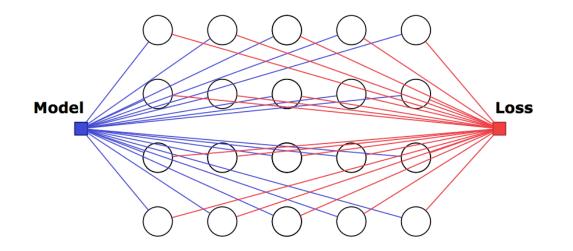
### Learning and Inference to Exploit High Order Potentials





Richard Zemel CVPR Workshop June 20, 2011

#### **Collaborators**

#### Danny Tarlow

Inmar Givoni

Nikola Karamanov

Maks Volkovs

Hugo Larochelle

#### **Framework for Inference and Learning**

Strategy: define a common representation and interface via which components communicate

Representation: Factor graph - potentials define energy

$$-E(\mathbf{y}) = \sum_{i \in v} \phi_i(y_i) + \sum_{i,j \in \varepsilon} \phi_{ij}(y_i, y_j) + \sum_{c \in C} \phi_c(\mathbf{y}_c)$$
  
Low order (standard) High order (challenging)

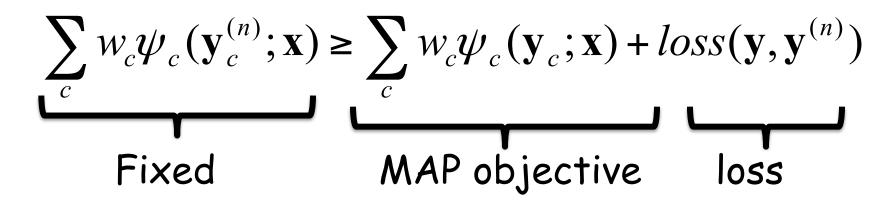
• Inference: Message-passing, e.g., max-product BP

Factor to variable  
message:  
$$m_{\phi_c \rightarrow y_i}(y_i) = \max_{\mathbf{y}_c \setminus \{y_i\}} \left[ \phi_c(\mathbf{y}_c) + \sum_{y_{i'} \in \mathbf{y}_c \setminus \{y_i\}} m_{y_{i'} \rightarrow \phi_c}(y_{i'}) \right]$$

### Learning: Loss-Augmented MAP

Scaled margin constraint

$$E(\mathbf{y}) - E(\mathbf{y}^{(n)}) \ge loss(\mathbf{y}, \mathbf{y}^{(n)})$$



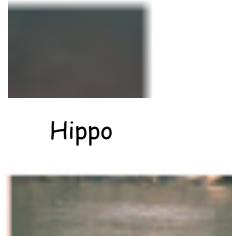
To find margin violations

$$\arg\max_{\mathbf{y}}\left[\sum_{c} w_{c}\psi_{c}(\mathbf{y}_{c};\mathbf{x}_{c}) + loss(\mathbf{y},\mathbf{y}^{(n)})\right]$$

# Expressive models incorporate high-order constraints

- Problem: map input x to output vector y, where elements of y are inter-dependent
- Can ignore dependencies and build unary model: independent influence of x on each element of y
- Or can assume some structure on y, such as simple pairwise dependencies (e.g., local smoothness)
- Yet these often insufficient to capture constraints
   many are naturally expressed as higher order
- Example: image labeling

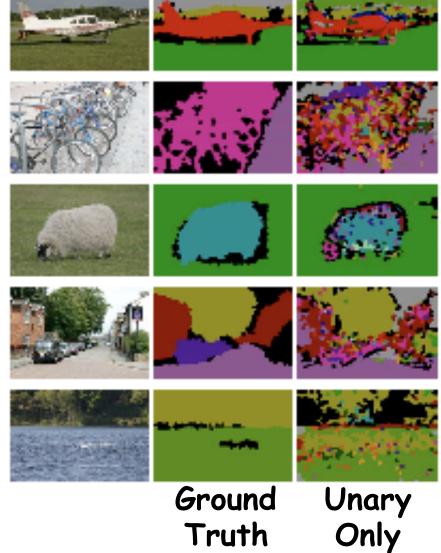
#### **Image Labeling: Local Information is Weak**





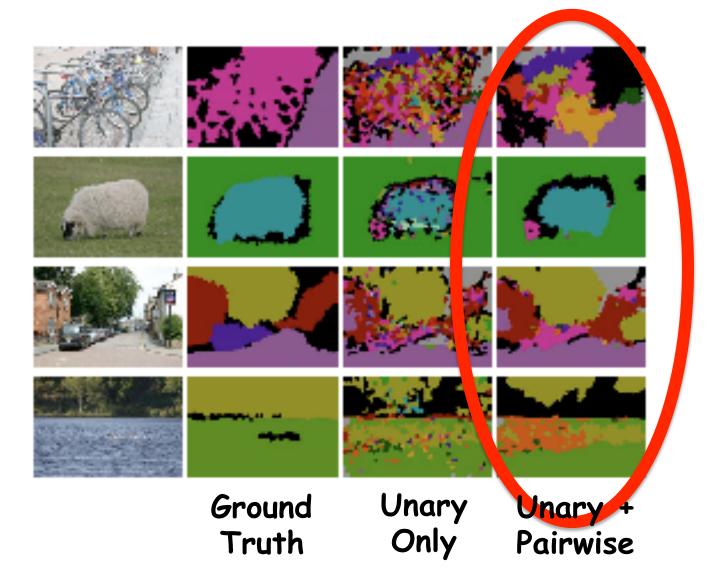
Water

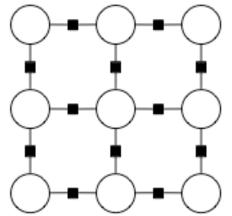




Ground Truth

### Add Pair-wise Terms: Smoother, but no magic





Pairwise CRF

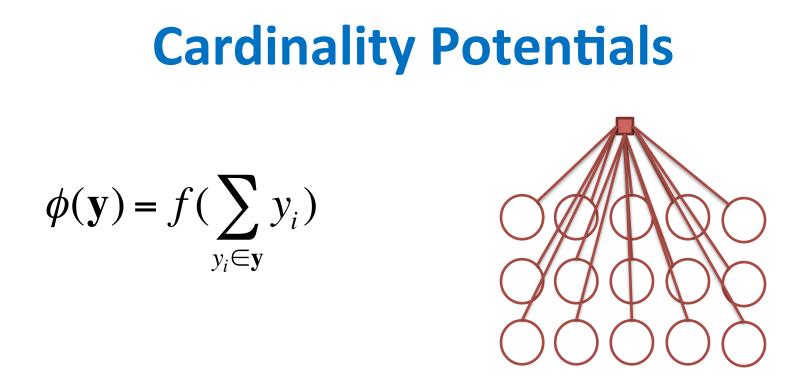
#### **Summary of Contributions**

Aim: more expressive high-order models (clique-size > 2)

Previous work on HOPs >Pattern potentials (Rother/Kohli/Torr; Komodakis/Paragios) >Cardinality potentials: (Potetz; Gupta/Sarawagi); b-of-N (Huang/Jebara; Givoni/Frey) >Connectivity (Nowozin/Lampert) >Label co-occurrence (Ladicky et al)

Our chief contributions:

- > Extend vocabulary, unifying framework for HOPs
- Introduce idea of incorporating high-order potentials into loss function for learning
- Novel applications: extend range of problems on which MAP inference/learning useful



Assume: binary y; potential defined over all variables

Potential: arbitrary function value based on number of on variables

### **Cardinality Potentials: Illustration**

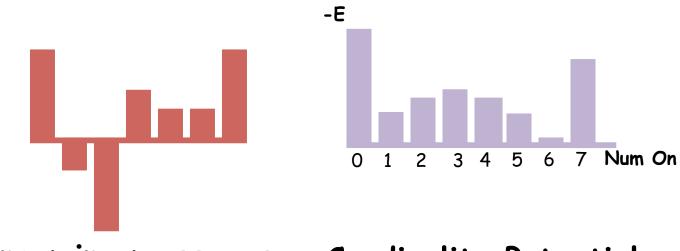
$$\phi(\mathbf{y}) = f(\sum_{y_i \in \mathbf{y}} y_i)$$

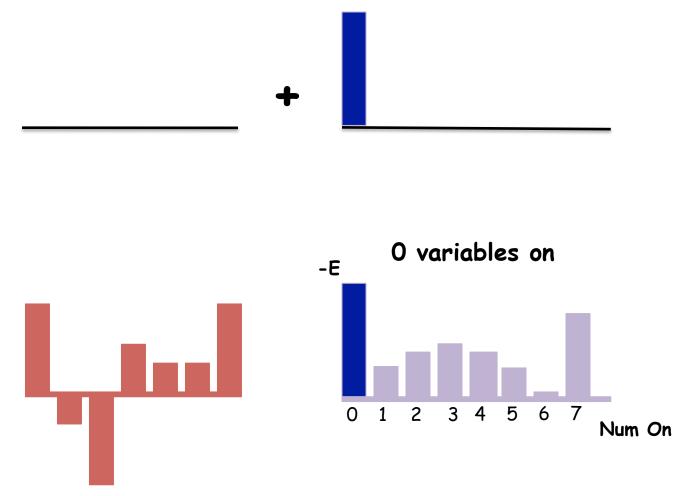
$$\tilde{m}_{f \to y_j}(y_j) = \max_{\mathbf{y}_{-j}} \left[ f(\sum_j y_j) + \sum_{j: j' \neq j} m_{y_j \to f}(y_{j'}) \right]$$

Variable to factor messages: values represent how much that variable wants to be on

Factor to variable message: must consider all combination of values for other variables in clique?

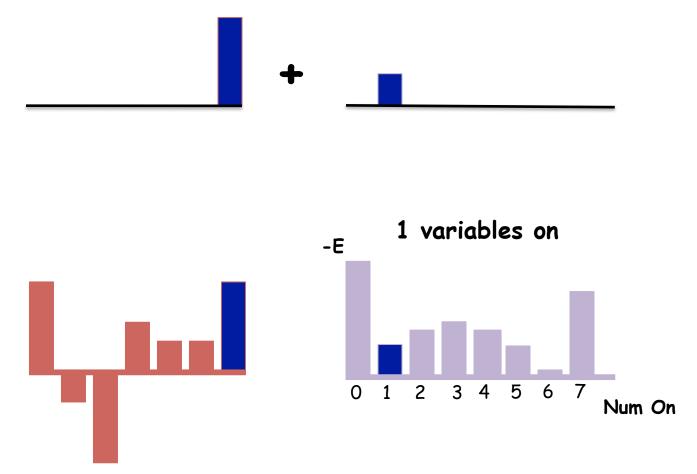
Key insight: conditioned on sufficient statistic of y, joint problem splits into two easy pieces

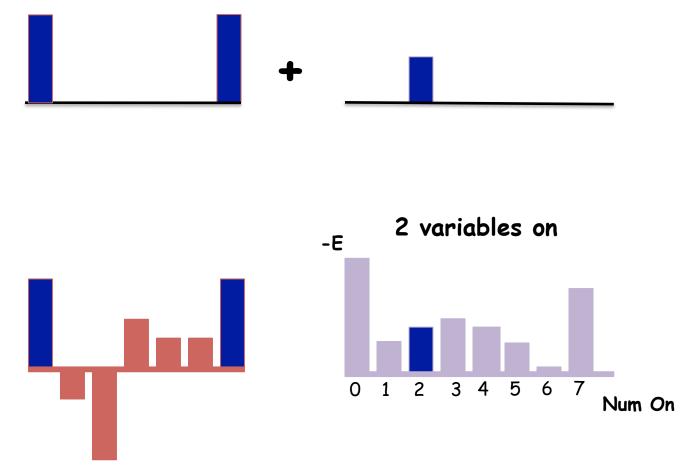


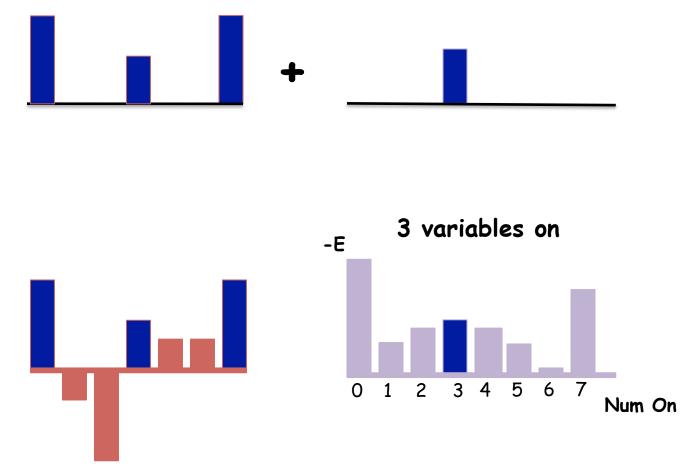


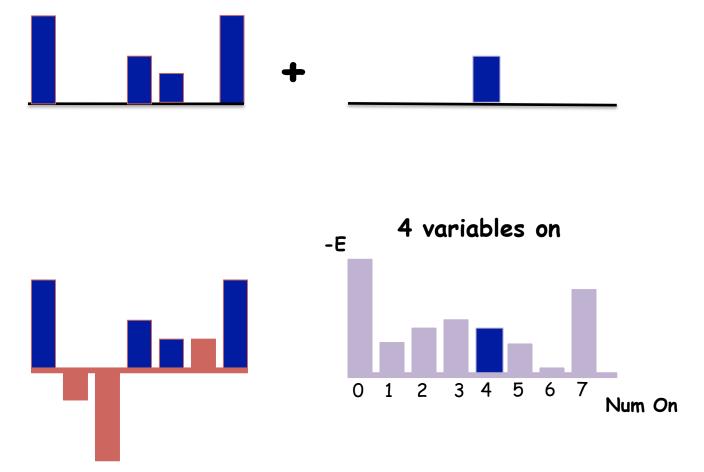
(preferences for y=1)

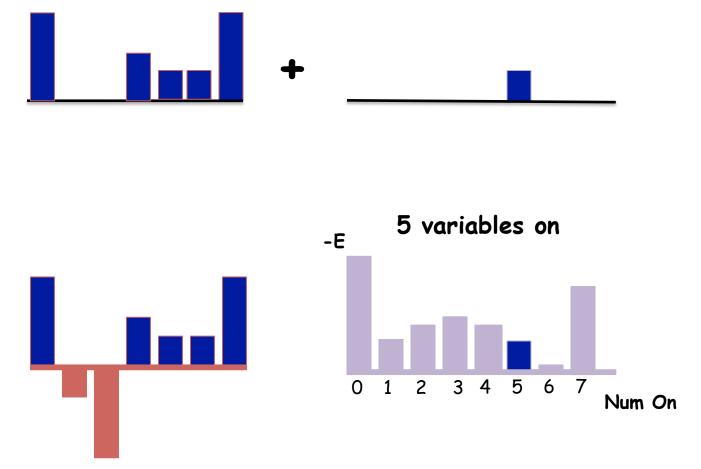
Incoming messages Cardinality Potential

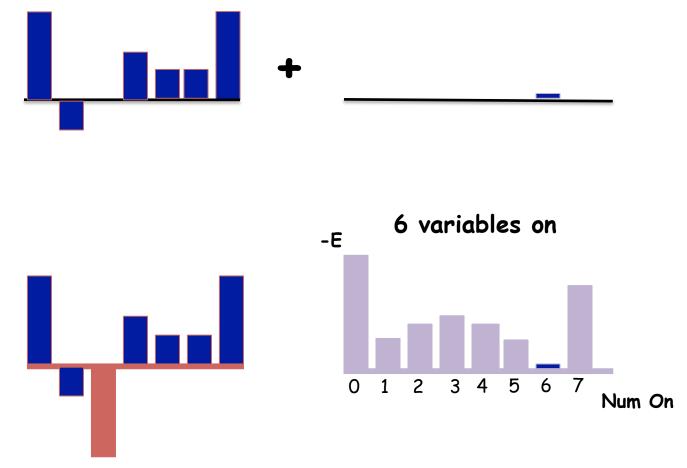


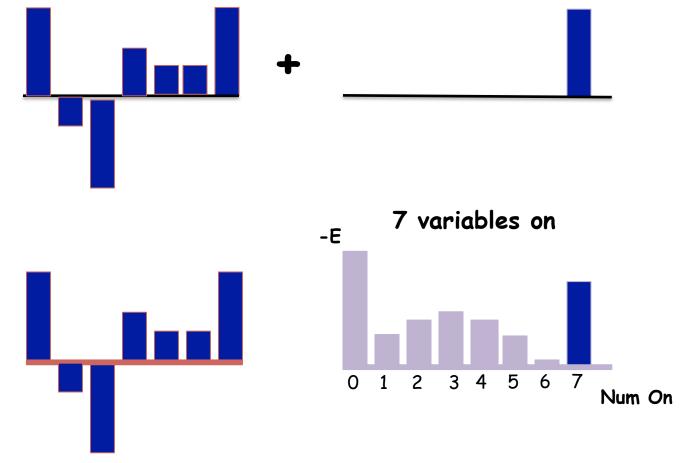






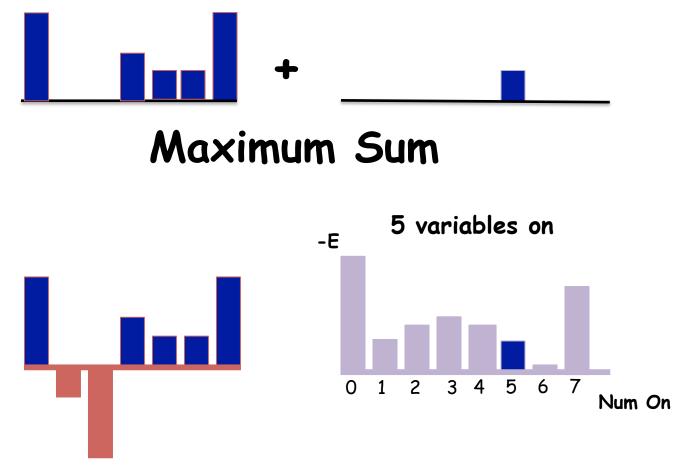




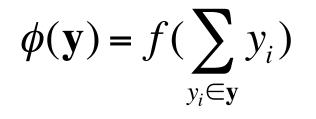


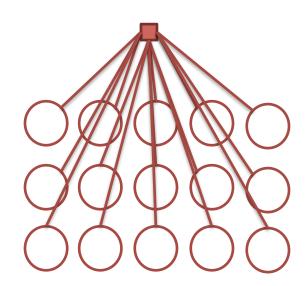
(preferences for y=1)

Incoming messages Cardinality Potential



#### **Cardinality Potentials**



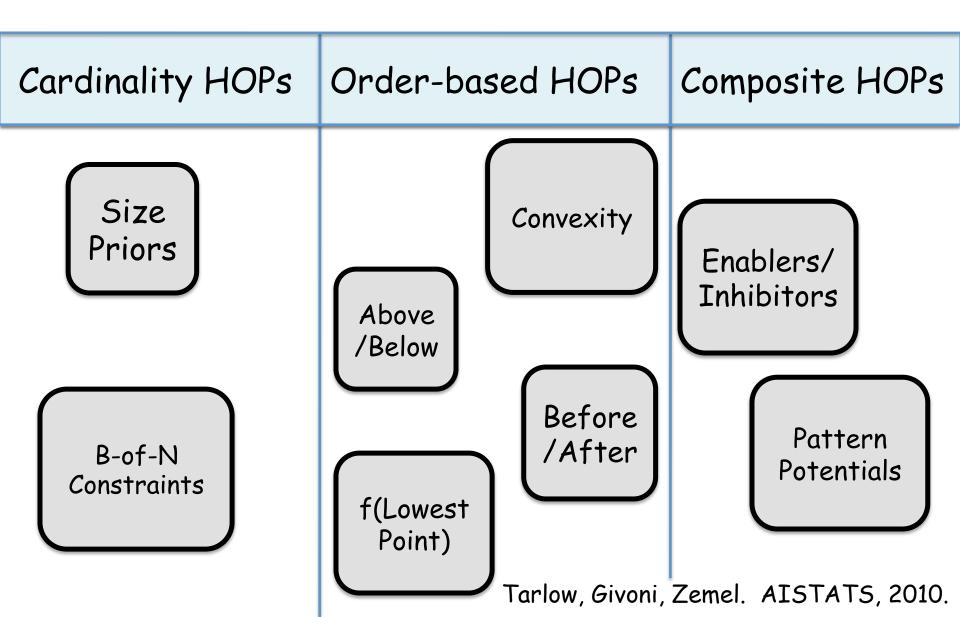


Applications:

- b-of-N constraints paper matching
- segmentation: approximate number of pixels per label
- also can specify in image-dependent way → Danny's poster

### **Order-based: 1D Convex Sets** $f(y_1, \dots, y_N) = \begin{cases} 0 & \text{if } y_i = 1 \land y_k = 1 \Rightarrow y_j = 1 \forall i < j < k \\ -\alpha & \text{otherwise} \end{cases}$ Good Good Good Bad Bad

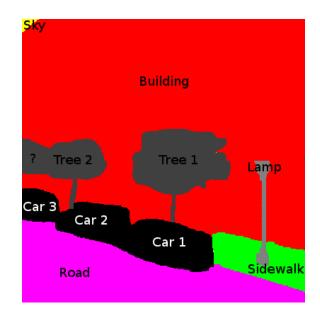
### **High Order Potentials**



### **Joint Depth-Object Class Labeling**

- If we know where and what the objects are in a scene we can better estimate their depth
- Knowing the depth in a scene can also aid our semantic understanding
- Some success in estimating depth given image labels (Gould et al)
- Joint inference easier to reason about occlusion





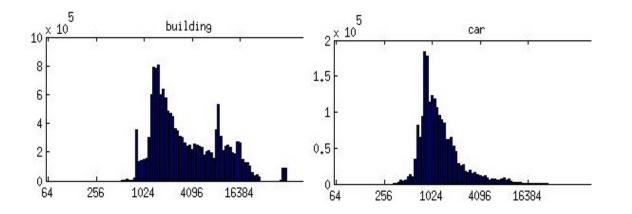


#### **Potentials Based on Visual Cues**

0

Aim: infer depth & labels from static single images Represent y: position+depth voxels, w/multi-class labels Several visual cues, each with corresponding potential:

- Object-specific class, depth unaries
- Standard pairwise smoothness
- Object-object occlusion regularities
- Object-specific size-depth counts
- Object-specific convexity constraints

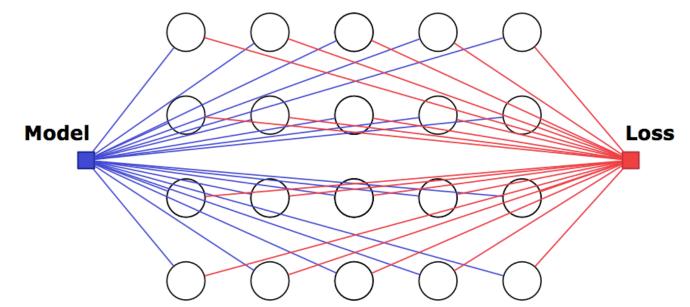


### **High-Order Loss Augmented MAP**

 Finding margin violations is tractable if loss is decomposable (e.g., sum of per-pixel losses)

$$\arg\max_{\mathbf{y}} \left[ \sum_{c} w_{c} \psi_{c}(\mathbf{y}_{c}; \mathbf{x}) + loss(\mathbf{y}, \mathbf{y}^{(n)}) \right]$$

- High-order losses not as simple
- But...we can apply same mechanisms used in HOPs!
- Same structured factors apply to losses



### Learning with High Order Losses

Introducing HOPs into learning → High-Order Losses (HOLs)

Motivation:

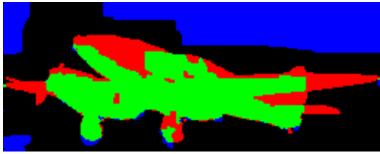
- 1. Tailor to target loss: often non-decomposable
- 2. May facilitate fast test-time inference: keep potentials in model low-order; utilize highorder information only during learning

#### **HOL 1: PASCAL segmentation challenge**

#### Loss function used to evaluate entries is: |intersection|/|union|

- Intersection: True Positives (Green) [Hits]
- Union: Hits + False Positives (Blue) + Misses (Red)





• Effect: not all pixels weighted equally; not all images equal; score of all ground is zero

#### **HOL 1: Pascal loss**

Define Pascal loss: quotient of counts

Key: like a cardinality potential – factorizes once condition on number on (but now in two sets)  $\rightarrow$  recognizing structure type provides hint of algorithm strategy

#### **Pascal VOC Aeroplanes**

#### Images



#### **Pixel Labels**

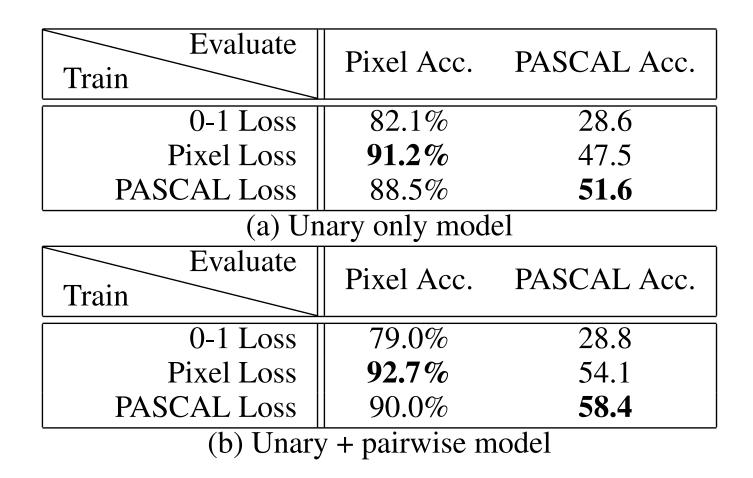


- 110 images (55 train, 55 test)
- At least 100 pixels per side
- 13.6% foreground pixels

### HOL 1: Models & Losses

- Model
  - 84 unary features per pixel (color and texture)
  - 13 pairwise features over 4 neighbors
    - Constant
    - Berkeley PB boundary detector-based
- Losses
  - 0-1 Loss (constant margin)
  - Pixel-wise accuracy Loss
  - HOL 1: Pascal Loss: |intersection|/|union|
- Efficiency: loss-augmented MAP takes <1 minute for 150x100 pixel image; factors: unary+pairwise model + Pascal loss

#### **Test Accuracy**



SVM trained independently on pixels does similar to Pixel Loss

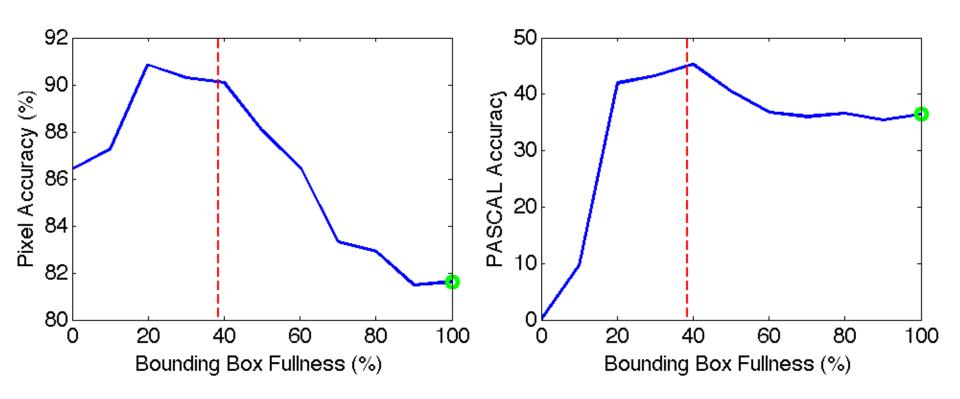
### **HOL 2: Learning with BBox Labels**

- Same training and testing images; bounding boxes rather than per-pixel labels
- Evaluate w.r.t. per-pixel labels see if learning is robust to weak label information



- HOL 2: Partial Full Bounding Box
  - O loss when K% of pixels inside bounding box and
     O% of pixels outside
  - Penalize equally for false positives and #pixel deviations from target K%

#### **HOL 2: Experimental Results**



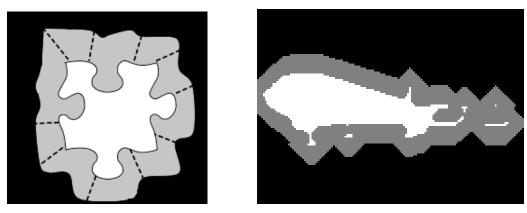
Like treating bounding box as noiseless foreground label
 Average bounding box fullness of true segmentations

### **HOL 3: Local Border Convexity**

Other form of weak labeling: rough inner-bound + outline example: Strokes mark internal object skeleton; coarse circular stroke around outer boundary

 $\rightarrow$  assume monotonic labeling of any ray from interior passing thru border (1<sup>m</sup>O<sup>n</sup>)

HOL 3: LBC – gray takes on any label, penalty of a for each outward path that changes from background to foreground



Training data obtained by eroding labeled images

#### **HOL 3: Results**

| Evaluate<br>Train      | Pixel Acc. I | PASCAL Acc. |
|------------------------|--------------|-------------|
| <b>2</b> Mod. Loss SVM | 90.2%        | 36.4        |
| LBC Loss               | 90.6%        | 38.1        |
| H Mod. Loss SVM        | 79.8%        | 0           |
| ULBC Loss              | 80.2%        | 5.3         |
| ≥ Mod. Loss SVM        | 78.4%        | 15.6        |
| LBC Loss               | 76.8%        | 32.3        |
| Mod. Loss SVM          | 80.2%        | 0           |
| LBC Loss               | 82.4%        | 24.2        |

ı.

### Wrap Up

- If we're spending so much time working on optimizing objectives -- make sure they're the right objectives
  - Developing toolbox for richer models and objectives with high order models and high order loss functions
- High-order information in energy, or loss?
  - Some HO constraints depend on ground truth: must go in loss (e.g., translation-invariance, assign zero loss to few pixel shifts of object)
  - Adding HO structure only to loss creates variational-like scenario: model must learn to use restricted d.o.f. to optimize loss
- Extensions:
  - Multi-label
  - HOLs not just wrt outputs of one image, but across multiple images (e.g., smoothness of patterns thru frames)

#### Learning CRFs

 Conditional Random Fields (CRF): model label y conditionally given input x

$$P(\mathbf{y} | \mathbf{x}, \theta) = \exp(-E(\mathbf{y}, \mathbf{x}; \theta)) / \sum_{\mathbf{y}' \in Y(\mathbf{x})} \exp(-E(\mathbf{y}', \mathbf{x}; \theta))$$

- Include various structures in y, like trees, chains,
   2D grids, permutations
- Considerable work on developing potentials, energy fcns, and approximate inference in CRFs, but little on loss function
- Typically trained by ML ignores task's loss
- 1. Can methods used by SSVMs to adapt training to loss be utilized in CRFs?
- 2. Develop other loss-sensitive training objectives that rely on probabilistic nature of CRFs?

#### **Loss Functions for CRFs**

 Standard CRF learning: shape energy (learn θ) to max. conditional likelihood (MCL) of ground truth y, conditioned on its corresponding x - ignores loss

$$\ell_{ML}(\mathbf{D};\theta) = -\sum_{(\mathbf{x},\mathbf{y})\in\mathbf{D}} \log p(\mathbf{y}_t | \mathbf{x}_t) = E(\mathbf{y}_t, \mathbf{x}_t;\theta) + \log\left(\sum_{\mathbf{y}\in Y(\mathbf{x})} \exp(-E(\mathbf{y}, \mathbf{x}_t;\theta))\right)$$

- In well-specified case, with sufficient data, ignoring loss probably not a problem – asymptotic consistency, efficiency of ML
- Assume given loss (evaluate performance of CRF), aim of learning: obtain low average

$$\frac{1}{|\mathbf{D}|} \sum_{(\mathbf{x}_t, \mathbf{y}_t) \in \mathbf{D}} \ell(\widehat{\mathbf{y}}(\mathbf{x}_t))$$

 Hard to optimize: loss not smooth fcn of parameters, loss not smooth fcn of prediction, prediction not smooth fcn of parameters → indirectly optimize avg loss

#### **New CRF Loss Functions**

(1). Loss-augmented

$$E_{t}^{LA}(\mathbf{y}, \mathbf{x}_{t}; \theta) = E(\mathbf{y}, \mathbf{x}_{t}; \theta) - \ell_{t}(\mathbf{y})$$
$$\ell_{LA}(\mathbf{D}; \theta) = \frac{1}{|\mathbf{D}|} \sum_{(\mathbf{x}_{t}, \mathbf{y}_{t}) \in \mathbf{D}} E_{t}^{LA}(\mathbf{y}_{t}, \mathbf{x}_{t}; \theta) + \log\left(\sum_{\mathbf{y} \in Y(\mathbf{x})} \exp(-E_{t}^{LA}(\mathbf{y}, \mathbf{x}_{t}; \theta))\right)$$

- high loss cases important, increase energy
- analog of margin scaling
- upper bound on avg loss

## (2). Loss-scaled $E_t^{LS}(\mathbf{y}, \mathbf{x}_t; \theta) = \ell_t(\mathbf{y})[E(\mathbf{y}, \mathbf{x}_t; \theta) - E(\mathbf{y}_t, \mathbf{x}_t; \theta)] - \ell_t(\mathbf{y})$ $\ell_{LS}(\mathbf{D}; \theta) = \frac{1}{|\mathbf{D}|} \sum_{(\mathbf{x}_t, \mathbf{y}_t) \in \mathbf{D}} E_t^{LS}(\mathbf{y}_t, \mathbf{x}_t; \theta) + \log\left(\sum_{\mathbf{y} \in Y(\mathbf{x})} \exp(-E_t^{LS}(\mathbf{y}, \mathbf{x}_t; \theta))\right)$

- only focus on high loss cases whose energy is low
- analog of slack scaling
- also upper bound on avg loss

**More New CRF Loss Functions** (3). Expected-loss  $\ell_{EL}(\mathbf{D};\theta) = \frac{1}{|\mathbf{D}|} \sum_{(\mathbf{x}_t,\mathbf{y}_t)\in\mathbf{D}} \mathbf{E}_{\mathbf{y}|\mathbf{x}_t} [\ell_t(\mathbf{y})] = \frac{1}{|\mathbf{D}|} \sum_{(\mathbf{x}_t,\mathbf{y}_t)\in\mathbf{D}} \sum_{\mathbf{y}\in Y(\mathbf{x})} \ell_t(\mathbf{y}) p(\mathbf{y} | \mathbf{x}_t)$ 

- not an upper bound on avg loss, but approaches it as learning puts all mass on MAP  $y(x_t)$ 

(4). KL  

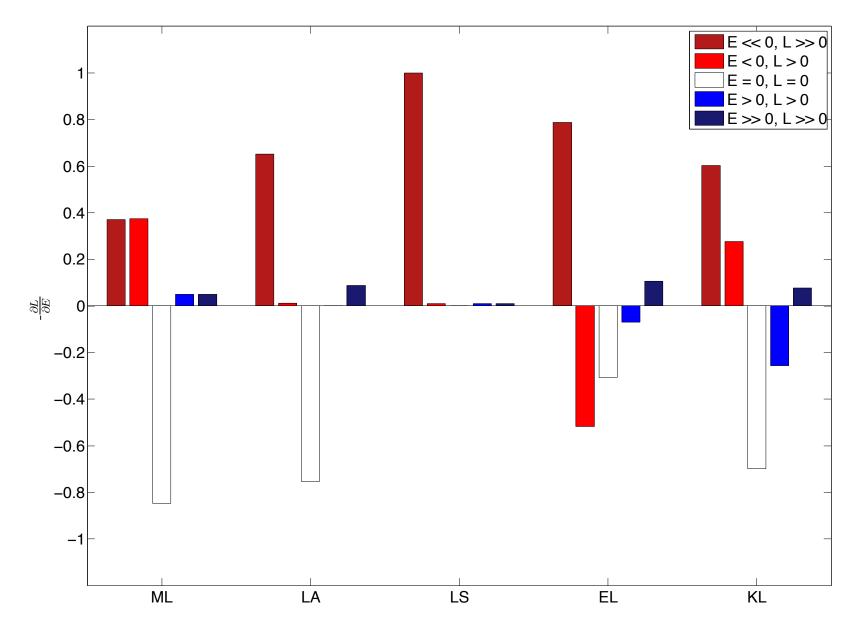
$$\ell_{KL}(\mathbf{D}; \theta) = \frac{1}{|\mathbf{D}|} \sum_{(\mathbf{x}_t, \mathbf{y}_t) \in \mathbf{D}} D_{KL} [q(\cdot | t) || p(\cdot | \mathbf{x}_t)]$$

$$= -\frac{1}{|\mathbf{D}|} \sum_{(\mathbf{x}_t, \mathbf{y}_t) \in \mathbf{D}} \sum_{\mathbf{y} \in Y(\mathbf{x})} q(\mathbf{y} | t) p(\mathbf{y} | \mathbf{x}_t) - C$$

$$- \text{ use loss to regularize CRF} \qquad q(\mathbf{y} | t) = \exp(-\ell_t(y)/T)/Z_t$$

- think of loss as ranking all predictions
- if not putting all mass on  $p(y_t|x_t)$ , use loss to decide how to distribute excess mass on other configurations

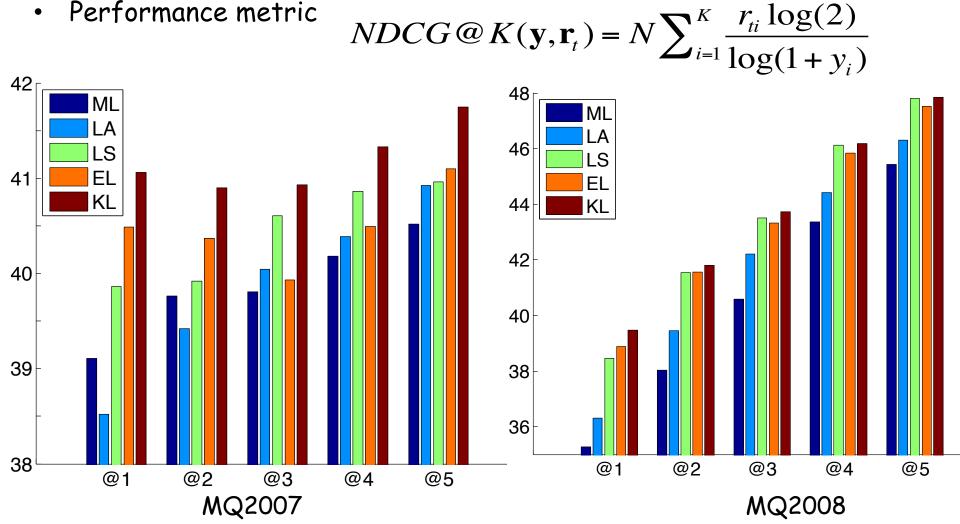
#### **Behavior of CRF Loss Functions**



### **Ranking Experiments: LETOR 4.0**

Ranking problem: x = features of documents relevant to query; y = permutation of the documents

- Interesting: complex output space; multiple ground truths
- Performance metric



### **Final Wrap Up**

- CRFs benefit from loss-sensitive training
- Tractable to incorporate variety of losses, including slack-scaling
- Analog of KL for SSVMs?