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Abstract

Graphical models are ubiquitous in computer vision,
where they are typically used to represent an energy func-
tion that factorizes according to the graphical model struc-
ture. An exciting and active direction of research is to look
for richer types of interaction, where energy functions can
be made more realistic, but where inference can still be
made to remain tractable.

In this work, we take the insights that are usually applied
to modeling and inference, and we apply them to loss func-
tions and learning. Current standard approaches to learn-
ing in structured output models directly incorporate the loss
function in the learning. Ideally this loss function is tai-
lored to the task and accurately represents the aims for the
model’s output. Yet learning in these models typically does
not optimize performance on the true task loss, due to com-
putational complexity, instead resorting to surrogate simple
decomposable loss functions. Here, we explicate a large
class of non-decomposable (high order) loss functions and
show that they can be readily and efficiently incorporated
in a large-margin learning formulation.

We demonstrate these loss functions in several settings.
First, we train an image labeling model to optimize an eval-
uation metric of interest—the intersection-over-union score
used to evaluate PASCAL VOC Challenge entries. Second,
we propose two loss functions that are appropriate to use
when only weak label information is available at training
time, but when the model is evaluated based on full label
information at test time. Experimental results show the high
order loss functions to improve performance over baselines
in all of these settings.

1. Introduction
Many computer vision problems, such as object segmen-

tation, disparity estimation, boundary localization, and 3-D
reconstruction, can be formulated as pixel or voxel labeling
tasks. A challenge when formulating a learning objective (a
loss function) is how to balance expressiveness with com-
putational efficiency: we aim for application-specific loss

Training Image Model B OutputModel A Output

PASCAL Loss (high order)Pixel Loss (low order):
Output A: 5%, Output B: 5% Output A: 50, Output B: 95

Figure 1. Which model produces a better segmentation? The stan-
dard Pixel Loss function does not distinguish between Outputs A
and B, because the number of pixel errors is equal (5%). Here we
describe methods that learn to optimize high order losses, such as
(1 – the PASCAL intersection-over-union score), which prefers A.

functions that capture our desires for the model but that can
be optimized efficiently. These issues are especially rele-
vant in a structured output setting, where both the structure
and loss are expressed over large sets of output variables.

Consider the problem of evaluating a simple foreground-
background image labeling output (see Fig. 1). A common
loss function to optimize is the number of per-pixel errors
made relative to the ground truth. However, while conve-
nient, this is often not an accurate representation of our
desires for the model. In labeling problems where fore-
ground objects are small, the labeling that assigns all pix-
els to the background class obtains a disproportionately low
loss relative to what we likely believe to be a good eval-
uation metric. For this reason, more complex evaluation
measures, have been introduced. In the PASCAL VOC Seg-
mentation Challenge [2], for example, accuracy is judged as

# true positives
# true positives + # false positives + # false negatives . In
the domain of machine translation, the BLEU score, which
assesses the precision of n-grams in candidate machine
translations against reference human translations, involves
interactions over large subsets of outputs [5]. Similarly, the
Fβ score used in natural language processing, the area under
the ROC curve used to evaluate binary classifiers, and many
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other common evaluation measures involve such high order
interactions. In vision, most important structural properties
do not factorize according to individual variables. If we
would like to evaluate whether outputs are e.g., connected,
convex, or of a particular size, it will require a performance
measure that takes into account joint configurations of large
subsets of variables.

For discriminative learning, the model optimization
should take the target performance measure into account. In
a margin-scaled structural SVM, learning aims to maximize
the margin between the ground truth and the most violating
constraint, which is defined as the output that maximizes a
sum of likelihood and loss. When the loss is decomposable,
finding this most violating constraint is easy, as the loss
can be folded directly into standard inference computations.
However, for high order losses (HOLs), standard methods
for solving the relaxed problem are still intractable. In the
standard cutting plane formulation, finding the most violat-
ing constraint is in general an intractable high-order infer-
ence problem; in the subgradient formulation, computing
a subgradient requires solving the same optimization prob-
lem. Interestingly, there are certain classes of high order
interaction where efficient optimization can be performed
either exactly or approximately. Such cases have been the
focus of much recent work on maximum a posteriori (MAP)
inference in high order models (see e.g., [6]), but little work
has applied the computational insights at the heart of this
work to learning problems; that is our goal here.

Contributions: In this work, we show that the same
routines and classes of interaction being explored in an in-
ference setting can be utilized to define loss functions in a
large margin learning setting. We extend the basic insights
of these inference procedures to develop novel and useful
loss functions, and show their utility in a variety of image
labeling scenarios. A secondary emphasis of our work con-
cerns its modularity and generality. The complex loss func-
tions are expressed as factors that can be used generically in
a factor graph formulation. These factors can be combined
to form a range of loss functions and also be combined with
any factor graph model, with no need for new formulations,
derivations, or code.

2. Structural SVMs
Given an input image x with N pixels at test time,

our goal is to produce an output image labeling y ∈
{0, . . . ,K − 1}N . We will assume K = 2 throughout, but
the loss formulations apply equally well to problems with
larger K. A structural SVM works by mapping x to y via
maximizing an input-dependent (log) likelihood function:
y = arg maxŷ L(ŷ;x) = arg maxŷ wTφ(ŷ;x). The learn-
ing problem is to find a w that maximizes a margin between
the ground truth y∗(j) and all other outputs y(j) for all train-
ing examples j.

The problem can be written as a quadratic program (QP):

min.w,ξ wTw + C
∑
n

ξ(j)

s.t. wT
[
φ(y∗(j), x(j))−φ(y(j), x(j))

]
≥1− ξ(j) (1)

where the constraint is replicated for each example j and
for all y(j) 6= y∗(j). C is a regularization parameter. To in-
corporate a loss function ∆, the margin-scaling approach
enforces a loss-dependent variable margin for different la-
belings, replacing (1) with:

s.t. wT
[
φ(y∗(j), x(j))−φ(y(j), x(j))

]
≥∆(y(j))− ξ(j) (2)

Even for a single example, (2) represents an exponentially
large number of constraints, so explicitly instantiating the
QP is intractable. A common strategy is to start with an
empty set of constraints, successively add the most violated
constraint, re-solve the QP, and repeat. To find violated con-
straints, a loss-augmented MAP problem must be solved:

y− = max
ŷ

[L(ŷ;x) + ∆(ŷ)] . (3)

This procedure converges in polynomial time [8].
One Slack Formulation [3]: A more efficient for-

mulation turns out to be equivalent. As usual, at iteration t,
on example j, find a negative example y−(j). Add one con-
straint in the form of (2) for a single y(j) to a constraint set
St. After finding most violated constraints for all instances,
add the averaged constraints

wT
∑

(y+
(j),y

−
(j))∈St

[
φ(y+

(j), x(j))−φ(y−(j), x(j))
]
≥
∑

(y+
(j),y

−
(j))∈St

∆(y−(j))−ξ (4)

to the quadratic program for each t. In this formulation,
there is a single ξ, and the size of the QP grows with the
number of iterations rather than number of iterations times
number of training examples. Especially with large data
sets, this is a significantly more efficient, yet surprisingly
equivalent, formulation.

3. Learning with High Order Losses
At a high level, most structured output learning updates

rely on an intelligent choice of positive examples y+ and
negative examples y−. In the standard margin-scaling for-
mulation, the positive example is chosen to be the ground
truth y∗, and the negative example is chosen to be the loss-
augmented MAP solution. In this section, we begin with
a minor generalization of the standard structural SVM for-
mulation (in Section 3.1). Then in Section 3.2, we describe
the computational details of our main contributions, exam-
ples demonstrating how high order loss functions can be
efficiently incorporated into large margin learning.
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3.1. Finding Positive and Negative Examples

Positive Examples: Partially labeled training data do
not provide full ground truths. Instead, there is a set of
pixels with known labels (e.g., with bounding boxes, pix-
els outside the bounding box are background) and a set of
pixels with unknown labels (e.g., pixels inside the bound-
ing box may be either foreground or background). A loss
function defined in terms of partial labels implicitly ex-
presses properties that we desire in a positive example,
but we need a single labeling y+ to compute φ(y+, x).
To deal with this issue, we run inference to find the la-
beling that has zero loss and highest likelihood under the
model. We call this the 0-Loss Constrained MAP problem:
y+ = maxŷ:∆(ŷ)=0 L(ŷ;x). Note that when full labelings
are given as training data (such as in our first set of experi-
ments below), there is typically only one labeling with zero
loss, so this reduces to using the ground truth as the positive
example.

Negative Examples: The loss-augmented MAP prob-
lem (3) is equivalent to a MAP inference problem in a fac-
tor graph for the model with an additional factor for the
loss function. For a factor representing loss function ∆, the
needed MPBP messages are,

m∆→i(yi)=max
y−i

∆(yi, y−i)+
∑
i′ 6=i

mi′→∆(yi′)

 , (5)

where y−i is the set of all variables excluding the ith. Note
there is a separate message for each variable and each value
it can take on, so naively there are 2N optimizations to per-
form. A theme in developing efficient message passing al-
gorithms is to share the work between these different op-
timizations. In the following section, we show how to ef-
ficiently compute these messages for factors representing
several loss functions of interest.

3.2. Factor Computations

PASCAL Challenge Loss: Let y∗ be the ground truth
labeling. The loss used to evaluate the PASCAL VOC Seg-
mentation Challenge can be written as

∆PASCAL
y∗ (y) = 1 +

∑
i y
∗
i (1− yi)−

∑
i y
∗
i∑

i y
∗
i +

∑
i yi(1− y∗i )

. (6)

Let N+ =
∑
i y
∗
i , N0 =

∑
i:y∗i =1(1 − yi), and N1 =∑

i:y∗i =0 yi be the number of ground truth pixels, false neg-
atives, and false positives, respectively. We can rewrite the
loss as ∆PASCAL

y∗ (y) = 1+ N0−N+

N++N1
and the objective inside

the maximization in (5) as

f(N0, N1) =
N0 −N+

N+ +N1
+ s0(N0) + s1(N1) + κ, (7)

where s0(N0) is the cumulative sum of the first N0 sorted
negative incoming message values from variables where
y∗ = 1 and s1(N1) is the cumulative sum of the first
N1 sorted incoming message values from variables where
y∗ = 0, and κ is a constant.1 After relaxing N0 and N1 to
be real-valued, f is quasi-concave restricted to the domain
of interest: N0, N1 ≥ 0.

The key insight is that the optimal setting of y, and thus
the full outgoing message optimization (5) can be easily
computed from the choice of N0 and N1 that optimizes f .
A simple (but possibly suboptimal) optimization approach
that we found to work well is to perform local search using
the neighborhood achieved by incrementing or decrement-
ing either N0 or N1 by 1.

Empirically, by reusing intermediate solutions, solving
the first optimization takes linear time, then solving the lat-
ter N problems takes constant time each (usually 0, 1, or 2
steps of local search). Thus, we expect the sort operation to
dominate the complexity and runtime for computing all N
outgoing messages from a factor to scale like N logN i.e.,
logN time amortized per message. Indeed, for an image
with ten thousand pixels, like we use in our experiments,
exact computation at the loss factor in each iteration takes
.03 seconds. Empirical runtimes on larger problems indi-
cate the scaling to be roughly N logN (10k pixels: .03s,
100k pixels: .32s, 1M pixels: 3.3s, 10M pixels: 34.5s).

Bounding Box Loss: Suppose we are given bounding
box labels at training time and wish to optimize for perfor-
mance on a per-pixel segmentation task. This situation may
arise if we are training a segmentation model and would like
to augment the set of detailed per-pixel ground truths with a
set of easier-to-obtain, coarser bounding box ground truths.
One assumption that we might make is that bounding boxes
contain roughly a fraction R foreground pixels (and 1 − R
background pixels). Let y∗ be the coarse labeling where
y∗i indicates whether pixel i is within the bounding box. A
reasonable loss function is

∆BB
y∗ (y) =

∑
i:y∗i =0

yi +

∣∣∣∣∣∣
∑
i:y∗i =1

y∗i yi −R
∑
i:y∗i =1

y∗i

∣∣∣∣∣∣ . (8)

This loss can be decomposed into low order parts over pix-
els outside the bounding box and a high order part over pix-
els inside the bounding box. The high order term can be
written as a function of the number of pixels on inside the
bounding box i.e., f(

∑
i:y∗i =1 yi), so the cardinality poten-

tial from [7] can be used without modification.
Local Border Convexity Loss: A second form of weak

labeling that is easier for humans to produce than a full per-
pixel labeling is a rough inner-bound on the true labeling
plus a rough outline of the object to serve as an outer bound.

1This gives the basic idea but skips some steps and ignores some sub-
tleties.
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For example, a popular form of labeling in interactive im-
age segmentation derives from a user drawing a few strokes
to mark the internal skeleton of the object, and a crude cir-
cular stroke around the outside. We assume that the strokes
define the inner core of the object, so if follow any ray ex-
tending out from the stroke towards the boundary of the ob-
ject, the labeling along the ray will be monotonic—i.e., of
the form 1m0n. To maximize the loss, we need to define a
not-monotonic factor, where all N outgoing messages can
be computed in O(N) time, i.e., O(1) amortized time per
message.

4. Experimental Evaluation

Data: We took subsets of images from the PASCAL
VOC Segmentation challenge data set containing a given
object—Aeroplane, Car, Cow, and Dog. We then created
ground truth labels by assigning a pixel to foreground if it
was labeled {Aeroplane, Car, Cow, Dog} in the VOC labels
and background otherwise. We scaled the images so that
the minimum dimension was 100 pixels.

Model: We use 84 per-pixel features that represent
color and texture in the patch surrounding a pixel (the
unary model). We use a standard pairwise 4-connected
grid model, with 1 constant pairwise feature and 12 pair-
wise features that are based on boundary appearance (the
unary + pairwise model). Weights on pairwise features are
constrained to be positive, so that the resulting pairwise po-
tentials are submodular.

Inference: We use the COMPOSE framework [1]
to compute messages for the entire pairwise model using
dynamic graph cuts [4]. With decomposable (per-pixel)
losses, this guarantees that inference is exact, even though
the grid graph contains loops. With high order losses, infer-
ence is not guaranteed to be exact, but we find this frame-
work to work significantly better than standard max-product
belief propagation with a static message passing schedule.

4.1. PASCAL Loss

We first examine how training on different loss functions
affects test performance. We look at three loss functions:
0-1 Loss is the constant-margin structural SVM (1), while
Pixel Loss and PASCAL Loss are loss-augmented struc-
tural SVM training with the respective loss functions. We
pair each of these loss functions with different evaluations
at test time, pixel and PASCAL accuracy.

We also evaluate the tradeoff associated with using pair-
wise potentials in the model. On one hand, we know that
objects in images are smooth, so introducing pairwise inter-
actions should make the model more realistic. On the other
hand, when paired with high order losses, loss-augmented
MAP inference is no longer guaranteed to be exact, which
could possibly hurt learning performance.

See Fig. 2 for Aeroplane results and Fig. 3 for other ob-
jects. We show qualitative results in Fig. 4. Visually, the
PASCAL-trained model labels more pixels foreground, cor-
recting the overly conservative pixel-trained model.

We will show more results, including those for the other
losses at the poster.

XXXXXXXXXXTrain
Evaluate

Pixel Acc. PASCAL Acc.

0-1 Loss 82.1% 28.6
Pixel Loss 91.2% 47.5

PASCAL Loss 88.5% 51.6
(a) Unary only model

XXXXXXXXXXTrain
Evaluate

Pixel Acc. PASCAL Acc.

0-1 Loss 79.0% 28.8
Pixel Loss 92.7% 54.1

PASCAL Loss 90.0% 58.4
(b) Unary + pairwise model.

Figure 2. Test accuracies for training-test loss function combina-
tions on Aeroplane. A labeling of all background gives 86.6%
pixel accuracy, but 0 PASCAL accuracy.

XXXXXXXXXXTrain
Evaluate

Pixel Acc. PASCAL Acc.

C
ar Pixel Loss 80.4% 6.7

PASCAL Loss 72.9% 37.0

C
ow Pixel Loss 80.3% 23.3
PASCAL Loss 79.4% 48.1

D
og Pixel Loss 81.5% 16.6

PASCAL Loss 75.9% 38.3

Figure 3. Test accuracies for training-test loss function combina-
tions on other objects. All models are unary + pairwise. A label-
ing of all background gives pixel accuracies of 79.8%, 78.9%, and
80.2%, on Car, Cow, and Dog respectively.

Figure 4. Example test results on Cow dataset. From left to right:
(Left) Input. (Middle) Pixel Loss. (Right) PASCAL Loss.
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