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1. Introduction

With the advent and development of new sensor technologies, it is now pos-
sible to capture image data in tens or hundreds of wavelength-resolved bands
covering a broad spectral range. Compared to traditional monochrome and
trichromatic cameras, hyperspectral image sensors provide an information-rich
representation of the spectral response for the material under study over a num-
ber of wavelengths. This has opened-up great opportunities and posed impor-
tant challenges due to the high dimensional nature of the spectral data. As a
result, many classical algorithms in pattern recognition and machine learning
have been naturally borrowed and adapted so as to perform feature extrac-
tion and classification [21]. Techniques such as Principle Component Analy-
sis (PCA) [18], Linear Discriminant Analysis (LDA)[13], Projection Pursuit
[17] and their kernel versions [11] treat raw pixel spectra as input vectors in a
higher-dimensional space, where the dimensionality is given by the number of
bands. The idea is to recover statistically optimal solutions to the classification
problems by reducing the data dimensionality via a projection of the feature
space.

The methods above are often used for purposes of recognition based on
individual signatures, which in hyperspectral images, represent single pixels.
Nonetheless each signature is generally related to material chemistry, these
methods do not take into account the local structure of the images under study.
They rather hinge in the notion that different materials have different charac-
teristic responses as a function of wavelengths which can be used to provide
descriptions of the target objects. Thus, raw pixels are often treated as input
vectors in high dimensional spaces.

In contrast with the pixel-based methods in hyperspectral imaging, the ap-
proaches available for content-based image retrieval often take into account the
local structure of the scene. These methods often represent images as a bag of
features so as to match query images to those in the database by computing
distances between distributions of local descriptors. As a result, trichromatic
object and image retrieval and classification techniques [7, 26, 37] are often
based upon the sumarisation of the image dataset using a codebook of visual
words [23, 25, 29].

It is surprising that despite the widespread use of higher-level features for
recognition and retrieval of monochromatic and trichromatic imagery, local
hyperspectral image descriptors are somewhat under-researched. The use of
local image descriptors opens-up great opportunities in recognition and clas-
sification tasks. Moreover, the multidimensional nature of local image fea-
tures and descriptors may be combined to improve performance. For instance,
Varma and Ray [41] have used a kernel learning approach to learn the trade-off
between discriminative power and invariance of image descriptors in classifi-
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cation tasks. Other methods, such as the one in [5], rely upon clustering algo-
rithms to provide improved organisation of the codebook. Other alternatives
tend to view the visual words as multidimensional data and, making use of
unsupervised learning, exploit similarity information in a graph-theoretic set-
ting. Examples of these are the method presented by Sengupta and Boyer [34]
and that developed by Shokounfandeh et. al. [36], which employ information-
theoretical criteria to hierarchically structure the dataset under study and pat-
tern recognition methods to match the candidates.

Amongst local image descriptors, texture has found applications not only as
a shape queue [14, 40], but has also attracted broad attention for recognition
and classification tasks [31]. Moreover, from the shape modelling perspective,
static texture planes can be recovered making use of the structural analysis of
predetermined texture primitives [1, 16, 19]. This treatment provides an intu-
itive geometrical meaning to the task of recovering the parameters governing
the pose of the object by making use of methods akin to 3D view geometry.
For dynamic textures, Sheikh, Haering and Shah [35] have developed an algo-
rithm for recovering the affine geometry making use of motion-magnitude con-
straints. Pteri and Chetevirkov [6] have characterised dynamic textures using
features extracted using normal flows. This builds on the comparative study
in [12]. Ghanem and Ahuja [15] have used the Fourier phase to capture the
global motion within the texture. Rahman and Murshed [30] have estimated
optical flow making use of motion patterns for temporal textures. Otsuka et al.
[27] have used surface motion trajectories derived from multiple frames in a
dynamic texture to recover spatiotemporal texture features.

As mentioned earlier, we focus on the problem of recovering a hyperspectral
image descriptor by using harmonic functions to model hyperspectral imagery
in terms of probability distributions. This is reminiscent of of time-dependent
textures, whose probability density functions exhibit first and second order
moments which are space and time-shift invariant [10]. For instance, in [28],
the characterisation of the dynamic texture under study is obtained using the
empirical observations of statistical regularities in the image sequence. In [3],
statistical learning is used for purposes of synthesising a dynamic texture based
upon an input image sequence. Zhao and Pietikäinen [43] have performed
recognition tasks using local binary patterns that fit space-time statistics.

The methods above view time-dependent textures as arising from second-
order stationary stochastic processes such as moving tree-leaves, sea waves
and rising smoke plumes. We, from another point of view, relate hyperspectral
image regions to harmonic kernels to capture a discriminative and descriptive
representation of the scene. This provides a principled link between statistical
approaches, signal processing methods for texture recognition and shape mod-
eling approaches based upon measures of spectral distortion [24]. The method
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also provides a link to affine geometric transformations between texture planes
and their analysis in the Fourier domain [4].

The chapter is organised as follows. We commence by exploring the link
between harmonic analysis and heavy tailed distributions. We then explore the
relationship between distortions over locally planar patches on the object sur-
face and the domain induced by an integral transform over a harmonic kernel.
We do this so as to achieve invariance to affine transformations on the image
plane. With these technical foundations at hand, we proceed to present our
hyperspectral image descriptor by incorporating the cross-correlation between
bands. This results in a descriptor based upon orthogonal bases with high in-
formation compaction properties which can capture the space and wavelength
correlation for the spectra in hyperspectral images. Moreover, as we show later
on, the choice of bases or kernel is quite general since it applies to harmonic
kernels which span a Hilbert space. We conclude the chapter by demonstrat-
ing the utility of our descriptor for purposes of object recognition based upon
real-world hyperspectral imagery.

2. Heavy-tailed Distributions

As mentioned earlier, we view hyperspectral images as arising from a prob-
ability distribution whose observables or occurrences may have long or heavy
tails. This implies that the spectra in the image results in values that can be
rather high in terms of their deviation from the image-spectra mean and vari-
ance. As a result, our formulation can capture high wavelength-dependent
variation in the image. This is important, since it allows us to capture infor-
mation in our descriptor that would otherwise may be cast as the product of
outliers. Thus, we formulate our descriptor so as to model “rare” stationary
wavelength-dependent events on the image plane.

Moreover, we view the pixel values of the hyperspectral image as arising
from stochastic processes whose moment generating functions are invariant
with respect to shifts in the image-coordinates. This means that the mean, co-
variance, kurtosis, etc. for the corresponding joint probability distribution are
required to be invariant with respect to changes of location on the image. Due
to our use of heavy tailed distributions, these densities may have high disper-
sion and, thus, their probability density functions are, in general, governed by
further-order moments. These introduces a number of statistical “skewness”
variables that allow modeling high variability spectral behaviour.

This is reminiscent of simulation approaches where importance sampling
cannot be effected via an exponential changes in measurement due to the fact
that the moments are not exponential in nature. This applies to distributions
such as the log-normal, Weibull with increasing skewness and regularly vary-
ing distributions such as Pareto, stable and log-gamma distributions [2]. More
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formally, we formulate the density of the pixel-values for the wavelength λ at
the pixel u in the image-band Iλ of the image as random variables Yu whose
inherent basis Xu = {xu(1),xu(2), . . . ,xu(|Xu|)} is such that

P(Yu) =

|Xu|X
k=1

P(xu(k)) (1.1)

where, xu(k) are identically distributed variables and, as usual for probability
distributions of real-valued variables, we have written P(Yu) = Pr[y ≤ Yu] for
all y ∈R.

In other words, we view the pixel values for each band in the image under
study as arising from a family of heavy-tailed distributions whose variance is
not necessarily finite. It is worth noting that, for finite variance, the formalism
above implies that P(Yu) is normally distributed and, as a result, our approach
is not exclusive to finite variance distributions, but rather this treatment gen-
eralises the stochastic process to a number of independent influences, each of
which is captured by the corresponding variable xu(k).

In practice, the Probability Density Function (PDF) f (Yu) is not available
in close form. As a result, we can re-parameterise the PDF by recasting it as a
function of the variable ς making use of the characteristic function

ψ(ς) =
Z ∞

−∞
exp(iςYu) f (Yu)dYu (1.2)

= exp(iuς − γ|ς |α(1+ iβ sign(ς)ϕ(ς ,α))) (1.3)

where i =
√−1, u is, as before, the pixel-index on the image plane and γ ∈

R+ are function parameters, β ∈ [−1,1] and α ∈ (0,2] are the skewness and
characteristic exponent, respectively, and ϕ(·) is defined as follows

ϕ(ς ,α) =

�
tan(α π

2 ) if α 6= 1
−π

2 log |ς | if α = 1 (1.4)

For the characteristic function above, some values of α correspond to spe-
cial cases of the distribution. For instance, α = 2 implies a normal distribution,
β = 0 and α = 1 corresponds to a Cauchy distribution and, for the Levy dis-
tribution we have α = 1

2 and β = 1. Thus, nonetheless the formalism above
can capture a number of cases in exponential families, it is still quite general
in nature so as to allow the modeling of a large number of distributions that
may apply to hyperspectral data and whose characteristic exponents α are not
of those distributions whose tails are exponentially bounded.

So far, we have limited ourselves to the image plane for a fixed wavelength
λ . That is, we have, so far, concentrated on the distribution of spectral values
across every wavelength-resolved band in the image. Note that, without loss
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of generality, we can extend Equation (1.3) to the wavelength domain, i.e. the
spectra of the image across a segment of bands.

This is a straightforward task by noting that the equation above can be
viewed as the cross-correlation between the function f (Yu) and the exponen-
tial given by exp(iςYu). Hence, we can write the characteristic function for the
image parameterised with respect to the wavelength λ as follows

ϑ(λ ) =
Z ∞

−∞

Z ∞

−∞
exp(iλς)exp(iςYu) f (Yu)dYudς (1.5)

=
Z ∞

−∞
exp(iλς)ψ(ς)dς (1.6)

where the second line in the equation above corresponds to the substitution of
Equation (1.3) into Equation (1.5).

Equation (1.6) captures the spectral cross-correlation for the characteristic
functions for each band. In this manner, we view the characteristic function for
the hyperspectral image as a heavy-tailed distribution of another set of heavy-
tailed PDFs, which correspond to each of the band in the image. This can also
be interpreted as a composition of two heavy-tailed distributions, where Equa-
tion (1.3) corresponds to the image-band domain ς of the image and Equa-
tion (1.6) is determined by the wavelength-dependent domain λ .

This composition operation suggests a two-step process for the computa-
tion of the image descriptor. Firstly, at the band-level, the information can be
represented in a compact fashion making use of harmonic analysis and ren-
dered invariant to geometric distortions on the object surface plane. Secondly,
the wavelength-dependent correlation between bands can be computed making
use of the operation in Equation (1.6).

3. Harmonic Analysis

In this section, we explore the use of harmonic analysis and the funda-
mentals of integral transforms [38] to provide a means to the computation of
our image descriptor. We commence by noting that Equation (1.2) and Equa-
tion (1.5) are characteristic functions obtained via the integral of the product
of the function g(η), i.e. f (Yu) and ψ(ς), multiplied by a kernel, given by
exp(iλς) and exp(iςYu), respectively.

To appreciate this more clearly, consider the function given by

F(ω) =
Z ∞

−∞
g(η)K(ω,η)dη (1.7)

where K(ω,η) is a harmonic kernel of the form

K(ω,η) =
∞X

k=1

akφk(ω)φk(η) (1.8)
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where ak is the kth real scalar corresponding to the harmonic expansion and
φk(·) are orthonormal functions such that 〈φk(ω),φn(η)〉 = 0 ∀ n 6= k. More-
over, we consider cases in which the functions φk(·) constitute a basis for a
Hilbert space [42] and, therefore, the right-hand side of Equation (1.8) is con-
vergent to K(ω,η) as k tends to infinity.

To see the relation between Equation (1.7) and the equations in previous
sections, we can examine ψ(ς) in more detail and write

log[ψ(ς)] = iuς − γ|ς |α(1+ iβ sign(ς)ϕ(ς ,α)) (1.9)

= iuς −|ς |αγ∗α exp(−iβ ∗ π
2

ϑsign(ς)) (1.10)

where ϑ = 1−|1−α| and parameters γ∗ and β ∗ are given by

γ∗ =
� γ

√
Ω

cos(α π
2 )

� 1
α

(1.11)

β ∗ =
2

πϑ
arccos

�cos(α π
2 )√

Ω

�
(1.12)

and Ω = cos2(α π
2 )+β 2 sin2(α π

2 ).
To obtain the kernel for Equation (1.7), we can use Fourier inversion on the

characteristic function and, making use of the shorthands defined above, the
PDF may be computed via this following equation.

f (Yu;u,β ∗,γ∗,α) =
1

πγ∗
Z ∞

0
cos
�(u−Yu)s

γ∗
+ sα sin(φ)

�
exp(−sα sin(φ))ds

(1.13)
where φ = β ∗πη

2 .
This treatment not only opens-up the possibility of functional analysis on

the characteristic function using the techniques in the Fourier domain, but also
allows the use of other harmonic kernels for compactness and ease of com-
putation. This is due to the fact that, we can view the kernel K(ω,η) as the
exponential exp(−sα sin(φ)), whereas the function g(η) is given by the co-
sine term. Thus, we can use other harmonic kernels so as to induce a change
of basis without any loss of generality. Actually, the expression above can
be greatly simplified making use of the shorthands A = (u−Yu)

γ∗ , η = sα and
ωη = As+ sα sin(φ), which yields

sα sin(φ) = ωη −Aη
1
α (1.14)

Substituting Equation (1.13) with Equation (1.14), the PDF can be expressed
as

f (Yu;u,β ∗,γ∗,α) =

Ê
2
π

Z ∞

0

exp(−ωη +Aη 1
α )√

2πγ∗αη ( α−1
α )

cos(ωη)dη (1.15)
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where the kernel then becomes

K(ω,η) = cos(ωη) (1.16)

This can be related, in a straightforward manner, to the Fourier cosine trans-
form (FCT) of the form

F(ω) =

Ê
2
π

Z ∞

0

exp(−ωη + (u−Yu)
γ∗ η 1

α )
√

2πγ∗αη( α−1
α )

cos(ωη)dη (1.17)

which is analogous to the expression in Equation (1.13). Nonetheless, the
transform above does not have imaginary coefficients. This can be viewed as
a representation in the power rather than in the phase spectrum. Moreover, it
has the advantage of compacting the spectral information in the lower-order
Fourier terms, i.e. those for which ω is close to the origin. This follows the
strong “information compaction” property of FCTs introduced in [32] and as-
sures a good trade-off between discriminability and complexity.

It is worth stressing that, due to the harmonic analysis treatment given to the
problem in this section, other kernels may be used for purposes of computing
other integral transforms [38] spanning Hilbert Spaces. These include wavelets
and the Mellin (K(ω,η) = ηω−1) and Hankel transforms. In fact, other Ker-
nels may be obtained by performing an appropriate substitution on the term
cos(ωη). Note that, for purposes of our descriptor recovery, we will focus
on the use of the cosine transform above. This is due to the information com-
paction property mentioned earlier and the fact that computational methods for
the efficient recovery of the FCT are readily available.

4. Invariance to Affine Distortions

Having introduced the notion of the harmonic analysis and shown how the
probability density function can be recovered using a Fourier transform, we
now focus on relation between distortions on the object surface plane and the
Fourier domain. To this end, we follow [4] and relate the harmonic kernel
above to affine transformations on the object locally planar shape. As men-
tioned earlier, the function f (Yu) corresponds to the band-dependent compo-
nent of the image and, as a result, its prone to affine distortion. This hinges in
the notion that a distortion on the object surface will affect the geometric factor
for the scene, but not its photometric properties. In other words, the material
index of refraction, roughness, etc. remains unchanged, whereas the geome-
try of the reflective process does vary with respect to affine distortions on the
image plane. The corresponding 2D integral transform of the function f (Yu)
which, as introduced in the previous sections, corresponds to the pixel values
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for the image-band Iλ in the image under study is given by

F(ξ ) =
Z

Γ
f (Yu)K(ξ T ,u)du (1.18)

where u = [x,y]T is the vector of two-dimensional coordinates for the compact
domain Γ ∈R2 and, in the case of the FCT, K(ξ T ,u) = cos(2π(ξ T u)).

In practice, the coordinate-vectors u will be given by discrete quantities on
the image lattice. For purposes of analysis, we consider the continuous case
and note that the affine coordinate transformation can be expressed in matrix
notation as follows

u′ =
h x′

y′
i
=
h a b

d e

ih x
y

i
+
h c

h

i
(1.19)

This observation is important because we can relate the kernel for the FCT in
Equation (1.18) to the transformed coordinate u′ = [x′,y′]T . Also, note that, for
patches centered at keypoints in the image, the locally planar object surface
patch can be considered devoid of translation. Thus, we can set f = c = 0 and
write

ξ T u = ξ T
h x

y

i
(1.20)

= [ ξx ξy ]
h a b

d e

i−1h x′
y′
i

(1.21)

=
1

ae−bd
[ (eξx −dξy) (−bξx +aξy) ]

h x′
y′
i

(1.22)

where ξ = [ξx,ξy]
T is the vector of spectral indexes for the 2D integral trans-

form.
Hence, after some algebra, and using the shorthand 4= (ae−bd), we can

show that for the coordinates u′, the integral transform is given by

F(ξ ) =
1
|4|

Z ∞

−∞

Z ∞

−∞
f (Yu′)K

� 1
4 [(eξx −dξy),(bξx −aξy)], [x′,y′]T

�
dx′dy′

(1.23)
This implies that

F(ξ ) =
1
|4|F(ξ ′) (1.24)

where ξ ′ is the “distorted” analogue of ξ . The distortion matrix T is such that

ξ =
h ξx

ξy

i
=
h a d

b e

ih ξ ′
x

ξ ′
y

i
= Tξ ′ (1.25)

As a result, from Equation (1.23), we can conclude that the effect of the
affine coordinate transformation matrix T is to produce a distortion equivalent
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to (TT )−1 in the ξ domain for the corresponding integral transform. This ob-
servation is an important one since it permits achieving invariance to affine
transformations on the locally planar object surface patch. This can be done in
practice via a ξ -domain distortion correction operation of the form

F(ξ ) = (TT )−1F(ξ ′) (1.26)

5. Descriptor Construction

With the formalism presented in the previous sections, we now proceed
to elaborate further on the descriptor computation. Succinctly, this is a two-
step process. Firstly, we compute the affine-invariant 2D integral transform
for every band in the hyperspectral image under study. This is equivalent to
computing the band-dependent component of the characteristic function ψ(ς).
Secondly, we capture the wavelength dependent behaviour of the hyperspectral
image by computing the cross-correlation with respect to the spectral domain
for the set of distortion-invariant integral transforms. By making use of the
FCT kernel, in practice, the descriptor becomes an FCT with respect to the
band index for the cosine transforms corresponding to wavelength-resolved
image in the sequence.

Following the rationale above, we commence by computing the distortion
invariant integral transform for each band in the image. To do this, we use
Equation (1.26) to estimate the distortion matrix with respect to a predefined
reference. Here, we employ the peaks of the power spectrum and express the
relation of the integral transforms for two locally planar image patches, i.e.
the one corresponding to the reference and that for the object under study. We
have done this following the notion that a blob-like shape composed of a single
transcendental function on the image plane would produce two peaks in the
Fourier domain. That is, we have set, as our reference, a moment generating
function arising from a cosine on a plane perpendiculat to the camera.

Let the peaks of the power spectrum for two locally planar object patches
be given by UA and UB. Those for the reference are UR. As a result, the
matrices UA, UB and UR are such that each of their columns correspond to the
x-y coordinates for one of the two peaks in the power spectrum. These relations
are given by

UA = (TA
T )−1UR (1.27)

UB = (TB
T )−1UR (1.28)

Where TA : UA ⇒ UR and TB : UB ⇒ UR are the affine coordinate transforma-
tion matrices of the planar surface patches under consideration.

Note that, this is reminiscent of the shape-from-texture approaches hinging
in the use of the Fourier transform for the recovery of the local distortion matrix
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Figure 1.1. From left-to-right: hyperspectral texture, the band-wise FCT, the distortion in-
variant cosine transforms for every band in the image and the raster scanned 3D matrix V.

[33]. Nonetheless, in [33], the normal is recovered explicitly making use of the
Fourier transform, whereas here we employ the integral transform and aim at
relating the FCTs for the two locally planar patches with that of the reference.
We can do this making use of the composition operation given by

UB = (TAT−1
B )T UA (1.29)

= ΦUA (1.30)

where Φ = (TAT−1
B )T is the distortion matrix. This matrix represents the dis-

tortion of the power spectrum of UA with respect to UB.
In practice, note that, if UR is known and fixed for every locally planar patch,

we can use the shorthands TA
T = URUA

−1 and (TB
T )−1 = UBUR

−1 to write

Φ = (URUA
−1)(UBUR

−1) (1.31)

Which contrasts with other methods in the fact that, for our descriptor com-
putation, we do not recover the principal components of the local distortion
matrix, but rather compute the matrix Φ directly through the expression above.
Thus, we can construct a band-level matrix of the form

V = [F(I1)
∗|F(I2)

∗| . . . |F(I|I|)∗] (1.32)

which is the concatenation of the affine invariant integral transforms F(·)∗ for
the band-resolved locally planar object surface patches in the image. Moreover,
we render the band-level integral transform invariant to affine transformations
making use of the reference peak matrix UR such that the transform for the
frame indexed t is given by

F(IR) = F(It)∗Φt
−1 (1.33)

where Φt
−1 is the matrix which maps the transform for the band corresponding

to the wavelength λ to the transform F(IR) for the reference plane. Here, as
mentioned earlier, we have used as reference the power spectrum given by two
peaks rotated 45o about the upper left corner of the 2D FCT. The reference
FCT is shown in Figure 1.2.

Note that, since we have derived our descriptor based upon the properties
of integral transforms and Hilbert spaces, each element of the matrix V can
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be considered as arising from the inner product of a set of orthonormal vec-
tors. Moreover, from a harmonic analysis perspective, the elements of V are
represented in terms of discrete wave functions, over an infinite number of el-
ements [20]. This is analogue to the treatment given to time series in signal
processing, where the variance of the signal is described based upon spec-
tral density. Usually, the variance estimations are performed by using Fourier
transform methods [39]. Thus, we can make use of the discrete analogue of
Equation (1.6) so as to recover the kth coefficient for the image descriptor G,
which becomes

Gk = F(V) =

|I|−1X
n=0

F(In)
∗K
� π
|I|(n+

1
2
),(k+

1
2
)
�

(1.34)

where |G|= |I| and, for the FCT, the harmonic kernel above becomes

K
� π
|I|(n+

1
2
),(k+

1
2
)
�
= cos

� π
|I|(n+

1
2
)(k+

1
2
)
�

(1.35)

.

6. Implementation Issues

Now, we turn our attention to the computation of the descriptor and provide
further discussion on the previous developments. To this end, we illustrate,
in Figure 1.1, the step-sequence of the descriptor computation procedure. We
depart from a series of bands in the image and compute the band-by-band

Figure 1.2. Example of reference, input and distortion corrected single-band textures. In
the panels, the left-hand image shows the single-band reference texture whereas the right-hand
panel shows the power spectrum of the distorted and affine corrected FCT for the texture under
study.



Affine Invariant Hyperspectral Image Descriptors 13

Figure 1.3. From left-to-right: Affine distortion of a sample single-band image; FCT of the
image patches in the left-hand panel, distortion-corrected power spectrums for the FCTs in the
second panel and inverse FCTs for the power spectrum in the third panel.

FCT. With the band FCTs at hand, we apply the distortion correction approach
presented in the previous sections so as to obtain a “power-aligned” series of
cosine transforms that can be concatenated into V. The descriptor is then given
by the cosine transform of V over the wavelength-index. Note that the descrip-
tor will be three-dimensional in nature, with size Nx ×Ny ×Nλ , where Nx and
Ny are the sizes of the locally planar object patches in the image lattice and Nλ
is equivalent to the wavelength range for the hyperspectral image bands. In the
figure, for purposes of visualisation, we have raster-scanned the descriptor so
as to display a 2D matrix whose rows correspond to the wavelength-indexes of
the hyperspectral image under study.

We now illustrate the distortion correction operation at the band level in
1.2. In the panels, we show the reference, corrected and input image regions
in their spatial and frequency domains. Note that, at input, the textured planes
show an affine distortion which affects the distribution of the peaks in its power
spectrum.

Moreover, in Figure 1.3, we show a sample textured plane which has been
affinely distorted. In the figure, we have divided the distorted input texture into
patches that are assumed to be locally planar. We then apply the FCT to each
of these patches, represented in the form of a lattice on the input image in the
left-hand panel. The corresponding power spectrums are shown in the second
column of the figure. Note that, as expected, the affine distortions produce a
displacement on the power spectrum peaks. In the third panel, we show the
power spectrums after the matrix Φ has been recovered and multiplied so as to

Figure 1.4. Hyperspectral wavelength-resolved bands corresponding to 662nm for six sample
objects in our dataset. From left-to-right: plastic dinosaurs and animals, miniature cars, fluffy
dolls, plastic blocks, wooden blocks and coins.
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Figure 1.5. From left-to-right: sample hyperspectral images of a fluffy toy at a number of
wavelength-resolved bands, i.e. λ = {550nm,640nm,730nm,820nm,910nm,1000nm}. The
top row shows the bands corresponding to the uncalibrated images and the bottom row shows
the calibrated bands.

obtain the corrected FCTs given by F(·)∗. The distortion corrected textures in
the spatial domain are shown in the right-most panel in the figure. These have
been obtained by applying the inverse cosine transform to the power spectrums
in the third column. Note that, from both, the corrected power spectrums and
the inverse cosine transforms, we can conclude that the correction operation
can cope with large degrees of shear in the input texture-plane patches.

7. Experiments

Having presented our image descriptor in the previous sections, we now
illustrate its utility for purposes of hyperspectral image categorisation. To this
end, we employ a dataset of hyperspectral imagery acquired in-house using an
imaging system comprised by an Acousto-Optic Tunable Filter (AOTF) fitted
to a firewire camera. The system has been designed to operate in the visible
and near infrared (NIR) spectral range.

In our dataset, we have images corresponding to five categories of toys and a
set of coins. Each toy sample was acquired over ten views by rotating the object
in increments of 10 ◦ about its vertical axis whereas coin imagery was captured
only in two different views, heads and tails. In our database, there are a total
of 62 toys and 32 coins, which, over multiple viewpoints yielded 684 hyper-

Figure 1.6. From left-to-right: 4, 16 and 64-squared image region partitioning of the fluffy
toy image.
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Level category
Same Scale Multiple Scale

calibrated uncalibrated calibrated uncalibrated
% % % %

4-Region Lattice

animals 97.39 90.32 99.13 99.13
cars 70.00 77.55 100.0 100.0

fluffy dolls 83.33 41.49 90.00 96.67
plastic blocks 80.00 96.24 97.14 97.14

wooden blocks 96.00 98.74 99.00 99.00
coins 93.75 87.64 96.88 96.88

average total 91.23 89.47 97.72 98.54

16-Region Lattice

animals 94.78 98.26 100.0 100.0
cars 90.00 80.00 100.0 100.0

fluffy dolls 80.00 93.33 96.67 96.67
plastic blocks 97.14 94.29 100.0 97.14

wooden blocks 100.0 100.0 99.00 99.00
coins 90.63 93.75 96.88 96.88

average total 94.44 95.91 99.12 98.83

64-Region Lattice

animals 98.26 98.26 97.39 97.39
cars 96.67 96.67 96.67 100.0

fluffy dolls 80.00 76.67 90.00 100.0
plastic blocks 82.86 82.86 97.14 94.29

wooden blocks 100.0 100.0 100.0 100.0
coins 90.63 90.63 100.0 96.88

average total 94.74 94.44 97.66 98.25
Average 93.47 93.27 98.17 98.54

Table 1.1. Image categorisation results as percentage of correctly classified items in the
dataset using the nearest neighbour classifier and our descriptor.

spectral images. Each image is comprised of 51 bands for those wavelengths
ranging from 550 to 1000 nm over 9nm steps. For purposes of photometric
calibration, we have also captured an image of a white Spectralon calibration
target so as to recover the power spectrum of the illuminant across the scene. In
Figure 1.4, we show the band corresponding to the 662nm-wavelength for five
sample toys and a coin in our dataset. In the figure, each object corresponds to
one of our six categories.

For our experiments, we have used our descriptors for purposes of recog-
nition as follows. We commence by partitioning the imagery into two sets of
equal size. The first of these is used for purposes of training, whereas the rest
of the images are used as a testing data-base for purposes of recognition. We
do this making use of both, a k-nearest neighbour classifier [8] and a Support
Vector Machine (SVM) [9]. For the SVM, we use an RBF kernel whose pa-
rameters have been obtained via cross validation.

Note that, to our knowledge, there is no hyperspectral image descriptors
available in the literature. Nonetheless, it is worth noting that the wavelength
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Level category
Single Scale Multiple Scale

calibrated uncalibrated calibrated uncalibrated
% % % %

4-Region Lattice

animals 97.39 100.0 97.39 100.0
cars 30.00 93.33 6.67 93.33

fluffy dolls 88.57 97.14 80.00 97.14
plastic blocks 56.67 100.0 53.33 100.0

wooden blocks 52.00 98.00 40.00 98.00
coins 65.63 96.88 31.25 96.88

average total 65.04 97.56 51.44 97.56

16-Region Lattice

animals 94.78 99.13 96.52 96.52
cars 16.67 56.67 3.33 80.00

fluffy dolls 68.57 94.29 62.86 88.57
plastic blocks 13.33 70.00 20.00 13.33

wooden blocks 54.00 100.0 30.00 94.00
coins 18.75 90.63 3.13 6.25

average total 44.35 85.12 35.97 63.11

64-Region Lattice

animals 97.39 100.0 94.78 92.17
cars 0.00 0.00 0.00 3.33

fluffy dolls 45.71 54.29 51.43 65.71
plastic blocks 0.00 13.33 0.00 0.00

wooden blocks 33.00 98.00 28.00 93.00
coins 0.00 0.00 0.00 0.00

average total 29.35 44.27 29.04 42.37
Average 46.25 75.65 38.82 67.68

Table 1.2. Image categorisation results as percentage of correctly classified items in the
dataset using a nearest neighbour classifier and the LBP-based descriptor in [43].

resolved nature of hyperspectral imagery are reminiscent of the time depen-
dency in dynamic textures, where a pixel in the image can be viewed as a
stationary time series. As a result, we compare our results with those yielded
using the algorithm in [43]. The reasons for this are twofold. Firstly, this is a
dynamic texture descriptor based upon local binary patterns (LBPs), which can
be viewed as a local definition of texture and shape in the scene which com-
bines the statistical and structural models of texture analysis. Secondly, from
the results reported in [43], this method provides a margin of advantage over
other alternatives in the dynamic texture literature. For the descriptors, in the
case of the LBP method in [43], we have used a dimensionality of 1938 over
the 51 bands in the images. For our descriptor, the dimensionality is 1500.

Since we have photometric calibration data available, in our experiments
we have used two sets of imagery. The first of these corresponds to the dataset
whose object images are given by the raw imagery. The second of these is
given by the images which have been normalised with respect to the illuminant
power spectrum. Thus, the first set of images corresponds to those hyperspec-
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Level category
Single Scale Multiple Scale

calibrated uncalibrated calibrated uncalibrated
% % % %

4-Region Lattice

animals 97.39 97.39 97.39 99.13
cars 90.00 100.0 86.67 0.00

fluffy dolls 90.00 88.57 100.0 85.71
plastic blocks 100.0 100.0 97.14 96.67

wooden blocks 99.00 98.00 99.00 99.00
coins 100.0 96.88 78.13 96.88

average total 96.07 96.81 93.06 79.56

16-Region Lattice

animals 89.57 100.0 91.30 100.0
cars 100.0 70.00 96.67 0.00

fluffy dolls 63.33 62.86 100.0 22.86
plastic blocks 91.43 100.0 91.43 76.67

wooden blocks 100.0 100.0 99.00 94.00
coins 100.0 100.0 71.88 81.25

average total 90.72 88.81 91.67 62.46

64-Region Lattice

animals 90.43 100.0 94.78 33.04
cars 80.00 0.00 93.33 26.67

fluffy dolls 76.67 14.29 90.00 11.43
plastic blocks 56.67 0.00 82.86 26.67

wooden blocks 100.0 70.00 92.00 69.00
coins 53.13 96.88 78.13 90.63

average total 76.15 46.86 88.52 42.91
Average 87.65 77.49 92.37 47.48

Table 1.3. Image categorisation results as percentage of correctly classified items in the
dataset using and SVM with an RBF kernel and our descriptor.

tral data where the classification task is effected upon scene radiance, whereas
the latter corresponds to a set of reflectance images. From now on, we denote
the radiance-based set as the “uncalibrated” one. We connote the reflectance
imagery as “calibrated”. In Figure 1.5, we show sample hyperspectral image
bands for a fluffy toy at wavelengths corresponding to 550nm, 640nm, 730nm,
820nm, 910nm, and 1000nm. In the figure, the top row shows the uncalibrated
imagery whereas the bottom row shows the calibrated data.

For purposes of recognition, we have computed our descriptors and the alter-
native making use of an approach reminiscent of the level-1 spatial histogram
representation in [22]. This is, we have subdivided the images in a lattice-like
fashion into 4, 16 and 64 squared patches of uniform size. In Figure 1.6 we
show the 4, 16 and 32-square lattice on the fluffy toy image. As a result, each
image in either set, i.e. calibrated or uncalibrated, is comprised by 4, 16 or
64 descriptors. Here, we perform recognition based upon a majority voting
scheme, where each of these descriptors is classified at testing time. Further,
note that the fact that we have divided each image into 4, 16 and 64 squared
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Level category
Single Scale Multiple Scale

calibrated uncalibrated calibrated uncalibrated
% % % %

4-Region Lattice

animals 93.91 98.26 80.87 100.0
cars 80.00 96.67 20.00 53.33

fluffy dolls 100.0 100.0 80.00 91.43
plastic blocks 70.00 100.0 3.33 66.67

wooden blocks 83.00 100.0 80.00 97.00
coins 93.75 100.0 6.25 100.00

average total 86.78 99.15 45.08 84.74

16-Region Lattice

animals 83.48 99.13 82.61 99.13
cars 31.03 44.83 0.00 3.45

fluffy dolls 65.71 80.00 42.86 51.43
plastic blocks 6.67 70.00 0.00 20.00

wooden blocks 70.00 99.00 70.00 98.00
coins 28.13 84.38 3.13 93.75

average total 47.50 79.56 33.10 60.96

64-Region Lattice

animals 79.35 83.48 77.39 88.70
cars 0.00 0.00 0.00 0.00

fluffy dolls 19.29 17.14 2.86 5.71
plastic blocks 0.00 0.00 0.00 0.00

wooden blocks 61.25 84.00 60.00 67.00
coins 0.78 0.00 3.13 3.13

average total 26.78 30.77 23.90 27.42
Average 53.69 69.83 34.03 57.72

Table 1.4. Image categorisation results as percentage of correctly classified items in the
dataset using and SVM with an RBF kernel and our the LBP descriptor in [43].

regions provides a means to multiscale descriptor classification. Thus, in our
experiments, we have used two majority voting schemes. The first of these
limits the classification of descriptors to those at the same scale, i.e. number of
squared regions in the image. The second scheme employs all the descriptors
computed from multiple scales, i.e. 64+16+4 for every image.

In Tables 1.1–1.4 we show the categorisation results for our dataset. In
the tables, we show the results, per category and overall average, for the cali-
brated and uncalibrated data for both classifiers over the two schemes described
above, i.e. multiscale and single-scale, when both, our method and the alter-
native are used to compute the image descriptors for the imagery. From the
tables, its clear that our descriptor delivers better categorisation performance
consistently for both classifiers. This is ever so important since our descriptor
has a lower dimensionality than the alternative. We can attribute this behaviour
to the high information compaction of the FCT.

Also, note that for the nearest neighbour classifier, the overall results yielded
using our method show no clear trend with respect to the use of reflectance,
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i.e. calibrated data, or radiance (uncalibrated imagery). This suggests that our
method is robust to illuminant power spectrum variations. In the case of the
SVM, the calibrated data with a multiscale approach delivers the best average
categorisation results. For the alternative, the nearest neighbour classifier on
uncalibrated data yields the best performance. Nonetheless, in average, abso-
lute bests between the two descriptor choices here are 23% apart, being 75.63%
for the LBP descriptor and 98.54% for our method. Further, note that for the
coins, the alternative can be greatly affected by the effect of specularities at
finer scales, i.e. the 64-region lattice. In contrast, our descriptor appears to be
devoid of this sort of corruption.

8. Conclusion

In this chapter, we have showed how a local hyperspectral image descriptor
can be computed via harmonic analysis. This descriptor is invariant to affine
transformations on the corresponding local planar object surface patch. The
descriptor is computed using an integral transform whose kernel is harmonic
in nature. Affine invariance is then attained by relating the local planar object
surface patch to a plane of reference whose orientation is fixed with respect
to the camera plane. We have shown how high information compaction in
the classifier can be achieved by making use of an FCT. It is worth stressing
that the developments in the chapter are quite general and apply to a number
of harmonic kernels spanning a Hilbert space. This opens-up the possibility
of using other techniques available elsewhere in the literature, such as Mellin
transforms, wavelets or Hankel transforms. We have showed the utility of
the descriptor for purposes of image categorisation on a dataset of real-world
hyperspectral images.
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