
Kernels for Structured Data

Thomas Gärtner1,3, John W. Lloyd2, and Peter A. Flach3

1 Knowledge Discovery, Fraunhofer Institut Autonome Intelligente Systeme, Germany
Thomas.Gaertner@ais.fraunhofer.de

2 Computer Sciences Laboratory, Research School of Information Sciences and
Engineering, The Australian National University

jwl@csl.anu.edu.au
3 Machine Learning, Department of Computer Science, University of Bristol, UK

Peter.Flach@bristol.ac.uk

Abstract. Learning from structured data is becoming increasingly im-
portant. However, most prior work on kernel methods has focused on
learning from attribute-value data. Only recently have researchers started
investigating kernels for structured data. This paper describes how ker-
nel definitions can be simplified by identifying the structure of the data
and how kernels can be defined on this structure. We propose a kernel
for structured data, prove that it is positive definite, and show how it
can be adapted in practical applications.

1 Introduction

Support vector machines and other kernel methods [3, 20] have successfully been
applied to various tasks in attribute-value learning. Much ‘real-world’ data, how-
ever, is structured – it has no natural representation as a tuple of constants.
Defining kernels on individuals that cannot easily be described by a feature vec-
tor means crossing the boundary between attribute-value and relational learning.
It enables support vector machines and other kernel methods to be applied more
easily to complex representation spaces.

From an engineering point of view, the most interesting property of kernel
methods and other (dis-)similarity-based learning algorithms is their modularity.
By basing the learning algorithm only on the (dis-)similarity between individuals,
the learning task and search strategy on one hand, and the hypothesis language
on the other hand, can be separated.

The kernel trick is to replace the inner product in the representation space
by an inner product in some feature space. The definition of the inner product
thus determines the hypothesis language. The same trick can also be used with
representation spaces that do not have a natural inner product defined on them.
By defining a ‘valid’ kernel on these representations, they can be embedded into
some linear space. Using a different kernel corresponds to a different embedding
and thus to a different hypothesis language.

Crucial to the success of kernel-based learning algorithms is the extent to
which the semantics of the domain are reflected in the definition of the kernel.

A ‘good’ kernel calculates a high similarity for examples in the same class and
low similarity for examples in different classes. To express the semantics of the
data in a machine-readable form, often strongly typed syntaxes are used. Syntax-
driven kernels are an attempt to define ‘good’ kernels based on the semantics of
the domain as described by the syntax of the representation. The definition of a
kernel on structured data and the proof that this kernel is ‘valid’ are the main
contributions of this paper.

This kernel is to be seen as the default kernel for structured data in the same
sense in which the canonical dot product can be seen as the default kernel for
vectors of numbers. Such default kernels may not always be the best choice. For
that reason, gaussian, polynomial, or normalised versions of default kernels can
be used.

The outline of the paper is as follows. Section 2 introduces kernel methods
and defines what is meant by ‘valid’ and ‘good’ kernels. Section 3 gives an account
of our knowledge representation formalism, which is a typed higher-order logic.
Section 4 defines a kernel on the terms of this logic. Section 5 describes how
these kernels can be adapted to particular domains. Section 6 illustrates the
application of this kernel by some examples. Finally, some concluding remarks
are given.

2 Kernel Methods

We distinguish two components of kernel methods, the kernel machine and the
kernel function. Different kernel machines tackle different learning tasks, e.g.,
support vector machines for supervised learning, support vector clustering [1]
for unsupervised learning, and kernel principal component analysis [20] for fea-
ture extraction. Thus the kernel machine also implements the search strategy1;
however, the hypothesis language can later be adapted by ‘plugging-in’ a different
kernel function. Thus the kernel function encapsulates the hypothesis language
and all knowledge about the problem domain. Whenever two learning tasks are
considered on the same problem domain, one can use the same hypothesis lan-
guage by simply using the same kernel.

2.1 Classes of Kernels

A useful distinction between different classes of kernels is based on ‘driving-force’.
We distinguish between semantics, syntax, model, and data as the driving-force
of the kernel definition. A similar terminology has been used previously in the
context of constructive induction algorithms [2]

Semantics is the ideal driving-force for the definition of proximities. It is re-
lated to so-called ‘knowledge-driven’ approaches of incorporating expert knowl-
edge into the domain representation. Syntax is often used in typed systems to
1 The search strategy determines how the hypothesis space is searched and which

hypotheses are preferred over others. For example, the search strategy of SVMs
prefers large margin hypotheses over small margin hypotheses.

formally describe the semantics of the data. It is the most common driving force.
In the simplest case, i.e., untyped attribute-value representation, it treats every
attribute in the same way. Models extract useful knowledge from previous learn-
ing attempts. While this is often done to learn the semantics of the data from
the data itself, it violates the encapsulation of the search strategy for kernel
methods. Model-driven kernels are the Fisher kernel [12], the dynamic align-
ment kernel [23], the inner product in the ‘weight of evidence’ feature space [9],
and other recently defined kernels based on probabilistic models of the data [21,
22]. Data-driven approaches use results obtained by analysing the training data.
This also violates the encapsulation of the search strategy, as some search is
needed for analysing the data. A data-driven approach is described in [6] where
kernels are adapted by optimising an empirical measure, the so-called kernel-
target-alignment.

As we want to maintain the modularity aspect, we will focus on syntax-driven
approaches throughout the remainder of this paper, where syntax is understood
as being carefully engineered to reflect the underlying semantics of the data.

2.2 Valid Kernels

Technically, a kernel k calculates an inner product in some feature space which is,
in general, different from the representation space of the instances. The compu-
tational attractiveness of kernel methods comes from the fact that quite often a
closed form of these ‘feature space inner products’ exists. Instead of performing
the expensive transformation step φ explicitly, a kernel k(x, y) = 〈φ(x), φ(y)〉
calculates the inner product directly and performs the feature transformation
only implicitly.

Whether, for a given function k : X × X → R, a feature transformation φ
into some Hilbert space2 φ : X → H exists, such that k is the inner product in
H (H ⊇ span({φ(x) |x ∈ X})), can be checked by verifying that the function
is positive definite. This means that any set, whether a linear space or not, that
admits a positive definite kernel can be embedded into a linear space. Thus,
throughout the paper, we take ‘valid’ to mean ‘positive definite’. Here then is
the definition of a positive definite kernel. (Z+ is the set of positive integers.)

Definition 1. Let X be a set. A symmetric function k : X×X → R is a positive
definite kernel on X if, for all n ∈ Z+, x1, . . . , xn ∈ X , and c1, . . . , cn ∈ R, it
follows that

∑
i,j∈{1,...,n} ci cj k(xi, xj) ≥ 0.

While it is not always easy to prove positive definiteness for a given kernel,
positive definite kernels do have some nice closure properties. In particular, they
are closed under sum, direct sum, multiplication by a scalar, product, tensor
product, zero extension, pointwise limits, and exponentiation [5, 11].

2 A Hilbert space is a linear space endowed with a dot product and complete in the
norm corresponding to that dot product.

2.3 Good Kernels

For a kernel method to perform well on some domain, validity of the kernel
is not the only issue. While there is always a valid kernel that performs poorly
(k0(x, y) = 0), there is also always a valid kernel (kν(x, y) = ν(x)ν(y), where ν(z)
is +1 if z is is a member of the concept and −1 otherwise) that performs ideally.
We distinguish the following three issues crucial to ‘good’ kernels: completeness,
correctness, and appropriateness. A similar terminology has been used previously
in the context of constructive induction algorithms [2].

Completeness refers to the extent to which the knowledge incorporated in
the proximity is sufficient for solving the problem at hand. A proximity is said
to be complete if it takes into account all the information necessary to represent
the concept that underlies the problem domain. Correctness refers to the extent
to which the underlying semantics of the problem are obeyed in the proximity.
Appropriateness refers to the extent to which examples that are close to each
other in class membership are also ‘close’ to each other in the proximity space.
Another frequently used term is ‘smoothness of the kernel with respect to the
class membership’.

Empirically, a correct and appropriate kernel exhibits two properties. A cor-
rect kernel separates the concept well, i.e., a learning algorithm achieves high
accuracy when learning and validating on the same part of the data. An appro-
priate kernel generalises well, i.e., a learning algorithm achieves high accuracy
when learning and validating on different parts of the data.

2.4 Kernels on Discrete Structures

Below we summarize prior work on syntax-driven kernels for discrete spaces that
is most relevant in our context.

The best known kernel for representation spaces that are not mere attribute-
value tuples is the convolution kernel proposed by Haussler [11]. It is defined
there as

kconv(x, y) =
∑

x∈R−1(x),y∈R−1(y)

D∏
d=1

kd(xd, yd),

where R is a relation between instances x and their parts, i.e., R−1 decomposes
an instance into a set of D-tuples. The term ‘convolution kernel’ refers to a
class of kernels that can be formulated in the above way. The advantage of
convolution kernels is that they are very general and can be applied in many
different problems. However, because of that generality, they require a significant
amount of work to adapt them to a specific problem, which makes choosing R a
non-trivial task.

More specific kernels on discrete spaces have been described in [8]. There,
kernels for elementary symbols, sets and multi-sets of elementary symbols, and
Boolean domains are discussed along with concept classes that can be sepa-
rated by linear classifiers using these kernels. An overview along with various
extensions can be found in [10].

Other kernels on Boolean domains have recently been suggested in [19, 14,
15]. A string subsequence kernel is described in [17].

3 Knowledge Representation

For a syntax-driven kernel definition, one needs a knowledge representation for-
malism that is able to accurately and naturally model the underlying semantics
of the data. The knowledge representation formalism we use is based on the prin-
ciples of using a typed syntax and representing individuals as (closed) terms. The
theory behind this knowledge representation formalism can be found in [16] and
a brief outline is given in this section. The typed syntax is important for pruning
search spaces and for modelling as closely as possible the semantics of the data in
a human- and machine-readable form. The individuals-as-terms representation
is a natural generalisation of the attribute-value representation and collects all
information about an individual in a single term.

The setting is a typed, higher-order logic that provides a variety of important
data types, including sets, multisets, and graphs for representing individuals. The
logic is based on Church’s simple theory of types [4] with several extensions.
First, we assume there is given a set of type constructors T of various arities.
Included in T is the constructor Ω of arity 0. The domain corresponding to Ω is
the set containing just True and False, that is, the boolean values. The types of
the logic are built up from the set of type constructors and a set of parameters
(that is, type variables), using the symbol → (for function types) and × (for
product types). For example, there is a type constructor List used to provide
the list types. Thus, if α is a type, then List α is the type of lists whose elements
have type α. A closed type is a type not containing any parameters, the set of all
closed types is denoted by Sc. Standard types include Nat (the type of natural
numbers).

There is also a set C of constants of various types. Included in C are > (true)
and ⊥ (false). Two different kinds of constants, data constructors and functions,
are distinguished. In a knowledge representation context, data constructors are
used to represent individuals. In a programming language context, data construc-
tors are used to construct data values. (Data constructors are called functors in
Prolog.) In contrast, functions are used to compute on data values; functions
have definitions while data constructors do not. In the semantics for the logic,
the data constructors are used to construct models (cf. Herbrand models for Pro-
log). A signature is the declared type of a constant. For example, the empty list
constructor [] has signature List a, where a is a parameter. The list constructor
: (usually written infix) has signature a → List a → List a.3 Thus : expects two
arguments, an element of type a and a list of type List a, and produces a new
list of type List a. If a constant C has signature α, we denote this by C : α.

The terms of the logic are the terms of the typed λ-calculus, which are formed
in the usual way by abstraction, tupling, and application from constants in C

3 This could be read as a× List a→ List a.

and a set of variables. L denotes the set of all terms (obtained from a particular
alphabet). A term of type Ω is called a formula. A function whose codomain type
is Ω is called a predicate. In the logic, one can introduce the usual connectives and
quantifiers as functions of appropriate types. Thus the connectives conjunction,
∧, and disjunction, ∨, are functions of type Ω → Ω → Ω. In addition, if t is of
type Ω, the abstraction λx.t is written {x | t} to emphasise its intended meaning
as a set. There is also a tuple-forming notation (. . .). Thus, if t1, . . . , tn are terms
of type τ1, . . . , τn, respectively, then (t1, . . . , tn) is a term of type τ1 × · · · × τn.

Now we come to the key definition of basic terms. Intuitively, basic terms rep-
resent the individuals that are the subject of learning (in Prolog, these would be
the ground terms). Basic terms fall into one of three kinds: those that represent
individuals that are lists, trees, and so on; those that represent sets, multisets,
and so on; and those that represent tuples. The second kind are abstractions.
For example, the basic term representing the set {1, 2} is

λx.if x = 1 then > else if x = 2 then > else ⊥,

and

λx.if x = A then 42 else if x = B then 21 else 0

is the representation of the multiset with 42 occurrences of A and 21 occurrences
of B (and nothing else). Thus we adopt abstractions of the form

λx.if x = t1 then s1 else . . . if x = tn then sn else s0

to represent (extensional) sets, multisets, and so on. The term s0 here is called
a default term and for the case of sets is ⊥ and for multisets is 0. Generally,
one can define default terms for each (closed) type. The set of default terms is
denoted by D. (Full details on default terms are given in [16].)

Definition 2. The set of basic terms, B, is defined inductively as follows.

1. If C is a data constructor having signature σ1 → · · · → σn → (T a1 . . . ak),
t1, . . . , tn ∈ B (n ≥ 0), and t is C t1 . . . tn ∈ L, then t ∈ B.

2. If t1, . . . , tn ∈ B, s1, . . . , sn ∈ B (n ≥ 0), s0 ∈ D and t is

λx.if x = t1 then s1 else . . . if x = tn then sn else s0 ∈ L,

then t ∈ B.
3. If t1, . . . , tn ∈ B (n ≥ 0) and t is (t1, . . . , tn) ∈ L, then t ∈ B.

Part 1 of the definition of the set of basic terms states, in particular, that
individual natural numbers, integers, and so on, are basic terms. Also a term
formed by applying a data constructor to (all of) its arguments, each of which
is a basic term, is a basic term. For example, lists are formed using the data
constructors [] having signature List a, and : having signature a → List a →
List a. Thus A : B : C : [] is the basic term of type List α representing the

list [A,B,C], where A, B, and C are constants having signature α. Basic terms
coming from Part 1 of the definition are called basic structures and always have
a type of the form Tα1 . . . αn.

The abstractions formed in Part 2 of the definition are “almost constant”
abstractions since they take the default term s0 as value for all except a finite
number of points in the domain. They are called basic abstractions and always
have a type of the form β → γ. This class of abstractions includes useful data
types such as (finite) sets and multisets (assuming ⊥ and 0 are default terms).
More generally, basic abstractions can be regarded as lookup tables, with s0 as
the value for items not in the table. In fact, the precise definition of basic terms
in [16] is a little more complicated in that, in the definition of basic abstractions,
t1, . . . , tn are ordered and s1, . . . , sn cannot be default terms. These conditions
avoid redundant representations of abstractions.

Part 3 of the definition of basic terms just states that one can form a tuple
from basic terms and obtain a basic term. These terms are called basic tuples
and always have a type of the form α1 × · · · × αn.

Compared with Prolog, our knowledge representation offers a type system
which can be used to express the structure of the hypothesis space and thus
acts as a declarative bias. The other important extension are the abstractions,
which allow us to use genuine sets and multisets. In fact, Prolog only has data
constructors (functors), which are also used to emulate tuples.

It will be convenient to gather together all basic terms that have a type more
general than some specific closed type. In this definition, if α and β are types,
then α is more general than β if there exists a type substitution ξ such that
β = αξ.

Definition 3. For each α ∈ Sc, define Bα = {t ∈ B | t has type more general
than α}.

The intuitive meaning of Bα is that it is the set of terms representing individuals
of type α.

For use in the definition of a kernel, we introduce some notation. If s ∈ Bβ→γ

and t ∈ Bβ , then V (s t) denotes the “value” returned when s is applied to t. (The
precise definition is in [16].) For example, if s is λx.if x = A then 42 else if x =
B then 21 else 0 and t is A, then V (s t) = 42. Also, if u ∈ Bβ→γ , the support
of u, denoted supp(u), is the set {v ∈ Bβ | V (u v) 6∈ D}. Thus, for the s above,
supp(s) = {A,B}.

As an example of the use of the formalism, for (directed) graphs, there is a
type constructor Graph such that the type of a graph is Graph ν ε, where ν is
the type of information in the vertices and ε is the type of information in the
edges. Graph is defined by

Graph ν ε = {Label × ν} × {(Label × Label)× ε},

where Label is the type of labels. Note that this definition corresponds closely to
the mathematical definition of a graph: each vertex is uniquely labelled and each
edge is uniquely labelled by the ordered pair of labels of the vertices it connects.

4 Embedding Basic Terms in Linear Spaces

Having introduced kernels (in Section 2) and our knowledge representation for-
malism (in Section 3), we are now ready to define default kernels for basic terms.
This definition of a kernel on basic terms assumes the existence of kernels on
the various sets of data constructors. More precisely, for each type constructor
T ∈ T, κT is assumed to be a positive definite kernel on the set of data construc-
tors associated with T . For example, for the type constructor Nat , κNat could
be the product kernel defined by κNat(m,n) = mn. For a type constructor M ,
the matching kernel κM is defined by κM (x, y) = kδ(x, y) = 1 if x = y, and 0,
otherwise.

Definition 4. The function k : B×B → R is defined inductively on the struc-
ture of terms in B as follows. Let s, t ∈ B.

1. If s, t ∈ Bα, where α = T α1 . . . αk, for some T, α1, . . . , αk, then

k(s, t) =

κT (C,D) if C 6= D

κT (C,C) +
n∑

i=1

k(si, ti) otherwise

where s is C s1 . . . sn and t is D t1 . . . tm.
2. If s, t ∈ Bα, where α = β → γ, for some β, γ, then

k(s, t) =
∑

u∈supp(s)
v∈supp(t)

k(V (s u), V (t v)) · k(u, v).

3. If s, t ∈ Bα, where α = α1 × · · · × αn, for some α1, . . . , αn, then

k(s, t) =
n∑

i=1

k(si, ti),

where s is (s1, . . . , sn) and t is (t1, . . . , tn).
4. If there does not exist α ∈ Sc such that s, t ∈ Bα, then k(s, t) = 0.

Example 1. Suppose that κList is the matching kernel. Let M be a nullary type
constructor and A,B,C, D : M . Suppose that κM is the matching kernel. Let s
be the list [A,B,C] and t the list [A,D]. Then

k(s, t) = κList((:), (:)) + k(A,A) + k([B,C], [D])
= 1 + κM (A,A) + κList((:), (:)) + k(B,D) + k([C], [])
= 1 + 1 + 1 + κM (B,D) + κList((:), [])
= 3 + 0 + 0
= 3.

Thus, the kernel counts 1 for the first list constructor in both terms, 1 for the
matching heads of the list, and 1 for the second list constructor, after which
the two terms differ. Notice that the recursive matching of the two lists as
performed by the kernel is similar to the kind of matching that is performed
in anti-unification.

Example 2. Suppose that κΩ is the matching kernel. Let M be a nullary type
constructor and A,B, C, D : M . Suppose that κM is the matching kernel. If s is
the set {A,B,C} ∈ BM→Ω and t is the set {A,D} ∈ BM→Ω , then

k(s, t) = k(A,A) + k(A,D) + k(B,A) + k(B,D) + k(C,A) + k(C,D)
= κM (A,A) + κM (A,D) + κM (B,A) + κM (B,D) + κM (C,A)

+ κM (C,D)
= 1 + 0 + 0 + 0 + 0 + 0
= 1.

Thus, the kernel performs a pairwise match of the elements of each set. This
could equivalently be seen as the inner product of the bitvectors representing
the two sets.

Example 3. Suppose that κNat is the product kernel. Let M be a nullary type
constructor and A,B, C, D : M . Suppose that κM is the matching kernel. If s is
〈A,A, B, C,C,C〉 ∈ BM→Nat (where 〈A,A, B, C,C,C〉 is the multiset containing
two occurrences of A, one of B, and three of C) and t is 〈B,C,C,D〉 ∈ BM→Nat ,
then

k(s, t) = k(2, 1)k(A,B) + k(2, 2)k(A,C) + k(2, 1)k(A,D)
+ k(1, 1)k(B,B) + k(1, 2)k(B,C) + k(1, 1)k(B,D)
+ k(3, 1)k(C,B) + k(3, 2)k(C,C) + k(3, 1)k(C,D)

= 1× 1 + 6× 1
= 7.

If we represent multisets by multiplicity vectors, we again have that the kernel
computes their inner product.

We can now formulate the main theoretical result of the paper.

Proposition 1. Let k : B×B → R be the function defined in Definition 4. For
each α ∈ Sc, k is a positive definite kernel on Bα.

The inductive proof of Proposition 1 is given in the appendix. Here is an
intuitive outline. First, assume that those kernels occurring on the right-hand
side of each kernel definition are positive definite. Then the positive definiteness
of the (left-hand side) kernel follows from the closure properties of the class
of positive definite kernels. The kernel on basic structures is positive definite
because of closure under sum, zero extension, and direct sum, and because the
kernels defined on the data constructors are assumed to be positive definite. The

kernel on basic abstractions is positive definite as the function supp returns a
finite set, and kernels are closed under zero extension, sum, and tensor product.
The kernel on basic tuples is positive definite because of closure under direct
sum.

5 Adapting Kernels

The kernel defined in the previous section closely follows the type structure of
the individuals that are used for learning. As indicated, the kernel assumes the
existence of atomic kernels for all data constructors used. These kernels can be
the product kernel for numbers, the matching kernel which just checks whether
the two constructors are the same, or a user-defined kernel. In addition, kernel
modifiers can be used to customise the kernel definition to the domain at hand.
In this section we first describe some commonly used kernel modifiers. After
that, we suggest how atomic kernels and kernel modifiers can be specified by an
extension of the Haskell language [13].

To incorporate domain knowledge into the kernel definition, it will frequently
be necessary to modify the default kernels for a type. Below we formally describe
these modifications in terms of a function κmodifier : P → (X × X → R) →
(X × X → R) that – given a modifier and its parameters (an element of the
parameter space P) – maps any kernel to the modified kernel. For these modifiers,
several choices are offered.

By default, no modifier is used, i.e.,

κdefault(k)(x, y) = k(x, y).

Instead, a polynomial version of the default kernel can be used:

κpolynomial(p, l)(k)(x, y) = (k(x, y) + l)p
. (l ≥ 0, p ∈ Z+)

Or a gaussian version:

κgaussian(γ)(k)(x, y) = e−γ[k(x,x)−2k(x,y)+k(y,y)]. (γ > 0)

Another frequently used modification is the normalisation kernel:

κnormalised(k)(x, y) =
k(x, y)√

k(x, x)k(y, y)
.

Other modifiers can be defined by the user.
We suggest that kernels be defined directly on the type structure (specifying

the structure of the domain and the declarative bias). We introduce our suggested
kernel definition syntax by means of an example: the East/West challenge [18].

eastbound :: Train -> Bool
type Train = Car -> Bool with modifier (gaussian 0.1)
type Car = (Shape,Length,Roof,Wheels,Load)

data Shape = Rectangle | Oval
data Length = Long | Short
data Roof = Flat | Peaked | None with kernel roofKernel
type Wheels = Int with kernel discreteKernel
type Load = (LShape,LNumber)
data LShape = Rectangle | Circle | Triangle
type LNumber = Int

The first line declares the learning target eastbound as a mapping from trains
to Booleans. A train is a set of cars, and a car is a 5-tuple describing its shape,
its length, its roof, its number of wheels, and its load. All of these are specified
by data constructors except the load, which itself is a pair of data constructors
describing the shape and number of loads.

The with keyword describes a property of a type, in this case kernels and
kernel modifiers. The above declarations state that on trains we use a Gaussian
kernel modifier with bandwidth 0.1. By default, for Shape, Length and LShape
the matching kernel is used, while for LNumber the product kernel is used. The
default kernel is overridden for Wheels, which is defined as an integer but uses
the matching kernel instead. Finally, Roof has been endowed with a user-defined
atomic kernel which could be defined as follows:

roofKernel :: Roof -> Roof -> Real
roofKernel x x = 1
roofKernel Flat Peaked = 0.5
roofKernel Peaked Flat = 0.5
roofKernel x y = 0

This kernel counts 1 for identical roofs, 0.5 for matching flat against peaked
roofs, and 0 in all other cases (i.e., whenever one car is open and the other is
closed).

Finally, the normalisation modifier could be implemented as follows:

normalised :: (t->t->Real) -> t -> t -> Real
normalised k x y = (k x y) / sqrt ((k x x) * (k y y))

6 Example Applications

Having presented our kernel definition, it is important to note that aside from
being used with kernel methods, our kernel function can also be used with other
(dis-)similarity-based algorithms. A normalised kernel is a canonical similarity
function; a metric can be defined on the kernel in the standard manner (d(x, y) =√

k(x, x)− 2k(x, y) + k(y, y)). Thus learning algorithms like nearest neighbour
and k-means can easily be extended to structured data.

In this section, we empirically investigate the appropriateness of our kernel
definitions on some domains. The implementation of most algorithms mentioned
below has been simplified by using the Weka data mining toolkit [24].

6.1 East/West Challenge

We performed some experiments with the East/West challenge dataset. We used
the default kernels for all types, i.e., the product kernel for all numbers, the
matching kernel for all other atomic types, and no kernel modifiers. As this toy
data set only contains 20 labelled instances, the aim of our experiments was
not to achieve a high predictive accuracy but to check whether this problem
can actually be separated using our default kernel. For that, we applied a sup-
port vector machine and a 3-nearest-neighbour classifier to the full data set. In
both experiments, we achieved 100% accuracy, verifying that the data is indeed
separable with the default kernels.

6.2 Spatial Clustering

Consider the problem of clustering spatially close and thematically similar data
points. This problem occurs, for example, when given demographic data about
households in a city and trying to optimise facility locations given this demo-
graphic data. The location planning algorithms can usually only deal with a
fairly small number of customers (less than 1000) and even for small cities the
number of households easily exceeds 10000. Therefore, several households have
to be aggregated so that as little information as possible is lost. Thus the house-
holds that are aggregated have to be spatially close (so that little geographic
information is lost) and similar in their demographic description (so that little
demographic information is lost). The problem is to automatically find such an
aggregation using an unsupervised learning algorithm.

Due to the difficulty in obtaining suitable data, we investigated this problem
on a slightly smaller scale. The demographic data was already aggregated for
data protection and anonymity reasons such that information is given not on a
household level but on a (part of) street level. The data set describes roughly 500
points in a small German city by its geographic co-ordinates and 76 statistics,
e.g., the number of people above or below certain age levels, the number of people
above or below certain income levels, and the number of males or females living
in a small area around the data point.

The simplest way to represent this data is a feature vector with 78 entries
(2 for the x, y co-ordinates and 76 for the statistics). Drawing the results of a
simple k-means algorithm on this representation clearly shows that although the
spatial co-ordinates are taken into account, spatially compact clusters cannot be
achieved. This is due to the fact that the semantics of the co-ordinates and the
demographic statistics are different.

An alternative representation along with the kernel specification is as follows:

type SpacialStat = GeoInfo -> Statistics
type GeoInfo = (Real,Real) with modifier (gaussian 0.1)
type Statistics = (Real,Real,...,Real) with modifier normalised

Using this representation and applying a version of the k-means algorithm4 with
the given kernel shows that the clusters are spatially compact (compactness
depending on the choice of the kernel bandwidth).

Illustrations of results can be found online5. Instances belonging to the same
cluster are represented by the same colour. The street map and the buildings of
the city are shown in grey.

6.3 Drug Activity Prediction

A frequently used concept class on data with limited structure are multi-instance
concepts. Multi-instance learning problems occur whenever individuals cannot
be described by a single characteristic feature vector, but require a bag of vectors.
A popular real-world example of a multi-instance problem is the prediction of
drug activity, introduced in [7].

It is common in drug activity prediction to represent a molecule by a bag
of descriptions of its different conformations. A drug is active if one of its con-
formations binds well to enzymes or cell-surface receptors. Each conformation is
described by a feature vector where each component corresponds to one ray em-
anating from the origin and measuring the distance to the molecule surface. In
the musk domain, 162 uniformly distributed rays have been chosen to represent
each conformation. Additionally, four further features are used that describe the
position of an oxygen atom in the conformation.

The formal specification of the structure of the musk data set along with the
kernel applied in [10] is as follows:

type Molecule = Con -> Int
type Con = (Rays,Distance,Offset) with modifier (gaussian 1e-5.5)
type Rays = (Real,Real,...,Real)
type Offset = (Real,Real,Real)
type Distance = Real

The best result achieved in the literature on musk1 is 96.8%, and the next five
best results range between 92.4% and 88.9%. The support vector machine using
the above kernel achieved 87% accuracy, better results can be achieved with
smaller γ. The best result achieved in the literature on musk2 is 96.0%, and
the next five best results range between 89.2% and 82.5%. The support vector
machine using the above kernel achieved 92.2% accuracy. For a more detailed
evaluation and discussion of these results, the reader is referred to [10].

7 Conclusions

Bringing together kernel methods and structured data is an important direction
for practical machine learning research. This can be done by defining a positive
4 Note that performing k-means in feature space requires some modifications of the

algorithm. A description is beyond the scope of this paper.
5 http://www.ais.fraunhofer.de/∼thomasg/SpatialClustering/

definite kernel on structured data and thus embedding structured data into a
linear space. In this paper we defined a kernel on structured data, proved that
it positive definite, and showed some example applications.

Our kernel definition follows a ‘syntax-driven’ approach making use of a
knowledge representation formalism that is able to accurately and naturally
model the underlying semantics of structured data. It is based on the princi-
ples of using a typed syntax and representing individuals as (closed) terms. The
typed syntax is important for pruning search spaces and for modelling as closely
as possible the semantics of the data in a human- and machine-readable form.
The individuals-as-terms representation is a simple and natural generalisation
of the attribute-value representation and collects all information about an indi-
vidual in a single term. In spite of this simplicity, the knowledge representation
formalism is still powerful enough to accurately model highly structured data
such as graphs.

The definition of our kernel, along with the example applications presented
above, show that structured data can reasonably be embedded in linear spaces.
The embedding is complete in the sense that it incorporates all information that
is present in an individual. Its correctness has been illustrated on a toy example
of classifying trains; its appropriateness has been verified on a drug activity
prediction domain.

Acknowledgements

Research supported in part by the Esprit V project (IST-1999-11495) Data Min-
ing and Decision Support for Business Competitiveness: Solomon Virtual Enter-
prise and by the BMBF funded project KogiPlan.

References

1. A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector clustering.
Journal of Machine Learning Research, 2:125–137, Dec. 2001.

2. E. Bloedorn, R. Michalski, and J. Wnek. Matching methods with problems: A com-
parative analysis of constructive induction approaches. Technical report, Machine
Learning and Inference Laboratory, MLI 94-2, George Mason University, Fairfax,
VA., 1994.

3. B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In D. Haussler, editor, Proceedings of the 5th Annual ACM
Workshop on Computational Learning Theory, pages 144–152, Pittsburgh, PA,
July 1992. ACM Press.

4. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

5. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
(and Other Kernel-Based Learning Methods). Cambridge University Press, 2000.

6. N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target
alignment. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems, volume 14. The MIT Press, 2002.

7. T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple in-
stance problem with axis-parallel rectangles. Artificial Intelligence, 89(1–2):31–71,
1997.

8. T. Gärtner. Kernel-based feature space transformation in inductive logic program-
ming. Master’s thesis, University of Bristol, 2000.

9. T. Gärtner and P. A. Flach. WBCsvm: Weighted bayesian classification based on
support vector machines. In C. E. Brodley and A. P. Danyluk, editors, Proceedings
of the 18th International Conference on Machine Learning, pages 207–209. Morgan
Kaufmann, June 2001.

10. T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola. Multi-instance kernels. In
Proceedings of the 19th International Conference on Machine Learning, to appear.

11. D. Haussler. Convolution kernels on discrete structures. Technical report, Depart-
ment of Computer Science, University of California at Santa Cruz, 1999.

12. T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In Advances in Neural Information Processing Systems, volume 10,
1999.

13. S. P. Jones and J. H. (editors). Haskell98: A non-strict purely functional language.
Available at http://haskell.org/.

14. R. Khardon, D. Roth, and R. Servedio. Efficiency versus convergence of boolean
kernels for on-line learning algorithms. In T. Dietterich, S. Becker, and Z. Ghahra-
mani, editors, Advances in Neural Information Processing Systems, volume 14. The
MIT Press, 2002.

15. A. Kowalczyk, A. J. Smola, and R. C. Williamson. Kernel machines and boolean
functions. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems, volume 14. The MIT Press, 2002.

16. J. Lloyd. Knowledge representation, computation, and learning in higher-order
logic. Available at http://csl.anu.edu.au/~jwl, 2001.

17. H. Lodhi, J. Shawe-Taylor, N. Christianini, and C. Watkins. Text classification
using string kernels. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in
Neural Information Processing Systems, volume 13. The MIT Press, 2001.

18. D. Michie, S. Muggleton, D. Page, and A. Srinivasan. To the international com-
puting community: A new eastwest challenge. Technical report, Oxford University
Computing laboratory, Oxford,UK, 1994.

19. K. Sadohara. Learning of boolean functions using support vector machines. In
N. Abe, R. Khardon, and T. Zeugmann, editors, Proceedings of the 12th Conference
on Algorithmic Learning Theory, pages 106–118. Springer-Verlag, 2001.

20. B. Schölkopf and A. J. Smola. Learning with Kernels. The MIT Press, 2002.
21. N. Smith and M. Gales. Speech recognition using SVMs. In T. Dietterich, S. Becker,

and Z. Ghahramani, editors, Advances in Neural Information Processing Systems,
volume 14. The MIT Press, 2002.

22. K. Tsuda, M. Kawanabe, G. Rätsch, S. Sonnenburg, and K.-R. Müller. A new
discriminative kernel from probabilistic models. In T. Dietterich, S. Becker, and
Z. Ghahramani, editors, Advances in Neural Information Processing Systems, vol-
ume 14. The MIT Press, 2002.

23. C. Watkins. Dynamic alignment kernels. In A. Smola, P. Bartlett, and B. Schölkopf,
editors, Advances in large margin classifiers, pages 39–50. The MIT Press, 2000.

24. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java implementations. Morgan Kaufmann, 2000.

A Proof of the Proposition

Before giving the proof, which is an induction argument, some preparation is
needed. The key idea is to base the induction on a ‘bottom-up’ definition of B.
Here is the relevant definition.

Definition 5. Define {Bm}m∈N inductively as follows.

B0 = {C | C is a data constructor of arity 0}
Bm+1 = {C t1 . . . tn ∈ L | C is a data constructor of arity n and

t1, . . . , tn ∈ Bm(n ≥ 0)}
∪ {λx.if x = t1 then s1 else . . . if x = tn then sn else s0 ∈ L |

t1, . . . , tn ∈ Bm, s1, . . . , sn ∈ Bm, and s0 ∈ D}
∪ {(t1, . . . , tn) ∈ L | t1, . . . , tn ∈ Bm}.

One can prove that Bm ⊆ Bm+1, for m ∈ N, and that B =
⋃

m∈N Bm. Now
the proof of Proposition 1 can be given.

Proof. First the symmetry of k on each Bα is established. For each m ∈ N, let
SYM (m) be the property:

For all α ∈ Sc and s, t ∈ Bα ∩Bm, it follows that k(s, t) = k(t, s).

It is shown by induction that SYM (m) holds, for all m ∈ N. The symmetry of
k on each Bα follows immediately from this since, given s, t ∈ Bα, there exists
an m such that s, t ∈ Bm (because B =

⋃
m∈N Bm and Bm ⊆ Bm+1, for all

m ∈ N).
First it is shown that SYM (0) holds. In this case, s and t are data construc-

tors of arity 0 associated with the same type constructor T , say. By definition,
k(s, t) = κT (s, t) and the result follows because κT is symmetric.

Now assume that SYM (m) holds. It is proved that SYM (m + 1) also holds.
Thus suppose that α ∈ Sc and s, t ∈ Bα ∩ Bm+1. It has to be shown that
k(s, t) = k(t, s). There are three cases to consider corresponding to α having
the form T α1 . . . αk, β → γ, or α1 × · · · × αm. In each case, it is easy to see
from the definition of k and the induction hypothesis that k(s, t) = k(t, s). This
completes the proof that k is symmetric on each Bα.

For the remaining part of the proof, for each m ∈ N, let PD(m) be the
property:

For all n ∈ Z+, α ∈ Sc, t1, . . . , tn ∈ Bα ∩ Bm, and c1, . . . , cn ∈ R, it
follows that

∑
i,j∈{1,...,n} ci cj k(ti, tj) ≥ 0.

It is shown by induction that PD(m) holds, for all m ∈ N. The remaining
condition for positive definiteness follows immediately from this since, given
t1, . . . , tn ∈ Bα, there exists an m such that t1, . . . , tn ∈ Bm.

First it is shown that PD(0) holds. In this case, each ti is a data constructor of
arity 0 associated with the same type constructor T , say. By definition, k(ti, tj) =

κT (ti, tj), for each i and j, and the result follows since κT is assumed to be
positive definite.

Now assume that PD(m) holds. It is proved that PD(m+1) also holds. Thus
suppose that n ∈ Z+, α ∈ Sc, t1, . . . , tn ∈ Bα ∩ Bm+1, and c1, . . . , cn ∈ R. It
has to be shown that

∑
i,j∈{1,...,n} ci cj k(ti, tj) ≥ 0. There are three cases to

consider.

1. Let α = T α1 . . . αk. Suppose that ti = Ci t
(1)
i . . . t

(mi)
i , where mi ≥ 0, for

i = 1, . . . , n. Let C = {Ci | i = 1, . . . , n}. Then

∑
i,j∈{1,...,n}

ci cj k(ti, tj)

=
∑

i,j∈{1,...,n}

ci cj κT (Ci, Cj)

+
∑

i,j∈{1,...,n}
Ci=Cj

ci cj

∑
l∈{1,...,arity(Ci)}

k(t(l)i , t
(l)
j).

Now

∑
i,j∈{1,...,n}

ci cj κT (Ci, Cj) ≥ 0

using the fact that κT is a positive definite kernel on the set of data con-
structors associated with T . Also

∑
i,j∈{1,...,n}

Ci=Cj

ci cj

∑
l∈{1,...,arity(Ci)}

k(t(l)i , t
(l)
j)

=
∑
C∈C

∑
i,j∈{1,...,n}
Ci=Cj=C

∑
l∈{1,...,arity(C)}

ci cj k(t(l)i , t
(l)
j)

=
∑
C∈C

∑
l∈{1,...,arity(C)}

∑
i,j∈{1,...,n}
Ci=Cj=C

ci cj k(t(l)i , t
(l)
j)

≥ 0,

by the induction hypothesis.

2. Let α = β → γ. Then∑
i,j∈{1,...,n}

ci cj k(ti, tj)

=
∑

i,j∈{1,...,n}

ci cj

∑
u∈supp(ti)
v∈supp(tj)

k(V (ti u), V (tj v)) · k(u, v)

=
∑

i,j∈{1,...,n}

∑
u∈supp(ti)
v∈supp(tj)

ci cj k(V (ti u), V (tj v)) · k(u, v)

=
∑

(i,u),(j,v)∈
{(k,w) | k=1,...,n and w∈supp(tk)}

ci cj k(V (ti u), V (tj v)) · k(u, v)

≥ 0.

For the last step, we proceed as follows. By the induction hypothesis, k is
positive definite on both Bβ ∩Bm and Bγ ∩Bm. Hence the function

h : ((Bβ ∩Bm)× (Bγ ∩Bm))× ((Bβ ∩Bm)× (Bγ ∩Bm)) → R

defined by

h((u, y), (v, z)) = k(u, v) · k(y, z)

is positive definite, since h is a tensor product of positive definite kernels
[20]. Now consider the set

{(u, V (ti u)) | i = 1, . . . , n and u ∈ supp(ti)}

of points in (Bβ ∩Bm)× (Bγ ∩Bm) and the corresponding set of constants

{ci,u | i = 1, . . . , n and u ∈ supp(ti)},

where ci,u = ci, for all i = 1, . . . , n and u ∈ supp(ti).
3. Let α = α1 × · · · × αm. Suppose that ti = (t(1)i , . . . , t

(m)
i), for i = 1, . . . , n.

Then ∑
i,j∈{1,...,n}

ci cj k(ti, tj)

=
∑

i,j∈{1,...,n}

ci cj(
m∑

l=1

k(t(l)i , t
(l)
j))

=
m∑

l=1

∑
i,j∈{1,...,n}

ci cj k(t(l)i , t
(l)
j)

≥ 0,

by the induction hypothesis. ut

