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Polyhedra

Approximating a Unit Disc

I Using linear inequalities, how can we approximate the unit disc?
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Polyhedra

Naive approach

I Error ε = 1
cos π

k
− 1 ≈ π2

2k2

I Inefficient, ε ≤ 10−6 needs k > 2200

I Can we do better?
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Polyhedra

Extended Formulations

I Augment variable set (x1, x2) to (x1, x2,α)

I Define set S on enlarged space

I Project
C = projx1,x2

S
I Amazing fact in high dimensions:

Simple S (small number of inequalities) can create complicated C
(exponential number of inequalities)
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Polyhedra

Ben-Tal/Nemirovski Polyhedron

Variables x1, x2, and α = (ξj , ηj)j=0,...,k , parameter k

ξ0 ≥ x1, ξ0 ≥ −x1,

η0 ≥ x2, η0 ≥ −x2,

ξj = cos
( π

2j+1

)
ξj−1 + sin

( π

2j+1

)
ηj−1, j = 1, . . . , k

ηj ≥ − sin
( π

2j+1

)
ξj−1 + cos

( π

2j+1

)
ηj−1, j = 1, . . . , k

ηj ≥ sin
( π

2j+1

)
ξj−1 − cos

( π

2j+1

)
ηj−1, j = 1, . . . , k

ξk ≤ 1,

ηk ≤ tan
( π

2k+1

)
ξk .
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Polyhedra

Ben-Tal/Nemirovski Polyhedron (cont)
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Polyhedra

Ben-Tal/Nemirovski Polyhedron (cont)
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Polyhedra

Ben-Tal/Nemirovski Polyhedron (cont)
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Polyhedra

Ben-Tal/Nemirovski Polyhedron (cont)
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Polyhedra

Ben-Tal/Nemirovski Polyhedron (cont)

I BTN-k, for k = 2, 3, 4, . . .

I Number of non-zero coefficients in system: 9k + 11, linear in k

I Number of vertices in (x1, x2)-projection: 2k+1

k No. vert. NNZ ε
4 32 47 0.0048
5 64 56 0.0012
6 128 65 3.0 · 10−4

. . . . . . . . . . . .
k 2k+1 9k + 11 O( 1

4k )
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Polyhedra

Ben-Tal/Nemirovski Polyhedron (cont)

I BTN-k, for k = 2, 3, 4, . . .

I Number of non-zero coefficients in system: 9k + 11, linear in k

I Number of vertices in (x1, x2)-projection: 2k+1

I BTN: error ε = 1
cos π

2k+1
− 1 = O( 1

4k ) (ε ≤ 3 · 10−7 for k = 12)

I Naive: error ε = 1
cos π

k
− 1 ≈ π2

2k2 (ε ≤ 10−6 for k = 2, 200)

I → A much better approximation
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Decomposable Interactions

From Sets to Functions

Connections to the Literature

I Extended formulations for polyhedral sets (Balas, 1975)

I Extended formulations for convex functions in integer programs
(Miller and Wolsey, 2003)

In computer vision (under various names, often combined with an
inference method)

I (Rother and Kohli, 2011)

I (Ladicky et al., ECCV 2010)

I (Ishikawa, CVPR 2009)

I ...
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Decomposable Interactions

Higher-order Interactions

Yi Yj Yk Yl

I Problem: graphical model formulation not expressive enough to
capture structure of EF ,

I Decomposable higher-order interactions
I Representable by a set of T new variables with state spaces St ,
I T , St bounded by a polynomial in the scope size and variable state

spaces
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Decomposable Interactions

Decomposable Higher-order Interactions

Yi Yj Yk Yl

F

1. Partition YF into a small set Z of equivalence classes,

2. Introduce a new model variable Z ∈ Z
3. Build simple energy model for each class (e.g. constant)

4. Integrate with original variables
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Decomposable Interactions
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Decomposable Interactions

Example 1: Pattern-based Potential

I (Rother et al., CVPR 2009), (Komodakis and Paragios, CVPR 2009)

I Match a small set of patterns with low energy or assign a default
energy

I Pattern set P,

EF (yF ) =

{
CyF

if yF ∈ P
Cmax otherwise.
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Decomposable Interactions

Example 1: Pattern-based Potential (cont)

Yi Yj Yk Yl

Z

EF (yF ) =

{
CyF

if yF ∈ P
Cmax otherwise.

I Fix joint configuration yF

I Pattern cost CyF
or Cmax
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Decomposable Interactions

Example 2: Co-occurence Potential

Yi Yj Yk Yl

F

I (Ladicky et al., ECCV 2010), (Delong et al., CVPR 2010)

I Have a cost function based on what sets of labels appear
(independent of their counts)
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Decomposable Interactions

Example 2: Co-occurence Potential

F

Yi Yj Yk Yl

EF (y) = C(L(y)) = C({•, •, •})

I (Ladicky et al., ECCV 2010), (Delong et al., CVPR 2010)

I Have a cost function based on what sets of labels appear
(independent of their counts)
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Decomposable Interactions

Example 2: Co-occurence Potential (cont)

F

Yi Yj Yk Yl

EF (y) = C(L(y)) = C({•, •, •})

I Extended formulation with “has-color”-variable

I This extended formulation: further conditions required for EF

I Extension possible for arbitrary EF

I Size polynomial in the number of subsets
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Decomposable Interactions

Example 2: Co-occurence Potential (cont)

Yi Yj Yk Yl

Za Zb Zc

I Extended formulation with “has-color”-variable

I This extended formulation: further conditions required for EF

I Extension possible for arbitrary EF

I Size polynomial in the number of subsets
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Decomposable Interactions

Example 2: Co-occurence Potential (cont)

Yi Yj Yk Yl

Za Zb Zc

Za∧b

I Extended formulation with “has-color”-variable

I This extended formulation: further conditions required for EF

I Extension possible for arbitrary EF

I Size polynomial in the number of subsets
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Non-Decomposable Interactions

Non-Decomposable Interactions

Non-decomposable,

I Not representable by a small set of new variables with small state
spaces

I Requires analysis outside the graphical model framework

Examples of non-decomposable interactions

I Cooperative cuts (Jegelka and Bilmes, CVPR 2011)

I Topological constraints (Vicente et al., CVPR 2008), (Nowozin and
Lampert, CVPR 2009), (Chen et al., CVPR 2011)
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Non-Decomposable Interactions

Connectivity: Connected Subgraph Polytope

Object segmentation

I “Connectedness”: the resulting object
segmentations should be connected

I (Nowozin and Lampert, CVPR 2009),
(Nowozin and Lampert, SIAM IMS
2010)

Steps

I Global potential ψV : connectivity

I Derive a polyhedral set which captures connected subgraphs

I This set is the connected subgraph polytope

I Use MAP-MRF linear programming relaxation, but intersect with
this set
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Non-Decomposable Interactions

Connected Subgraph Polytope (cont)

Definition (Connected Subgraph Polytope)

Given a simple, connected, undirected graph G = (V ,E ), consider
indicator variables yi ∈ {0, 1}, i ∈ V . Let C = {y : G ′ =
(V ′,E ′) connected, with V ′ = {i : yi = 1},E ′ = (V ′ × V ′) ∩ E} denote
the finite set of connected subgraphs of G . Then we call the convex hull
Z = conv(C ) the connected subgraph polytope.
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Non-Decomposable Interactions
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Non-Decomposable Interactions
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Non-Decomposable Interactions

Connected Subgraph Polytope (cont)
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Non-Decomposable Interactions

Facets and Valid Inequalities

Convex polytopes have two equivalent
representations

I As a convex combination of extreme
points

I As a set of facet-defining linear
inequalities

A linear inequality with respect to a
polytope can be

I valid, does not cut off the polytope,

I representing a face, valid and touching,

I facet-defining, representing a face of
dimension one less than the polytope.

Z

d>1 y ≤ 1

d>2 y ≤ 1
d>3 y ≤ 1
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Non-Decomposable Interactions

Warmup

Some basic properties about the connected subgraph polytope Z . Note
that Z depends on the graph structure.

Lemma
If G is connected, dim(Z ) = |V |, that is, Z has full dimension.

Lemma
For all i ∈ V , the inequalities yi ≥ 0 and yi ≤ 1 are facet-defining for Z .
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Non-Decomposable Interactions

An Exponential-sized Class of Facet-defining Inequalities

Theorem
The following linear inequalities are facet-defining for Z = conv(C ).

yi + yj −
∑
k∈S

yk ≤ 1, ∀(i , j) /∈ E : ∀S ∈ S̄(i , j). (1)

y0 + y2 − y1 ≤ 1.
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Non-Decomposable Interactions

Intuition

yi + yj −
∑
k∈S

yk ≤ 1, ∀(i , j) /∈ E : ∀S ∈ S̄(i , j)

If two vertices i and j are selected (yi = yj = 1, shown in black), then
any set of vertices which separate them (set S) must contain at least one
selected vertex.

i j

S

. . . . . . . . .. . .

Figure: Vertex i and j and one vertex separator set S ∈ S̄(i , j).
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Non-Decomposable Interactions

Formulation

Theorem
C, the set of all connected subgraphs, can be described exactly by the
following constraint set.

yi + yj −
∑
k∈S

yk ≤ 1,∀(i , j) /∈ E : ∀S ∈ S(i , j), (2)

yi ∈ {0, 1}, i ∈ V . (3)

This means
I inequalities together with integrality are a formulation of the set of

connected subgraphs,
I we can attempt to relax (3) to

yi ∈ [0; 1], i ∈ V .

I (Problem): number of inequalities (2) is exponential in |V |.
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Conclusion

Conclusions

I Discrete graphical models are just one way to capture structure

I There are other tractable/approximable structures
I Extended formulations (latent variables with specific tying)
I Polyhedral combinatorics

Open questions

I How to perform probabilistic inference in higher-order models?

I How to parametrize and learn higher-order models?

I (Is there a more suitable formalism than either graphical models or
polytopes?)
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Conclusion

Thank you!

feedback most welcome

nowozin@gmail.com
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