
Learning	 and	 Inference	 to	 Exploit	
High	 Order	 Poten7als	

Richard Zemel
CVPR Workshop
June 20, 2011

Collaborators	

Danny Tarlow

Inmar Givoni

Nikola Karamanov

Maks Volkovs

Hugo Larochelle

Framework	 for	 Inference	 and	 Learning	
Strategy: define a common representation and interface via
which components communicate
•  Representation: Factor graph – potentials define energy

•  Inference: Message-passing, e.g., max-product BP

!E(y) = !i (yi)+ !ij (yi , yj)
i, j""
#

i"#
+ !c (yc)

c!C
"

Low order (standard) High order (challenging)

m!c!yi
(yi) = maxyc \{yi}

!c (yc)+ myi '!!c
(yi ')

yi '"yc \{yi}
#

$

%
&
&

'

(
)
)

Factor to variable
message:

Learning:	 Loss-‐Augmented	 MAP	
•  Scaled margin constraint

),()()()()(nn lossEE yyyy ≥−

To find margin violations

⎥
⎦

⎤
⎢
⎣

⎡
+∑),();(maxarg)(n

c
cccc lossw yyxy

y
ψ

),();();()()(n

c
ccc

c

n
ccc lossww yyxyxy +≥∑∑ ψψ

MAP objective loss Fixed

Expressive	 models	 incorporate	 	
high-‐order	 constraints	

•  Problem: map input x to output vector y, where
elements of y are inter-dependent

•  Can ignore dependencies and build unary model:
independent influence of x on each element of y

•  Or can assume some structure on y, such as simple
pairwise dependencies (e.g., local smoothness)

•  Yet these often insufficient to capture constraints
– many are naturally expressed as higher order

•  Example: image labeling

Image	 Labeling:	 Local	 Informa7on	 is	 Weak	

Hippo Water

Ground
Truth

Unary
Only

Add	 Pair-‐wise	 Terms:	 	
Smoother,	 but	 no	 magic	

Pairwise CRF

Ground
Truth

Unary
Only

Unary +
Pairwise

Summary	 of	 Contribu7ons	 	

Aim: more expressive high-order models (clique-size > 2)

Previous work on HOPs

Ø Pattern potentials (Rother/Kohli/Torr; Komodakis/Paragios)
Ø Cardinality potentials: (Potetz; Gupta/Sarawagi);

 b-of-N (Huang/Jebara; Givoni/Frey)
Ø Connectivity (Nowozin/Lampert)
Ø Label co-occurrence (Ladicky et al)

Our chief contributions:

Ø  Extend vocabulary, unifying framework for HOPs
Ø  Introduce idea of incorporating high-order potentials

into loss function for learning
Ø Novel applications: extend range of problems on which

MAP inference/learning useful

Cardinality	 Poten7als	

Assume: binary y; potential defined over all variables

Potential: arbitrary function value based on number
 of on variables

!(y) = f (yi
yi!y
")

Cardinality	 Poten7als:	 Illustra7on	
!(y) = f (yi

yi!y
")

!mf!yj
(yj) =maxy" j

f (yj
j
)+ myj '! f (yj ')

j ': j '$ j
#

%

&
'
'

(

)
*
*

Variable to factor messages: values represent how much
that variable wants to be on

Factor to variable message: must consider all combination
of values for other variables in clique?

Key insight: conditioned on sufficient statistic of y, joint
problem splits into two easy pieces

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7 Num On

-E

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
0 variables on

Total Objective (Factor + Messages):

+

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
1 variables on

Total Objective (Factor + Messages):

+

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
2 variables on

Total Objective (Factor + Messages):

+

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
3 variables on

Total Objective (Factor + Messages):

+

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
4 variables on

Total Objective (Factor + Messages):

+

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
5 variables on

Total Objective (Factor + Messages):

+

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
6 variables on

Total Objective (Factor + Messages):

+

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
7 variables on

Total Objective (Factor + Messages):

+

Incoming messages
(preferences for y=1)

Cardinality Potential

0 1 2 3 4 5 6 7
Num On

-E
5 variables on

Total Objective (Factor + Messages):

+
Maximum Sum

Cardinality	 Poten7als	

Applications:
–  b-of-N constraints – paper matching
–  segmentation: approximate number of pixels per label
–  also can specify in image-dependent way à Danny’s

poster

!(y) = f (yi
yi!y
")

Order-‐based:	 1D	 Convex	 Sets	

f (y1,..., yN) =
0 if yi =1! yk =1" yj =1 #i <j <k

$! otherwise

%
&
'

('

Good
Good

Good

Bad
Bad

High	 Order	 Poten7als	

Size
Priors

Convexity

Cardinality HOPs

B-of-N
Constraints

Order-based HOPs Composite HOPs

Above
/Below

Before
/After

f(Lowest
Point)

Tarlow, Givoni, Zemel. AISTATS, 2010.

Enablers/
Inhibitors

Pattern
Potentials

•  If we know where and what the objects are in a scene we
can better estimate their depth

•  Knowing the depth in a scene can also aid our semantic
understanding

•  Some success in estimating depth given image labels
(Gould et al)

•  Joint inference – easier to reason about occlusion

Joint	 Depth-‐Object	 Class	 Labeling	

Aim: infer depth & labels from static single images
Represent y: position+depth voxels, w/multi-class labels
Several visual cues, each with corresponding potential:
•  Object-specific class, depth unaries
•  Standard pairwise smoothness
•  Object-object occlusion regularities
•  Object-specific size-depth counts
•  Object-specific convexity constraints

Poten7als	 Based	 on	 Visual	 Cues	

! !

!"#$%&'()*$'+',$*&-

! !

!"#$%&'()*$'+',$*&-

High-‐Order	 Loss	 Augmented	 MAP	
•  Finding margin violations is tractable if loss is

decomposable (e.g., sum of per-pixel losses)

•  High-order losses not as simple
•  But…we can apply same mechanisms used in HOPs!
Ø Same structured factors apply to losses

⎥
⎦

⎤
⎢
⎣

⎡
+∑),();(maxarg)(n

c
ccc lossw yyxy

y
ψ

Learning	 with	 High	 Order	 Losses	

 Introducing HOPs into learning à
 High-Order Losses (HOLs)

 Motivation:

1.  Tailor to target loss: often non-decomposable

2. May facilitate fast test-time inference:
keep potentials in model low-order; utilize high-
order information only during learning

Loss function used to evaluate entries is:
 |intersection|/|union|

•  Intersection: True Positives (Green) [Hits]
•  Union: Hits + False Positives (Blue) + Misses (Red)

•  Effect: not all pixels weighted equally; not all images equal;
score of all ground is zero

HOL	 1:	 PASCAL	 segmenta7on	 challenge	

Define Pascal loss: quotient of counts

Key: like a cardinality potential – factorizes once condition
on number on (but now in two sets) à recognizing
structure type provides hint of algorithm strategy

HOL	 1:	 Pascal	 loss	

Pascal	 VOC	 Aeroplanes	
Images

Pixel Labels

•  110 images (55 train, 55 test)
•  At least 100 pixels per side
•  13.6% foreground pixels

•  Model
– 84 unary features per pixel (color and texture)
–  13 pairwise features over 4 neighbors

•  Constant
•  Berkeley PB boundary detector-based

•  Losses
–  0-1 Loss (constant margin)
–  Pixel-wise accuracy Loss
–  HOL 1: Pascal Loss: |intersection|/|union|

•  Efficiency: loss-augmented MAP takes <1
minute for 150x100 pixel image; factors:
unary+pairwise model + Pascal loss

HOL	 1:	 Models	 &	 Losses	

Test	 Accuracy	

SVM trained independently on pixels does similar to Pixel Loss

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Train
Evaluate Pixel Acc. PASCAL Acc.

0-1 Loss 82.1% 28.6
Pixel Loss 91.2% 47.5

PASCAL Loss 88.5% 51.6
(a) Unary only modelTrain

Evaluate Pixel Acc. PASCAL Acc.

0-1 Loss 79.0% 28.8
Pixel Loss 92.7% 54.1

PASCAL Loss 90.0% 58.4
(b) Unary + pairwise model

Train
Evaluate Pixel PASCAL

Acc. Acc.

C
ar Pixel Loss 80.4% 6.7

PASCAL Loss 72.9% 37.0

C
ow Pixel Loss 80.3% 23.3

PASCAL Loss 79.4% 48.1

D
og Pixel Loss 81.5% 16.6

PASCAL Loss 75.9% 38.3
(c) Other Objects

Figure 2: Test accuracies for training-test loss function combinations. In (c), all models are unary +
pairwise. A labeling of all background gives pixel accuracies of 79.8%, 78.9%, and 80.2%, on Car,
Cow, and Dog respectively.

(a) Train Outputs (b) Test Outputs

Figure 3: Example results on Cow dataset. Methods from left to right: (Left) Raw image. (Middle)
Pixel Loss. (Right) PASCAL Loss. (a) Training examples. (b) Test examples. Additional examples
can be found in the supplementary material.

PASCAL Loss. We first examine how training on different loss functions affects test perfor-
mance. We look at three loss functions: 0-1 Loss is the constant-margin structural SVM (1); Pixel
Loss and PASCAL Loss are loss-augmented structural SVM training with the respective loss func-
tions. We pair all combinations of training objective and test evaluation, between pixel and PASCAL
accuracy. We also evaluate the tradeoff associated with using pairwise potentials in the model. On one
hand, we know that objects in images are smooth, so introducing pairwise interactions should make
the model more realistic. On the other hand, when paired with high order losses, loss-augmented
MAP inference is no longer guaranteed to be exact, which could possibly hurt learning performance.

Fig. ?? (a) shows results for a unary only model trained to optimize the three loss functions, where
inference is always exact. Fig. ?? (b) shows results for a unary + pairwise model trained with the
same loss functions. For the 0-1 and pixel loss, inference is exact. For the PASCAL loss, inference
is approximate. However, results show that the combination of richer model, high order loss, and
approximate inference produces the best results out of all models when evaluated on the PASCAL
challenge objective. In particular, it outperforms both exact PASCAL loss training with unary-only
potentials and exact training of a unary + pairwise model but with a pixel loss.

In Fig. 2, we take the strongest baseline (unary + pairwise model, pixel loss) and compare it to a
unary + pairwise model trained to optimize the PASCAL loss on a variety of other object classes.
As before, we find that training the model for the same loss function as is being evaluated at test
time produces results that are clearly superior. In Fig. 3, we show training and test outputs for unary
+ pairwise models trained on the pixel loss (middle column) and the PASCAL loss (right column).
Visually, we can see that the PASCAL-trained model labels more pixels foreground, correcting the
overly conservative pixel-trained model.

Local Border Convexity Loss. Here, we compare two methods for learning with partially-
labeled images, as illustrated in Fig. 1. In the baseline method, we train an SVM with a modified
loss function, where unlabeled pixels can be assigned either label without incurring any loss. This
amounts to discarding the unlabeled pixels during training. We refer to this as the Modified Loss
SVM. The second method is our structural SVM with LBC Loss. In this loss function, there are
many labelings of the unlabeled pixels that are assigned zero loss, but penalties are imposed on
non-locally convex labelings.

7

HOL	 2:	 Learning	 with	 BBox	 Labels	
•  Same training and testing images; bounding boxes

rather than per-pixel labels
•  Evaluate w.r.t. per-pixel labels – see if learning is

robust to weak label information

•  HOL 2: Partial Full Bounding Box
– 0 loss when K% of pixels inside bounding box and

0% of pixels outside
–  Penalize equally for false positives and #pixel

deviations from target K%

HOL	 2:	 Experimental	 Results	

Like treating bounding box as noiseless foreground label

Average bounding box fullness of true segmentations

HOL	 3:	 Local	 Border	 Convexity	
Other form of weak labeling: rough inner-bound + outline

 example: Strokes mark internal object skeleton; coarse
 circular stroke around outer boundary

à assume monotonic labeling of any ray from interior passing
thru border (1m0n)
HOL 3: LBC – gray takes on any label, penalty of α for each
outward path that changes from background to foreground

Training data obtained by eroding labeled images

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

(a) (b)

Figure 1: (a) Illustration of LBC loss. The gray can take either
label, but a penalty of α is incurred for each outwards path that
changes from background to foreground as it moves away from
the object. (b) Example eroded Aeroplane labeling.

the grid. With each location (i, j), we associated a six dimensional feature vector, φ(i, j) =
(fA(i, j), fB(i, j), fC(i, j), gA(i, j), gB(i, j), gC(i, j)). Each feature gives a noisy measurement of
the location of the special point it is associated with e.g., fA gives a noisy detection of A’s location.
Features take value 0 at all except for two locations–a true location and a distractor location–which
are determined as follows: for X ∈ {A, B, C}, fX(X) ∼ Uniform(0, 1

α) gives a response at the true
location, fX(Y) ∼ Uniform(0, 1) gives a response at distractor location Y which is drawn uniformly
from the set of all locations. gX(X) ∼ Uniform(0, .5

α) gives an on-average weaker response at the
true location, and gX(Z) ∼ Uniform(0, 1) is a local distractor: Z is chosen uniformly at random
from the 5x5 grid centered at the true location.

Given weights wA, wB , wC , the model predicts the location of special point X as
arg maxij wT

Xφ(i, j). We experimented with training according to two loss functions. First, the low
order per-pixel loss gives loss of 1

3 for each incorrect prediction. Second, we trained the model to
optimize a high-order order-based loss, which cares only about the relative locations of the three
points along the two dimensions. A loss of 1

6 is incurred for each error in relative orderings.

200 images for training, 200 for validation (for choosing C), and 500 for test. alpha = .5: Low order
7.1 3.2 High order 10.1 1.4 alpha=1: Low order 26.9 9.7 High order 28.2 5.2 alpha=2: Low order
84.3 44.9 Hig order 67.5 15.8 [TODO: clean up]

5.2 Real Experiments

Data. We took subsets of images from the PASCAL VOC Segmentation challenge data set containing
a given object—Aeroplane, Car, Cow, and Dog. The database provided pixel-wise segmentations
and bounding boxes for each image. We then created ground truth labels by assigning a pixel
to foreground if it was labeled {Aeroplane, Car, Cow, Dog} in the VOC labels and background
otherwise. We scaled the images so that the minimum dimension was 100 pixels. We also created
eroded data by eroding the per-pixel ground truths with a disk of radius 5.5. We then created an
uncertain region by dilating the eroded labels by 10 pixels. See Fig. 1 (b) for an example.

Model. We use 84 per-pixel features that represent color and texture in the patch surrounding a pixel
(the unary model). We use a standard pairwise 4-connected grid model, with 1 constant pairwise
feature and 12 pairwise features that are based on boundary appearance (the unary + pairwise
model). Weights on pairwise features are constrained to be positive, so that the resulting pairwise
potentials are submodular. This produces models with approximately 10,000 to 20,000 variables and
20,000 to 40,000 edges per image.

Inference. We use the COMPOSE framework [2] to compute messages for the entire pairwise
model using dynamic graph cuts [8]. With decomposable (per-pixel) losses, this guarantees that
inference is exact, even though the grid graph contains loops. With high order losses, inference is
not guaranteed to be exact, but we find this framework to work significantly better than standard
max-product belief propagation with a static message passing schedule.

We use an asynchronous schedule across subproblems, where the full grid model is treated as one
subproblem, and the loss is treated as a second subproblem. We alternate between the loss factor(s)
and the submodular grid factor, having each send all outgoing messages at each step. We use damping
of .95 for all experiments and set a maximum number of 50 iterations. Solving the QP is very
fast, so the bottleneck is the loss-augmented MAP calls. We parallelize them over four CPUs. One
loss-augmented MAP call takes between a couple seconds and two minutes, depending on the model
and loss function being used. Without pairwise potentials, only one iteration of message passing is
typically required for the loss-augmented MAP, so learning is very fast. For learning, we set C = .01
for experiments with per-pixel ground truths and C = .0001 for experiments with weakly labeled
ground truths. All our learned models are submodular, so we run the graph cuts algorithm of [1] at
test time to find the optimal MAP labeling.

6

HOL	 3:	 Results	

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Train
Evaluate Pixel Acc. PASCAL Acc.

A
er

o Mod. Loss SVM 90.2% 36.4
LBC Loss 90.6% 38.1

C
ar Mod. Loss SVM 79.8% 0
LBC Loss 80.2% 5.3

C
ow

Mod. Loss SVM 78.4% 15.6
LBC Loss 76.8% 32.3

D
og Mod. Loss SVM 80.2% 0

LBC Loss 82.4% 24.2
(a)

0 50 100
80

82

84

86

88

90

92

P
ix

e
l
A

c
c
u
ra

c
y
 (

%
)

Bounding Box Fullness (%) (b) 0 50 100
0

10

20

30

40

50

P
A

S
C

A
L
 A

c
c
u
ra

c
y

Bounding Box Fullness (%) (c)

0 50 100
76

77

78

79

80

81

P
ix

e
l
A

c
c
u
ra

c
y
 (

%
)

Bounding Box Fullness (%) (d) 0 50 100
0

10

20

30

40

P
A

S
C

A
L
 A

c
c
u
ra

c
y

Bounding Box Fullness (%) (e)
Figure 4: (a) Local border convexity results for training-test loss function combinations on eroded
data. Modified Loss SVM is an independent SVM that discards pixels in the gray region at training
time. (b-e) Bounding box results: test accuracy versus bounding box fullness parameter R. Vertical
line shows true average bounding box fullness. (b) Aeroplane pixel score. (c) Aeroplane PASCAL
score. (d) Cow pixel score. (e) Cow PASCAL score.

Fig. 4 shows results on four object classes. In all cases, the LBC loss is an improvement over the
baseline when evaluating with respect to the PASCAL score (and in three of four cases with respect
to pixel accuracy). Note that the loss being optimized is not exactly either the PASCAL or pixel loss.
In the other cases, the improvements are more modest, likely because the Modified Loss SVM is
not significantly worse than the methods that train on fully labeled ground truths (Fig. 2), so there
is not much room for improvement. The largest gap in performance between strongly labeled and
weakly labeled is on Aeroplane, which we believe is due to there being more small objects in the
Aeroplane data than in others. Our erosion method completely eliminates some small objects, making
it impossible for the LBC loss to recover them at training time. On the Dog data set, the improvement
is most pronounced. Surprisingly in this case, the results are even better than training with per-pixel
labels. Overall, we believe this formulation to be promising, and it would be interesting to apply it to
other types of weakly labeled data.

Bounding Box Loss. Finally, we consider the problem of learning to label pixels in images
when only a bounding box is given as supervision. Here, we use the bounding box loss given in
(7) and use a range of settings of the “fullness” parameter R. When R = 1, we have a baseline
low-order model where the bounding box is treated as the ground truth segmentation. Fig. ?? shows
test results for Aeroplane and Cow evaluated on both pixel and PASCAL loss. The best performance
on pixel loss is achieved by setting R to be slightly less than the true average bounding box fullness
(denoted by a dashed vertical red line). This is consistent with the notion that pixel loss generally
favors labelings with fewer pixels. In the Aeroplane data, PASCAL performance is optimized by
setting R to be slightly larger than the true bounding box fullness. This is consistent with the notion
that PASCAL loss generally favors labeling with more pixels. In the Cow data, this effect is quite
strong and overwhelms the results.

6 Discussion and Future Work
Though low order loss functions are convenient for optimization, they can impose a significant bias
on the learned model. In this work, we show several examples where model performance can be
improved by using more complex loss functions without significantly sacrificing computationally
efficiency. A larger class of loss functions provides more flexibility in designing a training criteria,
allowing one to tailor the loss to the application, e.g., training a model to optimize the PASCAL loss
significantly improves performance when it is evaluated on the PASCAL loss. The other two losses
give a meaningful way of doing semi-supervised learning, where a loss is defined in terms of how
a partial labeling is extended to a full labeling. We expect there to be many more scenarios where
tractable high order loss functions can improve performance, both in computer vision and beyond.

Given this extension of the range of loss functions that can be efficiently optimized in structural
SVMs, an interesting modeling choice that arises is whether to add structure to the model, to the
loss function, or to both. There are two potential benefits of adding structure to the loss rather than
the model. First, it may facilitate learning. Some constraints or desired properties of the labeling
are easier to express relative to the ground truth, which is available at training time but not at test.
For example, if we would like to build some translation-invariance into the model, we can construct

8

Wrap	 Up	
•  If we’re spending so much time working on optimizing

objectives -- make sure they’re the right objectives
–  Developing toolbox for richer models and objectives with

high order models and high order loss functions

•  High-order information in energy, or loss?
–  Some HO constraints depend on ground truth: must go in

loss (e.g., translation-invariance, assign zero loss to few
pixel shifts of object)

–  Adding HO structure only to loss creates variational-like
scenario: model must learn to use restricted d.o.f. to
optimize loss

•  Extensions:
–  Multi-label
–  HOLs not just wrt outputs of one image, but across

multiple images (e.g., smoothness of patterns thru frames)

•  Conditional Random Fields (CRF): model label y
conditionally given input x

•  Include various structures in y, like trees, chains,

2D grids, permutations
•  Considerable work on developing potentials, energy

fcns, and approximate inference in CRFs, but little
on loss function

•  Typically trained by ML – ignores task’s loss

1.  Can methods used by SSVMs to adapt training to
loss be utilized in CRFs?

2.  Develop other loss-sensitive training objectives
that rely on probabilistic nature of CRFs?

Learning	 CRFs	

P(y | x,!) = exp(!E(y,x;!)) / exp(
y '"Y (x)
!E(y ',x;!))

•  Standard CRF learning: shape energy (learn θ) to max.
conditional likelihood (MCL) of ground truth y,
conditioned on its corresponding x – ignores loss

•  In well-specified case, with sufficient data, ignoring loss
probably not a problem – asymptotic consistency,
efficiency of ML

•  Assume given loss (evaluate performance of CRF), aim of
learning: obtain low average

•  Hard to optimize: loss not smooth fcn of parameters,
loss not smooth fcn of prediction, prediction not smooth
fcn of parameters à indirectly optimize avg loss

Loss	 Func7ons	 for	 CRFs	

!ML (D;!) = ! log p(yt | xt) = E(
(x,y)"D
yt,xt;!)+ log exp(!E(

y"Y (x)
y,xt;!))

$

%
&&

'

(
))

1
|D |

!("y(xt))
(xt ,yt)!D
"

(1). Loss-augmented

-  high loss cases important, increase energy
-  analog of margin scaling
-  upper bound on avg loss

(2). Loss-scaled

-  only focus on high loss cases whose energy is low
-  analog of slack scaling
-  also upper bound on avg loss

New	 CRF	 Loss	 Func7ons	
Et

LA (y,xt;!) = E(y,xt;!)! ! t (y)

!LA (D;!) =
1
|D | (xt ,yt)!D

" Et
LA (ytt,xt;!)+ log exp(#Et

LA (
y!Y (x)
" y,xt;!))

$

%
&&

'

(
))

Et
LS (y,xt;!) = ! t (y)[E(y,xt;!)!E(yt,xt;!)] ! ! t (y)

!LS (D;!) =
1
|D | (xt ,yt)!D

" Et
LS (ytt,xt;!)+ log exp(#Et

LS (
y!Y (x)
" y,xt;!))

$

%
&&

'

(
))

(3). Expected-loss

-  not an upper bound on avg loss, but approaches it as
learning puts all mass on MAP y(xt)

(4). KL

-  use loss to regularize CRF
-  think of loss as ranking all predictions
-  if not putting all mass on p(yt|xt), use loss to decide how

to distribute excess mass on other configurations

More	 New	 CRF	 Loss	 Func7ons	

!EL (D;!) =
1
|D |

Ey|xt ! t (y)[] = 1
|D |

! t (y)p(y | xt)
y!Y (x)
"

(xt ,yt)!D
"

(xt ,yt)!D
"

!KL (D;!) =
1
|D |

DKL q(! | t) || p(! | xt)[]
(xt ,yt)"D
#

= $
1
|D |

q(y | t)p(y | xt)$C
y"Y (x)
#

(xt ,yt)"D
#

q(y | t) = exp(!! t (y) /T) / Zt

Behavior	 of	 CRF	 Loss	 Func7ons	

ML LA LS EL KL

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

-

∂
L

∂
E

E << 0, L >> 0
E < 0, L > 0
E = 0, L = 0
E > 0, L > 0
E >> 0, L >> 0

Ranking	 Experiments:	 LETOR	 4.0	

@1 @2 @3 @4 @5
38

39

40

41

42

ML
LA
LS
EL
KL

@1 @2 @3 @4 @5

36

38

40

42

44

46

48

ML
LA
LS
EL
KL

Ranking problem: x = features of documents relevant to query;
 y = permutation of the documents

•  Interesting: complex output space; multiple ground truths
•  Performance metric

MQ2007 MQ2008

NDCG@K(y,rt) = N
rti log(2)
log(1+ yi)i=1

K
!

Final	 Wrap	 Up	

•  CRFs benefit from loss-sensitive training

•  Tractable to incorporate variety of losses,
including slack-scaling

•  Analog of KL for SSVMs?

