packets).

At the destination end, the application will be listening for data on a UDP socket as well.
Since the data from a UDP transmission is, by nature, a single packet, then we know that once
we have received it, it can be processed immediately.  However, just as in sending data, if we
want to listen for more information on that same port, then we must create a new UDP socket
to replace the one that has just been used.

Therefore, if we need to create a new socket for each send and receive, then the
communications can only be one way.  That is, if the initial sender wanted to know if an
answer had been sent, then it too must create a listening UDP socket just like the receiver.

Once the receiver has been given the data, there may still be other problems.  UDP does not
include any form of error correction apart from what the lower-level standards may have
included.  Therefore it is possible that the data you may receive nay have been corrupted in
some way.  You will need to make sure either that your custom protocol has some error
management built in, or that the application knows how to detect and ignore erroneous
messages without crashing.



Page 48

AAPPPPEENNDDIIXX  CC::  VVEECCTTOORR  OOFF  SSIIMMUULLAATTOORR  DDAATTAA

Field element / range (doubles) Data Represented

0-2 Vehicle Position x, y, z values

3-6 Vehicle Orientation (Quaternion)

7-9 Vehicle local velocity

10-12 Vehicle angular velocity

13-17 Motor torque

18-20 Vehicle target

21 Battery voltage

22-23 Accelerometer totals

24 Compass angle

25 Camera pan value

26 Camera tilt value

27 Camera zoom value

28-32 Motor current

33-37 Motor voltage

38-40 Derived accelerometer 1 u, v, w values

41-43 Derived accelerometer 2 u, v, w values

44-46 Raw accelerometer 1 u, v, w values

47-49 Raw accelerometer 1 u, v, w values

50-52 Compass magnetic disturbances



Page 49

AAPPPPEENNDDIIXX  DD::  SSOOFFTTWWAARREE  JJOOYYSSTTIICCKK  DDEESSIIGGNN



Page 50

AAPPPPEENNDDIIXX  EE11::  SSCCRREEEENNSSHHOOTT  OOFF  TTEELLEEMMEETTRRYYPPAANNEELL



Page 51

AAPPPPEENNDDIIXX  EE22::  SSCCRREEEENNSSHHOOTT  OOFF  PPOOSSIITTIIOONNPPAANNEELL



Page 52

AAPPPPEENNDDIIXX  EE33::  SSCCRREEEENNSSHHOOTT  OOFF  DDAATTAAPPAANNEELL



Page 53

AAPPPPEENNDDIIXX  EE44::  SSCCRREEEENNSSHHOOTT  OOFF  MMEESSSSAAGGEESSPPAANNEELL



Page 54

AAPPPPEENNDDIIXX  EE55::  SSCCRREEEENNSSHHOOTT  OOFF  NNAAVVIIGGAATTIIOONNPPAANNEELL



Page 55

AAPPPPEENNDDIIXX  FF::  CCOONNTTEENNTTSS  OOFF  CCDD

There are four main directories in the CD.  These are java3D, software, src and thesis.  There
is also a file called bookmarks2.html.  It contains links to all the Internet sites used during the
project.

Directory Files / Subdirectories Description

Java3dAPI-documentation This folder contains the documentation of all the
Java3D API 1.1 classes and libraries.

java3d-examples This folder has a few useful examples relating to
use of Java3D.  Prominent among these is
Interaction, which shows manipulating of mouse
behavior.

Java3D

java3d1_1_3_doc.zip Zip file for the Java3D API 1.1 Documentation
Htmlconv12.zip HTML converter for the Java 2 Plug-In.
ncsaportfolio13beta3.jar Archive file containing NCSA Portfolio classes.

Also contains documentation similar to Java or
Java3D documentation.

software

doc The documentation for the operator interface is
contained in this directory.  It is generated using
the javadoc utility in Java.

operInterface Java source code that has been used for the
development of the operator interface.  There are
six prominent directories – client, server,
menus , components, control and joystick.

kambara3dq The simulator executable
config.ini Configuration file for the simulator.

src

images All the images used in the thesis are stored in this
directory.  The images have been further divided
in terms of the chapter that they belong to.  There
are a few backup images and a folder containing
some interface snapshots of 1999.

XfigDiagrams The xfig figures used in creating the images for
the thesis are contained in this folder.  They
include

Thesis.PDF My thesis document in PDF format.
Thesis.doc My thesis document in WORD format
Thesis-Outline.txt An outline of the thesis that was constructed at

the beginning of the process of the development
of the thesis.

thesis

dsw-kambarainfo.txt David Wettergreen’s introduction to the
Kambara project.


