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Online Learning with Novelty Detection in
Human-Guided Road Tracking

Jun Zhou, Li Cheng, and Walter F. Bischof

Abstract— Current image processing and pattern recognition
algorithms are not robust enough to make automated remote
sensing image interpretation feasible. For this reason, we need
to develop image interpretation systems that rely on human
guidance. In this paper, we tackle the problem of semi-automatic
road tracking in aerial photos. We propose an online learning
approach that naturally integrates inputs from human experts
with computational algorithms to learn road tracking. Human
inputs provide the online learner with training examples to
generate road predictors. An ensemble of road predictors is
learned incrementally and used to automatically track roads.
When novel situations are encountered, control is returned back
to the human expert to initialize a new training and tracking
iteration. Our approach is computationally efficient, and it can
rapidly adapt to dynamic situations where the image feature
distributions change. Experimental results confirm that our
approach is effective and superior to existing methods.

Index Terms— Image interpretation, human-computer inter-
action, online learning, novelty detection, road tracking, aerial
images

I. I NTRODUCTION

Although image processing and pattern recognition methods
for remote sensing are developing rapidly, there is still a huge
gap between the requirements of most image interpretation
applications and the accuracy and reliability achieved by
computational methods. Many attempts to automate these tasks
have been too fragile, and they require checking by experts
before any final decision can be made. For this reason, many
successful systems retain the ‘human in the loop’ where a
human operator can aid the automatic image interpretation
through human-computer interactions (HCI) [1], [2], [3], [4].

Zhou et al. [5] proposed a general framework for human-
guided image interpretation, which consists of five compo-
nents, a human-computer interface, a user model, computa-
tional algorithms, a knowledge transfer scheme, and a perfor-
mance evaluation scheme. Among these five components, the
interface and the computational algorithms have been studied
extensively [6], [7], [8], [9]. In contrast, research on the
learning of computational algorithms from humans has been
very limited.

In most existing semi-automatic systems, the role of the
human operator is simply to provide initial parameters or to
modify the image interpretation results, leaving the rest of
the tasks to the pre-defined automatic model. Semi-automatic
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road extraction is such an example, which normally requires
manual road seed input. The road seed information includes
at least one of the following: starting point, edge location,
road direction and width, as well as 2D road templates. After
an initial human input, the road extraction models perform
either automatic road tracking using methods such as road
edge following [10] and Kalman filtering [11], or automatic
road optimizing using methods such as least square template
matching [12], [13], [14], multi-resolution modelling [15], [16]
and active contours [16], [17]. In some cases, the interaction
interface and the error correction tool was also designed to
coordinate human actions with computer predictions [18],
[19].

Image interpretation systems without learning have several
problems. First, it is usually difficult to obtain a robust image
interpretation model at the beginning of the system design.
Thus, the computational model may fail frequently and require
intensive human involvement, leading to a decrease in system
efficiency and usability. More specifically, it is hard for the
computational model to characterize the dynamic variations
of the image features from multi-modal and changing distri-
butions. This is especially the case in road tracking, where road
features vary considerably due to changes in road materials,
occlusions of the road, and lack of contrast with off-road
areas. An example of a road scene is shown in Fig. 1,
which illustrates these dynamics. Second, there lacks the
mechanism to enhance the computational model from multiple
human inputs, thus the combination of human and computer
resources remains suboptimal. To solve these problems, we
need to bridge the gap between human inputs and automatic
image interpretation using machine learning. This permits each
human input to contribute to the building of a better image
interpretation system.

Fig. 1. An image sample of size 663 by 423 pixels extracted from an ortho-
rectified aerial photo. Notice that the occlusions, crossings, and the change in
road surface materials lead to abrupt changes in road appearance.
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In this paper, we propose an online learning approach
that naturally integrates guidance from human experts with
computational algorithms for tracking roads in aerial photos.
Human inputs provide the online learner with training exam-
ples to incrementally generate an ensemble of road profile
predictors. The predictors are then used to automatically track
roads. When novel road situations are encountered, control is
returned back to the human expert. With this approach, we
avoid the problem of having to explicitly define an off-road
class, while enabling explicit learning from human inputs. Our
learning algorithm is a kernel-based online learning approach
for novelty detection, which is derived from one-class Support
Vector Machines (1-SVMs). The learned predictors are repre-
sented as weighted combinations of training examples, and the
weights for each training example are derived from the large
margin principle. We discuss the learning methods to acquire
single and multiple predictors from one human input, and we
show that they are equivalent to learning an expansion model
or multiple drifting models that characterize human knowledge
of the dynamics of the image patterns. We also introduce two
tracking algorithms that use either optimal candidate-predictor
combinations or multiple hypotheses. The experimental results
on the learning and tracking models are compared and an-
alyzed. The proposed approach is computationally efficient,
and it can rapidly adapt to dynamic situations where the road
features change. Experimental results confirm the effectiveness
of our approach, and it is shown to be superior to existing
methods.

II. RELATED WORK

Interactive machine learning (IML) [20], [21] enables hu-
man operators to train predictors, for example decision trees
or neural networks, by providing labelled training data and
by defining boundaries between true and false instances.
Such learning methods have been successfully used in image
segmentation.

Muneesawang and Guan [22] employed IML in a model
for content-based image retrieval. An initial image distance
function is given using a radial basis function (RBF) network.
When a user supplies a query image, the system retrieves
images in the databases that are closest to the query image.
Then the user indicates correct and incorrect retrievals. The
image features are used to train the RBF predictor using
learning vector quantization method, so that the system can
retrieve a new set of images. This process is repeated until
the user is satisfied with the retrieval results.

Maloof et al. [23] proposed a similar model, which enables
interactive supervised learning of building detection in aerial
images. In each training session, the classifiers generate roof
candidates. The human analyst provides positive and negative
labels for these candidates, which in turn are used to update the
classifiers. The training session terminates when all training
samples have been classified. Four types of classifiers were
implemented, namely a nearest-neighbor method, a naı̈ve
Bayesian classifier, decision trees, and a continuous percep-
tron. In the testing session, these classifiers were used to
automatically detect buildings in testing data sets.

The above methods acquire single predictor from human
inputs. It is also possible to acquire a set of predictors
if multiple predictors are generated from human inputs. In
this case, the problem can be considered as predicting from
experts’ advice [24]. Littlestone and Warmuth were among the
the first to tackle this problem [25]. They proposed a weighted
majority algorithm that can be summarized as follows:

1) Set the initial weightwi for each experti to 1, where
1 ≤ i ≤ n, andn is the number of experts.

2) The algorithm compares the total weight from experts
that predict output 0 and the total weight from experts
that predict output 1, and outputs the prediction of the
larger total.

3) The weights of the experts that make mistakes are
multiplied by a penalty factor between 0 and 1.

Kolter and Maloof [26] extended the above algorithm to create
and delete experts in concept drift problems using a weighted
majority algorithm. In addition to the predictions by each
expert, a global prediction is calculated as the label with the
highest accumulated weight. Whenever the global prediction
is incorrect, the algorithm creates a new expert. To constrain
the number of experts, the algorithm eliminates experts with
weights less than a certain threshold.

As described in a later section, our online learning problem
is similar to the concept drifting problem. Each predictor is a
weighted sum of past training examples, where the weight for
each training example is derived from the large margin princi-
ple [27]. Instead of creating new predictors automatically, we
maintain a dynamic list of predictors. One set of predictors
can be generated from one iteration, and different iterations
generate different predictor sets.

We developed our algorithm for novelty detection, i.e. for
identifying new or unknown data that were not present in the
training stage [28]. Thus, it is important to find true novel
samples in testing while minimizing false positives. Cheng
et al. [29] proposed an online learning method with sparse
kernels to solve learning problems with examples drawn from
a non-stationary distribution. We extend this method to online
learning from human inputs for novelty detection, so that
it can fit into the HCI framework for image interpretation
applications.

III. SYSTEM FRAMEWORK

In this section, we give an overview of the main procedures
of the proposed approach on human-guided road tracking.
A road tracking task starts with an aerial photo containing
a number of roads within which only one is the target of
tracking. The system proceeds with iterations consisting of
human input, sampling and prediction phases. The first phase
is aimed at learning from human input whereas the last phases
are aimed at automatic road tracking.

A. Input Phase

A human input consists of two mouse clicks on an image,
with the line joining the click positions defining a road axis
and indicating the road direction. Along the road direction,
a set of 2-D road profiles, represented as vectors of image
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greylevels, are extracted normal to and along the road axis at
consecutive axis points. All vectors have the same lengthd,
which is the sum of the length of the two 1-D profiles. The
length of the 1-D profiles is estimated from the road width,
which is calculated as the distance between the road edges.
This, in turn, is obtained with a gradient-based edge detection
method [30]. We denote a 2-D road profile asx ∈ X ⊆ Rd

whereX is the profile space with dimensiond. We denote
one human input as one learning sessions ∈ IS whereIS

indexes the set of learning sessions that occurred during the
road tracking task. A road profilex is associated with a label
y ∈ Y, whereY is defined as:

{
y = 1, on the road
y = 0, off road

(1)

and a stateσ ∈ Σ, which encodes a location as

σ =
[

u v θ
]′

, (2)

whereu andv are the coordinates of road axis point, andθ is
the direction of the road. The tripletz = (x, σ, y) represents
a training example extracted from human input. Later, during
the automatic tracking step, observed candidate examples also
take this form. All training examples are extracted from road
axis points entered by the human, hencey = 1 for all training
examples. A road profile predictorfs ∈ F is learned from
the set of training profiles in a learning sessions, whereF
denotes the set of road profile predictors learned in sessions
indexed byIS .

B. Sampling Phase

Automatic road tracking starts after each training phase.
Suppose we have already found the road axis point at time
t − 1, and we would like to find the next road axis point
at time t. Further, suppose the system has experienced a
sequence of learning sessions(1, · · · , s) and obtained an
ensemble of predictorsFs

1 , (f1, · · · , fs). It then proceeds
with the sampling phase, where the system searches the
neighborhood along the current road axis for candidate road
profiles X̃ = {x1, · · · , xm}, where m denotes the number
of candidates being sampled. The candidates at timet are
sampled at locations computed by the following non-linear
function

σt =




ut−1 + % cos(θt−1 + ϕ)
vt−1 + % sin(θt−1 + ϕ)

θt−1 + ϕ


 (3)

whereϕ ∈ [−π/18, π/18] and% (initially bounded in[−3, 3])
are angle and depth parameters, with different angles and
depths generating different sampling locations.

C. Prediction Phase

After the sampling phase, we obtain a set of candidate
profiles X̃ and their associated locations. The goal of the
prediction phase is to predict the road axis point at time step
t and to decide whether the tracking is on the road, using
the trained road profile predictors. As will be introduced later,

there are two strategies for this purpose. The first strategy is
to select an optimal candidate profilêxt and predict its label
ŷt. In this case, we assume that, at an appropriate road axis
location, there has to be exactly one profile withy = 1, that
is, only one candidate profile can be the on-the-road profile.
The second strategy is to select a set of supporting candidate
profiles and compute the location of road axis point as a
weighted sum of profile locations. In this case, we assume
that several road profiles can be on-the-road profiles.

If the prediction indicates that the tracking is on the road,
the automatic tracking continues and returns to the sampling
phase. Otherwise, a novelty has been detected and control
is handed back to the human expert for further input. In
this manner, switching between human inputs and automatic
tracking continues until the tracking task is completed.

For predicting a candidate examplêzt = (x̂t, σ̂t, ŷt), we
hope to be close to the true onezt = (xt, σt, yt), that is,
x̂t → xt, σ̂t → σt and ŷt = yt = 1. Unfortunately, this
is not always the case. None of the candidate profiles may
be labeled correctly when occlusions, such as vehicles and
shadows, are present on the road, or when radiometric road
properties change, for example, when encountering a road
segment built with different materials. A heuristic strategy is
developed to overcome these often-encountered situations and
to improve the tracking efficiency. We employ a jump-over
strategy, where the upper and lower bounds of the step size%
in Equation 3 is increased to jump over the current location
when the system fails to find a road profile withŷ = 1. Then a
new sampling phase occurs. When failures continue, even with
the jump-over strategy, the system recognizes a tracking failure
and returns control to the human expert, who then inputs
another road segment from which new training examples with
y = 1 can be extracted.

In summary, the proposed approach is naturally decomposed
into two steps, a learning algorithm devised for the human
input phase, and a tracking algorithm for automatic road
tracking.

IV. L EARNING ALGORITHMS

The interactions between human and computer lead to a
situation, where learning sessions are mixed with automatic
tracking runs. The first learning session is initialized by the
first human input. Each successive learning session starts when
a road outlier is detected for the current prediction and control
is handed back to the human expert.

A. Basic Learning Algorithm

For the sake of simplicity in describing the algorithm, we
assume that each learning session contains exactlyS training
examples,(zt+1, · · · , zt+S), wherezi = (xi, σi, yi), ∀i ∈ {t+
1, · · · , t + S}.

The basic learning algorithm aims at obtaining a reasonable
road profile predictorfs in one learning session. Given the
current learning sessions starts at timet+1, we define a kernel
mappingk(·, ·) from profile space to a Hilbert feature space,
X → H asx 7→ k(x, ·) ∈ H. HereH denotes the Reproducing
Kernel Hilbert space (RKHS) with induced kernelk(·, ·) such
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that f(x) = 〈k(x, ·), f(·)〉, and 〈·, ·〉 gives the inner product.
The norm in this case is naturally defined as‖ · ‖ = 〈·, ·〉1/2.

As in the online learning algorithm described in [29],
the road profile predictorf ∈ H can be represented as a
weighted combination of training profiles, where past profiles
in the learning session{xi}t+S

i=t+1 are associated with different
weights {αi}t+S

i=t+1 that are derived formally from the large
margin principle [27]. In this paper, we extend this algorithm
to incorporate learning from human inputs and to deal with
the novelty detection scenario, so that the learning problem is
naturally formulated as a novelty detection by solving online
1-SVMs.

Given a profilexi at time i, the novelty detection can be
formulated as an optimization problem

min
f

C · (ρ− 〈f, k(xi, ·)〉)+ ,

where(·)+ , max{·, 0}, C is a positive constant cut-off value
for the penalty imposed on point prediction violations,ρ > 0 is
the margin parameter, andf is bounded. This can be rewritten
in a form similar to 1-SVMs [31],

min
f,ξ

λ

2
‖f‖2 + Cξ

s.t. 〈f, k(xi, ·)〉 ≥ ρ− ξ,

ξ ≥ 0

(4)

whereλ > 0 is a regularization parameter, andξ is a slack
variable.

According to the framework in [29], we want to minimize
the risk functionRdiv(f) + Rreg(f), whereRdiv(f) = ‖f −
fi‖2/2 measures the divergence of the predictedf from the
previous predictionfi. The second term is the Lagrangian
function of the optimization problem in Equation (4),

Rreg(f) =
λ

2
‖f‖2

︸ ︷︷ ︸
λRcap(f)

+Cξ + ς(ρ− 〈f, k(xi, ·)〉 − ξ)− ζξ︸ ︷︷ ︸
Rinst(f)

,

(5)

whereς and ζ are Lagrangian multipliers. Equation (5) con-
sists of two terms, the capacity riskRcap(f), which controls
the complexity of the predictorf , and the instantaneous risk
Rinst(f). We further introduceτ > 0, the decay rate parameter
and an auxiliary variableυ > 0, such thatλ = τ/(1− τ) and
ς = υ/(1− τ).

We also define the magnitude of violation as

li , l(fi; xi) = (ρ− (1− τ)〈fi, k(xi, ·)〉)+. (6)

By solving the (previously mentioned) risk minimization prob-
lem (see [29]), the separating functionf turns out to be
f(·) =

∑t+S
i=t+1 αik(xi, ·), where the weights are
{

αj ⇐ (1− τ)αj ∀j < i

αi ⇐ min
{

li
k(xi,xi)

, (1− τ)C
} (7)

As stated in [29], the resultant weight updating formula
has several advantages. First,αi is always upper bounded by
the constant(1 − τ)C. This ensures limited influence from
outliers (see Fig. 2). Second, by adjusting the decay rate

τ ∈ [0, 1) to an appropriate value, the new predictorf is
able to balance between two extreme situations, either fully
adapting to the current example (i.e. forgetting all the past
examples asτ → 1), or keeping all past examples in memory
(i.e. becoming a batch learning case asτ → 0). Finally, at
time i, the weight of current examplexi, αi is automatically
obtained, while the weights for previous examples∀j < i are
retained with proper decay, instead of being re-computed from
scratch. Thus, this update formula allows for rather efficient
computation, as shown in the Table I.

C)1(

),(, ii xkf

})1(,min{ Clii

Fig. 2. Robust weight assignmentαi at time i. The horizontal axis is
〈fi, k(xi, ·)〉. The vertical axis isαi and is upper bounded by(1− τ)C.

TABLE I

LEARNING ONE ROAD PROFILE PREDICTOR FROM ONE HUMAN INPUT.

Input: The cut-off valueC, decay rateτ , marginρ, current learning
sessions

Initialize: fs ⇐ 0.
for i = t + 1 to t + S do

Observe profilexi

Computel
(s)
i according to Equation (6)

Compute(α
(s)
j )i

j=t+1 according to Equation (7)
end for

Output: The sequences(α(s)
j )t+S

j=t+1, s, fs.

Based on the Learning Algorithm, the road profile predictor
fs is obtained given the weight sequence(α(s)

i )t+S
i=t+1 and the

corresponding training examples. For a sequence of lengthS,
the space complexity of the proposed learning algorithm is
(d + 1)S (whered is is the dimensionality of the input road
profile), and the time complexity isO(S2).

B. Learning Multiple Predictors from One Training Session

We can generate multiple predictors from one training
session. The separating function is in the form off(·) =∑t+S

i=t+1 αik(xi, ·), hence given an input that consists suc-
cessive examples(zt+1, · · · , zt+S) we can compute up to
S separating functions fromt + 1 to t + S. Thus, an
ensemble of predictors is given in the form ofFs

1 ,
(f1,1, f1,2, · · · , fi,j , · · · , fs,S−1, fs,S). For a training sequence
of length S, the time complexity of this extended model is
not different from the single-predictor model, but the space
complexity increases to(d + 1)S2.

In each training session, some predictors may not be as
robust as others. To evaluate their robustness, we calculate
the training errors for all predictors and rank them according
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to their performance. This permits us to select more robust
predictors in the tracking runs and to achieve faster and more
accurate results.

C. Discussion of the Learning Algorithms

As mentioned before, the online learning algorithm is de-
rived from 1-SVMs [31], and it is thus driven primarily by
positive training examples. This formulation perfectly fits the
road tracking scenario, since the human inputs provide only
positive examples for the learning process. In the following,
we analyze the effect of applying this algorithm to a set of
2D data (see Fig. 3). We assume a Gaussian kernel, and the
learning algorithm generates, in each learning session, a sphere
enclosing the input data features.

input 1

input 2

Fig. 3. This graph shows a set of input data. Initially, the class of the
data is unknown. A human input sequentially mark the the data that human
operator considers as positive, which are in turn used in one training session.
The region delimited by one curve identify these positive examples. In the
proposed interactive model, multiple inputs can be observed, and thus form
multiple regions as marked by input 1 and 2.

new example

expansion

new example

drifting

Fig. 4. Two models of learning: expansion (upper graph) and drifting (lower
graph). The left graphs shows the learning result up to timet. At time t + 1,
a new positive example is observed. The expansion model enlarges the region
delimited by a curve to include the new example, while the drifting model
moves the region to adapt to the new data.

We consider two learning models. In one model, we use a
decay rateτ = 0, where all past examples contribute equally
to a predictor without loss of any information. Learning thus
expands the region to cover the new example. In the model

with decay rateτ 6= 0, the region drifts to adapt to the new
example, and the extent of the drifting depends on the value
of τ . With a largerτ , drifting is larger and past examples are
forgotten more quickly (see Fig. 4).

new example

Fig. 5. Learning multiple predictors from one human input. The learned
model at timet is shown in the left graph. At timet + 1, a new model is
learned to adapted to the new training example, while the old model is kept.

Since old examples characterize situations that are con-
sidered positive, we may want to preserve the past training
examples in the drifting model. In this case, multiple predictors
can be learned from one human input. The predictors acquired
in each time step are preserved, each becoming an independent
expert for the tracking process. This model is shown in Fig.
5.

V. TRACKING AND NOVELTY DETECTION ALGORITHMS

The tracking process automatically interprets road features
in the aerial images using the trained predictors. If a novelty
is found in the direction of the prediction, then either a new
road condition has been encountered or a tracking failure
has occurred. In both cases, human guidance is required to
initialize a new training session, and if necessary, to correct the
tracking error. We now introduce two tracking algorithms, one
based on a single optimal predictor, the other using multiple
predictors.

A. Optimal Candidate-Predictor Combination

We assume that, at timet, after thesth learning session,
the newly learned road profile predictorfs is incorporated
into the set of predictors asFs

1 = Fs−1
1 ∪ fs. Tracking starts

by searching the neighborhood along the current road axis
for candidate profiles. The violations of the candidates are
calculated using Equation (6) and the one with the minimum
violation, x̂t, is picked as the input to the predictors. If it is
considered to be on the road (ŷt = 1 with a predictorf ∈ F ,
which produces the least violation), the stateσ̂t of the profile
is used to set the current road axis point, the current road
direction, as well as the origin of the next prediction. The
tracking algorithm based on the optimal candidate-predictor
combination is shown in Table II.

The tracking algorithm picks the candidate-predictor com-
bination with minimum violation and evaluates whether the
candidate is on the road and its reliability by comparing the
violation value to a thresholdε.
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TABLE II

TRACKING ALGORITHM I: OPTIMAL CANDIDATE -PREDICTOR

COMBINATION

Input: Decay rateτ , marginρ, thresholdε, the set of learned predictors
so farFs

1 .
Obtain a set of m candidate profiles̃X from the sampling phase.
for i = 1 to m, j = 1 to s do

Computeli,j according to Equation (6)
end for
(l∗, x̂t) ← mini,j{li,j}
Predict label as

ŷt =

{
0, l∗ ≥ ε
1, otherwise

(8)

Output: ẑt = (x̂t, σ̂t, ŷt), s, fs.

B. Multiple-Hypotheses Support

The road axis point and the next prediction depend exclu-
sively on the location and direction of the optimal candidate.
Noisy candidates can thus mislead the prediction. To solve this
problem, we propose a multiple-hypotheses method. The vio-
lations of the candidates are again calculated using Equation
(6) for eachf ∈ F , and are stored in a look-up tableH whose
entrieshi,j ∈ H correspond to hypothesized road axis points
from candidate-predictor combinations.

Given the lookup table, we search for hypotheses whose
violations are lower than a thresholdε. If a violation li,j is
smaller thanε, the hypothesis is a supporting hypothesis and
its weight is set to

wi,j = exp(−li,j) (9)

If li,j ≥ ε the hypothesis is discarded. Finally, we calculate the
road axis point as a normalized weighted sum of the supporting
hypotheses. If the number of supporting hypotheses is zero, a
novelty has been detected. The resulting tracking algorithm is
shown in Table III.

VI. EXPERIMENTAL RESULTS

A. System Implementation

We have developed a semi-automatic road tracking system
for the United States Geological Survey (USGS) map revision
platform [32]. This platform is used to revise the USGS 7.5-
minute quadrangle topographic maps [33]. This map series
consists of 55,000 map sheets in raster form (USGS also
produces the Digital Line Graphs (DLGs), a vector form
product, which also comprises a transportation layer). The
revision of this map series is the Raster Graphic Revision
(RGR) program, which uses existing map sheets as the primary
input and creates new maps as the primary output. The maps
are displayed on a computer screen, together with the digital
orthophoto quads (DOQs) of the area to be mapped. DOQs
are orthogonally rectified images produced from aerial photos
taken at a height of20, 000 feet, with an approximate scale of
1 : 40, 000 and a ground resolution of 1 meter. A cartographer
then makes a visual comparison of the map and the DOQ.

TABLE III

TRACKING ALGORITHM II: M ULTIPLE-HYPOTHESESSUPPORT

Input: Decay rateτ , marginρ, thresholdε, the set of learned predictors
so farFs

1 , an emptyH.
Obtain a set of m candidate profiles̃X from the sampling phase.
for i = 1 to m, j = 1 to s do

Computeli,j according to Equation (6)
if li,j < ε then

computewi,j according to Equation (9)
hi,j ← li,j
H = H ∪ hi,j

end if
end for
if H 6= ∅

wi,j = wi,j/
∑

i

∑
j wi,j

x̂t ←
∑

i

∑
j wi,jxi

σ̂t ←
∑

i

∑
j wi,jσi

end if
Predict label as

ŷt =

{
0, H = ∅
1, otherwise

(10)

Output: ẑt = (x̂t, σ̂t, ŷt)

Fig. 6. Map revision environment. Old map layers are aligned with latest
digital image data so that human operator can make visual comparison of the
two resources.

When a discrepancy is found between a feature on the map
and the DOQ, the cartographer modifies the map to match
the DOQ. Fig. 6 shows the environment of this map revision
platform.

Within this system platform, we have implemented embed-
ded software to keep track of the time, the type and the
location of each human input. The inputs related to road
tracking were used for the experiments reported below.

B. Experimental Results

We conducted experiments with humans tracking road fea-
tures. Eight users were involved in the manual road inter-
pretation. They were assigned 28 tasks to annotate roads on
the aerial photo (one photo of14576 × 12749 pixels) of the
Marietta area in Florida. In each task, one road had to be



7

annotated. The tasks included a variety of scenes with trans-
national highways, intra-state highways and roads for local
transportation. Further, these tasks contained different road
types and various road conditions. We obtained 8 data sets,
each containing 28 sequences of road axis coordinates marked
by users. Table IV shows some statistics on the human data.

We simulated the semi-automatic road tracking process
using the recorded human data as virtual users. These data
were used to initialize the online learning, to regain control
when the automatic road tracker failed, and to correct tracking
errors. Finally, we compared the performance between the
simulated semi-automatic road tracking and the complete
manual tracking for each user.

Each human input initiated a new training session and gener-
ated a new road profile predictor. When multiple human inputs
were encountered in a road tracking task, an ensemble of road
profile predictor was generated to form the automatic road
tracker, leading to an incremental improvement of prediction
results. Notice that the length of a training sequence (S in
Table I) in a learning session is only dependent on the length
of the corresponding road segment entered by the human. In
practice, whenS is very large, the training example queue is
truncated and only the latest 50 examples are kept to generate
the road profile predictor.

For each road tracking task, a new road tracker is learned.
This is natural because automatic road tracking is initialized
by a manual road seed input, which leads to a learning session.
The newly learned tracker can better adapt to the current road
condition.

In all experiments, we used Gaussian kernels for the pro-
posed algorithms. The standard deviation for the Gaussian
kernel was set to30

√
2. Further, the decay factorτ was fixed to

an appropriate constant even though it is a decreasing function
of t in the theoretical analysis.

Some of the road tracking results are shown in Figs. 7 to 12.
Fig. 7 illustrates an example of interactive road tracking. When
a novelty was detected by the road tracker, it required human
input to initialize the next tracking iteration. Fig. 8 illustrates
how a trained road tracker deals with clear and shadowed
road conditions. These road conditions had been experienced
in the previous tracking process, during which corresponding
road profile predictors had been generated from human inputs.
Using the optimal candidate-predictor combination tracking
strategy, an optimal predictor was selected to correctly predict
the label of the road profiles in these conditions. Fig. 9
shows how the road tracker handled a junction using the same
tracking strategy. When there are two options on the tracking
direction, the tracker chose the direction with an optimal road
profile. In some cases, the tracking may fail when facing
a junction. Then human should get involved to guide the
tracker. Fig. 10 illustrates how the road tracker deals with
occlusions on the road. The tracker uses a jump-over strategy
as introduced in Section III(C). Locations with occlusions are
jumped over by increasing the step size of the prediction, if
these occlusions have not been experienced during previous
human inputs. In Fig. 11, two different human inputs generated
different tracking results on the same road. The quality of the
human input greatly affected the tracking accuracy. Fig. 12

shows an inefficient tracking example. There are too many
variation in road conditions, which cause frequent tracking
failures and intensive human involvements.

Fig. 7. Example of road tracking. Road tracking starts from the upper left
area of the image. White line segments show the locations of human inputs;
white dots are the detected road axis points. When the road changes from
light to dark, a human input is required to guide the tracking because the
dark road has not been experienced by the road tracker.

Fig. 8. Example of road tracking. Road tracking proceeds from the upper
right to the lower left corner of the image. Black dots are automatically
detected road axis points. The tracking is robust when facing occlusions on
the road.

To qualitatively evaluate the performance of the proposed
algorithms, we followed the four criteria reported in [30].
These criteria evaluate the the efficiency and the accuracy
of the algorithms. Efficiency is defined by the savings in
the number of human inputs, the savings in human tracking
distance, and the savings in tracking time. The number of
human inputs and tracking time are related to each other so that
reducing the number of human inputs also decreases tracking
time. Given an average time for a human input, we obtain
an empirical function to calculate the time cost of the road
tracker:

tcT = taT + µs. (11)

wheretcT is the total time cost to track the entire road up to
road profileT , taT is the time for automatic tracking process,
s is the number of human inputs required during the tracking,
and µ is a user-specific variable, which is calculated as the
average time for an input

µi =
total time for user i

total number of inputs for user i
1 ≤ i ≤ 8 (12)
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TABLE IV

STATISTICS ON HUMAN INPUT

user1 user2 user3 user4 user5 user6 user7 user8
total number of inputs 510 415 419 849 419 583 492 484
total time (in seconds) 2765 2784 1050 2481 1558 1966 1576 1552

average number of inputs per task 18.2 15.2 15.0 30.3 15.0 20.8 17.6 17.3
average time per task (in seconds)98.8 99.4 37.5 88.6 55.6 70.2 56.3 55.4

average time per clickµ 5.4 6.7 2.5 2.9 3.7 3.4 3.2 3.2

Fig. 9. Example of handling a junction. Road tracking starts from the upper
left corner of the image. The black line segment is a human input and black
dots are the tracking result.

Fig. 10. Example of handling occlusions on the road. Road tracking proceeds
from the lower left to the upper right corner of the image. The locations
without accepted observation are jumped over.

The last row of table IV shows, for each user, the average
time for an input. Finally, tracking accuracy is defined as the
root mean square error between the semi-automatic system
and complete manual inputs.

We compared the results of the proposed Online Novelty
Detection (OND) algorithm with the two algorithms reported
in [34]. Those two algorithms fit into the same human-
computer interaction framework introduced in this paper.
However, instead of using online learning from human inputs,
those algorithms built a dynamic knowledge base to store the
reference road profiles extracted from the human inputs. In
the tracking process, observed profiles were matched with
reference profiles using cross correlation. The state prediction
was implemented with Kalman filtering (CCKF) and particle
filtering (CCPF). Due to the factored sampling involved in the
particle filtering, the tracker may perform differently for each
Monte Carlo trial. For this reason, we evaluated the CCPF
algorithm over 10 Monte Carlo trials and report the average
performance. The OND algorithm learned one predictor from

Fig. 11. Example of accurate and inaccurate tracking on the same road.
White line segments are the inputs from two users and white dots are the
detected road axis points. In the left image, the input is not at the center of
the road. It generates a biased road profile predictor, which in turn makes
inaccurate road tracking that is deviated from the true road centerline. The
right image shows an accurate road tracking initialized by an accurate human
input.

each human input and performed novelty detection using the
optimal candidate-predictor combination model.

A comparison of results obtained with the three algorithms
CCKF, CCPF and OND is given in Fig. 13. The results
show an improvement of the tracking performance using the
proposed OND algorithm compared to the CCKF and CCPF
algorithms. The OND algorithm is more efficient and more
accurate than the other two, whereas CCKF and CCPF do
not differ from each other (All comparisons were tested using
Wilcoxon’s Matched Pair Signed-Rank test;p < 0.05 for all
comparisons OND-CCKF and OND-CCPF;p > 0.05 for all
comparisons CCKF-CCPF). A summary of the comparisons
is shown in Table V.

C. Discussion

To observe how the learning choices affect the overall per-
formance of the semi-automatic road tracking, we performed
experiments on learning models with different decay rates.
Fig. 14 shows the results for one user; the results for the
other users were similar. There was a trend for the system
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TABLE V

COMPARISON OF ROAD TRACKING RESULTS. THE MEANING FOR ALGORITHMS AND COMPARISON CRITERIA ARE DESCRIBED IN THE TEXT.

input saving (%) distance saving (%) time saving (%) RMSE (in pixels)
CCKF 71.9 85.3 63.9 1.86
CCPF 72.3 85.6 62.0 1.90
OND 75.0 87.8 69.1 1.54

Fig. 12. Example of low efficient road tracking caused by complex road
condition. The road tracking starts from the lower left corner of the image.
White line segments are the human input and white dots are the tracking
result. Due to the complexity of the road, intensive human input is required.
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Fig. 13. Comparison of tracking performance for the proposed algorithm
(OND) and the cross correlation with Bayesian filtering algorithms (CCKF
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OND model are:τ = 0, ρ = 1, ε = 0.95. For display purposes, the data
points are connected by lines even though there is no quantitative relationship
between data sets.

to achieve the highest tracking efficiency with a decay rate of
about 0.2, but this occurred at the cost of a reduced tracking
accuracy. In other words, an appropriate drifting model tends
to be more efficient as it balances old and more recent training
examples, and thus is better able to characterize the gradual
changes of the road feature. (A covariance analysis of the
results revealed only marginally significant trends for input and
distance savings, no effect for time saving, and a significant
trend for accuracy).

Fig. 15 shows the results of acquiring different numbers
of predictors from one human input. Notice that the purpose
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Fig. 14. Comparison of tracking performance with different decay rates in
the learning session. The parameters for the model are:ρ = 1, ε = 0.95

of prediction is to find the true road axis, hence tracking
continues as long as a road axis can be found. As more
predictors are learned from human inputs, the probability of
getting at least one prediction on the road increases, allowing
the automatic tracking to last longer. On the other hand,
noise present on the road surface may affect the predictors,
which in turn may generate false positive or false negative
novelties in the tracking phase. An increase in the number of
predictors also increases the probability that noise affects the
model. This leads to a trade-off in the tracking results: As
the number of predictors increases, the input efficiency and
accuracy of the model decrease slowly, whereas time efficiency
decreases fairly rapidly. (A covariance analysis of the results
revealed significant trends for all four dependent measures, all
p < 0.05).

Finally, we compared the performance of two tracking algo-
rithms, as shown in Table VI and Fig. 16. In both experiments,
a single predictor was acquired from each human input during
training. The results show a weak, statistically not significant
trend, namely that the multiple-hypotheses support model is
better than the optimal candidate-predictor combination model,
with respect to efficiency. The result suggests that multiple-
hypotheses helps the automatic process. When noise is present
on the road, the optimal candidate-predictor combination is
likely to deviate from the true road axis point. It may cause
more frequent tracking failures and requires more human
involvement. With the weighted sum of multiple hypotheses,
this deviation effect is reduced.
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TABLE VI

COMPARISON OF TRACKING ALGORITHMS: TAI FOR THE OPTIMAL OBSERVATION-PREDICTOR COMBINATION MODEL, AND TAII FOR THE

MULTIPLE-HYPOTHESES SUPPORT MODEL. THE PARAMETERS FOR THE MODEL ARE: τ = 0.05, ρ = 1, ε = 0.99

input saving (%) distance saving (%) time saving (%) RMSE (in pixels)
TAI 75.2 87.7 68.3 1.44
TAII 76.2 87.8 71.2 1.62
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Fig. 15. Effects of acquiring multiple predictors from one human input. The
parameters for the model are:τ = 0.2, ρ = 1, ε = 0.95.
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VII. C ONCLUSION

We have presented an online learning approach for novelty
detection in image interpretation. This approach is applied
to road tracking in aerial images within a human-guided
framework that enables natural switching between human
inputs and automatic tracking. It fills the gap between human
and computer in image interpretation applications.

Depending on requirements, single or multiple predictors
can be learned from the each human input. These pre-

dictors then automatically track road using either an opti-
mal candidate-predictor combination model or a multiple-
hypotheses support model. We analyzed the theoretical and
experimental difference between the learning and tracking
models. Results show that multiple predictors from one hu-
man input further helps the learning. However, the system
performance drops when too many predictors are acquired.
Concerning tracking models, the multiple-hypotheses support
model slightly outperforms the optimal candidate-predictor
combination model.

In addition to conceptual advantages, the experiments on
real world tasks validated the superior performance of the
proposed approach, as compared to models without machine
learning. Our approach is very generic and could be applied
to similar applications that require intensive human-computer
interactions.

In our future work, we want to further explore our learning
method. The proposed method uses novelty detection to learn
road situations. It is a more natural approach to expand the
learning to binary classes and to include off-road situation
during the learning. Apart from road profiles, other road
features can be used in the learning stage, such as, for example,
road edges, image features in the frequency domain, and
combinations of features. We also plan to apply the proposed
method to satellite images, such IKONOS photos [16], which
have the same spatial resolution as the aerial photos used in
this work.
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