Non-Decomposable Interactions

< ロト < 同ト < ヨト < ヨト

-

Microsoft Research Cambridge

Conclusion

From Potentials to Polyhedra: Inference in Structured Models

Sebastian Nowozin

Machine Learning and Perception Group Microsoft Research Cambridge

Colorado Springs, 20th June 2011

Research

Sebastian Nowozin

Conclusion 00

Approximating a Unit Disc

► Using linear inequalities, how can we approximate the unit disc?

Polyhedra		
00000		
Polyhedra		

Naive approach

• Error
$$\epsilon = \frac{1}{\cos \frac{\pi}{k}} - 1 \approx \frac{\pi^2}{2k^2}$$

• Inefficient, $\epsilon \leq 10^{-6}$ needs k > 2200

► Can we do better?

・ロト ・四ト ・ヨト

Polyhedra
000000
Polvhedra

Conclusion 00

Naive approach

• Error
$$\epsilon = \frac{1}{\cos \frac{\pi}{k}} - 1 \approx \frac{\pi^2}{2k^2}$$

- Inefficient, $\epsilon \leq 10^{-6}$ needs k > 2200
- ► Can we do better?

э.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Polyhedra
000000
Polyhedra

Naive approach

• Error
$$\epsilon = \frac{1}{\cos \frac{\pi}{k}} - 1 \approx \frac{\pi^2}{2k^2}$$

• Inefficient, $\epsilon \leq 10^{-6}$ needs k > 2200

► Can we do better?

3

・ロト ・部ト ・ヨト ・ヨト

Polyhedra
000000
Polyhedra

Naive approach

• Error
$$\epsilon = \frac{1}{\cos \frac{\pi}{k}} - 1 \approx \frac{\pi^2}{2k^2}$$

• Inefficient,
$$\epsilon \leq 10^{-6}$$
 needs $k > 2200$

► Can we do better?

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Extended Formulations

- Augment variable set (x_1, x_2) to (x_1, x_2, α)
- Define set \mathcal{S} on enlarged space
- Project

$$\mathcal{C} = \operatorname{proj}_{x_1, x_2} \mathcal{S}$$

 Amazing fact in high dimensions: Simple S (small number of inequalities) can create complicated C (exponential number of inequalities)

< ロト < 同ト < ヨト < ヨト

Extended Formulations

- Augment variable set (x_1, x_2) to (x_1, x_2, α)
- Define set \mathcal{S} on enlarged space
- Project

$$\mathcal{C} = \operatorname{proj}_{x_1, x_2} \mathcal{S}$$

 Amazing fact in high dimensions: Simple S (small number of inequalities) can create complicated C (exponential number of inequalities)

Non-Decomposable Interactions

イロト イヨト イヨト イヨト

3

Microsoft Research Cambridge

Conclusion 00

Ben-Tal/Nemirovski Polyhedron

Variables x_1 , x_2 , and $\boldsymbol{\alpha} = (\xi^j, \eta^j)_{j=0,...,k}$, parameter k

$$\begin{split} \xi^{0} &\geq x_{1}, \qquad \xi^{0} \geq -x_{1}, \\ \eta^{0} &\geq x_{2}, \qquad \eta^{0} \geq -x_{2}, \\ \xi^{j} &= \cos\left(\frac{\pi}{2^{j+1}}\right)\xi^{j-1} + \sin\left(\frac{\pi}{2^{j+1}}\right)\eta^{j-1}, \qquad j = 1, \dots, k \\ \eta^{j} &\geq -\sin\left(\frac{\pi}{2^{j+1}}\right)\xi^{j-1} + \cos\left(\frac{\pi}{2^{j+1}}\right)\eta^{j-1}, \qquad j = 1, \dots, k \\ \eta^{j} &\geq \sin\left(\frac{\pi}{2^{j+1}}\right)\xi^{j-1} - \cos\left(\frac{\pi}{2^{j+1}}\right)\eta^{j-1}, \qquad j = 1, \dots, k \\ \xi^{k} &\leq 1, \\ \eta^{k} &\leq \tan\left(\frac{\pi}{2^{k+1}}\right)\xi^{k}. \end{split}$$

Sebastian Nowozin

Decomposable Interactions

Non-Decomposable Interactions

Ben-Tal/Nemirovski Polyhedron (cont)

Sebastian Nowozin

Microsoft Research Cambridge

э

Decomposable Interactions

Non-Decomposable Interactions

Ben-Tal/Nemirovski Polyhedron (cont)

Sebastian Nowozin

Microsoft Research Cambridge

э

Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Ben-Tal/Nemirovski Polyhedron (cont)

Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Ben-Tal/Nemirovski Polyhedron (cont)

Projection of Ben-Tal-Nemirovski polytope, k=7

Microsoft Research Cambridge

э

Ben-Tal/Nemirovski Polyhedron (cont)

- BTN-k, for k = 2, 3, 4, ...
- Number of non-zero coefficients in system: 9k + 11, linear in k
- Number of vertices in (x_1, x_2) -projection: 2^{k+1}

k	No. vert.	NNZ	ϵ
4	32	47	0.0048
5	64	56	0.0012
6	128	65	$3.0 \cdot 10^{-4}$
k	2^{k+1}	9k + 11	$O(\frac{1}{4^k})$

-

イロト イポト イヨト イヨト

Sebastian Nowozin

Ben-Tal/Nemirovski Polyhedron (cont)

- BTN-*k*, for k = 2, 3, 4, ...
- Number of non-zero coefficients in system: 9k + 11, linear in k
- Number of vertices in (x_1, x_2) -projection: 2^{k+1}

▶ BTN: error
$$\epsilon = \frac{1}{\cos \frac{\pi}{2^{k+1}}} - 1 = O(\frac{1}{4^k})$$
 ($\epsilon \le 3 \cdot 10^{-7}$ for $k = 12$)

▶ Naive: error $\epsilon = \frac{1}{\cos \frac{\pi}{k}} - 1 \approx \frac{\pi^2}{2k^2}$ ($\epsilon \le 10^{-6}$ for k = 2,200)

 $\blacktriangleright \ \rightarrow A$ much better approximation

Sebastian Nowozin

From Potentials to Polyhedra: Inference in Structured Models

Microsoft Research Cambridge

イロト イポト イヨト

From Sets to Functions

Connections to the Literature

- ► Extended formulations for polyhedral sets (Balas, 1975)
- Extended formulations for convex functions in integer programs (Miller and Wolsey, 2003)

In computer vision (under various names, often combined with an inference method)

- (Rother and Kohli, 2011)
- (Ladicky et al., ECCV 2010)
- (Ishikawa, CVPR 2009)

▶ ...

Polyhedra 000000 Decomposable Interactior Decomposable Interactions

Non-Decomposable Interactions 00000000 Conclusion 00

Higher-order Interactions

- Problem: graphical model formulation not expressive enough to capture structure of E_F,
- Decomposable higher-order interactions
 - Representable by a set of T new variables with state spaces S_t ,
 - T, St bounded by a polynomial in the scope size and variable state spaces

Polyhedra 000000 Decomposable Interact Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Higher-order Interactions

- Problem: graphical model formulation not expressive enough to capture structure of E_F,
- Decomposable higher-order interactions
 - Representable by a set of T new variables with state spaces S_t ,
 - T, St bounded by a polynomial in the scope size and variable state spaces

Polyhedra 000000 Decomposable Interacti Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Higher-order Interactions

- Problem: graphical model formulation not expressive enough to capture structure of E_F,
- Decomposable higher-order interactions
 - Representable by a set of T new variables with state spaces S_t ,
 - T, St bounded by a polynomial in the scope size and variable state spaces

Polyhedra 000000 Decomposable Interacti Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Higher-order Interactions

- Problem: graphical model formulation not expressive enough to capture structure of E_F,
- Decomposable higher-order interactions
 - Representable by a set of T new variables with state spaces S_t ,
 - T, St bounded by a polynomial in the scope size and variable state spaces

Decomposable Interactions

Non-Decomposable Interactions

(日) (同) (三) (三)

Microsoft Research Cambridge

Conclusion 00

Decomposable Higher-order Interactions

- 1. Partition \mathcal{Y}_F into a small set \mathcal{Z} of equivalence classes,
- 2. Introduce a new model variable $Z \in \mathcal{Z}$
- 3. Build simple energy model for each class (e.g. constant)
- 4. Integrate with original variables

Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Decomposable Higher-order Interactions

- 1. Partition \mathcal{Y}_F into a small set \mathcal{Z} of equivalence classes,
- 2. Introduce a new model variable $Z \in \mathcal{Z}$
- 3. Build simple energy model for each class (e.g. constant)
- 4. Integrate with original variables

Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Decomposable Higher-order Interactions

- 1. Partition \mathcal{Y}_F into a small set \mathcal{Z} of equivalence classes,
- 2. Introduce a new model variable $Z \in \mathcal{Z}$
- 3. Build simple energy model for each class (e.g. constant)
- 4. Integrate with original variables

Non-Decomposable Interactions

Example 1: Pattern-based Potential

- ► (Rother et al., CVPR 2009), (Komodakis and Paragios, CVPR 2009)
- Match a small set of patterns with low energy or assign a default energy
- ▶ Pattern set *P*,

$$E_F(y_F) = \left\{ egin{array}{cc} C_{y_F} & ext{if } y_F \in \mathcal{P} \ C_{ ext{max}} & ext{otherwise.} \end{array}
ight.$$

Sebastian Nowozin

-

Polyhedra 000000 Decomposable Interacti Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Example 1: Pattern-based Potential (cont)

Fix joint configuration y_F

• Pattern cost C_{y_F} or C_{\max}

Sebastian Nowozin

From Potentials to Polyhedra: Inference in Structured Models

हे । < हे । _हे √ि२० Microsoft Research Cambridge

ヘロト 人間 ト 人 ヨト 人 ヨトー

Polyhedra 000000 Decomposable Intera Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Example 2: Co-occurence Potential

- (Ladicky et al., ECCV 2010), (Delong et al., CVPR 2010)
- Have a cost function based on what sets of labels appear (independent of their counts)

Polyhedra 000000 Decomposable Intera Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Example 2: Co-occurence Potential

- ▶ (Ladicky et al., ECCV 2010), (Delong et al., CVPR 2010)
- Have a cost function based on what sets of labels appear (independent of their counts)

Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Decomposable Interactions

Example 2: Co-occurence Potential (cont)

- Extended formulation with "has-color"-variable
- ► This extended formulation: further conditions required for E_F
- Extension possible for arbitrary E_F
- Size polynomial in the number of subsets

Decomposable Interactions

Non-Decomposable Interactions

Conclusion 00

Decomposable Interactions

Example 2: Co-occurence Potential (cont)

- Extended formulation with "has-color"-variable
- This extended formulation: further conditions required for E_F
- Extension possible for arbitrary E_F
- Size polynomial in the number of subsets

Decomposable Interactions

Non-Decomposable Interactions

Image: A matrix

Conclusion 00

ecomposable Interactions

Example 2: Co-occurence Potential (cont)

- Extended formulation with "has-color"-variable
- This extended formulation: further conditions required for E_F
- Extension possible for arbitrary E_F
- Size polynomial in the number of subsets

- - E - - - E -

Non-decomposable,

- Not representable by a small set of new variables with small state spaces
- Requires analysis outside the graphical model framework

Examples of non-decomposable interactions

- Cooperative cuts (Jegelka and Bilmes, CVPR 2011)
- Topological constraints (Vicente et al., CVPR 2008), (Nowozin and Lampert, CVPR 2009), (Chen et al., CVPR 2011)

Conclusion 00

Connectivity: Connected Subgraph Polytope

Object segmentation

- "Connectedness": the resulting object segmentations should be connected
- (Nowozin and Lampert, CVPR 2009), (Nowozin and Lampert, SIAM IMS 2010)

イロト イポト イヨト イヨト

Steps

- Global potential ψ_V : connectivity
- Derive a polyhedral set which captures connected subgraphs
- This set is the connected subgraph polytope
- Use MAP-MRF linear programming relaxation, but *intersect* with this set

Connectivity: Connected Subgraph Polytope

Object segmentation

- "Connectedness": the resulting object segmentations should be connected
- (Nowozin and Lampert, CVPR 2009), (Nowozin and Lampert, SIAM IMS 2010)

イロト イポト イヨト イヨト

Steps

- Global potential ψ_V : connectivity
- Derive a polyhedral set which captures connected subgraphs
- This set is the connected subgraph polytope
- ►

Connectivity: Connected Subgraph Polytope

Object segmentation

- "Connectedness": the resulting object segmentations should be connected
- (Nowozin and Lampert, CVPR 2009), (Nowozin and Lampert, SIAM IMS 2010)

< ロト < 同ト < ヨト < ヨト

Steps

- Global potential ψ_V : connectivity
- Derive a polyhedral set which captures connected subgraphs
- This set is the connected subgraph polytope
- Use MAP-MRF linear programming relaxation, but *intersect* with this set

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}, E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the connected subgraph polytope.

イロト イポト イヨト イヨト

From Potentials to Polyhedra: Inference in Structured Models

Sebastian Nowozin

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}, E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the connected subgraph polytope.

< ロト < 同ト < ヨト < ヨト

From Potentials to Polyhedra: Inference in Structured Models

Sebastian Nowozin

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}, E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the connected subgraph polytope.

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}, E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the connected subgraph polytope.

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}, E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the connected subgraph polytope.

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V, E), consider indicator variables $y_i \in \{0, 1\}$, $i \in V$. Let $C = \{\mathbf{y} : G' = (V', E') \text{ connected}$, with $V' = \{i : y_i = 1\}, E' = (V' \times V') \cap E\}$ denote the finite set of connected subgraphs of G. Then we call the convex hull $Z = \operatorname{conv}(C)$ the connected subgraph polytope.

Non-Decomposable Interactions

Conclusion 00

Facets and Valid Inequalities

Convex polytopes have two equivalent representations

- As a convex combination of extreme points
- As a set of facet-defining linear inequalities

A linear inequality with respect to a polytope can be

- valid, does not cut off the polytope,
- representing a face, valid and touching,
- facet-defining, representing a face of dimension one less than the polytope.

	Non-Decomposable Interactions	
	0000000	
Non-Decomposable Interactions		

Warmup

Some basic properties about the connected subgraph polytope Z. Note that Z depends on the graph structure.

Lemma

If G is connected, dim(Z) = |V|, that is, Z has full dimension.

Lemma

For all $i \in V$, the inequalities $y_i \ge 0$ and $y_i \le 1$ are facet-defining for Z.

Sebastian Nowozin

An Exponential-sized Class of Facet-defining Inequalities

Theorem

The following linear inequalities are facet-defining for Z = conv(C).

$$y_i + y_j - \sum_{k \in S} y_k \le 1, \quad \forall (i,j) \notin E : \forall S \in \overline{S}(i,j).$$
 (1)

 $y_0 + y_2 - y_1 < 1.$

(日) (同) (三) (三)

Sebastian Nowozin

From Potentials to Polyhedra: Inference in Structured Models

Microsoft Research Cambridge

	Non-Decomposable Interactions	
	00000000	
Non-Decomposable Interactions		

Intuition

$$y_i + y_j - \sum_{k \in S} y_k \le 1, \quad \forall (i,j) \notin E : \forall S \in \overline{S}(i,j)$$

If two vertices *i* and *j* are selected $(y_i = y_j = 1$, shown in black), then any set of vertices which separate them (set *S*) must contain at least one selected vertex.

Figure: Vertex *i* and *j* and one vertex separator set $S \in \overline{S}(i, j)$.

< ロト < 同ト < ヨト < ヨト

	Non-Decomposable Interactions	
	0000000	
Non-Decomposable Interactions		

Formulation

Theorem

C, the set of all connected subgraphs, can be described exactly by the following constraint set.

$$y_i + y_j - \sum_{k \in S} y_k \le 1, \forall (i, j) \notin E : \forall S \in \mathcal{S}(i, j),$$

$$y_i \in \{0, 1\} \quad i \in \mathcal{V}$$
(2)

$$y_i \in \{0,1\}, \qquad i \in V. \tag{3}$$

This means

- inequalities together with integrality are a *formulation* of the set of connected subgraphs,
- we can attempt to relax (3) to

$$y_i \in [0; 1], \quad i \in V.$$

• (Problem): number of inequalities (2) is exponential in |V|.

		Conclusion
		00
Conclusion		

Conclusions

- Discrete graphical models are just one way to capture structure
- There are other tractable/approximable structures
 - Extended formulations (latent variables with specific tying)
 - Polyhedral combinatorics

Open questions

- ▶ How to perform probabilistic inference in higher-order models?
- ▶ How to parametrize and learn higher-order models?
- (Is there a more suitable formalism than either graphical models or polytopes?)

		Conclusion
		00
Conclusion		

Conclusions

- Discrete graphical models are just one way to capture structure
- There are other tractable/approximable structures
 - Extended formulations (latent variables with specific tying)
 - Polyhedral combinatorics

Open questions

- ► How to perform probabilistic inference in higher-order models?
- How to parametrize and learn higher-order models?
- (Is there a more suitable formalism than either graphical models or polytopes?)

/□ ▶ 《 ⋽ ▶ 《 ⋽

Conclusion	

Thank you!

feedback most welcome

nowozin@gmail.com

Microsoft Research Cambridge

Sebastian Nowozin