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Abstract— Current image processing and pattern recognition road extraction is such an example, which normally requires
algorithms are not robust enough to make automated remote manual road seed input. The road seed information includes
sensing image interpretation feasible. For this reason, we need at least one of the following: starting point, edge location
to develop image interpretation systems that rely on human . . . ’ ’
guidance. In this paper, we tackle the problem of semi-automatic foa‘?‘ q!recnon a”O! width, as well as 2D rpad templates. After
road tracking in aerial photos. We propose an online learming @n initial human input, the road extraction models perform
approach that naturally integrates inputs from human experts either automatic road tracking using methods such as road
with computational algorithms to learn road tracking. Human edge following [10] and Kalman filtering [11], or automatic
inputs provide the online learner with training examples to road optimizing using methods such as least square template
generate road predictors. An ensemble of road predictors is . . . -
learned incrementally and used to automatically track roads. matchln_g [12], [13], [14], multi-resolution modelling [15]’ [16]_
When novel situations are encountered, control is returned back and active contours [16], [17]. In some cases, the interaction
to the human expert to initialize a new training and tracking interface and the error correction tool was also designed to

iteration. Our approach is computationally efficient, and it can  coordinate human actions with computer predictions [18],
rapidly adapt to dynamic situations where the image feature [19].

distributions change. Experimental results confirm that our . . ith | ina h |
approach is effective and superior to existing methods. Image interpretation systems without learning have several

. . , problems. First, it is usually difficult to obtain a robust image
Index Terms—Image interpretation, human-computer inter-

action, online learning, novelty detection, road tracking, aerial Interpretation modgl at the beglnnlng. of the system deSIQH'
images Thus, the computational model may fail frequently and require

intensive human involvement, leading to a decrease in system
l. INTRODUGTION eff|C|ency_ and usability. More spe_C|f|caIIy, it is he_lrd fo_r t_he
computational model to characterize the dynamic variations

Although image processing and pattern recognition methogshe jmage features from multi-modal and changing distri-
for remote sensing are developing rapidly, there is still @ huggiions. This is especially the case in road tracking, where road
gap between the requirements of most image interpretatigiy res vary considerably due to changes in road materials,
applications and the accuracy and reliability achieved By sions of the road, and lack of contrast with off-road
computational methods. Many attempts to automate these tagks,«  an example of a road scene is shown in Fig. 1
have been too fragile, and they require checking by expefi$ich jllustrates these dynamics. Second, there lacks the
before any final decision can be made. For this reason, Maf¥chanism to enhance the computational model from multiple
successful systems retain the ‘human in the loop’ whereygman inputs, thus the combination of human and computer
human operator can aid the automatic image interpretatiQyo rces remains suboptimal. To solve these problems, we
through human-computer interactions (HCI) [1], [2], [3], [4lneed to bridge the gap between human inputs and automatic

Zhou et al. [5] proposed a general framework for humagk, »qe interpretation using machine learning. This permits each

guided image interpretation, which consists of five comp@y,man input to contribute to the building of a better image
nents, a human-computer interface, a user model, Comquﬂ'erpretation system.

tional algorithms, a knowledge transfer scheme, and a perfor-
mance evaluation scheme. Among these five components, th ‘
interface and the computational algorithms have been studiedi
extensively [6], [7], [8], [9]. In contrast, research on the [&%
learning of computational algorithms from humans has been
very limited.
In most existing semi-automatic systems, the role of the
human operator is simply to provide initial parameters or to
modify the image interpretation results, leaving the rest of
the tasks to the pre-defined automatic model. Semi-automatic
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In this paper, we propose an online learning approachThe above methods acquire single predictor from human
that naturally integrates guidance from human experts withputs. It is also possible to acquire a set of predictors
computational algorithms for tracking roads in aerial photos. multiple predictors are generated from human inputs. In
Human inputs provide the online learner with training exanthis case, the problem can be considered as predicting from
ples to incrementally generate an ensemble of road profégperts’ advice [24]. Littlestone and Warmuth were among the
predictors. The predictors are then used to automatically tratle first to tackle this problem [25]. They proposed a weighted
roads. When novel road situations are encountered, controhigjority algorithm that can be summarized as follows:
returned back to the human expert. With this approach, we1) Set the initial weightw; for each expert to 1, where
avoid the problem of having to explicitly define an off-road 1 <i < mn, andn is the number of experts.
class, while enabling explicit learning from human inputs. Our 2) The algorithm compares the total weight from experts
learning algorithm is a kernel-based online learning approach  that predict output 0 and the total weight from experts
for novelty detection, which is derived from one-class Support  that predict output 1, and outputs the prediction of the
Vector Machines (1-SVMs). The learned predictors are repre-  |arger total.
sented as weighted combinations of training examples, and th@) The weights of the experts that make mistakes are
weights for each training example are derived from the large  multiplied by a penalty factor between 0 and 1.

margin principle. We discuss the learning methods to acquiggjter and Maloof [26] extended the above algorithm to create
single and multiple predictors from one human input, and w&,q gelete experts in concept drift problems using a weighted
show that they are equivalent to learning an expansion mogeliority algorithm. In addition to the predictions by each
or multiple drifting models that characterize human knowledgghert, a global prediction is calculated as the label with the
of the dynamics of the image patterns. We also introduce Wgyhest accumulated weight. Whenever the global prediction
tracking algorithms that use either optimal candidate-predict@rincorrect, the algorithm creates a new expert. To constrain
combinations or multiple hypotheses. The experimental resyis: number of experts, the algorithm eliminates experts with
on the learning and tracking models are compared and Hkights less than a certain threshold.
alyzed. The proposed approach is computationally efficient, o5 gescribed in a later section, our online learning problem
and it can rapidly adapt to dynamic situations where the roadsimilar to the concept drifting problem. Each predictor is a
features change. Experimental results confirm the effectlvenq\;@ghted sum of past training examples, where the weight for
of our approach, and it is shown to be superior to existingych training example is derived from the large margin princi-
methods. ple [27]. Instead of creating new predictors automatically, we
maintain a dynamic list of predictors. One set of predictors
Il. RELATED WORK can be generated from one iteration, and different iterations

. . . generate different predictor sets.
Interactive machine learning (IML) [20], [21] enables hu~" \ye developed our algorithm for novelty detection, i.e. for

man operators to train predi_ctprs, for examplg _decision treﬁ\%ntifying new or unknown data that were not present in the
or neural networks, by providing labelled training data anflining stage [28]. Thus, it is important to find true novel
by defining boundaries between true and false instanc€g§mpies in testing while minimizing false positives. Cheng
Such Iearn_lng methods have been successfully used in image,| [29] proposed an online learning method with sparse
segmentation. , kernels to solve learning problems with examples drawn from
Muneesawang and Guan [22] employed IML in & mode| non_stationary distribution. We extend this method to online
for content-based image retrieval. An initial image dlstanqgaming from human inputs for novelty detection, so that

function is given using a radial basis function (RBF) networky can fit into the HCI framework for image interpretation
When a user supplies a query image, the system retrie‘é‘ﬁ)lications.

images in the databases that are closest to the query image.

Then the user indicates correct and incorrect retrievals. The . SYSTEM FRAMEWORK
image features are used to train the RBF predictor using
learning vector quantization method, so that the system c
retrieve a new set of images. This process is repeated uﬂil

the user is satisfied with the retrieval results. b f d ithi hich onl is the t t of
Maloof et al. [23] proposed a similar model, which enabled NUMPeEr of roads within which only one 1S the target o
Iackmg. The system proceeds with iterations consisting of

interactive supervised learning of building detection in aerig man input, sampling and prediction phases. The first phase

images. In each training session, the classifiers generate ro imed at learning from human input whereas the last phases
candidates. The human analyst provides positive and negati gim g e P P
e aimed at automatic road tracking.

labels for these candidates, which in turn are used to update?ﬁ
classifiers. The training session terminates when all training
samples have been classified. Four types of classifiers wérelnput Phase

implemented, namely a nearest-neighbor method, &wena A human input consists of two mouse clicks on an image,
Bayesian classifier, decision trees, and a continuous percejith the line joining the click positions defining a road axis
tron. In the testing session, these classifiers were usedata indicating the road direction. Along the road direction,
automatically detect buildings in testing data sets. a set of 2-D road profiles, represented as vectors of image

n this section, we give an overview of the main procedures
the proposed approach on human-guided road tracking.
road tracking task starts with an aerial photo containing



greylevels, are extracted normal to and along the road axistlare are two strategies for this purpose. The first strategy is
consecutive axis points. All vectors have the same lemgthto select an optimal candidate profitg and predict its label
which is the sum of the length of the two 1-D profiles. Thé,. In this case, we assume that, at an appropriate road axis
length of the 1-D profiles is estimated from the road widtHocation, there has to be exactly one profile with= 1, that
which is calculated as the distance between the road edgssonly one candidate profile can be the on-the-road profile.
This, in turn, is obtained with a gradient-based edge detectibhe second strategy is to select a set of supporting candidate
method [30]. We denote a 2-D road profile asc X C R? profiles and compute the location of road axis point as a
where X is the profile space with dimensioth We denote weighted sum of profile locations. In this case, we assume
one human input as one learning sessiog Zs whereZg that several road profiles can be on-the-road profiles.

indexes the set of learning sessions that occurred during thdf the prediction indicates that the tracking is on the road,
road tracking task. A road profile is associated with a label the automatic tracking continues and returns to the sampling

y € Y, where) is defined as: phase. Otherwise, a novelty has been detected and control
is handed back to the human expert for further input. In
{ y =1, onthe road (1) this manner, switching between human inputs and automatic
y =0, off road tracking continues until the tracking task is completed.
and a stater € &, which encodes a location as For predicting a candidate example = (i, 6+, 9:), we
hope to be close to the true ong = (4,04, y:), that is,
o= [ U v 0 ]’, (2) % — w, 64 — oy andy, = y, = 1. Unfortunately, this

) ) ) . is not always the case. None of the candidate profiles may
whereu andw are the coordinates of road axis point, #$ e |apeled correctly when occlusions, such as vehicles and
the direction of the road. The triplet = (z,0,y) represents spaqows, are present on the road, or when radiometric road
a training e>§ample .extracted from human |r_1put. Later, d””rlﬂoperties change, for example, when encountering a road
the automatic tracking step, observed candidate examples &s@ment built with different materials. A heuristic strategy is
take this form. All training examples are extracted from roageyeloped to overcome these often-encountered situations and
axis points entered by the human, hepce 1 for all training 14 improve the tracking efficiency. We employ a jump-over
examples. A road profile predictof, € 7 is learned from gyaieqy, where the upper and lower bounds of the stepesize
the set of training profiles in a learmning sessianwhere 7 i Equation 3 is increased to jump over the current location
denotes the set of road profile predictors learned in sessiQfi$en the system fails to find a road profile with= 1. Then a

indexed byZs. new sampling phase occurs. When failures continue, even with
the jump-over strategy, the system recognizes a tracking failure
B. Sampling Phase and returns control to the human expert, who then inputs

Automatic road tracking starts after each training phas@hother road segment from which new training examples with

Suppose we have already found the road axis point at tiie= 1 can be extracted. _
t — 1, and we would like to find the next road axis point Insummary, the proposed approach is naturally decomposed

sequence of learning sessiofis,---,s) and obtained an input phase, and a tracking algorithm for automatic road
ensemble of predictor§; £ (fy,---, f,). It then proceeds tracking.

with the sampling phase, where the system searches the

neighborhood along the current road axis for candidate road IV. LEARNING ALGORITHMS

profiles X = {z1,---,2:n}, wherem denotes the number The interactions between human and computer lead to a

of candidates being sampled. The candidates at tinae sjtuation, where learning sessions are mixed with automatic
sampled at locations computed by the following non-lineafacking runs. The first learning session is initialized by the
function first human input. Each successive learning session starts when
a road outlier is detected for the current prediction and control

ur—1 + 0cos(6—1 + ) is handed back to the human expert.

oy = | vi—1 + osin(fi—1 + @) 3)
et_l + QO . . .
_— , A. Basic Learning Algorithm
wherey € [—7/18, /18] and ¢ (initially bounded in[—3, 3])

are angle and depth parameters, with different angles an or thfhs?ke 0; Is,lmpl_lcny n d_escr|b|rt19_ the a’lggont_h_m, we
depths generating different sampling locations. assume that each learning session contains exactigining

examples(z;11, - , 2zt4.5), Wherez; = (z;,04,y;),Vi € {t+
. Lo t+ S}
C. Prediction Phase The basic learning algorithm aims at obtaining a reasonable

After the sampling phase, we obtain a set of candidatead profile predictorf, in one learning session. Given the
profiles X and their associated locations. The goal of theurrent learning sessionstarts at time+1, we define a kernel
prediction phase is to predict the road axis point at time stepappingk(-,-) from profile space to a Hilbert feature space,
t and to decide whether the tracking is on the road, usidg — H asz — k(z,-) € H. Here’H denotes the Reproducing
the trained road profile predictors. As will be introduced lateKernel Hilbert space (RKHS) with induced kerrigl-, -) such



that f(z) = (k(x,-), f(-)), and (-, ) gives the inner product. = € [0,1) to an appropriate value, the new predictpris
The norm in this case is naturally defined|as|| = (-,-)'/2.  able to balance between two extreme situations, either fully
As in the online learning algorithm described in [29]adapting to the current example (i.e. forgetting all the past
the road profile predictorf € H can be represented as a&xamples as — 1), or keeping all past examples in memory
weighted combination of training profiles, where past profilgge. becoming a batch learning case 7as— 0). Finally, at
in the learning sessiofu; ’;:il are associated with differenttime 7, the weight of current example;, «; is automatically
weights {ai}ﬁifﬂ that are derived formally from the largeobtained, while the weights for previous exampigs< i are
margin principle [27]. In this paper, we extend this algorithmetained with proper decay, instead of being re-computed from
to incorporate learning from human inputs and to deal witbcratch. Thus, this update formula allows for rather efficient
the novelty detection scenario, so that the learning problemcgmputation, as shown in the Table I.
naturally formulated as a novelty detection by solving online
1-SVMS. o o« mjn{li,(l —T)C}
Given a profilez; at time 4, the novelty detection can be
formulated as an optimization problem

mfin c- (P—<f7k($iv')>)+v

(1-7)C

where(-); £ max{-,0}, C is a positive constant cut-off value < fisk(x;) >
for the penalty imposed on point prediction violatiops; 0 is i
the margin parameter, anfdis bounded. This can be rewritten( f?;
in a form similar to 1-SVMs [31],

2. Robust weight assignment; at time i. The horizontal axis is
k(zi,-)). The vertical axis isx; and is upper bounded ki — 7)C.

. A 9
min — +C
ain 5112 +C¢

TABLE |
st (fyk(xsy ) > p—¢, (4) LEARNING ONE ROAD PROFILE PREDICTOR FROM ONE HUMAN INPUT
§=0
where A > 0 is a regularization parameter, agdis a slack nput: The cut-off valueC, decay rater, marginp, current learning
variable. _ sessions
According to the framework in [29], we want to minimize'”'t'ai'ozre'i fti%tot—i— S do
the risk functionRaiy (f) + Rreg(f), Where Raiv (f) = ||f — Observe profiler;
fill?/2 measures the divergence of the predicfettom the Computel*) according to Equation (6)
previous predictionf;. The second term is the Lagrangian Compute(a”))i_, , according to Equation (7)
function of the optimization problem in Equation (4), end for

Output: The sequence&xgs))zifﬂ, S, fs-

A

Reeg(f) = §||f\|2 +CO&+c(p— (f, k(7)) — &) — C&,
e
AReap (f) Rinst (f)

) Based on the Learning Algorithm, the road profile predictor
fs is obtained given the weight sequer(tz:rsgs))fif+1 and the
where¢ and ¢ are Lagrangian multipliers. Equation (5) congorresponding training examples. For a sequence of lefigth
sists of two terms, the capacity risk..,(f), which controls the space complexity of the proposed learning algorithm is
the complexity of the predictof, and the instantaneous risk(q 1 1)$ (whered is is the dimensionality of the input road
Rinst (f). We further introduce > 0, the decay rate parameterprofile), and the time complexity i©(5?)
and an auxiliary variable > 0, such that\ = 7/(1 — 7) and
s=v/(1-r1).
We also define the magnitude of violation as

B. Learning Multiple Predictors from One Training Session

We can generate multiple predictors from one training

L & UWfiw)=(p— (1 —7)(fi.k(zi )+ (6) session. The separating function is in the form faf) =
t+S

By solving the (previously mentioned) risk minimization prob2_i¢+1 @i¥(2i,-), hence given an input that consists suc-
lem (see [29]), the separating functioh turns out to be CESSive examplegz;,y,---,z5) We can compute up to
f() = Zﬁifﬂ a:k(z;,-), where the weights are S separating func_tlons f.ron’t.+ 1 .to t + S. Thus, im
ensemble of predictors is given in the form off =
o = (1-T1)y Vj<i (fix, fr2seo s figs oo, fs,s—1, fs,s). For atraining sequence
{ o; < min k(zlf,zi)v (1— T)C} (7)  of length S, the time complexity of this extended model is

not different from the single-predictor model, but the space
As stated in [29], the resultant weight updating formulaomplexity increases t&d + 1)S2.

has several advantages. First,is always upper bounded by In each training session, some predictors may not be as

the constant(1 — 7)C. This ensures limited influence fromrobust as others. To evaluate their robustness, we calculate

outliers (see Fig. 2). Second, by adjusting the decay rate training errors for all predictors and rank them according



to their performance. This permits us to select more robusith decay rater = 0, the region drifts to adapt to the new

predictors in the tracking runs and to achieve faster and meneample, and the extent of the drifting depends on the value

accurate results. of 7. With a largerr, drifting is larger and past examples are
forgotten more quickly (see Fig. 4).

C. Discussion of the Learning Algorithms

As mentioned before, the online learning algorithm is de- ©
rived from 1-SVMs [31], and it is thus driven primarily by o ©
positive training examples. This formulation perfectly fits the b
@]

road tracking scenario, since the human inputs provide only
positive examples for the learning process. In the following,
we analyze the effect of applying this algorithm to a set of
2D data (see Fig. 3). We assume a Gaussian kernel, and the
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learning algorithm generates, in each learning session, a sphere
enclosing the input data features.
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Fig. 5. Learning multiple predictors from one human input. The learned
model at timet is shown in the left graph. At timeé + 1, a new model is
learned to adapted to the new training example, while the old model is kept.

Since old examples characterize situations that are con-
sidered positive, we may want to preserve the past training
examples in the drifting model. In this case, multiple predictors
can be learned from one human input. The predictors acquired

o
© in each time step are preserved, each becoming an independent
o . X X T
o - expert for the tracking process. This model is shown in Fig.
© 5.

input 2

This graph shows a set of input data. Initially, the class of the

data is unknown. A human input sequentially mark the the data that huma¥/, TRACKING AND NOVELTY DETECTIONALGORITHMS
operator considers as positive, which are in turn used in one training session.

The region delimited by one curve identify these positive examples. In theT
proposed interactive model, multiple inputs can be observed, and thus form

multiple regions as marked by input 1 and 2.
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he tracking process automatically interprets road features
in the aerial images using the trained predictors. If a novelty
is found in the direction of the prediction, then either a new
road condition has been encountered or a tracking failure
has occurred. In both cases, human guidance is required to
initialize a new training session, and if necessary, to correct the
tracking error. We now introduce two tracking algorithms, one
based on a single optimal predictor, the other using multiple
predictors.

A. Optimal Candidate-Predictor Combination

We assume that, at timg after thesth learning session,
the newly learned road profile predictgt is incorporated
into the set of predictors a&; = F;~' U f,. Tracking starts
by searching the neighborhood along the current road axis
for candidate profiles. The violations of the candidates are
calculated using Equation (6) and the one with the minimum
violation, &, is picked as the input to the predictors. If it is
considered to be on the roag; & 1 with a predictorf € F,

Fig. 4. Two models of learning: expansion (upper graph) and drifting (lowey,: ; ; ;
graph). The left graphs shows the learning result up to timf time ¢t + 1, Which produces the least violation), the stéeof the profile

a new positive example is observed. The expansion model enlarges the reffor/S€d to set the current road axis point, the current road
delimited by a curve to include the new example, while the drifting modelirection, as well as the origin of the next prediction. The

moves the region to adapt to the new data. tracking algorithm based on the optimal candidate-predictor
combination is shown in Table II.

We consider two learning models. In one model, we use aThe tracking algorithm picks the candidate-predictor com-
decay rater = 0, where all past examples contribute equallpination with minimum violation and evaluates whether the
to a predictor without loss of any information. Learning thusandidate is on the road and its reliability by comparing the
expands the region to cover the new example. In the modablation value to a threshole.



TABLE Il TABLE Il
TRACKING ALGORITHM |: OPTIMAL CANDIDATE -PREDICTOR TRACKING ALGORITHM IlI: M ULTIPLE-HYPOTHESESSUPPORT
COMBINATION

Input: Decay rater, margin p, thresholde, the set of learned predictors
so far 77, an emptyH. ~
Input; Decay rater, marginp, thresholde, the set of learned predictors Obtain a set of m candidate profilés from the sampling phase.
so far 3. fori=1tom, j=1tosdo
Obtain a set of m candidate profilés from the sampling phase. Computel;,; according to Equation (6)
fori=1tom, j =1tosdo if [; ; < e then ‘ ‘
Computel; ; according to Equation (6) computew; ; according to Equation (9)
end for hij i

I*, &) « ming ;{l; ; H=HUh;;
Igredic% label asyj{ st end if
end for
[0, I*>e if H#o
Yt = { 1, otherwise ) Wi = Wi/ 30 205 Wiy
Tt <= D i Qi Wi jTi
OUtpUt: Zt = (.it,a't,gt), s, fs. &y — %z %j ’wi’;O'i
end if

Predict label as

0, H=go
1, otherwise

B. Multiple-Hypotheses Support G = { (10)

The road axis point and the next prediction depend excl UoUt £ = (30, 60, 0)
sively on the location and direction of the optimal candidate. U
Noisy candidates can thus mislead the prediction. To solve this
problem, we propose a multiple-hypotheses method. The viFE
lations of the candidates are again calculated using Equaticzaos e see
(6) for eachf € F, and are stored in a look-up tabitewhose
entriesh; ; € H correspond to hypothesized road axis pointg
from candidate-predictor combinations. i
Given the lookup table, we search for hypotheses Whosi
violations are lower than a threshotd If a violation /; ; is
smaller thare, the hypothesis is a supporting hypothesis anf‘ .
its weight is set to i

w; j = exp(—l; ;) 9)

If I; ; > € the hypothesis is discarded. Finally, we calculate thjg
road axis point as a normalized weighted sum of the supportilﬁ‘
hypotheses. If the number of supporting hypotheses is zero:t: : NS o ChTT
novelty has been detected. The resulting tracking algorithm = E— -

shown in Table IIl. Fig. 6. Map revision environment. Old map layers are aligned with latest
digital image data so that human operator can make visual comparison of the

two resources.
VI. EXPERIMENTAL RESULTS

A. System Implementation

We have developed a semi-automatic road tracking syst&ithen a discrepancy is found between a feature on the map
for the United States Geological Survey (USGS) map revisiemd the DOQ, the cartographer modifies the map to match
platform [32]. This platform is used to revise the USGS 7.5he DOQ. Fig. 6 shows the environment of this map revision
minute quadrangle topographic maps [33]. This map seripatform.
consists of 55,000 map sheets in raster form (USGS alsowithin this system platform, we have implemented embed-
produces the Digital Line Graphs (DLGs), a vector fornded software to keep track of the time, the type and the
product, which also comprises a transportation layer). Thscation of each human input. The inputs related to road
revision of this map series is the Raster Graphic Revisiaracking were used for the experiments reported below.
(RGR) program, which uses existing map sheets as the primary
input and creates new maps as the primary output. The ma
are displayed on a computer screen, together with the digi
orthophoto quads (DOQs) of the area to be mapped. DOQdNMe conducted experiments with humans tracking road fea-
are orthogonally rectified images produced from aerial photages. Eight users were involved in the manual road inter-
taken at a height 020, 000 feet, with an approximate scale ofpretation. They were assigned 28 tasks to annotate roads on
1:40,000 and a ground resolution of 1 meter. A cartographéhe aerial photo (one photo dft576 x 12749 pixels) of the
then makes a visual comparison of the map and the DORlarietta area in Florida. In each task, one road had to be

S
| Experimental Results



annotated. The tasks included a variety of scenes with trasgows an inefficient tracking example. There are too many
national highways, intra-state highways and roads for locadriation in road conditions, which cause frequent tracking
transportation. Further, these tasks contained different rdadlures and intensive human involvements.

types and various road conditions. We obtained 8 data sets
each containing 28 sequences of road axis coordinates markeq
by users. Table IV shows some statistics on the human data. [\ W

We simulated the semi-automatic road tracking process | \ ;
using the recorded human data as virtual users. These dat{ a8
were used to initialize the online learning, to regain control
when the automatic road tracker failed, and to correct tracking
errors. Finally, we compared the performance between the
simulated semi-automatic road tracking and the complete
manual tracking for each user.

Each human input initiated a new training session and gener-'f=
ated a new road profile predictor. When multiple human inputs
were encountered in a road tracking task, an ensemble of rgafl 7. Example of road tracking. Road tracking starts from the upper left
profile predictor was generated to form the automatic ro&¢ka of the image. White line segments show the locations of human inputs;
tracker, leading to an incremental improvement of predicti {25 are he detected road axis ponts When the s changes o
results. Notice that the length of a training sequenSein( dark road has not been experienced by the road tracker.

Table 1) in a learning session is only dependent on the length

of the corresponding road segment entered by the human. In

practice, whenS is very large, the training example queue is
truncated and only the latest 50 examples are kept to generatg
the road profile predictor.

For each road tracking task, a new road tracker is learned.
This is natural because automatic road tracking is initialized |
by a manual road seed input, which leads to a learning session_§

condition.
In all experiments, we used Gaussian kernels for the pro- |

kernel was set t80+/2. Further, the decay facterwas fixed to ‘
an appropriate constant even though it is a decreasing function=
of ¢ in the theoretical analySIS' - Fig. 8. Example of road tracking. Road tracking proceeds from the upper
Some of the road tracking results are shown in Figs. 7 to 1@t to the lower left corer of the image. Black dots are automatically
Fig. 7 illustrates an example of interactive road tracking. Whelatected road axis points. The tracking is robust when facing occlusions on
a novelty was detected by the road tracker, it required hum@f "2
input to initialize the next tracking iteration. Fig. 8 illustrates
how a trained road tracker deals with clear and shadowedTo qualitatively evaluate the performance of the proposed
road conditions. These road conditions had been experieneggbrithms, we followed the four criteria reported in [30].
in the previous tracking process, during which correspondirhese criteria evaluate the the efficiency and the accuracy
road profile predictors had been generated from human inpws.the algorithms. Efficiency is defined by the savings in
Using the optimal candidate-predictor combination trackingie number of human inputs, the savings in human tracking
strategy, an optimal predictor was selected to correctly predifistance, and the savings in tracking time. The number of
the label of the road profiles in these conditions. Fig. Buman inputs and tracking time are related to each other so that
shows how the road tracker handled a junction using the saragucing the number of human inputs also decreases tracking
tracking strategy. When there are two options on the trackifighe. Given an average time for a human input, we obtain
direction, the tracker chose the direction with an optimal roath empirical function to calculate the time cost of the road
profile. In some cases, the tracking may fail when facingacker:
a junction. Then human should get involved to guide the ter = tap + ps. 11

tracker. Fig. 10 illustrates how the road tracker deals with ) ) )
occlusions on the road. The tracker uses a jump-over stratdfjerétcr is the total time cost to track the entire road up to

as introduced in Section 11I(C). Locations with occlusions a@ad profileT’, tar is the time for automatic tracking process,
jumped over by increasing the step size of the prediction, §fiS the number of human inputs required during the tracking,
these occlusions have not been experienced during previGlid # IS @ user-specific variable, which is calculated as the
human inputs. In Fig. 11, two different human inputs generat@yerage time for an input

different tracking results on the same road. The quality of the total time for user i
human input greatly affected the tracking accuracy. Fig. 12 i = total number of inputs for user i

1<i<8 (12)



TABLE IV
STATISTICS ON HUMAN INPUT

userl user2 user3 user4d user5 user6 user/ user8
total number of inputs 510 415 419 849 419 583 492 484
total time (in seconds) 2765 2784 1050 2481 1558 1966 1576 1552
average number of inputs per task 18.2 15.2 15.0 30.3 15.0 20.8 17.6 17.3
average time per task (in seconds)98.8 99.4 375 88.6 55.6 70.2 56.3 55.4
average time per click 54 6.7 25 29 3.7 3.4 3.2 3.2

Fig. 9. Example of handling a junction. Road tracking starts from the upper
left corner of the image. The black line segment is a human input and black
dots are the tracking result.

Fig. 11. Example of accurate and inaccurate tracking on the same road.

White line segments are the inputs from two users and white dots are the

detected road axis points. In the left image, the input is not at the center of

the road. It generates a biased road profile predictor, which in turn makes
="k = inaccurate road tracking that is deviated from the true road centerline. The

right image shows an accurate road tracking initialized by an accurate human

Fig. 10. Example of handling occlusions on the road. Road tracking proceéﬁ@Ut-

from the lower left to the upper right corner of the image. The locations

without accepted observation are jumped over.

each human input and performed novelty detection using the

optimal candidate-predictor combination model.
The last row of table IV shows, for each user, the averageA comparison of results obtained with the three algorithms
time for an input. Finally, tracking accuracy is defined as theCKF, CCPF and OND is given in Fig. 13. The results
root mean square error between the semi-automatic systéfiaw an improvement of the tracking performance using the
and complete manual inputs. proposed OND algorithm compared to the CCKF and CCPF

We compared the results of the proposed Online Novelg§gorithms. The OND algorithm is more efficient and more

Detection (OND) algorithm with the two algorithms reportediccurate than the other two, whereas CCKF and CCPF do
in [34]. Those two algorithms fit into the same humannot differ from each other (All comparisons were tested using
computer interaction framework introduced in this papewilcoxon’s Matched Pair Signed-Rank tegt;< 0.05 for all
However, instead of using online learning from human inputsomparisons OND-CCKF and OND-CCPF;> 0.05 for all
those algorithms built a dynamic knowledge base to store tbemparisons CCKF-CCPF). A summary of the comparisons
reference road profiles extracted from the human inputs. ig1shown in Table V.
the tracking process, observed profiles were matched with
reference profiles using cross correlation. The state prediction . .
was implemented with Kalman filtering (CCKF) and particlé Discussion
filtering (CCPF). Due to the factored sampling involved in the To observe how the learning choices affect the overall per-
particle filtering, the tracker may perform differently for eacliormance of the semi-automatic road tracking, we performed
Monte Carlo trial. For this reason, we evaluated the CCRixperiments on learning models with different decay rates.
algorithm over 10 Monte Carlo trials and report the averageég. 14 shows the results for one user; the results for the
performance. The OND algorithm learned one predictor froother users were similar. There was a trend for the system



TABLE V
COMPARISON OF ROAD TRACKING RESULTSTHE MEANING FOR ALGORITHMS AND COMPARISON CRITERIA ARE DESCRIBED IN THE TEXT

input saving (%) distance saving (%) time saving (%) RMSE (in pixels)
CCKF 71.9 85.3 63.9 1.86
CCPF 72.3 85.6 62.0 1.90
OND 75.0 87.8 69.1 1.54
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Fig. 12. Example of low efficient road tracking caused by complex road
condition. The road tracking starts from the lower left corner of the image.
White line segments are the human input and white dots are the tracking
result. Due to the complexity of the road, intensive human input is required.

time saving (%)
accuracy (pixels)

Poe
v, o

2 @ N N N
© © o o ©
o w o w o

o
I
i

02 04 06 08 o 02 04 06 08
decay rate T decay rate T

o oo | ., ——ow Fig. 14. Comparison of tracking performance with different decay rates in
% | o ﬁ the learning session. The parameters for the modelmtel, e = 0.95
%752 g” L
é‘m gae
65 UE«
- e of prediction is to find the true road axis, hence tracking
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 . .
. continues as long as a road axis can be found. As more
——ono_ E predictors are learned from human inputs, the probability of
7 = s —e getting at least one prediction on the road increases, allowing
g w0 K . .
g < the automatic tracking to last longer. On the other hand,
¢ noise present on the road surface may affect the predictors,
50 | which in turn may generate false positive or false negative
g . [ — . | novelties in the tracking phase. An increase in the number of
1 4 5 7 1 4 5 7 . . oy .
predictors also increases the probability that noise affects the

Fig. 13. Comparison of tracking performance for the proposed algorithm()del' This leads t_o a tre_‘de'Off in the t'_’aCkmg 'je_SUItS: As
(OND) and the cross correlation with Bayesian filtering algorithms (CCKEne number of predictors increases, the input efficiency and

and CCPF). The horizontal axis shows data sets recorded from different usgiscuracy of the model decrease slowly, whereas time efficiency
The vertical axis shows different evaluation criteria. The parameters for t

OND model arer = 0, p = 1, ¢ — 0.95. For display purposes, the dataﬂ%creases fairly rapidly. (A covariance analysis of the results

points are connected by lines even though there is no quantitative relationdi@yealed significant trends for all four dependent measures, all
between data sets. p < 0.05).

Finally, we compared the performance of two tracking algo-
rithms, as shown in Table VI and Fig. 16. In both experiments,
to achieve the highest tracking efficiency with a decay rate afsingle predictor was acquired from each human input during
about 0.2, but this occurred at the cost of a reduced trackitiglining. The results show a weak, statistically not significant
accuracy. In other words, an appropriate drifting model teng¢gnd, namely that the multiple-hypotheses support model is
to be more efficient as it balances old and more recent trainipgtter than the optimal candidate-predictor combination model,
examples, and thus is better able to characterize the gradyih respect to efficiency. The result suggests that multiple-
changes of the road feature. (A covariance analysis of thgpotheses helps the automatic process. When noise is present
results revealed only marginally significant trends for input angh the road, the optimal candidate-predictor combination is
distance savings, no effect for time saving, and a significaikely to deviate from the true road axis point. It may cause
trend for accuracy). more frequent tracking failures and requires more human
Fig. 15 shows the results of acquiring different humbeiavolvement. With the weighted sum of multiple hypotheses,
of predictors from one human input. Notice that the purposkis deviation effect is reduced.
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TABLE VI
COMPARISON OF TRACKING ALGORITHMS TAl FOR THE OPTIMAL OBSERVATIONPREDICTOR COMBINATION MODEL, AND TAIl FOR THE
MULTIPLE-HYPOTHESES SUPPORT MODELTHE PARAMETERS FOR THE MODEL ARET = 0.05, p = 1, ¢ = 0.99

input saving (%) distance saving (%) time saving (%) RMSE (in pixels)
TAI 752 87.7 68.3 1.44
TAll 76.2 87.8 71.2 1.62
" w50 dictors then automatically track road using either an opti-

mal candidate-predictor combination model or a multiple-
hypotheses support model. We analyzed the theoretical and
experimental difference between the learning and tracking
models. Results show that multiple predictors from one hu-

man input further helps the learning. However, the system
® umber o pecictors ® umber of preditors performance drops when too many predictors are acquired.
" Lo Concerning tracking models, the multiple-hypotheses support
model slightly outperforms the optimal candidate-predictor
combination model.

In addition to conceptual advantages, the experiments on
real world tasks validated the superior performance of the
Lo proposed approach, as compared to models without machine

® numberof predicore ® number of predicore learning. Our approach is very generic and could be applied
to similar applications that require intensive human-computer
Fig. 15. Effects of acquiring multiple predictors from one human input. Thié]teraCtions'
parameters for the model are:= 0.2, p = 1, e = 0.95. In our future work, we want to further explore our learning
method. The proposed method uses novelty detection to learn
road situations. It is a more natural approach to expand the
learning to binary classes and to include off-road situation
during the learning. Apart from road profiles, other road
features can be used in the learning stage, such as, for example,
road edges, image features in the frequency domain, and
combinations of features. We also plan to apply the proposed
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