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Abstract

We consider the problem of spatial-temporal modeling of interactive

image interpretation. The interactive process is composed of a sequential

prediction step and a change detection step. Combining the two steps

leads to a semi-automatic predictor that can be applied to a time-series,

yields good predictions, and requests new human input when a change

point is detected. The model can effectively capture changes of image

features and gradually adapts to them. We propose an online frame-

work that naturally addresses these problems in a unified manner. Our

empirical study with a synthetic data set and a road tracking dataset

demonstrate the efficiency of the proposed approach.

Keywords: image interpretation, sequential prediction, online learning, adaptive

tracking.
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1 Introduction

Computer-aided image interpretation is important in many areas, including, for

example, medical image interpretation (Harders and Székely, 2003), content-

based image retrieval (Vasconcelos, 2004), and object recognition in remote-

sensed images (e.g., Rochery et al., 2006; Hu et al., 2007; Zhou et al., 2007).

Most research has focused on fully automatic methods. There is, however,

still a large gap between the requirements of practical applications and what

is currently being achieved by automatic methods in terms of completeness,

correctness and reliability. Most systems require checking by experts before any

final decision can be made. For this reason, many successful systems retain the

’human in the loop’ in the sense that a human operator supervises the image

interpretation process and the computer acts as an intelligent assistant. As

Caelli et al. (2001) pointed out

“There is a strategic need for technologies to assist humans in the

interpretation, depicting and querying of images in domains where

improvements in data acquisition and archiving techniques have lead

to collection and storage of a large amount of images (for example, in

remote sensing, mapping, surveillance and medical image domains).”

(p. 197)

Caelli et al. (2001)’s approach was exemplified with a real-world application

where the shape of buildings in remote-sensed images needed to be tracked.

The tracking task was performed by a trainable and dynamic system, in which

human experts provided training examples of shapes, for example, the bound-

aries of buildings. Then the system used hidden Markov models to encode the

boundaries as a series of shape states associated with expected types of im-

age features. Finally, the building boundaries were optimally recovered using

maximum likelihood estimation.
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Subsequently, many authors concentrated on developing real-world applica-

tions using a semi-automatic approach. This is still considered the preferred

solution as it is robust, flexible, and gives the user control over the interpre-

tation tasks (e.g., Everingham et al., 2003; Koike et al., 2001). Zhou et al.

(2005) proposed a general framework for human-guided image interpretation

consisting of five components, a human-computer interface, a user model, a set

of computational algorithms, a knowledge transfer scheme, and a performance

evaluation scheme. Of these five components, the human-computer interface

and the computational algorithms have been studied extensively, but research

on the knowledge transfer scheme, more specifically on the learning of compu-

tational algorithms from humans, has been very limited.

Expanding on the above idea, Zhou et al. (2006) proposed a human-computer

interactive framework for road tracking in aerial images. The framework enables

knowledge transfer from human to computer via human input and failure diag-

nosis. The human inputs provide the road tracker with historical and current

road information, which in turn is used to initialize a Bayesian filtering process

to estimate the states of the road tracker. The road location is then estimated

by selecting the optimal candidate from a number of potential road locations.

A knowledge accumulation mechanism is implemented to store historical data

so that the tracking model can use temporal information to compute the best

matches for the current spatial road profiles.

Many of the semi-automated image interpretation systems (e.g., Hu et al.,

2004; Amo et al., 2006), use a static image interpretation model that is modified

by human input. The static model is typically obtained by analyzing and imple-

menting human knowledge about a task domain and task-related experiences.

The model works without any change throughout the whole interpretation pro-

cess. The human interacts with the system by initializing the interpretation
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process, correcting errors, and terminating an ongoing process when an error

happens. This approach is illustrated by Boykov and Jolly (2001)’s interac-

tive image segmentation algorithm. The human provides foreground and back-

ground labels using a digital brush, and then unlabeled data are assigned to the

corresponding class using graph cuts. Similarly, Wang et al. (2005) proposed

an interface for object segmentation by providing only foreground labels. On

this basis, optimal segmentation performance is achieved using mean-shift and

min-cut methods.

The problem with static models is that they do not consider the spatial-

temporal properties of image interpretation. Consider the following scenario: a

user is working with a semi-automatic image interpretation system, in a time-

series, in sequential manner, and on tasks such as classification or regression.

Once in a while during the process, the system may decide that it does not work

properly, e.g. it detects abrupt changes in the time-series, and it requests user

input. Such changes are normal, given the spatial variation of image features.

In the static model, even with a user input, the system cannot adapt to the

changes because input cannot lead to a model update.

To solve this problem, a predictor is required that can adapt to changes.

In this dynamic scheme, the overall robustness of the system is influenced by

several factors. First, it is important to retain the ”human-in-the-loop” in the

sense that the predictor is able to request necessary guidance at change points.

Second, the predictor should be able to gradually update itself, on the basis of

both, human inputs and autonomous analyses. Third, the predictor should be

capable of detecting changes correctly and timely. Fourth, it is desirable to have

as few human interventions as possible, as they can be very costly.

We propose a spatial-temporal model for addressing this problem from a

machine learning and feature extraction point of view. The machine learning
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part is based on online learning from human inputs. The approach is intuitive

and flexible, and the learning rate of the proposed online learning algorithm is

adaptive. We also discuss related issues, such as dealing with non-stationary dis-

tributions, the issue of unbalanced data, and working with an ensemble of mod-

els. Our work is motivated by transductive support vector machines (TSVM;

Vapnik, 1998) for semi-supervised learning, and it is closely related to work on

online learning (e.g., Littlestone and Warmuth, 1994; Kivinen et al., 2004) and

to work on the detection of abrupt changes in time-series (Basseville and Niki-

forov, 1993). As discussed in more detail below, the feature extraction part is

based on domain knowledge and human perceptual processes.

This work extends that of Zhou et al. (2007) who developed an online learn-

ing approach to integrate human knowledge with computational models for nov-

elty detection in road tracking. The input road profiles were used as training

examples to generate road predictors. In this sense, this approach is closer to

the idea of Caelli et al. (2001) than that of Zhou et al. (2006). As the human-

computer interaction continues, multiple road predictors can be learned and

generate a more robust road tracker.

Closely related problems on online learning and change point detection have

been independently studied in the machine learning community (e.g., Little-

stone and Warmuth, 1994; Littlestone, 1988; Vovk, 1995; Kivinen et al., 2004;

Basseville and Nikiforov, 1993; Kifer et al., 2004; Ho, 2005), where the focus

is on theoretical investigations rather than practical applications. What is new

about our approach is that we try to incorporate current developments in online

learning and change point detection techniques into practical applications such

as image interpretation.

Finally, we must also consider feature extraction, another major issue that

affects the performance of the image interpretation system. It has been men-
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tioned by Caelli et al. (2001) that, in order to achieve a good interpretation

performance, one needs to rely on combinations of features. This idea has been

supported by the recent progress in image classification and object recognition

(e.g., Varma and Ray, 2007). Nilsback and Zisserman (2006) used combina-

tions of color features, scale-invariant feature transforms (SIFTs; Lowe, 1999)

and texture features to classify flowers. In the PASCAL Visual Object Classes

Challenge (Everingham et al., 2008), researchers used up to 30 possible com-

bination of point samplings, spatial pyramids and descriptors to categorize 20

classes of images collected from the Internet. In specific image interpretation

tasks, for example in road tracking, feature selection is more strongly affected

by domain knowledge. In the following sections, we will also illustrate how road

interpretation systems perform with different features and their combinations.

The paper is organized as follows. We start by formulating the problem,

which leads to the proposed online learning approach. A number of related

issues are discussed, and by addressing them, we explain the details of the

proposed method. The applicability of the proposed approach is demonstrated

with experiments on a synthetic simulation (interactive classification) and on

a real-world problem (interactive road tracking). Finally, we also discuss the

influence of feature selection and combination, as well as related issues.

2 Proposed Approach

Our goal is to develop a system that learns image interpretation tasks by ob-

serving the actions of human experts and uses these observations to learn classi-

fication rules. The newly acquired classification rules are used to classify further

examples until an example is encountered that cannot be dealt with. At this

point, control should be handed back to the human expert who then deals with

these new data, initiating a new learning-prediction session. In the following
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sections, we first present a formal problem description, and then we motivate

and describe our method. Further technical details of our approach can be found

in (Zhou et al., 2008).

2.1 Problem Formulation

Let x denote an instance and let y be a label. An example contains either

an instance-label pair (x, y) or only an instance x. An interactive application

takes a time-series T as input and operates in sessions, T = (· · · , Si, · · · ). Each

session

S =
(

(xj+1, yj+1), · · · , (xj+m, yj+m), xj+m+1, · · · , xj+n
)

corresponds to one disjoint segment of the time-series, which starts with a

few examples with corresponding human inputs (xj+1, yj+1), · · · , (xj+m, yj+m),

then produces predictions for a sequence of unlabeled examples xj+m+1, · · · , xj+n,

and ends with an abrupt change. This change, which is detected by the session

predictor h, triggers a request for new human input for the next few examples,

leading to a new session. An example of performing interactive classification

on an synthetic time-series is illustrated in Fig. 1 top. The prediction problem

could be one of classification, regression, ranking, or others, depending entirely

on the interactive application at hand.

To begin with, let us consider a special case where the time-series contains

exactly one session, i.e. T =
(

(x1, y1), · · · , (xm, ym), xm+1, · · · , xn
)

. This is

closely related to the typical setting of semi-supervised learning1, where a large

number of unlabeled examples is expected to help elucidate prediction, together

with a few labeled examples. As advocated by (Vapnik, 1998) in the TSVM, this

1In case of classification (or regression), it is exactly a semi-supervised classification (or
regression) problem.
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can be achieved by exploiting the so-called cluster assumption: the prediction

hyperplane should maintain a large margin over the dataset including both the

labeled and unlabeled examples, and minimize a regularized risk function on

the entire set of examples

min
f

1
2
‖f‖2 + λl

m∑
i=1

Ll(xi, yi, f) + λu

n∑
j=m+1

Lu(xj , f) (1)

where λl, λu > 0 and f is a parameter vector to predict a label. In the case of

binary classification, h(x, f) = +1 if f(x) > 0 and h(x, f) = −1 otherwise. We

obtain a TSVM by letting Ll(xi, yi, f) = (ρl − yif(xi))+ and Lu(xj , f) = (ρu −

|f(xj)|)+, where the margins ρl, ρu > 0 and (·)+ = max{0, ·}. In the following,

we assume ρ , ρl = ρu. The induced optimization problem cannot be solved

easily because the second loss term (ρ−|f(xj)|)+ is a non-convex function. A lot

of effort has been devoted to minimizing non-convex objective functions (using,

e.g. deterministic annealing or the concave-convex procedure (?)). Returning

to our situation, things are even worse because there are multiple sessions, and,

in addition to making predictions, abrupt changes have to be detected since we

do not know a priori when a session should end.

We consider an online learning framework, where, at time t, given the current

parameter ft and an example (xt, yt) (or xt), we update the parameter ft+1 by

minimizing a regularized risk function on the current example

ft+1 = argmin
f

1
2
‖f − ft‖2 + ηtLl(xt, yt, f), (2)

when (xt, yt) is presented. When only xt is presented, this becomes

ft+1 = argmin
f

1
2
‖f − ft‖2 + ηtLu(xt, f). (3)
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In both cases, the new parameter ft+1 is expected to be reasonably close to the

previous ft (the first term), while incurring a small loss on the current example

(the second term). ηt is a trade-off parameter that balances between the two

objectives and is usually fixed a priori, i.e. η = ηt, ∀t.

There are distinct advantages to choosing this online learning framework:

First, it is computationally more efficient, and second, an online algorithm can

be elegantly extended to track a slowly drifting target over time in one segment,

as will be shown later. Moreover, as shown next, by incorporating the change

detection component, we end up working with a convex objective function.

This framework is very flexible in the sense that various loss functions can

be deployed for different applications. To illustrate this point, we present three

types of loss functions:

Binary classification loss: We use binary hinge loss (Schölkopf and Smola,

2002), which gives Ll(xt, yt, f) = (ρ − ytf(xt))+ and Lu(xt, f) = (ρ −

|f(xt)|)+. This loss is used in applications such as interactive road tracking

and video segmentation.

Regression loss: Using insensitive loss (Schölkopf and Smola, 2002), we have

Ll(xt, yt, f) = (|f(xt)− yt| − ρ)+ and Lu(xt, f) = (|f(xt)− xt| − ρ)+.

Ranking loss: We use ordinal regression hinge loss (Chu and Keerthi, 2005)

for ranking problems. Each instance xt is associated with a vector y ∈

{−1,+1}r as follows: If the rank of an instance is k, we set the first k com-

ponents of y to +1 and the rest of the components to −1. Now f(xt) is r-

dimensional with the k-th component being f(xt, k). Then Ll(xt, yt, f) =∑r
k=1(ρ− yt,kf(xt, k))+ and Lu(xt, f) =

∑r
k=1(ρ− |f(xt, k)|)+. This loss

can be used in weblog-based recommendation systems.

10



2.2 Change Detection

We use a moving-average method (e.g., Basseville and Nikiforov, 1993) to detect

the change points in a classification problem. This is executed by maintaining

the recent values of {xa : a ∈ Ac} in a FIFO queue of fixed size | A | for class

c. A change is detected if the distance between
∑
a xa/| A | and xt exceeds a

threshold δ > 0, when xt is predicted as belonging to class c. This method can

be easily extended to regression and ranking problems.

In addition, the cluster assumption also suggests that encountering a severely

in-separable example (i.e. it is too close to the prediction hyperplane in the case

of classification and ranking) indicates the beginning of a new session. For a

real ε > 0, the predictor decides whether to request human input as follows:

For classification and ranking problems, a change point is detected if |f(xt)| ≤ ε

with 0 < ε < ρ, while, for regression, the rule becomes |f(xt) − xt| ≥ ε where

0 < ρ < ε.

Having incorporated change detection in this manner, we now deal with a

convex minimization problem. The reason is illustrated in Fig. 2 on a classi-

fication problem, which was originally a non-convex problem due to the term

|f(x)|, which peaks at zero. We use an ε-ball centered around the peak point,

and the predictor stops asking for labels, whenever the value of f(x) falls into

the ε-ball, turning (3) into a convex minimization problem with the feasible

regions being entirely outside the ε-ball. This holds similarly for regression and

ranking problems. In addition, one can show that it is safe to proceed by just

considering whether ft(xt) is outside the ε-ball, which is much easier than to

compute f(xt) (see Zhou et al., 2008).
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2.3 Dealing with Non-stationary Distributions

So far we have considered a stationary scenario where, in each session of the

time-series, the examples are drawn from the same distribution. In practice,

however, the examples in each session might drift slowly. This can be accom-

modated by extending (2) and (3) as follows:

ft+1 = argmin
f

1
2
‖f − ft‖2 +

(
λ

2
‖f‖2 + clLl(xt, yt, f)

)
, (4)

and

ft+1 = argmin
f

1
2
‖f − ft‖2 +

(
λ

2
‖f‖2 + cuLu(xt, f)

)
, (5)

where ηt is incorporated into λ and cl (or cu). This leads to a geometrical decay

of previous estimates with ft = (1− τ)ft−1 − c(1− τ)∂fL, where τ = λ
1+λ and

L is either Ll(xt, yt, f) or Lu(xt, f).

2.4 Kernels

To make use of the powerful kernel methods, the proposed framework can

be lifted to reproducing kernel Hilbert space (RKHS) H by letting f ∈ H,

with the defining kernel k : X ×X → R satisfying the reproducing property,

〈f, k(x, ·)〉)H = f(x). The representer theorem (Schölkopf and Smola, 2002)

guarantees that f can be expressed uniquely as ft = (1−τ)ft−1 +αtk(xt, ·) (see

Cheng et al., 2006).

2.5 The Method

We can now present our method. For ease of exploration, we focus only on the

problem of binary classification. With proper modifications, it can be easily
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adapted to regression, ranking and other problems. Recall that, at time t, we

are presented with an example xt and possibly with a ground-truth label yt, and

we want to update the parameter ft to ft+1 by incorporating the new example.

On the one hand, when (xt, yt) is presented, f is updated by solving the op-

timization problem (4) with Ll(xt, yt, f) = (ρ− ytf(xt))+. After simple deriva-

tions, we have ft+1 = (1− τ)ft + αtk(xt, ·), where

αt =


α̂t if ytα̂t ∈ [0, (1− τ)cl]

0 if ytα̂t < 0

yt(1− τ)cl if ytα̂t > (1− τ)cl,

(6)

with

α̂t =
ρ− (1− τ)ytft(xt)

ytk(xt, xt)
.

On the other hand, when only xt is presented, f is updated by solving the

optimization problem (5) with Lu(xt, f) = (ρ−|f(xt)|)+. As a result, the value

of αt is hinged on ft(xt) and has two cases:

αt =


α+
t if ft(xt) ≥ ε

α−t if ft(xt) ≤ −ε.
(7)

In the first case, lettting

α̂+
t =

ρ− (1− τ)ft(xt)
k(xt, xt)

, (8)
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we have

α+
t =


α̂+
t if α̂+

t ∈ [0, (1− τ)cu]

(1− τ)cu if α̂+
t > (1− τ)cu

0 if α̂+
t < 0.

(9)

Similarly, in the second case, letting

α̂−t =
−ρ− (1− τ)ft(xt)

k(xt, xt)
, (10)

we have

α−t =


α̂−t if α̂−t ∈ [−(1− τ)cu, 0]

−(1− τ)cu if α̂−t < −(1− τ)cu

0 if α̂−t > 0.

(11)

2.6 Dealing with Unbalanced Data

For practical interactive classification applications, the number of examples are

often unbalanced across different categories. In road tracking, for example, the

number of positive examples (road examples) is much smaller than the number

of negative ones (off-road examples). Our framework can be extended to deal

with this issue. Consider a binary classification case, and let ρ+ and ρ− be

the margins for the positive and negative sides of the separating hyperplane,

respectively. When receiving (xt, yt), the loss is associated with proper margin

conditioning on whether yt is positive or negative. Similarly, when presented

only with xt, it is conditioned upon ft(xt) as Lu(xt, f) = (ρ+ − f(xt))+ if

ft(xt) > 0, and Lu(xt, f) = (ρ− + f(xt))+ otherwise.
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2.7 An Ensemble of Predictors

Over time, an interactive system collects a number of predictors from past

sessions. Intuitively this ensemble can help to improve predictions for new

sessions. While sophisticated algorithms with guaranteed theoretical bounds

exist for ensemble methods (Dietterich, 2000), we use a simple strategy: Recent

predictors are maintained in a queue of bounded size, and when an abrupt

change is detected, we first search in the queue for an optimal predictor that

can still perform well on the change point and switch to this predictor to continue

with automatic predictions rather than resorting to human input. The intuition

is simple. The models learned in the past might turn out to be useful for the

current scenario. Later this strategy is applied in the road tracking application,

leading to an overall improved performance.

3 Experiments and Performance Evaluation

We applied the proposed approach to the problem of interactive classification of

a synthetic time-series and to a real-world road tracking task. The comparison

approach is a nearest-neighbor moving average (NNMA) algorithm. In each

session, the NNMA assigns to the current example a label according to the

closest match among the human inputs, and change points are detected using

the same moving average method. The parameters were tuned individually for

good performance.

The performance of an interactive system is usually evaluated objectively

based on two criteria: accuracy and efficiency. The accuracy criterion consid-

ers tracking errors (i.e. those with large deviation from corresponding manual

labels), while the efficiency criterion deals with the time saving for the human

operator (e.g. by measuring how many mouse clicks the operator has made in
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a fixed set of road maps for interactive road tracking). These lead to a 2-D

accuracy-efficiency plot (see Fig. 1 middle) where the horizontal axis measures

accuracy and the vertical axis shows efficiency. After proper normalization, the

results fall in a [0, 1] bounding box. Similar to ROC curves, the performance of

an ideal system would fall in the top-right area of the box. We use this method

to evaluate related systems throughout the experiments.

4 Interactive Classification in Synthetic Time-

series

We present two experiments on a synthetic time-series. Fig. 1 top presents an

example time-series, which contains 1-D examples sampled with uniform prob-

abilities from two classes (marked with circle and asterisk signs). To mimic a

real-world situation, each class-conditioned distribution, a 1-D Gaussian distri-

bution, is allowed to drift slowly over the time. Five disjoint subsequences are

sampled in this way, each using a distinct drifting pattern, to model abrupt

changes. With this type of time-series, a semi-automatic system is expected to

predict with good accuracy and to make minimum queries for inputs.

Fig. 1 middle shows a comparison of the NNMA method and the proposed

approach on the accuracy-efficiency plot, where the results are averaged over

five time-series. The results indicate that the proposed approach delivers bet-

ter performance when the class-conditioned distributions drift over time, as is

typical in real-world settings.

To get an idea of the robustness of the proposed approach, we conducted

a second experiment, where the algorithms were evaluated on time-series of

different levels of difficulty: At the easiest level, the means of the two class-

conditional distributions are well separated, while at the most difficult level,
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the two means are very close to each other, with the standard deviations fixed

throughout this experiment. In Fig. 1 bottom, from left to right, the problems

become easier to deal with as the gap between the sample means of both positive

and negative classes grows. The vertical axis measures the distance to the ideal

performance at the top-left corner (1,1) of the accuracy-efficiency plot. A small

value therefore indicates better performance. Fig. 1 bottom displays the results,

where each value along the curves is computed by averaging over ten time-series.

As one can see, our proposed method gives overall a better performance than

NNMA.

5 Interactive Road Tracking

Interactive road tracking (IRT) refers to a semi-automatic image understanding

system to assist a cartographer annotating road segments in aerial photographs.

Given an aerial photograph containing a number of roads, the IRT system assists

the cartographer to sequentially identify and extract road segments (including,

for example, transnational highways, intrastate highways, and roads for local

transportation). As shown in Fig. 3 top, road-tracking is not a trivial task

because road features vary considerably due to changes in road material, oc-

clusions of the road, and lack of contrast with off-road areas. It is extremely

difficult for a fully automatic system to annotate the road segments with rea-

sonable accuracy. Much research has been devoted to road tracking in aerial

photographs (e.g. Merlet and Zerubia, 1996; Geman and Jedynak, 1996; Yuille

and Coughlan, 2000; Lacoste et al., 2005), but these attempts have been de-

voted to automatic systems. People have gradually realized that the human

cartographer can and should provide help in these systems (e.g. Caelli et al.,

2001; Geman and Jedynak, 1996). In recent years, a number of semi-automatic

systems have been proposed (e.g. Rochery et al., 2006; Hu et al., 2007; Zhou
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et al., 2007).

In our system, a session comprises an input phase and a detection and pre-

diction phase. The input phase contains a series of labeled examples along a

road segment, where each example (also called an on-road profile) records the

location and direction of the local road segment, together with features that

characterize the local texture. We also collect a set of off-road profiles by ran-

domly sampling nearby regions. In the detection and prediction phase, the

system searches ahead and returns a set of candidate profiles based on the lo-

cation and direction of the current road segment. Then the online predictor is

used to select on-road profiles. The location and direction of the next example

is decided by a weighted average of these profiles, where the weights are pro-

portional to their distance from the separating hyperplane. In cases where too

few on-road profiles exist, or where a good portion of the candidate profiles is

within the ε-ball, the session ends and further input is requested from the user.

Fig. 3 bottom shows an example consisting of two sessions. The first one starts

in the top-right corner. White line segments indicate the locations of human

inputs while white dots indicate road axis points detected by the system. When

the road changes from dark to light (just before the freeway crossing), a human

input is required to guide the tracker because the light road surface has not

been experienced before.

We used the dataset from (Zhou et al., 2007). Our goal was to semi-

automatically identify the 28 roads in one large photograph of the Marietta

area in Florida. Eight participants were involved in this experiment. Each par-

ticipant was asked to provide manual annotations of the road center axes, and

we simulated the semi-automatic process using the recorded human data as vir-

tual users. Over the eight participants, accuracy results were similar (0.97 for

both methods, corresponding to 1.95 vs. 1.85 pixels deviation from the ground-
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truth road center axes, for the proposed method and NNMA, respectively), but

our proposed approach was able to work with substantially fewer human in-

teractions (efficiency score 0.70 for our proposed method; 0.64 for the NNMA

method).

5.1 Features and Feature Combinations

We implemented four features for characterizing road profiles, intensity (I), gra-

dient (G), direction (D) and saliency (S). Road profiles of each feature were

extracted in directions parallel (PA) and perpendicular (PE) to the road di-

rection. The rationale for using the intensity feature is straight-forward. The

intensity of the road surface is assumed to change little along the road because

road segments are normally built with one material while there are typically

strong intensity differences between on-road and off-road areas as well as within

off-road areas. The contrast between roads and other areas suggests that one

should find two parallel edges, with an intensity gradient stronger across these

edges than along the road. To compute image gradients, we used a Sobel op-

erator. To model the response to the road direction, we used Gabor filters,

computed in eight directions uniformly distributed in the interval [0 π). The

overall Gabor response at each pixel was computed as the maximum response

of the Gabor filters in all directions. Saliency was computed following Itti et al.

(1998)’s method, without using color information. This method computes a

saliency map that highlights those regions that are likely to attract visual at-

tention. The motivation for using saliency was the idea that roads look rather

different from neighboring areas. Examples of the different feature maps for one

road segment are show in Fig. 4.

Tracking performance of each feature is shown in Table 1. Several observa-

tions are important. First, reliance on perpendicular features is better than re-
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I-PE I-PA G-PE G-PA D-PE D-PA S-PE S-PA E A
1.0 0.775 2.05

1.0 0.737 2.09
1.0 0.690 2.51

1.0 0.633 2.70
1.0 0.773 1.83

1.0 0.755 1.79
1.0 0.520 2.49

1.0 0.480 2.38
1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.794 2.13

Table 1: Performance for individual features and combinations of features. I,
G, D, S denote intensity, gradient, direction, and saliency, respectively. PE and
PA denote perpendicular or parallel to road direction. E denotes efficiency. A
denotes accuracy, which is the average deviation from the true road centers (in
pixels). The last row reports performance for a combination of features I-PE
and I-PA with weights 1.0 and 0.2, respectively.

liance on parallel features, indicating that the variations across roads are better

suited for road detection than variations along the road. Second, intensity and

direction have similar efficiencies, both much higher than the other two features.

This is due to the fact that, in many areas, roads do not have adequate contrast

to the neighborhood, violating the assumption that roads can be characterized

by parallel edges and higher saliency. Third, considering the accuracy-efficiency

trade-off, the direction feature outperforms all other features, suggesting that,

if a single feature were to be used in road tracking, the Gabor filter response

would be the best choice.

We also tried combinations of features, i.e. concatenated individual features

with different weights. The best performance was achieved when only intensity

was used and when the perpendicular feature was assigned a higher weight than

the parallel one (see Table 1).
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5.2 Discussion

What we set out to develop was a system that learns to track roads by observ-

ing an expert (at the beginning of a session), continuing autonomously for the

remainder of the session, and returning control to the human expert as soon as

there is too much discrepancy between hypothesized road segments and mea-

sured image characteristics. The system was trained with a set of general fea-

tures for characterizing local road image patterns. After relatively short training

sessions, certain features (intensity and direction) turn out to be much more use-

ful for detection road segments than others (parallel edges and saliency). This is

of course the well-known and well-investigated feature selection problem. What

is new in our approach is that features and spatial patterns are learned in a

dynamic sequential learning process and in the presence of gradually changing

features.

With relatively short training, our system learned that roads can be char-

acterized by several characteristics: 1) Road are smooth. Changes of the road

surface should thus be small, and the decay factor in the temporal modeling

should be small. 2) The presence of parallel edges normally presented in the

road leads to gradient information being useful for road detection. 3) The con-

trast between roads and its neighboring areas suggests that one can perform

machine learning in a binary classification setting.

Our system learns simple image interpretations in a setting where the sys-

tem has to select optimal classification features in a dynamic context and with

changing feature characteristics. This is very different from the classic view of

image analysis that relies on a fixed, albeit well-chosen set of features for clas-

sifying images or image fragments. It is interesting to note that this is a view

that Terry Caelli has proposed a very long time ago (e.g., Caelli, 1988; Caelli

et al., 1987). Similarly, we show that our kernel-based learning algorithm per-
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forms as an information screener that selects and adapts to useful road features

as support vectors. In addition, the decay factor simulates a forgetting process:

Outdated support vectors are given weights that decrease over time so that the

system can adapt to the most recent appearance of roads.

6 Conclusions

We have presented a novel approach to sequential prediction and change detec-

tion, which often arise in interactive applications. We devised an online-learning

algorithm that naturally unifies the problems of prediction and change detection

into a single framework. We applied the proposed approach to an interactive

classification of a synthetic time-series, and we also experimented with a real-

world road tracking task with different feature settings. We were able to show

that our proposed approach is very competitive with other approaches. In our

future work, we are looking into applying our framework to other interactive,

complex image interpretation problems.
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Figure Captions

Figure 1: An interactive classification task for a synthetic time-series. Top:

An example of a synthetic time-series. Middle: A comparison of the proposed

method and NNMA on the accuracy-efficiency plot. Bottom: A comparison of

two methods over different levels of difficulty. See text for details.

Figure 2: The figure illustrates the effect of considering change detection and

classification problems together. For a given xt, the horizontal axis denotes

f(xt) and the vertical axis is the instantaneous loss. In classification, the loss

function contains both the solid and the dashed lines, leading to a non-convex

problem. When dealing with both change detection and classification, only the

solid lines outside the ε-ball are left, which gives a convex problem.

Figure 3: Top: A close-up view of an orthorectified aerial photograph of roads.

Notice that occlusions, crossings, and changes in road surface materials lead to

abrupt change in road appearance. Bottom: An example of interactive road

tracking. See text for details.

Figure 4: Image feature maps for four different features. From left to right:

intensity, gradient, direction, and saliency.
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