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Abstract

In this paper, we present a texture descriptor which
hinges in the use of the local image statistics so as to recover
a compact representation of the texture under study. To this
end, here, we make use of stable distributions and their link
to Fourier analysis so as to provide a means to compute in a
computationally efficient manner a local texture descriptor.
This link between stochastic processes and Fourier analy-
sis provides an efficient means to compute texture spectra
which can be interpreted as a probability distribution for
purposes of recognition and analysis. Making use of our
local descriptor, we provide a metric between texture pairs
that can be made devoid of rotations on the texture plane by
recovering the optimal linear transformation via Procrustes
analysis. We demonstrate the utility of our descriptor and
its associated metric on a database of real-world textures.

1 Introduction

The recovery of shape from texture information is a key
problem in computer vision and pattern recognition. In-
deed, texture has found application not only as a shape
queue, i.e. shape-from-texture, but has also attracted broad
attention due to its applications to recognition and classifi-
cation [11, 12] tasks.

In the case of shape-from-texture, the problem has been
approached in either a global or a local manner. The global
approach hinges in the recovery of vanishing points from
either texture-gradient or spectral information. In this man-
ner, texture planes can be recovered via the structural analy-
sis of predetermined texture primitives [4, 1, 5]. This treat-
ment provides an intuitive geometrical meaning to the task
of recovering the parameters governing the pose by making
use of methods akin to 3D view geometry. Unfortunately,
the complexity required to handle scenes with multiple tex-
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ture planes renders these methods impractical in many real-
world settings.

In the case of local approaches, these are usually based
upon measures of spectral distortion. In these methods, the
spectral distortion in the texture provides a means to esti-
mate the pose parameters of the plane. Thus, the texture
under study is transformed into the Fourier domain, where
the perspective geometry can be treated in a local fashion
so as to obtain measures of texture distortion [14, 7, 2, 10].
These methods are more suitable for the analysis of scenes
containing multiple planes or curved surfaces. Nonetheless,
they rely on numerical optimisation techniques that may
be computationally intensive and, additionally, often do not
provide closed-form solutions to the pose estimate recovery
problem.

In this paper, we focus in the development of a descriptor
for recognition tasks based upon texture. Thus, our aim of
computation is a means to describe the texture under study
so as to capture the information of the image patch in a
compact form. This problem is reminiscent to that found in
texture-plane segmentation, in which textures with similar
perspective pose parameters, i.e. local spectral distortion,
have to be separated into groups or clusters. Krumm and
Shafer [8] have used spectral back-projection to estimate lo-
cal surface orientation by recovering the parameters which
minimise the sum-of-squares difference between local spec-
tra. Their method employs the local power-spectrum, which
is projected onto the front-parallel plane. Texture planes are
segmented using a dendrogram-based clustering method. In
a related development, Ribeiro and Hancock [13] showed
that the slant and tilt of textured surfaces can be estimated
without the need for iterative numerical optimisation by
working in the frequency domain and measuring texture dis-
tortion making use of the affine transformation on the pat-
tern of spectral peaks.

These methods make ample use of the Fourier transform
for purposes of recovering the pose parameters of texture
planes. In this paper, we present a texture descriptor which
hinges in the link between the statistics of the texture under
study and its local spectra. As a result, the descriptor can
be viewed as a probability distribution function which can

Digital Image Computing: Techniques and Applications

978-0-7695-3456-5/08 $25.00 © 2008 IEEE

DOI 10.1109/DICTA.2008.93

214



be computed efficiently making use of Fourier transforms.
Moreover, we also present a metric between textures mak-
ing use of our descriptor. This metric can be interpreted as
the goodness of fit between two texture spectra subject to
a linear transformation. In this manner, our descriptor is
invariant to rotations on the texture plane. The rest of the
paper is organized as follows. Section 2 presents stable dis-
tributions and provides a link between stochastic processes
and Fourier transforms. In the section, we also present the
metric between descriptors and ellaborate on their compu-
tation. We report experimental results on a texture database
in Section 3. Section 4 provides conclusions on the work
presented here.

2 Texture Descriptor

Here, we view textures as stochastic processes whose
distributions are “heavy-tailed”, i.e. there is a higher prob-
ability of extreme values within their distributions. In other
words, we view the description of textures as the recovery of
a distribution which corresponds to a high variability whose
extreme values can be “clustered”. From this viewpoint,
texture pixel values arise from a stochastic process such that
there exist considerable amount of extreme colour values
about the mean. As a result, in this section, we commence
by introducing stable distributions and, later on, we employ
them to provide a foundation for the use of Fourier trans-
forms to build a texture descriptor.In this way, we can fi-
nalise the section by presenting a similarity measure which,
at input, takes two texture descriptors given by 2D Fourier
transforms and, at output, delivers a metric that can be used
for recognition tasks.

2.1 Textures as Stochastic Processes

It is worth noting that, whereas normal and log-normal
distributions are a reasonable choice when the data presents
a clear tendency towards the mean, texture behaviour is
such that results in rather common deviations of the pixel
values from the colour or luminance mean. These “ex-
treme” values in the distribution cannot be ignored since
they are not outliers, but rather they arise from the stochas-
tic process under study. As a result, and to take our analysis
further, we focus in the use of stable distributions [9].

Thus, following our assumption of stable distributions,
we view the colour values for each channel, i.e. red (R),
green (G) and blue (B), at the pixel site u as random vari-
ables Yu whose inherent basis Xu = {xu(1), xu(2), . . . , xu(|
Xu |)} is such that

P (Yu) =
|Xu|∑
k=1

P
(

xu(k)
)

(2.1)

where, xu(k) are identically distributed variables and, as
usual for probability distributions of real-valued variables,
we have written P (Yu) = Pr[y ≤ Yu] for all y ∈ �.

In other words, we view the pixel values of the texture
under study as arising from a family of distributions whose
variance is not necesarily finite. It is worth noting in pass-
ing that, for finite variance, the formalism above implies
that P (Yu) is normally distributed. Nonetheless, this treat-
ment generalises the stochastic process to a number of in-
dependent influences, each of which is captured by the cor-
responding variable xu(k).

In practice, the Probability Density Function (PDF)
f(Yu) is not available in close form. As a result, we can
reparameterise the PDF recasting it as a function of the vari-
able t making use of the characteristic function

ψ(t) =
∫ −∞

∞
exp(itYu)f(Yu)dYu (2.2)

= exp
(
ivt− γ | t |α (

1 + iβ sign(t)ϕ(t, α)
))

where i =
√−1, v ∈ � and γ ∈ �+ are function pa-

rameters, β ∈ [−1, 1] and α ∈ (0, 2] are the skewness and
characteristic exponent, respectively, and ϕ(·) is defined as
follows

ϕ(t, α) =

{
tan

(
απ

2

)
if α �= 1

− 2
π log | t | if α = 1

(2.3)

2.2 Fourier Transforms and Stable Distri-
butions

Note that, the main advantage of the formalism above
is that it allows us to model the PDF of the channel pixel-
value Yu as a Fourier transform. To see this, we can write
the log-characteristic function as follows

log[ψ(t)] = ivt− γ | t |α (
1 + iβ sign(t)ϕ(t, α)

)
= ivt− | t |α γ∗α exp

( − iβ∗π
2
ϑsign(t)

)
where ϑ = 1− | 1 − α | and the parameters γ∗ and β∗ are
given by

β∗ =
2
πϑ

arccos
(

cos
(
απ

2

)
√

Ω

)

γ∗ =
(

γ
√

Ω
cos

(
απ

2

)) 1
α

(2.4)

and Ω = cos2
(
απ

2

)
+ β2 sin2

(
απ

2

)
.

Recall that, in the previous section, we presented the
characteristic function in Equation 2.2. We can use Fourier
inversion on the characteristic function and, making use of
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(a) (b) (c) (d)

Figure 1. Example textures and associated FFTs. (a) and (c): Input texture images; (b) and (d), Top row: R, G and B channels for
the textures in (a) and (c); (b) and (d), Bottom row: FFTs for the R, G and B channels in the top rows.

(a) (b) (c) (d)

Figure 2. Left-hand panels: Mean (a) and bicubic fit (b) for the non-rotated transforms in Figure 1; Right-hand panel: Mean (c)
and bicubic fit (d) for the rotated texture in Figure 1.

the shorthands defined above, it can be shown that the PDF
may be computed via the equation

f(Yu; v, β∗, γ∗, α) =
1
πγ∗

∫ ∞

0

cos
(

(u− Yu)s
γ∗

+ sα sin(φ)
)

exp
(
− sα sin(φ)

)
ds

(2.5)

where φ = β∗πη
2 .

Note that the expression above is, in fact, a Fourier trans-
form. This observation is not only theoretically important
but practically useful since it provides a means of comput-
ing the PDF of a texture via Fourier analysis. Moreover, it
substantiates the use of the Fourier transform as a PDF for
the texture under study.

2.3 Descriptor Construction

As a result, we construct our descriptor as follows. We
commence by computing the Fast Fourier Transform (FFT)

of the texture under study. Note that, since our focus of
study are image textures, the FFTs are two-dimensional in
nature. Our descriptor is then given by the set Γ of three-
dimensional points whose coordinates are x, y, z. For the
points in Γ, we constrain the coordinates x, y to be on a lat-
tice and interpolate the z-coordinates to the values F(x, y),
where F(·) is the Fourier transform corresponding to the
image texture.

In Figure 1, we show the Fourier transforms for an exam-
ple texture. Since our textures are colour ones, we use the
mean value for the interpolations corresponding to the FFTs
for each of the colour channels. In Figure 2, we show the
mean FFT and the interpolated points Γ for the example tex-
tures in Figure 1. Here, we have used descriptors with 100
points on a 10 × 10 lattice and used, for purposes of inter-
polation, a bicubic spline [6]. It is worth noting that, since
the points are distributed on a lattice, the descriptors can be
stored as vectors whose elements are the raster-scanned z
coordinates of those points in Γ.

216



Bark Brick Buildings Paintings

Figure 3. Sample Images for the four categories in the database.

Angle 0 10 20 30 40 50 60 70 80 90
0 0.00 0.01 0.03 0.04 0.05 0.06 0.05 0.04 0.03 0.03

10 0.01 0.00 0.00 0.01 0.02 0.03 0.03 0.02 0.03 0.03
20 0.03 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.04
30 0.04 0.01 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.05
40 0.05 0.02 0.01 0.00 0.00 0.00 0.01 0.01 0.04 0.05
50 0.06 0.03 0.01 0.01 0.00 0.00 0.00 0.01 0.03 0.04
60 0.05 0.03 0.02 0.01 0.01 0.00 0.00 0.00 0.03 0.04
70 0.04 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.01 0.02
80 0.03 0.03 0.03 0.04 0.04 0.03 0.03 0.01 0.00 0.00
90 0.03 0.03 0.04 0.05 0.05 0.04 0.04 0.02 0.00 0.00

Table 1. Matrix of normalised errors E for the texture in the left-hand panel of Figure 1 rotated in steps of 10o from 0o to 90o.

2.4 Metric Between Texture Descriptors

Note that, in case of texture rotations, the FFT will spin
about its center. This is consistent with the work in [13],
where the spectral distortion of the textures under study is
used for purposes of recovering shape queues. It is worth
stressing in passing, however, that the work presented in
[13] is based upon Fourier analysis and involves the recov-
ery of the spectral homographies between neighbouring lo-
cal spectra. In our approach, the homography is not the aim
of computation. This is as we seek to recover a metric be-
tween texture descriptors as compared to the slant and tilt
angles of the perspective textured plane.

This spectral distortion as a result of perspective transfor-
mations on the texture can be appreciated in Figures 1 and
2, where we show two example textures and their respec-
tive FFTs. From the figures, its clear that the transforms
in the right-hand panels are the rotated analogues of their
counterparts in the right-hand side.

As a result, if a metric between descriptors is to be com-
puted, we require a means to recover the parameters that
govern the linear, i.e. affine, transformation between two
FFTs corresponding to a texture pair. In other words, in or-
der to compute a metric between a pair of descriptors, we
aim at recovering the linear transformation between two sets
of 3D points. These 3D points correspond to the sets Γ for
the two textures under comparison.

Thus, here, we employ Procrustes analysis so as to deter-

mine a linear transformation between two sets of 3D points.
Let the centered coordinates of the data point indexed i
be p̃i = [xi − μx, yi − μy, zi − μz]T , where μx, μy and
μz are the mean data-coordinate values in the x, y and z
axis. With these ingredients, the matrix of normalized 3D
point-coordinates is given by D̃ = [p̃1, p̃2, . . . , p̃N ]T . A
Procrustes transformation of the matrix of normalized 3D
point-coordinates D̃ is of the form Q = R D̃ which mini-
mizes the normalized sum of squared errors

E =
‖ M − Q ‖2

‖ D̃ ‖2
(2.6)

where M is a matrix whose ith row corresponds to the
coordinates of the ground truth point indexed i and R is
a transformation matrix. In the equation above, we have
assumed that the point coordinates are centered, i.e. the
centroid of the data point-cloud is at the origin.

It is known that minimizing E is equivalent to maximiz-
ing Tr[D̃MT R ] [3]. Let the singular value decomposition
(SVD) of D̃MT be USVT . The maximum of Tr[D̃MT R ]
is achieved when VT R U = I. As a result, the optimal
transformation matrix R is given by

R = VUT (2.7)

The goodness-of-fit for this transformation is determined
using the sum of squared errors E between the points in Γ
as interpolated by the bicubic spline for the two textures un-
der study. By using D̃ as an alternative to the non-centered
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(a) (b) (c) (d)

Figure 4. Example recognition results. (a) and (c): Sample test images; (b) and (d): Results ordered by relevance from left-to-right
and top-to-bottom yielded by the k-nearest neighbour classifier making use of the goodness of fit between the bicubic interpolants
for the z coordinates of the points in Γ used by our descriptor.

point-coordinates in Γ, the error E is normalized by the sum
of squares for the centered 3D point-coordinates. The use of
the normalized error makes the quantity E devoid of scal-
ing and translational components in the descriptors under
comparison.

3 Experiments

Having presented the theoretical basis for our descrip-
tor, we now turn our attention to its utility for purposes of
recognition. To this end, we have used the VisTex database
1. This is a database of real-world textures which covers
a number of materials, such as brick, bark, buildings, etc.
In our experiments, we have used a subset of 108 images.
These images correspond to four categories, i.e. bark, brick,
buildings and paintings. Note that, in the case of the bark
and brick textures, these are homogeneous ones, whereas
the paintings and buildings images are textured, real-world
scenes. In Figure 3, we show example images for the four
categories in the data set.

We commence by illustrating the invariance to rotation
of the normalised sum of squared errors E between two
sample textures. In Table 1, we show the matrix of errors
E as a function of rotation angle for the bark texture in Fig-
ure 1. In the matrix, we show the goodness of fit for ro-
tations between 0o and 90o degrees in increments of 10o.
From the matrix, we can conclude that the largest “devia-
tion” in goodness of fit is never greater than 0.06. More-
over, the largest values of E are those between textures that
have been rotated 30o. This may be due to the bicubic in-
terpolation step, which is more prone to errors for rotations
between 30o and 50o.

For purposes of showing the utility of our descriptor for
recognition tasks, we have used a subset of forty eight im-
ages, i.e. 12 for each category, as reference for the recog-

1This database is publicly available. It can be downloaded from
http://vismod.media.mit.edu/pub/VisTex/VisTex.tar.gz

nition task in hand. The rest of the images have been used
for testing by assigning them to the classes of reference, i.e.
bark, brick, buildings or paintings,using a k-nearest neigh-
bour approach. For purposes of k-nearest neighbour classi-
fication, in our experiments we have used the goodness of fit
E between the bicubic interpolations for each texture pair.

In Figure 4, we show two sample recognition results. In
(a) and (c), we show the test texture images. In (b) and
(d), we show the six “closest” images in the database cor-
responding to the test images in (a) and (c), respectively.
In the panels, we show, from left-to-right and from top-to-
bottom, the reference images ranked in terms of relevance,
i.e. from the first to the sixth smallest E . Note that, in both
cases, the metric is able to capture the disimilarity between
the textures under study. Even for complex textured images,
like the buildings in Figure 4(c) and (d), the nearest neigh-
bour classifier delivers good results.

Now, we turn our attention to a more quantitative anal-
ysis of the results. In Table 2, we show the results for
k = {1, 2, 3, 4, 5, 6}. Note that, from the table, its clear
that the descriptor and its associated metric performs best
when applied to homogeneous textures. This is not surpris-
ing since the Fourier approach presented here is a frequency
domain one which is expected to be most stable when ap-
plied to periodic textures.

4. Conclusions

In this paper, we have presented a local texture descriptor
which hinges in the use of stable distributions and Fourier
transforms for purposes of representing the spectra of a tex-
ture in a compact manner. In this way, here, we have viewed
the texture under study as a set of random variables which
arise from a stochastic process. This stochastic process re-
sponds to a “heavy-tailed” distribution which can be com-
puted via FFTs. This permits the formulation of a local
texture descriptor whose recovery is computationaly effi-
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Category 1-NN 2-NN 3-NN 4-NN 5-NN 6-NN
Bark 40.00% 53.33% 80.00% 80.00% 86.67% 86.67%
Brick 80.00% 93.33% 100.00% 100.00% 100.00% 100.00%
Building 60.00% 73.33% 73.33% 73.33% 86.67% 86.67%
Painting 46.67% 53.33% 66.67% 66.67% 66.67% 66.67%

Table 2. Recognition results for the six-nearest neighbours of the test textured images in the reference data set.

ciently. Moreover, this treatment allows metrics between
texture-pairs to be recovered via Proscrustes analysis. We
have illustrated the utility of our descriptor by performing
recognition tasks on a real-world texture database.
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