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ABSTRACT

The aim of this project is to design advanced operator interfaces for underwater
robots and to develop a specific instance for ANU’s vehicle, Kambara. The
interfaces receive state information from the robots and present it to the operator
in intuitive graphical representations, while receiving commands from the

operator.

The motivation for this project stems from the fact that underwater robots
require adequate guidance and control to perform useful tasks. The eventual
goal is to enable a user to command an underwater robot to hold station on a reef
or swim along a pipe, and to have that user observe the results via real-time
updates of a GUL

This project has developed a system which uses Java 2 and it’s communication
method RMI to provide cross-network capabilities. This allows multiple users to
view the state of the robot, while having only one user control it. Specifically, the
cross-network capabilities allow updates of the robot’s state information at a rate
of 10 Hz if the client receives packets directly, but only 4 Hz if a server is present
in the system. State information is transmitted using UDP packets, whereas
control requests make use of RMI methods. A basic control system is

implemented, allowing a point-and-click method of operation.

Additionally, a three dimensional model of the robot was created using Java 3D,

giving the user an intuitive sense of position.
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GLOSSARY

ANU Australian National University

API Application Programming Interface

AUV Autonomous Underwater Vehicle
GUI Graphical User Interface

JDK Java Developer’s Kit

JRE Java Runtime Environment

Kambara ANU’s Underwater vehicle, named after the Aboriginal word for

crocodile.

Object An object is a self-contained element of a computer program that
represents a related group of features and is designed to accomplish
specific tasks.

RMI Remote Method Invocation

RMIC Remote Method Invocation Compiler

TCP/IP Transmission Control Protocol/ Internet Protocol. A connection-

oriented approach to communicating between two entities.

UDP User Datagram Protocol. A connectionless approach to transporting

packets between entities.

URL Universal Resource Locater

VM Virtual Machine
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Chapter 1

1. INTRODUCTION

At the Australian National University, an autonomous underwater vehicle,
Kambara, is being developed for tasks in exploration and inspection. The
objectives are to enable submersible robots to autonomously search in regular
patterns, to follow along fixed natural and artificial features, and ultimately to
swim after dynamic targets. ‘These capabilities are essential to tasks like
cataloguing reefs, exploring geologic features, and studying marine creatures, as

well as inspecting pipes and cables, and assisting divers.

The underwater vehicle is named Kambara, an Australian Aboriginal word for
crocodile. Kambara’s mechanical structure (shown in Figure 1) was designed and
fabricated by the University of Sydney. It is a simple, low-cost underwater
vehicle suitable as a test-bed for research in underwater robot autonomy. At the
Australian National University, the task has been undertaken to equip Kambara

with power, electronics, computing and sensing [ 1 ]

Figure 1: Kambara.

During the initial testing stages, an optical fibre tether is in place, running from
the vehicle to the system controlling Kambara. It is desired that in the long-term,

this tether is removed to allow for remote, autonomous activity.



1.1. Aim

The aim of this project is to design advanced operator interfaces for underwater
robots and to develop a specific instance for ANU’s vehicle, Kambara. The
interfaces will receive state information from the robots and present it to the
operator in intuitive graphical representations. The interfaces then receive
commands from the operator via mouse, keyboard or a combination to indicate

the desired actions for the robot.

1.2. Motivation

Underwater robots require adequate guidance and control to perform useful
tasks. The operator interface interprets telemetry and presents a numerical
expression of vehicle state. It will provide a method for generating commands to
the vehicle interface for direct teleoperation of vehicle motion and for
supervisory control of the on-board modules. The eventual goal is to enable a
user to command an underwater robot to hold station on a reef or swim along a
pipe, and to have that user observe the results via real-time updates of a graphical
user interface (GUI).

1.3. Scope

Specifically, the GUI being developed should provide a more intuitive
representation of information than similar Autonomous Underwater Vehicle
(AUV) interfaces presently being developed in the world. The exact form of this

representation (see Figure 2) is directly related to some of the specific software

objectives.
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Figure 2: Screenshot of the Kambara interface.



1.3.1.  Software Goals

The software requirements of the project are to:

* present the robot telemetry information to the user in an intuitive graphical
representation,

* develop the interface to have cross-network capabilities, allowing multiple
users to view the state of the robot, while having only one user control it.
Specifically, the cross-network capabilities will allow updates of the robot’s
state information at a rate of at least 10 Hz.

* provide a three dimensional model of the robot, to give the user an intuitive
sense of position,

* develop a control system for the robot which allows simple point-and-click
control from the interface,

* provide the ability to view footage from the robot’s onboard cameras,

The cross-network portability is an important step that will make the interface
more easily accessible for research purposes, as well as gaining outside interest in
the project. All other robotics groups examined develop their interfaces with one
viewer in mind; whereas the Kambara interface will allow multiple users to view

the state of the robot, while allowing one user to take control.

The control system for Kambara allows for simple point-and-click control from
the interface. By using Java 3D, consideration was made for long-term

development, when alternative devices may be used for control.

Video is likely to be displayed to the user by using a digitiser to continually refresh
an image which will be presented in the GUI. However, this relies on the
submarine development having reached the point, for this to happen. Otherwise,

an image placeholder will be used in anticipation of a video stream.

1.3.2.  Java and the use of Java 3D

The use of the Java programming language is one important aspect where the
Kambara interface stands out from others. No other AUV interfaces that have
been examined so far make use of Java. In addition to using the Java

programming language, the Kambara interface utilises the very latest



developments of this language. The most recent version of Java (version 2),

contains Swing libraries which enable exciting new developments with a GUIL

Finally, very few interfaces have 3D models to assist the user. The Kambara
interface will make use of the emerging Application Programming Interface (API)
known as Java 3D to provide the user with an intuitive representation of the

submarine’s position.

Inevitably, when developing an interface for any kind of vehicle it is necessary to
provide a visual representation of it in order to assist an operator Many ground
based robots make use of two dimensional views of the vehicle, often from two
different angles (perhaps a top view and a side view). However, it seemed more
appropriate to use a 3D model for Kambara, due to the fact that it has five
independent degrees of freedom. This comes about from the fact that Kambara’s

five thrusters enable roll, pitch, yaw, heave and surge manoeuvres.

Java 3D also provides the capability to receive inputs from some of the latest
input devices, such as six-degrees-of-freedom tracker information. This allows

for the use of cutting edge technology to control the robot.

14 Thesis Outline

Bearing in mind the aims of this project, the details to come have been based on
firstly examining aspects relating to GUI’s in general. Following this is an
examination of the various stages of the Software Development Life Cycle

needed to complete such a project.

Chapter 2 investigates related projects at other research labs and organisations.
This includes the examination of interfaces from not only AUVs but many other
sources also. Following this, the human-computer interaction considerations for

this project are investigated.

In Chapter 3, the reasons for selecting the Java programming language are
discussed, prior to giving an introduction to the Software Development Life
Cycle (SDLC) upon which this project is based.



The initial stages of the SDLC, analysis and design, are detailed in Chapter 4,
discussing the specifications determined for the project, and the method for

completing the determined tasks

This is then continued in Chapter 5 with the implementation section. Some of
the problems encountered along the way are discussed, along with the application
of the evaluated design. Following this, Chapter 6 compares the results of

implementation, with the software objectives of the project.

Conclusions are drawn in Chapter 7, along with a discussion of the work which

could continue using this project as a basis.

Clearly, when undertaking any project, it is important to be aware of the context
in which the work is being done. The next chapter considers other work relating
to the development of GUIs as well as considering the impact that the use of the

GUI will have on a uset.



Chapter 2

2. RELATED WORK AND HUMAN-COMPUTER INTERACTION

Examination of other existing AUV projects and robotics projects in general have
been important in designing the GUI for Kambara. While the information on
other AUV interfaces is scarce, there are many other sources of information
which can be used to place the Kambara GUI in an appropriate context. It has
also been beneficial to consider human-machine interaction issues when

developing the Kambara interface.

2.1 Related Work

2.1.1.  Comparison to AUV interfaces

Very few other AUV developers provided information about the specifics of
their vehicle’s interfaces. Despite this, information was gathered about the
interface for the AUV upon which Kambara was based. This vehicle, called
Oberon, is based at the University of Sydney. The code for this project was
written in Visual C++ and made extensive use of TCP/IP (see Glossary)
communications to allow for an event-driven paradigm to be implemented. The
communications for Kambara was based along similar lines, however an RMI

connection was used (see Appendix A).

2.1.2. Comparison to general interfaces
In addition to studying the interfaces of underwater vehicles around the world,
additional methods have been used to examine the types of graphical

representations that might be necessary on Kambara.

2.1.2.1. Other Robotic or Simulator Interfaces

The interfaces of various telerobots at NASA were examined, and provided some
ideas for the GUI layout as well as methods of control for Kambara. In
particular, a software engineer at Jet Propulsion Lab at NASA (Paul Backes) is
developing a similar system for Internet-based visualization and command
sequence generation to be sent to Mars landers and rovers [ 19 ]. This is done

using Java 2 and Java3D.



Remus (Remote Environmental Monitoring Units) is a developmental tool of the
Oceanographic Systems Lab of the Woods Hole Oceanographic Institution, to
perform underwater environmental research. [ 11 |. The interface for Remus is
shown in Figure 3, and while not written in Java, it does demonstrate ways to
represent a lot of telemetry data coming from an underwater submarine. Of
particular note, it is apparent that a 3D model has also been used by the REMUS

team. This reinforces the choice to use a 3D model for the Kambara system.
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Figure 3: Host software for the ROV named REMUS.
Another project, called NOMAD (at the Field Robotics Center at Carnegie
Mellon University) is using Java 2 in its effort to develop robots for autonomous
search of Antarctic meteorites. It is also used to demonstrate advanced control,
navigation, and search technologies, as a terrestrial analog to robotic exploration
of Mars and the Moon. This uses a tabbed pane similar to that used for
Kambara, and provided a useful comparison [ 16 ]. It is apparent from Figure 4
that for a ground-based vehicle such as the NOMAD, the developers selected a

2D view rather than the 3D view opted for in Kambara’s case.
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Figure 4:

State Information for the robot Nomad.

Game and Dashboard Interfaces

Even games that simulate submarines and aircraft were observed to give an idea

of the ways in which real-time data can be represented and controlled.

The

interface below indicates the way submarines are represented in a submarine

simulator [ 15].
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Figure 5: Intetface for the submarine simulator game 688 Hunter/Killer.
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Finally real-life dashboards such as those in cars, submarines and yachts were

observed, again providing alternative representations of certain parameters.



2.2 Human-Computer Interaction

Interface design ([ 12 ] and [ 13 |) has a large affect on user satisfaction and
influences the amount of time an operator spends with the robot. The aim was to
design an interface that maintained the users' interest. This meant the interface
had to be simple and intuitive but still provided access to all the functions of the

robot. To accomplish this two main areas were examined:

1. Reducing the response time;

2. Making the interface easy to read and follow;

2.2.1.  Reducing the response time.

In today's society people are often impatient and like to achieve their goals
quickly. Reducing the response time means that information can be sent and
received quickly, allowing more operations to be completed in less time.
Although the response time is mainly dependent on the users' computer and
server, over which there is no control, there are a few design aspects that will help

with the fast relay of information. These are:

Using a tabbed pane - This means that when the user seeks more information (via a
separate pane) the computer has already created all of the objects on it, and it is a
relatively fast transition to the new page. This makes the response time shorter

encouraging users to test all of the functions of the robot.

Simplifying the representation of data — By using graphical components, a user can
easily identify the information on hand. This is compared with an interface

consisting purely of numbers, which is quite difficult for the viewer to interpret.

2.2.2. Making the interface easy to read and follow

If an interface design is too complex with a lot of text or instructions then it is
highly likely that the user will become quickly discouraged. For this reason it was
attempted to make the interface as simple and intuitive as possible. This was done

in a number of ways.

Rednced text - People tend to find it easier if the text is reduced to only the

essential information; the reader can then scan the screen quicker.



Reducing the need to seroll - This was achieved by making all of the important
information, for a particular aspect of Kambara, visible on a tabbed pane.
Scrolling is still necessary in the message areas, however this is understandable

due to the frequency with which a new message may be reported.

Reducing irrelevant components - Users can become confused if there are too many
ideas on the screen. To reduce confusion components were removed if they
were:

* Irrelevant to that particular pane,

* Out dated or not fully functional, such as the new control modes planned.

Labeling each component — Every GUI component’s title was placed at the top of it’s
own self-contained frame. This ensures that a user can immediately tell what they

are viewing,

Using Tooltips — Many of the GUI components make use of the Java tooltip
feature. This means that when the user places the cursor over a component, a
small label displays relevant information about that component. Of course, the
fact was also considered that users who frequent the interface may find this quite

distracting. For this reason, the tooltips can be turned off from the menu bar.

2.2.3. Resulting considerations
By considering the aforementioned factors, this left a simple, easy to follow

design.

Consistent designs for each template - To reduce user confusion all of the different

screen permutations have a similar design. They all have:

* The menu bar at the top, to allow for completion of general operations from
any pane.

* The 3D model and video image constantly available. It was decided that
these two items would be useful regardless of the pane the user is viewing.

* The message panel at the bottom. This displays warning messages, as well as

allowing a user to track important aspects of their tasks.



2.2.4. Basic design principles

There are some fundamental aspects of a GUI which relate to the way in which a
user perceives the information on display to them. Of these, space is the most
important, with proximity, alighment and contrast also being important

considerations [ 7 |.

2.2.4.1. Space

Space is the most effective element that can be used to provide support for the
user in their cognitive processing of visual displays. Spatial relationships are
perceived precognitively - that is, without conscious effort. They do not have to

be decoded and interpreted, as do colour cues, typographical cues, and so on.

While it was difficult to find space within the Kambara GUI, due simply to the
number of GUI components to be displayed, some measures were taken. As
discussed earlier, each component was contained within it’s own bordered frame,
with an accompanying title. These frames typically had 5 pixel gaps both inwards
to the component and outwards to other frames. This assists with the feeling

that the user space is not cluttered.

2.2.4.2. Alignment
Human beings petceive items that are aligned vertically and/or hotizontally to be
more organised than those that are not, and people process, learn and remember

organised information better than unorganised information.

Poor alignhment creates too many perceptual "edges" in a display, so better

alignment results in fewer features to be processed.

2.2.4.3. Proximity

Elements that are close together in a visual display will be assumed to be related,
and conversely, elements that are far apart will not be seen as related to each
other. When elements are not clearly differentiated by proximity, the audience has
to group them consciously by focusing on them, taking in their meaning, and

deciding which ones go together.



It was for this reason that a tabbed pane was used for the Kambara interface.
The label on the tab immediately gives the user an idea of what they are viewing,

and components have been grouped in to themes where possible.

Equal division of space results in poor proximity, as it is not clear which elements
are related. Sometimes more or less space was used between elements to indicate

which ones go together by virtue of their relative proximity.

2.2.4.4. Contrast

Contrast exists in several forms, the primary being:

*  size,
* colour,
* shape.

Contrast can be used to make elements more or less dominant in the display,
influencing the order in which they are processed and their perceived importance
or urgency. For this reason, important features of the Kambara interface are
both large and colourful. Examples include the 3D model which is very
important to the control of the vehicle, and the torque controls which are also of
great relevance. Also, the “Stop” button is very apparent, coloured red in the

bottom right corner (see Figure 2); in case the user wishes to halt everything.

Insufficient contrast means that more and more treatments are necessary to make
important information stand out. By using contrast that is sufficiently strong it is

easy to use a few simple, easily-perceptible treatments.

With the context of the project in mind, and having considered how the final
result would affect the user, it was necessary to move to the next stage of the
interface’s development. This meant selecting a programming language that was
appropriate to the task at hand, and then entering in to the Software
Development Life Cycle (SDLC).



Chapter 3

3. PROGRAMMING LANGUAGE SELECTION AND THE
SOFTWARE DEVELOPMENT LIFE CYCLE

The programming language selected for any software development project can
either be a tremendous aid or, in the case of poor selection, a profound
hindrance. With this in mind the first, and one of the most important, decisions

that was made on this project was the choice of the programming language, Java.
3.1 Programming Language Selection

3.1.1.  Comparison of Programming Languages

C and C++ are fast and powerful low-level languages. They have a huge installed
base, and most of the wotld's consumer software is written in these two
languages, probably because of the importance of speed for the consumer

market. C++ was certainly considered an option on this project [ 9 ].

Java is the newest of the languages considered. It incorporates many software
engineering principles (object-oriented, strongly typed, good exception handling).
It is the only language suitable for writing applets that run on top of browsers,
and this is a fact that has done more to boost Java's popularity than anything else.
Java's cross-platform compatibility and convenient APIs for networking and

multi-threading also work in it’s favour.

Visual Basic (VB) allows developers to construct programs by pasting various
pre-built components into a workspace. VB has been widely adopted by the
business world for building front-ends to databases and building prototypes for
programs that will be later written in other languages. VB is quite restrictive in its

network capabilities compared to other choices. [ 10 ]

So after examining a variety of potential programming languages, the two most
likely to be used were Java and C++. In the end, Java was selected due to the

numerous advantages it offered for developing the Kambara interface.



3.1.2. Java's Advantages

The Java programming language has many advantages over other languages. It is
object oriented which allows programmers to design reusable components easily.
Java has built in garbage collection which frees memory automatically. Plus, Java
includes built in data structures and algorithms for creating GUIs and
communicating with other computers over a network. Additionally, the
emergence of the API Java 3D was going to make it much easier to develop a 3D
model for Kambara. This is as compared to developing in the slightly lower level
package OpenGL.

Another advantage Java has over other languages is its portability. When a Java
program is compiled, it is not compiled into native machine code; instead it is
compiled into byte code which can be interpreted by a Java Virtual Machine.
Once a specific computer architecture has a Virtual Machine designed for it, the
computer can execute any Java program that has been compiled into byte code.

This portability becomes evident in web based applications. Although Java's
portability gives it a clear advantage over other languages, this feature also creates

one of Java_s biggest disadvantages.

3.1.3.  Java's Primary Disadvantage

Although Java's ability for producing portable, architecturally neutral code is
desirable, the method used to create this code is inefficient. As mentioned above,
once Java code is compiled into byte code, an interpreter called a Java Virtual
Machine, specifically designed for a computer architecture, runs the program.
Unlike natively compiled code, which is a series of instructions that correlate
directly to a microprocessors instruction set, an interpreter must first translate the
Java binary code into the equivalent microprocessor instruction. Obviously, this
translation takes some amount of time and, no matter how small a length of time
this is, it is inherently slower than performing the same operation in machine

code.

This is not as much of a problem as it used to be though. Java is being
continually developed and optimised, and it’s speed disadvantage is slowly but

surely becoming less of a problem. It is sufficient to say that Java is fast enough



to accomplish the tasks required of the Kambara interface, and it will only get

faster.

3.1.4. Summary of Java’s Selection

In order to complete the software objectives required as part of the Kambara
GUI, Java was selected. This was done for the following reasons. It:

_ is portable, that is it has cross-platform compatibility,

has convenient APIs for networking and 3D programming,

is easy to use for GUI development, and
_ is acceptably fast for the tasks at hand.

The specific software used for this project was the Java Developer’s Kit (JDK)
version 1.2.1, and the Java 3D API version 1.1. This API is layered on top of
OpenGL version 1.1 (or greater).

Having decided upon a language, the software development could commence.

The starting point for this can be understood better by understanding the SDLC.

3.2 Software Development Life Cycle (SDLC)

There are a number of different models which are used to describe different
approaches to software production (see [ 17 ] and [ 18 ] ). These models are
neither rigid, nor prescriptive and are treated chiefly as frameworks. The most

widely quoted model is that of the Software Development Life Cycle (SDLC) (see
Figure 6).

This model describes the software production process as being divided into a
sequence of phases, which in turn can be divided into subphases. A fairly simple
generic form of the SDLC is described below, and as can be seen in Figure 6, is in
a format that explains the term ‘waterfall model’ that has sometimes been applied

to it.
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Figure 6: Overview of Software Development Life Cycle.

The major phases of the life-cycle can be identified as:

(1) Analysis, which is concerned with identifying what is needed from a system.

(2) Design, which is concerned with describing how the system is to perform its
tasks so as to meet the specification.

(3) Implementation, which elaborates upon the design and translates this into a
form that can be used on a computer system

(4) Validation and Verification, which is concerned with performing a validation
of the implementation, in order to demonstrate how well it complies with the

original requirements and the design.

In order to develop a GUI for Kambara, clearly it is necessary to know about the
communication with the vehicle. Knowledge should be gained about the types of
data to be output from the vehicle to the interface. Also, the types of control
commands that may need to be sent by the interface should be identified. So in
order to discover what was needed from the system, it was necessary to enter in
to the first phase of the SDLC, the Analysis phase. This phase would be
followed by the Design phase, however it should be remembered that due to the
continuously iterative nature of the process, these two phases run almost

concurrently.



Chapter 4

4. ANALYSIS AND DESIGN

The analysis phase of the SDLC consisted of evaluating the type of data coming
from the submarine, known as state information. Following this, the types of
control commands to be sent to the vehicle were evaluated, and it was upon this

basis that a design was developed.
4.1 Analysis

4.1.1.  Definition of State Information

Prior to coding any components it was necessary to find out exactly what
information would be required to be transmitted to and from the submarine.
These initial analysis specifications are shown in Table 1. Note that an item is
considered to be raw data if it comes directly from an onboard sensor on
Kambara, whereas derived data is calculated based on the raw data. This data was
expanded upon to wind up with the vector of values transmitted by the robot

each time (see Appendix B).

The system parameters provided a good idea of the types of data to be
represented, and allowed for more concrete ideas about ways to visualise the data.
Some initial sketches were also made of possible ways to represent various
aspects of Kambara’s data and these resulted in some decisions on what was

desired in the coding phase.

This led into a searching phase of the project, during which the Internet was
scanned for various components which might provide useful building blocks. It

is was important at this stage to bear in mind the software goals stated eatrlier.



Type of Item Number of item Byte
Data contribution
Raw Accelerometer (sensor) 6(2x l&&l&) 24
Raw Velocity (sensor) 3,901 12
Raw Compass position 3 (roll, pitch, yaw) 12
Raw Compass magnetic disturbances 3 (By, By, B, 4
Raw Compass Temperature 1 4
Raw Compass Field Distortion 4
Raw Depth 1 4
Raw Motor voltage 5 20
Raw Motor current 5 20
Raw Battery voltage 1 4
Raw Camera 3 (pan, tilt, zoom) 12
Raw Computer status 64 256
Derived Accelerometer (Kambara) 3 12
Derived Velocity (Kambara) 3 12
Derived Position (Kambara) 3 12
Derived Motor command torque 5 20
Derived Tracker State Template(256) + 296
Feature(24) +
Peak(16)
Derived Controller State 100 (vector of 100 | 400
numbers)
Total: 1128

Table 1: Evaluation of parameters required for representation.

Once the optic fibre tether is removed from Kambara, an image will also need to
be transmitted along with this information. During the testing phase, images will

come directly from video streaming to the client.

It should be noted that only some of these features were implemented during this
initial development of the GUI. For example, tracker and feature state were not
considered further due to the look of an image feed on which to base this

information.

4.1.2.  Planning for Control Modes

In order to facilitate future planning, it was necessary to define the ways in which
a user would be able to use Kambara’s GUI. Prior to explaining these modes any
further, it is important to remember that only one user at a time would be

permitted to actually manipulate the robot.

The four control modes decided upon were:




4.1.2.1. Observer Mode

This is the mode entered by the users who are not in control of the robot; it
enables them to watch the activities of the operator. While this is technically not
a control mode, it is the state in which a user would be in, if they have not
successfully gained control of the vehicle. This mode allows viewing of all of

Kambara’s state information.

4.1.2.2. Individual Control Mode

This mode would be used when it is necessary to fire individual thrusters. This
may be useful if, for example, Kambara is in an awkward position next to a rock.
This would also apply to the use of manipulating items such as the pan of the

camera.

4.1.2.3. Teleoperation Control Mode
The idea behind this mode is that the user will indicate the desire to perform
actions such as move “up”, “down”, “left” or “right”, and all of the thrusters will

be coordinated to carry this out.

4.1.2.4. Supervisory Control Mode
This is a control mode similar to that used with the rover that landed on Mars in
1998. This form of control effectively allows the user to plan a route. This stage

was planned for but not implemented.

Time-delayed teleoperation is laborious and unpredictable for remote operators.
A better mode of operation is supervised teleoperation, or autonomous
operation, in which the robot itself is responsible for making many of the

decisions necessary to maintain progress and safety. [ 8 |.

4.1.3.  Analysis Summary

The analysis gave an indication of the data that needed to be represented. A
subset of this data was used in order to implement the system, with anticipation
of more data being available to the GUI at a later point in time. With this basis in

mind, the structure of the Kambara GUI system could then be examined.



4.2 Design
The design phase is concerned with describing how the system is to perform its
tasks so as to meet the specification. The project was effectively split in to stages

which are:

(1) Network Architecture, and

(2) Software Architecture.

This logical separation of tasks was necessary in order to aid the design process

by making the tasks more distinct.

4.2.1. Network Architecture

4.2.1.1. Long-term Goal for Network Design

The network architecture of the eventual system was considered so that plans
could be made to interface the client to the server, and to have that in turn
communicate effectively with the submarine. The network system planned for in

the long-term is shown below in Figure 7.
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Figure 7: Long-term Network Architecture for the Kambara System.




The dotted circle in Figure 7 refers to the Web server which will be used for
initialisation. In the event that a user is running off a Java server other than that
which the Web server is based on, the initialisation process will still need to be
run once. However, from that point on, all client-server communication will be
between the client applet and the Java server via Remote Method Invocation
(RMI). A simple socket connection will be used between the Java server and the
submarine onboard computer (VxWorks) since RMI only works between two

Java objects.

4.2.1.2. Short-term Goal for Network Design
The system depicted in Figure 8 is that which is presently implemented.

Client 2

UDP Packets
RMI
Connection RMI
Connection
a0
State Information
Control State Distributor
Java Server

UDP Packets

Kambara Robot

Figure 8: Short-term Network Architecture for Kambara System.

This essentially differs from the long-term goal in that the client is not built as an
applet, but rather as an application. An applet will need to be used in order to
allow the interface to function over the Internet, and this will bring with it

additional security considerations (see section 7.2.2).

The fundamentals of the network are the same in both long and short term cases.

There will be multiple clients connecting to a server (also written in Java), which



in turn will be receiving state information from the robot Kambara. Each of
these components as well as the network connections between them are

explained in greater detail below.

Server
The easiest way to understand the network architecture being developed is firstly

to examine how the server functions.

In general terms, the server is responsible for keeping track of and distributing
the state information from the robot, as well as issuing control commands to the

robot from “only one” of the clients.

State Information Distributor

Each client wishing to receive information about Kambara must register with the
server. This is done via a RMI connection which can always be used for this
purpose. The client opens a connection, and sends a request for state

information.

If the client is not already registered then the server will place their address and
port number in a queue as depicted below in Figure 9. All clients listed in that

queue will then receive UDP packets containing the latest state information.

Client 1 Client 2 Client N
Address Address Address
Port Port Port
AL
Latest State Information Packet

State Information Distributor

Figure 9: State Information Distributor.

An important point to note here is that it is the latest packet coming from
Kambara that is stored at the server. By storing the packet, and not extracting the

data from it, the details of the state information itself is abstracted away from the



server. 'The server is simply responsible for storing the latest information, and

passing it on to those who request it.

Control State
The focus of this project has been to develop a system which allows multiple
users to view the data while allowing only one user to control the robot at a time.

This ensures that there are no conflicting commands.

The server is responsible for ensuring that only one client at a time has the ability
to control the robots, via the control state stored on the server. Essentially, the
methods which allow a user to manipulate Kambara are synchronised such that

while one client is controlling them, no other users are allowed to.

In the event that a control request arrives at the server from a client other than

the controller, a message of refusal is transmitted to the requesting client’s GUL

Server Threads

In order for the server to function correctly, it must be listening for both control
and registering requests from the clients, while continually receiving a stream of
packets from Kambara. Also, these packets must be sent out to all registered

clients as soon as they are received.

The first thing to discuss is the reception of control requests at the server. The
mechanism for either asking for control, or sending a command is through the
RMI connection discussed previously.  Since the client is directly calling a
function from an object on the server, this can happen at any time during the

servet’s actions.

The reception and distribution of state information packets is accomplished by
using two threads at the server. The first of these, called the NesworkServer thread
simply runs through a loop whereby a packet is received, at which point the
second thread running is notified. This second thread, called the StatelnfoManager,
is responsible for taking the new state information, and sending it out to each of

the registered clients.



Client
An overview of the client’s function is, to receive state information packets, and
update the GUI with the received information. In the event that the client has

control of the robot, the ability is also provided to issue commands to the robot.

The functions discussed above can be separated in to two categories, signals

arriving at the client, and signals being sent by the client.

Client Output Signals

The first step for any client wishing to receive information is to register with the
server. This is accomplished by using the RMI connection to call the server’s
method addStateInfol istener, which places the client’s address and port number on
to a queue. This same connection can be used to disconnect when the client’s

session has finished.

If the client is in any mode other than ‘Observer mode’, then they will have the
ability to issue commands to the server. This is once again done via the RMI
connection, and all of the functions called are defined within the server object
ControlState.  Different types of commands can be issued depending on the

control mode involved.

Client Input Signals

Once a client is registered with the server it will begin to receive state
information. The information comes to the client in the form of datagram
packets from the server, via the protocol known as User Datagram Protocol
(UDP). This is essentially an unreliable protocol in that the sender never knows
whether or not the packet actually reaches it’s destination; for this reason packets
are occasionally lost. However, this loss of confirmation is acceptable in a system
such as Kambara’s in which information is being continually sent. This must be
weighed up against the increase in speed which is gained by not needing to

confirm every packet which is sent.

The UDP packets are each constructed at the server with the client’s address and
port number, obtained through the registration process discussed earlier. These

can then be used to update the GUI components.



Client Threads

The client needs to perform three major tasks:

(1) Send registration, exit or command signals,
(2) Receive state information packets, and

(3) Update the GUL

The first of these tasks is accomplished using RMI, whose commands can be sent

at any time. For the second and third tasks, a thread is required for each.

The thread responsible for receiving packets is known as KambaraClient. This

<

simply repeats the process
update the GUI .

¢ receive a packet then signal the second thread to

The second thread is called OwtputKambaraData, and it is responsible for updating
the graphical components of the GUI with the new information. The updating
of graphics can be quite time consuming in the context of a system where
information is continually streaming in. It is for this reason that a separate thread

is used.

Given an explanation of the client and server, it is now useful to consider the big
picture, that is, exactly what happens in terms of command flow through the

system.



Flow of Data Within The System

A typical flow of commands throughout the system is shown in Figure 10.
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Figure 10: Typical Flow of Data in Kambara’s system.

Each stage is discussed below, however the packets being sent from the robot to

he server are considered to be continuous.

(1) The client sends a registration command by an RMI connection, indicating
that they wish to receive the state information.

(2) The server takes the address and port number of the client, and places it in to
the vector of client’s to receive information.

(3) Each state information packet received by the server is then sent back to the
client via a UDP packet.

(4) A registered client may wish to ask to control the vehicle.

(5) The requesting client is either sent back an error message indicating that the
vehicle is presently being used by someone else, or is sent a confirmation, at
which point the client’s control mode changes as is appropriate. The client

may relinquish control by returning to observer mode.



By understanding the different ways in which the server and client operate, it is
now easier to gain an understanding of the software structure used to form these

two entities.

4.2.2.  Software Architecture
The software architecture is different for the primary components of the
Kambara GUI system. It is best described by separately considering the client

and server.

4.2.2.1. Software Architecture of the Kambara Client

The main module for the client is known as MammKambaraClient and is essentially
just an object in which the three primary subcomponents are created. An
overview of these subcomponents is now given before describing each of them in

more detail.

Overview

Firstly there is the object KambaraClient, which deals primarily with the network
details of the client. It is responsible for communication between the client and
the server. This creates those GUI components with network components, and
links them with the main GUI panel KazbaraMain.

KambaraMain is essentially the basis for the GUI components. This is where all of

the menus and graphical components are created and stored.

Finally there is a thread object called OwtputKambaraData which runs when a
network connection is established. This is responsible for continually updating

the GUI components with any new state information received.

Network details (KambaraClient)
This subcomponent consists of the thread discussed eatlier in section 4.2.1.2,
Client Threads. This is responsible for setting up the RMI connection with the

server, receiving a packet, and signalling a second thread to update the GUL



GUI components (KambaraMain)
KambaraMain is the panel in which all of the GUI components were built. The
way that this component is handled is quite important when considering whether

the implementation will be an application or an applet.

By creating everything on a panel, this panel can either be inserted in to a frame
in order to crate an application, or alternatively it can be inserted in to an applet

when that function is desired.

The initial process taken in this desigh was to create a frame called
KambaraMainFrame which was created as one of the three primary
subcomponents within the client MainKambaraClient. KambaraMain is then created
as a panel within KambaraMainFrame’s layout. A visual representation is shown in

Figure 11.

Essentially the software design for the GUI, which is based in KambaraMain, has
been divided in to a tabbed pane, a 3D model, a video feed placeholder, a menu
bar and a message area. Within the tabbed pane, the information is divided into
separate panels depending on common themes of the various parameters. This
grouping is quite logical, based purely on what information a user would want to
see concurrently. It should be noted that only a selection of the panels and

components are indicated in Figure 11.
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Figure 11: Software Architecture for the client side Kambara GUI.

KambaraMain is essentially the central object of the system, since a variable based
on this initial object is passed to all of the subsequent components and panels.
Before continuing any further, it is important to consider one other object which
is created initially as part of a MaimKambaraClient object, namely KambaraData.
KambaraData contains the fields to store data each time Kambara sends

information.

Throughout development, the structure KambaraData was used as an intermediate
between the receiving stage and the output stage. Eatly on, only random values

were written to this structure, and this ensured that when real submarine data or



simulator data was received, it was simply a matter of writing correct values to

KambaraData instead of random ones.

The rest of the GUI is set up when a new KambaraMain object is made within
KambaraMainFrame. The idea is that KambaraMain generates it’s subcomponents
(tabbed pane etc.). Then all of the details that fit within an individual tabbed
pane are created in separate modules such as TelemetryPanel and CameraPanel.
These modules in turn create appropriate graphical objects based on smaller

components.

The KambaraData object which is received by the client GUI is constructed from
the packet sent by the Java server, so observing Figure 8 it is apparent how the

software for the GUI fits in to the overall network structure.

Thread component (OutputKambaraData)

When a network connection is established via the RMI link, packets will begin to
be received by the client. This thread will process the data contained with in
these packets, and use it to update the GUI components on screen. This was

discussed in more detail in section 4.2.1.2, Client Threads.

4.3. Conclusion

It was very important to define the network and software architecture prior to
beginning the implementation phase. As is a continuing theme with the use of
the SDLC, some specific details of these phases were modified as the Kambara
system came to fruition. However the analysis and design discussed above

certainly layed a solid framework upon which to develop this project.



Chapter 5

5. IMPLEMENTATION

The implementation phase elaborates upon the design and translates this into a
form that can be used on a computer system. This was a time consuming phase
of the project during which many obstacles needed to be overcome; and during

which the establishment of a solid design was appreciated.

The implementation is discussed according to the software goals defined in 1.3.1,

Software Goals. These are summarised below. The software requirements of the

project are to:

1) present state information in a graphical form;

2) develop the interface to have cross-network capabilities; allowing multiple
users to view the state of the robot, while having only one user control it;

3) provide a three dimensional model of the robot;

4) develop a control system for the robot which allows simple point-and-click

control from the interface, and

5) provide the ability to view footage from the robot’s onboard cameras.

5.1. Presenting State Information
The development of the GUI was carried out in a number of steps. Some
components were based upon source code found on the Internet, while others

were built from scratch.

5.1.1. Division in to Tabbed Panes
The information had to be divided in to a number of different areas in order to

be presented successfully on the tabbed pane being used. These were:

(1) Telemetry Data: relating to general information about the vehicle

(2) Camera Data: the pan, tilt and zoom of the camera

(3) Position Data: a two-dimensional indication of position to be used in
conjunction with the 3D model

(4) Raw Data: the numerical values coming directly from sensors on the vehicle



(5) Derived Data: the numerical values which have been derived on board the
vehicle

(6) Message Data: the error, status or warning messages transmitted to the client.

(7) Navigation Data: the controls used to navigate the robot when in

teleoperation mode.

Each of these categories was assigned a tabbed pane, and implemented using the
GUI subcomponents developed. Thes screenshots of these can be found in

Appendix C.

5.1.2. GUI Layout

One time consuming task while developing the GUI was to get the layout of the
components correct. All of the components were built with resizing in mind so
that the layout could be as flexible as possible. Despite this, in order to fix the
components in to the desired layout, the dimensions of many of the components

needed to be fixed. This is one aspect of the layout that could be improved.

The GUI components needed to be updated every time a new packet of state
information was received. This can be quite a time consuming task due to the

need to paint individual GUI components

The key aspect to be verified for all of these GUI components was the rate at
which they could update the information. This is discussed in the next chapter,

validation and verification.

5.2. Cross-network capabilities
The implementation of the network design (see Section 4.2.1) was quite difficult

due to a number of unforeseen problems.

5.2.1. Socket Connections in Java 2

An initial problem was simply to allow for socket connections within the
program. This is a problem simply because of the security arrangements in Java 2
[ 4 ]. Indeed, security is paramount to networked programs, in terms not only of
the data travelling over the connections, but also of the making and breaking of

those connections. Java 2 introduces a much more fine-grained control



mechanism than previous versions. Instead of the all or nothing approach of
applications versus applets, now everything is treated the same. The VM uses a
policy file that is located on the local machine to determine what code is
permitted to perform each action. Typically, this file resides in the lib/security
directory where the Java Runtime Environment (JRE) is installed, in a file called
java.policy. Inside this file is a list of each piece of code defined by location and

what it is permitted to do.

For this reason, in order to allow socket connections to listen, connect and accept
information, it was necessatry to place a line in the java.policy file. This allowed

for the use of sockets on the defined ports.

5.2.2. Using RMI on Windows NT
A problem which seemed to drastically affect the performance of the Kambara
system came about when the network code was applied to the Windows NT

system on which it would be used.

Having developed the networking aspects of the system on a Windows 98
system, there were no anticipated problems in transferring it to a Windows NT
machine. This was not the case, as it took approximately twenty times longer to

load the KambaraServer on the NT system.

It was evaluated that this problem was not a Java issue, but rather a DNS issue.
The name of the local host, on which everything was running, was placed in to
the Windows NT hosts file (C:\WINNT\System32\driivers\etc\Hosts). The
performance then returned to what was expected based on the Windows 98

implementation.

As will be discussed next chapter (Validation and Verification), the passing of
packets throughout this network implementation did have delays associated with

1t.



5.3. Implementation of Java 3D Model

5.3.1. The Evolution of the 3D Model
Prior to making use of the Java 3D API, it was necessary to have a representation

of the Kambara submarine which could be manipulated as was necessary.

This was initially done with a very basic model created using AutoCAD seen here

in Figure 12.

Figure 12: Early prototype of 3D model.

This was useful for determining the ways to load models in to a Java 3D scene, as

well as for determining some of the basic rotation methods required.

As the need arrived for a more accurate model, one was provided having been
created using the program Inventor. This was saved as a VRML world. It is
possible to load a VRML world in to a Java 3D scene, however, the initial work
had been done with a Wavefront (OBJ) model in mind. For this reason, prior to

manipulating the model it was desired that it first be converted in to a .OB]J file.

A converting program was found called Crossroads [ 14 | which could convert
among various 3D formats. By using a 3D studio format as an intermediate stage

the VRML model was successfully transformed in to a OBJ model.

Some problems were found with the converting program Crossroads, in that it
would only load one VRML object at a time for conversion. The VRML model

provided was composed of several individual components combined together in



to a scene. The linking file that creates this scene would not load up in
Crossroads, and for this reason, only the submarine frame was initially used as the

model (see Figure 13).

Figure 13: Intermediate 3D model of Kambara.

This enabled the development of all of the functionality required by the 3D
model. However, by only using the one component the illusion was created of a
faster frame rate than would be present when the full model was loaded in. This
needed to be kept in mind, and hence the number of polygons in the model was

reduced to account for this fact.

5.3.2. Applying the 3D Model
The Java 3D API core framework is based on a scene graph programming model.
Pictures rendered with Java 3D are called scenes. There is an underlying object

class structure that defines the composition of the scene [ 6 |.

The scene, or “virtual universe”, is broken into the following components that
make up the scene’s composition: behaviour, model, object characteristics, 3D
coordinate, math, and everything else needed to create a complex world of 3D
objects. At the centre stage of the framework is the SceneGraph object. It
contains a complete description of the scene, including model data, attributes,

and viewing information.

To bring the Kambara 3D model to life, the hierarchy planned was as seen in
Figure 14.
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Figure 14: Scene Graph hierarchy for Kambara’s Java 3D System.

The scene comprises parts that retain their individuality, yet represent the
measurable whole called the virtnal universe. To this a Locale object is attached

which provides the coordinate system.

A collection of several subgraphs is created and attached to the Locale object.

For the Kambara system, the subgraphs required were:

*  Background: This subgraph simply provides the background colour, indicative
of the water in which the submarine is travelling.

*  Lighting: Ambient light was required to show the vehicle, and two point lights
were used to give a more intuitive sense of orientation as the submarine
moves.

* 3D Model: A subgraph was used for the vehicle itself. Essentially at the
bottom of this subgraph, the .OB]J file is loaded in to a Java 3D SceneGraph



and then extracted to become a BranchGroup. The TransformGroup associated
with this can then be used to move and orient the vehicle.

®  Target: The target is represented independently so that it can be manipulated
to the desired destination of the model.

*  Axes: The co-ordinate system is represented with 3 lines so that a user can
visualise what Kambara is doing. These lines are coloured red, green and
blue to correspond respectively with the X, Y and Z axes. This is in line with
the convention of representing XYZ axes with the RGB colour scheme.

®  iew: Finally a view platform is attached which gives the user the ability to
manipulate the position from which they are viewing the scene. This view
has several behaviours associated with it to enable rotating, zooming and

translating of the viewpoint.

All of the objects that compose the root BranchGroup are contained within a
bounding sphere. This was made arbitrarily large, since the behaviours are always

required to apply.

5.3.3. Co-ordinate System Problems
Throughout implementation there were problems combining the coordinate
system represented in Java 3D with the interpretation of Kambara’s co-ordinate

system by other group members.

When the Java 3D model created was loaded in to the virtual universe, the model

defaults to the orientation shown in Figure 15.

+y Top

Top

+
4 Front

Front

+X

+z +z

Figure 15: Default 3D orientation. Figure 16: Desired 3D orientation.



This state has the model with it’s front facing down the +z axis and it’s top facing
along the +y axis. However this does not correspond with the way that the
submarine’s orientation was interpreted in order to use the learning algorithms
involved in developing it’s autonomy. For this reason, prior to applying the
learning algorithm’s estimation of orientation, it was first necessary to rotate the

submarine model in to the desired position (see Figure 106).

5.4. Control Modes

The basic control modes were successfully implemented in the system. When the
user first loads the GUI application, a label in the top right corner indicates that the
current control mode is “Disconnected”. During this state of operation, the

options under the Control Mode pulldown menu are disabled.

Upon successfully connecting to the server, the control mode automatically changes
to “Observer Mode”, at which stage the user can view the state information coming
from Kambara. This also enables the control mode menu, providing further control

mode options.

The next issue dealt with was whether the user can gain control of the vehicle. If

any of the remaining 3 modes are selected from the control menu (Individual mode,

Teleoperation mode or Supervisory Mode), then the user will receive one of two

signals in reply to their request, either:

(1) Reguest granted: control is granted to the user since the robot is either not being
controlled, or is already in control of the requesting user.

(2) Reguest denied: the robot is presently being controlled by someone else

As discussed throughout this project, only a very basic control system has been

implemented.

The Individual control mode has been implemented, and when selected provides a
number of buttons on several components. Control of individual motors can be
managed by increasing or decreasing the desired torque using the buttons which

appear in this mode. This is also the case for the pan, tit and zoom of the cameras.



The teleoperation mode allows the user to transmit some basic high-level
navigation commands. Essentially, the user can choose out of eight directions in its

lateral plane, as well as being able to move forwards or backwards (see Appendix

C7).

For both of the above modes, the control signals are presently just sent to the
server. Future implementation will require the development of a way to transmit

these control commands from the server to the robot.

The supervisory mode was not implemented. Essentially, the supervisory mode will
allow the user to plan out a route to follow, or to execute a number of commands
in sequence. Since the controls implemented so far are at such a low level, the
supervisory mode was not developed. This is discussed further in the next chapter

(see section 7.2.1).

5.5. Video Feed

It was planned to use a digitiser to continually refresh an image which would be
presented in the GUI. Unfortunately, the submarine development had not reached
the stage were this could be tested. An image placeholder was used in anticipation
of the video stream being present. This image was treated in the same way as the
3D model, in that it is always on screen (never obscured by a tabbed pane

selection).



Chapter 6

6. VALIDATION AND VERIFICATION

The next phase was concerned with performing a validation of the implementation,
in order to demonstrate how well it complies with the original requirements and the

design.

This essentially meant testing the primary software requirements to see if they met

their objectives.

6.1. Testing procedure

Firstly a note on the way in which tests were carried out. Problems were
encountered in implementing the application on a Solaris machine. This was due to
the fact that Java 3D only runs on version of Solaris equal to or higher than 6. As a
result, the Kambara system developed was always tested on the one machine (this
was done on both a Windows NT and Windows 98 system). Specifically, the
client(s) and server were always be running on the local host. This was not too
troublesome, however, loading the one machine’s processor with all of these
programs is bound to lead to poorer performance than if each component of the

program was run on a separate machine.

The client-server system would receive packets from one of two inputs. The first
of these was a submarine simulator, whose packets contained information giving a
good estimation of submarine data, particularly with relevance to position and
orientation. The second possible input was simply a random packet generator
(RobotServer) containing values that were within the appropriate ranges, but were
generated randomly. These two inputs both used the same packet format, and

hence were interchangeable.

Unfortunately, the sensor data from the submarine itself was not available during

the testing phase of this project.



6.2. Basic design principles
The GUI design principles discussed in 2.2.4, were all satisfied during the
implementation phase. Space and alignment were used to maximum affect.

Additionally, proximity was used to group similar components.

6.3. State information updating
The ability for the client to view the state information coming from the robot was

examined in a number of ways.

Firstly the speed at which the client updates the GUI was examined. This was done
on two separate systems, Windows NT and Windows 98. To do this, the robot
simulator was started up, and the time it took to send a number of packets was
recorded. During this same period, the number of packets received by the client

was also recorded.

The average results are shown below in Table 2.

Test Number of Number of Time (s) Update
packets sent packets received frequency
by simulator by client (Hz)

With server present 647 198 53.6 3.7
(Windows 98)

Without server present 763 440 43.2 10.2
(Windows 98)

With server present 698 286 65.3 4.4
(Windows NT)

Without server present 703 402 36.8 10.9
(Windows NT)

Table 2: Results from tests of GUI update rate.

It should be noted that the performance of the client achieved the software
objective of an update rate of 10 Hz when the server was not present in the system.
However, the performance was not satisfactory with the server present. It is also
apparent that performance is greater on the Windows NT system, though this

could be attributed to processor power, rather than the operating system itself.




The drop in speed due to the server is one area that should be optimised. It may be

necessary to do some buffering at the server, or possibly to optimise the thread

handling.

It should be remembered that all three of the programs involved in testing (client,

server, simulator

6.4. Network testing
Aside from the network aspects of the GUI updates discussed above, there was
another aspect of the network to test. It was examined if it was possible to have

multiple clients connected to the server.

The case of two clients connecting to the server was tested, and was implemented
successfully. The server acknowledged the registration of both clients, and sent

state information updates to each of them.

6.5. Control mode testing
The control modes implemented, observer, individual and teleoperation were all

successfully tested.

Firstly, the disconnected state was examined. When in this state, a user can not
enable any of the options in the Control Mode menu. This is intuitively correct,

since a disconnected user can not control the robot.

The observer mode simply allowed the user to view the state information, while

having the ability to select another mode if desired.

When in the individual mode, various components have buttons added to them,
which allow for the sending of relevant signals. These buttons all successfully called
functions on the server using the RMI connection. These functions simply

acknowledged the action of the button, without any further action taking place

This was also the case in teleoperation mode, except that instead of adding new

buttons, the Navigation tabbed pane is added for the uset’s selection.



Finally, the control and network aspects were combined in a test. Two clients
logged on to the server, and one gained control of the simulator robot. This client
was able to switch between the various control modes, whereas the other client was
not able to gain control of the vehicle. Control was relinquished when the

controlling client returned to observer mode.



Chapter 7

7. CONCLUSION AND FURTHER WORK
7.1. Conclusion

Many important underwater tasks rely on portraying a submarine’s parameters to a
controller in an intuitive representation. This project has used Java along with it’s
associated APIs to communicate an AUV’s information to the user in a more

convenient manner than is presently used on similar interfaces.

This interface has cross-network capabilities, allowing multiple users to view the
state of the robot, while having one user control it. Also, a simple control system
has been implemented, allowing control via a point-and-click method on either

images or buttons on the interface.

The update rate of the client GUI achieved the software objective of 10 Hz,
however this was only without the server present. With the server in the system,

the update rate was closer to 4 Hz.

A 3D model is provided to aid in visualising Kambara, and by using Java 3D the
possibilities are open for more sophisticated control devices to be used in the

future.

The ability to view the live video has not been implemented. This was not
investigated more thoroughly due simply to the fact that the video stream was not
available during the testing phase. A placeholder has been used on the interface to

account for the time when a video feed is used.

At present, input to this system is only via a simulator. However, by building upon
this existing GUI system, a user will be able to command an underwater robot to

perform useful tasks, while observing the results via real-time updates on the GUI.



7.2. Further Work

This project has focused on ensuring that data coming from the submarine, or in
this case, a submarine simulator, can be successfully displayed to clients who
request such information. However there are various aspects of the project which

can be built upon, the most apparent of which is the control system.

7.2.1. Extending the Control Modes

During the implementation of the Kambara GUI system some basic point and click
controls were implemented. These provided the basics of the Individual and
Teleoperation control modes. However the control system can become far more

advanced than this.

While the basis of the Individual control mode is there, it can still be improved to
be more user friendly. For example, presently in order to reach a certain pan angle
on the camera, the increase button is pressed until the desired value is reached. It
would more useful to be able to drag the needle with the mouse to the desired

value. This is just one aspect where improvements could be made.

The teleoperation mode really only consists of a control panel allowing the operator
to tell the robot to move in one of ten directions (up, up right, right, forwards etc.)
while increasing or decreasing the yaw, pitch and roll. This method of control will
only really be useful during the testing stages, to check the thrusters are
coordinating as expected. Some useful control methods should be investigated. By
using a Java 3D model as part of this system, a number of input devices should be
considered options. Some options include a simple joystick, or, a more advanced

method, the 6 degree of freedom tracking devices which are now available.

A plan will need to be made for a supervisory mode control system in anticipation
of future robot operations when an optic fibre tether is not present. The ability to
control in supervisory mode is an important consideration as there is a significant
time delay between sending a command and the response of a robot to the
command when an optic fibre tether is no longer present. It is desirable to have a

system whereby this time delay is accounted for.



One final aspect of control which may be useful is to store a queue of users who are
requesting control. Presently, if a user makes such a request and the robot is
already being controlled, they are simply denied their request. It might be useful to
have a system, in which such a request is placed on a queue in anticipation of the

robot becoming free for control.

7.2.2. Implementing long-term network architecture

In section 4.2.1.1, the long-term network goal of this system was discussed. This
essentially refers to the objective whereby it is possible to use this interface across
the Internet. In order for this to happen, the application presently developed will
need to be transformed in to applet form, in order to run in a browser such as

Netscape.

This brings with it additional complications. Specific Java plug-ins need to be run
with the present versions of Internet browsers in order for them to display Java 3D
objects. Also, an applet form has additional security considerations associated with
it. 'This may limit the way in which operations such as logging and storing client

details are carried out.

7.2.3. Logging information
Presently, the logging system is in it’s primitive stages, with the menu option having
been established, but no logging actually commencing. This has several aspects

upon which improvements can be made.

File storage is going to be a problem simply due to the amount and frequency of
data which is being transmitted. Multiple files are likely to be required, that is, at a
certain file size, a new file should be opened and the previous one stored.
Additionally, the files could be written in binary rather than ASCII in order to save

some space.

The method of logging should also be examined. When this system is running as
an applet, the Java security arrangements will not allow for writing on a client’s
system without their express permission. For this reason, it may be desirable to
have a separate logging process running at the server end, whose information can

be requested by the client.



7.2.4. GUI improvements

The layout of the GUI is an issue that deserves some further investigation.
Presently, information is grouped logically in to individual tabbed panes. However,
user testing may show that it is more beneficial to be able to have any individual
GUI component (eg compass, battery) on screen at one time. It may be more
useful to implement the system as a series of internal frames, or possibly even allow

the user to select what components are available to them via checkboxes.

With a change of layout representation, there may be problems with the resizing of
components. As discussed in the implementation section, many of the components
have fixed dimensions, in order to get them in to an appropriate position within
the tabbed pane. This may be a hindrance if trying to implement a more dynamic

layout.

7.2.5. 3D model improvements

There are also methods by which the 3D model can be used more effectively. The
first improvement would be to implement the more complicated 3D model
developed using Inventor. Due to the conversion problems discussed in section

5.3.1, only the submarine frame is used in the model at the moment

Presently this model is used simply to represent the position and orientation of the
submarine in 3D space. There are many other ways in which this could be used.
For example, the motor torques presently represented by a bar graph may be able
to be visualised as a vector coming either forwards or backwards out of each of the

5 submarine motors.

Additionally, the exact position values of the submarine in each of the 3 Cartesian
axis directions may be of use. This could be done by encasing the submarine in

some sort of transparent sphere, on to which vector projections could be made.

7.2.6. Video feed implementation
The image placeholder on the GUI should be replaced by the streaming video feed.
Additionally, plans should be made to send pictures to the GUI when the optic

fibre tether is no longer present.



7.2.7. Client implementation

The update speed of the client GUI could also be optimised. Presently, the threads
doing the updating are polling one another based upon the value of a boolean
variable. This is not the most optimal solution, and alternatives should be
investigated. Additionally, the speed reductions due to keeping one socket open the

whole time should be examined.

7.2.8. Server implementation

Some features will need to be added to the server in order to provide a more robust
system. The assigning of port numbers to registering clients is currently done
simply by incrementing the port number counter. This has drawbacks in the case

that when a client disconnects, their port number is never again assigned.

Finally, it would be useful if the control status of the Kambara robot could be
transmitted to each registered client. This would prevent client’s from having to

attempt to gain control in order to find out if the robot is available for use.
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APPENDIX A: REMOTE METHOD INVOCATION (RMI)

Since the use of RMI is an integral part of the Kambara GUI system, it is
worthwhile to explaining in more detail what happens behind the scenes with RMI
and why it was selected to be used for control and registration commands across

the network.

RMI allows an application to call methods and access variables inside another
application, which may be running in a different Java environment or a different
system altogether, and to pass objects back and forth over a network connection.
RMI bases most of its functionality on serialization to pass classes to and return
them from the remote objects. The packaging and passing of method arguments is
one of the more interesting aspects of RMI, as objects have to be converted into
something that can be passed over the network. This conversion is called

serialization.

At the most basic level, object serialization is the ability to write an object instance
to a stream and then reconstruct that stream into the exact replica object instance,
potentially on another machine [ 4 ]. As long as an object can be serialized, RMI

can use it as a method parameter or a return value.

The RMI Architecture

The primary goal of RMI was to make interacting with a remote object as easy as
interacting with a local one. In addition, however, RMI includes more
sophisticated mechanisms for calling methods on remote objects to pass whole
objects or parts of objects either by reference or by value, as well as additional
exceptions for handling network errors that may occur while a remote operation is

occurring.

RMI has several layers in order to accomplish all of these goals and a single method

call crosses many of these layers to get where it’s going (see Figure 17).
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Application Application
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Remote Reference Remote Reference
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Network

Figure 17: RMI layers.

* The “stub” and “skeleton” layers are on the client and server, respectively.
These layers behave as surrogate objects on each side, hiding the “remoteness”
of the method call from the actual implementation classes. For example, in the
client application it is possible to call remote methods in precisely the same way
as calling local methods; the stub object is a local surrogate for the remote

object.

* The Remote Reference Layer handles packaging of a method call, its

parameters and return values for transport over the network.

* The transport layer is the actual network connection from one system to

another.

Having three layers for RMI allows each layer to be independently controlled or
implemented. Stubs and skeletons allow the client and server classes to behave as if
the objects they were dealing with were local, and to use exactly the same Java
language features to access those objects. The Remote Reference Layer separates
the remote object processing into its own layer, which can then be optimised or
reimplemented independently of the applications that depend on it. Finally the
network transport layer is used independently of the other two so that you can use

different kinds of socket connections for RMI.



RMI versus Sockets
Remote objects are a way of abstracting the client/server approach so that the
programmer needs to know only what functionality and what data need to be

passed to the server, without having to know how to get it there and back.

At the very lowest level, any communication between two machines requires the
use of the network. Invariably, that involves the use of a socket connection, over

which data must flow.

RMI is a more sophisticated mechanism for communicating between distributed
Java objects than a simple socket connection would be, because the mechanisms
and protocols by which you communicate between objects are defined and
standardised. You can talk to another Java program using RMI without having to

know beforehand what protocol to speak or how to speak it.

Files Needed for RMI

Building an RMI-based system requires at a minimum three files. First there is the
need for an interface that defines what methods are going to be used. Next you will
need an implementation of that interface- the server code. Finally you will need

something that uses the server code — the client. (see Figure 18)

RMI Implementation

RMI Client
Server

RMI Implementation | | RMI Implementation
Stub Network Skeleton

Figure 18: The flow of control from the client to the server and back.

RMI Compiler

The RMI Compiler (RMIC) is used to provide the glue between the implemented
code and the networking code. It takes the server-side implementation of the code
and produces two extra files- a skeleton and a stub. In these files are hidden all the
low-level networking code. The stub is located on the client and the skeleton is

located on the server. The stub provides a proxy that generates the actual calls to



the skeleton, which then forwards the requests onto the real implementation

instance on the server (see Figure 18)

RMI Registry

Having the server code and client code almost completes the package. The final
part is something that listens for RMI connections and deals with issues of loading
the correct class instances and connection and termination of clients. The RMI

Registry is responsible for doing this.

During code development, the registry was run from the command line. The
reason for this is that it takes the current class image and serves that to clients. If
you change the server code implementation, the changes will not be picked up by
the client. It was necessary to stop the registry and restart it with new code. Once
the network code on the server for this project was completed, the registry was run
as a process. The implemented code dynamically creates the registry and makes use

of many other RMI capabilities.

RMI Security Issues

During development it was necessary to enable socket permissions in the JDK file
(see 5.2.1). It was necessary to explicitly place the name of the machine on which
the code was operating (sometimes localhost) within the permission statement.
Depending on the version of the JDK, RMI does not treat localhost and the local

machine name as being equivalent.



APPENDIX B: VECTOR OF DATA TRANSMITTED BY SIMULATOR

Field element/range Data represented
0-2 Vehicle position
3-6 Vehicle orientation (quaternion)
7-9 Vehicle local velocity
10-12 Vehicle angular velocity
13-17 Motor torque
18-20 Vehicle target
21 Battery voltage
22-23 Accelerometer totals
24 Compass angle
25 Camera pan value
26 Camera tilt value
27 Camera zoom value
28-32 Motor cutrent
33-37 Motor voltage
38-40 Derived accelerometer 1 u,v,w values
41-43 Derived accelerometer 2 u,v,w values
44-46 Raw accelerometer 1 u,v,w values
47-49 Raw accelerometer 2 u,v,w values
50-52 Compass magnetic disturbances




APPENDIX C1: SCREENSHOT OF TELEMETRY PANEL
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Connecting...
state info listener registered, client listening on port 8000




APPENDIX C2: SCREENSHOT OF CAMERA PANEL
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APPENDIX C3: SCREENSHOT OF POSITION PANEL
I x|
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APPENDIX C4: SCREENSHOT OF RAW DATA PANEL
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Client ready
Connecting...
state info listener registered, client listening on port 8000




APPENDIX C5: SCREENSHOT OF DERIVED DATA PANEL
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File Control Modes Options Control Mode: Observer Mode
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Client ready
Connecting...
state info listener registered, client listening on port 8000




APPENDIX C6: SCREENSHOT OF MESSAGES PANEL
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Client ready
Connecting...
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APPENDIX C7: SCREENSHOT OF NAVIGATION PANEL
& I x|
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Client ready
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