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Abstract

Inference in Markov Random Fields can be cast as the
minimization of a potential function that is typically com-
posed of unary and pairwise terms. The pairwise potential-
s measure the cost of assigning labels to two neighboring
pixels and are often in the form of differences between la-
bels, rather than of their separate values. We generalize
this formulation to allow pairwise potentials to depend on
both label differences AND their separate values. We also
show that the minimization can be computed efficiently by
using an extended version of the generalized distance trans-
form in the belief propagation algorithm. We show that the
generalized potential function may be useful in applications
such as image restoration and labeling where fine grained
control is desirable.

1. Introduction
Markov Random Field ( MRF ) models have been quite

popular in computer vision due to their excellent perfor-
mance [2] and efficient approximate optimization tech-
niques based on graph cuts [1] or belief propagation [4, 3].

The general problem is one of label assignment: Let P
be the image pixel grid and L be a finite set of labels. The
cost of a labeling f : P → L is:

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N

Φ(fp, fq) (1)

where fp is the label of pixel p and N is a neighborhood
system such as the four-connected image grid. Dp(fp) is
the data cost for assigning label fp to pixel p and Φ(fp, fq)
is what we call the pairwise potential, which measures the
cost of assigning label fp and fq to neighboring pixels p and
q. The goal is to find the labeling with minimal costs.

In low-level vision problems such as image de-noising,
restoration and stereo, the pairwise potential Φ(fp, fq) de-
pends typically only on the difference between labels rather
than their separate values. For instance, the typical design
for Φ(fp, fq) is the squared Euclidean distance:

Φ(fp, fq) = (fp − fq)2 (2)

or the L1 distance:

Φ(fp, fq) = |fp − fq| . (3)

The former induces a cost that grows more rapidly than the
latter does with the difference between the two labels. An-
other useful variant is the truncated pairwise potential which
imposes a ceiling on the cost of a labeling:

Φ(fp, fq) = min {|fp − fq|, d} (4)

where d is a constant positive number.
Although these designs differ in rationales, their com-

mon feature is that they depend only on the difference of
labels rather than on their separate values. This is quite nat-
ural, as it captures a preference for piecewise smooth im-
ages, in which nearby pixels tend to have similar values.

The restriction to differences has led to efficient algo-
rithms based on the generalized difference transform [2].
However, this restriction is burdensome at times. For in-
stance, if the frequency of occurrence of different labels is
different, a pairwise potential that knows only the difference
between labels cannot use this extra information in a flexi-
ble way. In another scenario, suppose that we know some
labels coexist easily with others nearby and some do not.
How to incorporate this prior into the pairwise potential?

The contributions of this paper are twofold: First, we ex-
tend the pairwise potential so that it depends on both the
difference of labels and their separate values. Second, we
give an efficient message passing algorithm to compute the
optimal labeling. More specifically, we show that the prop-
agation of messages among nearby nodes takes O(k log k)
time instead of the otherwise quadratic time, where k is the
number of labels.

2. Extended Pairwise Potentials
We propose to study pairwise potentials of the form:

Φ(fp, fq) =
1

2
[λ(fp) + λ(fq)] (fp − fq)2 (5)

where λ : L → R+ is a function defined in the label space.
Our discussion is not affected even (fp − fq)2 is replaced
by |fp − fq| or a truncated version similar to Equation 4.
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Figure 1. The lower envelope of parabolas with equal eccentricity.

Clearly, the new definition reduces to the original pair-
wise potential by setting λ = 1 for all labels. From a regu-
larization point of view, instead of using a single fixed num-
ber to balance the data cost and the discontinuity cost, the
new regularization is adaptive and allows a fine grained in-
corporation of extra information about the task at hand.

Several applications can benefit from this generalization.
For instance, in the task of image restoration, suppose we
estimate from images that certain colors appear more fre-
quently than others. We can then set λ(fp) to be inversely
proportional to the probability of occurrence of fp. This
implicitly encourages using certain color models to restore
the image. In the extreme, we can set λ(fp) to infinity for
irrelevant colors in fp and this results in color compression.

In object labeling, let us create the hypothetical label s-
pace L = {sky, grass, horse, dinosaur, · · · }. If we know
that the occurrence of a dinosaur is less likely compared to
sky or horse, we then can set λ(dinosaur) to be a large num-
ber in order to discourage the labeling of any object to be a
dinosaur in a soft manner. Note that this does not rule out
the possibility that a dinosaur is actually detected.

3. Efficient Computation

We discuss how to do the optimization efficiently with
extended pairwise potentials. Felzenszwalb and Hutten-
locher [2] showed a linear time algorithm to compute the
propagation of messages using the generalized distance
transform, which amounts to computing the lower envelope
of a set of parabolas (or cones) with equal eccentricity (or
slope) (Figure 1). Compared to that algorithm, our study
leads to a further generalization in one dimensional cases
for both the squared Euclidean and L1 distances. Geomet-
rically we compute the lower envelope of a set of parabolas
with unequal eccentricity (Figure 2).

We first revisit the belief propagation algorithm. The
method works by aggregating and passing messages in par-
allel and in an iterative way. Each message is a vector of
dimension equal to the number of labels. Let mt

p→q be the
message sent from node p to node q at iteration t. This mes-

Figure 2. Parabolas with unequal eccentricity.

sage is computed in the following way:

mt
p→q(fq) = min

fp

Φ(fp, fq) +Dp(fp) +
∑

s∈Np\q

mt−1
s→p(fp)

︸ ︷︷ ︸
h(fp)


(6)

= min
fp

[Φ(fp, fq) + h(fp)] (7)

where h(fp) aggregates the local messages at iteration t−1
and the data cost for pixel p. After a number of iterations a
belief vector results from each pixel, and a label that mini-
mizes the belief vector is selected individually at each node.
How to compute the messages defined in Equation (7) effi-
ciently is a challenging problem.

Clearly a naive algorithm takes O(k2) time for each
piece of message where k is the number of labels. On the
other hand, when the pairwise potential Φ(fp, fq) takes the
form |fp − fq| or (fp − fq)2, the computation is known to
beO(k). We show that for the extended pairwise potentials,
the messages can be computed in O(k log k) time. First we
split the potential Φ(fp, fq) into two pieces:

Φ(fp, fq) = Φp→q(fp, fq) + Φq→p(fp, fq) (8)

where Φp→q = 1
2λ(fp)(fp − fq)2 and Φq→p(fp, fq) is the

remaining term. Because each pairwise potential is comput-
ed twice for each incident node, we are mainly interested in
computing the following objective (ignoring constant fac-
tors or truncated variations):

mt
p→q(fq) = min

fp

[
λ(fp)(fp − fq)2 + h(fp)

]
(9)

Equation (9) is an extension of the generalized distance
transform. To put it in a more clear form, we want to com-
pute the following distance transform:

g(x) = min
y

[
λ(y)(x− y)2 + h(y)

]
(10)



Figure 3. Representation of the lower envelope. Red dots are
the transition points and each interval memorizes the index of the
parabola that forms the lower envelope within that interval.

where x, y ∈ L and g, λ, h are simplified notation for the
above messages and functions. Geometrically this is equiv-
alent to computing the lower envelope of a set of parabolas
with different eccentricity (Figure 2).

4. The Algorithm
We give a simple O(k log k) algorithm using divide and

conquer. At a high level, the algorithm partitions the k-
dimensional array (the message) into two disjoint subsets,
each of size at most dk2 e. Lower envelopes are first comput-
ed on each subset and then merged together.

We use a list of transition points to represent the low-
er envelope. More formally, the lower envelope L is rep-
resented by a sequence (−∞ = a0, a1, · · · , an) where
a0 < a1 < · · · < an are real numbers that form the tran-
sition points (Figure 3). To each transition point we also
associate the index of the parabola that forms the lower en-
velop immediately to the right of that point.

We show that merging two lower envelopes L1 =
(a0, · · · , am) and L2 = (b0, · · · , bn) takes time O(m+n).
This is achieved by the following:

Step 1. Sequences merge: Unite L1 and L2 to (c0, · · · , ck)
with c0 < · · · < ck and ci ∈ L1 or ci ∈ L2. Identical
transition points are merged into single points.

Step 2. Intersection of parabolas: For each interval
(ci, ci+1), let v1 and v2 be the two parabolas that form
the lower envelope in that interval in L1 and L2 re-
spectively. Split (ci, ci+1) into sub-intervals according
to three different cases of intersections (Figure 4).

Step 3. Index update: Update the index of the parabola that
lies on the lower envelope immediately to the right side
of each transition point. Merge adjacent intervals to-
gether if they share the same parabola index.

Figure 4. Three cases of interval splitting corresponding to two,
one, or no intersection between two parabolas that form the lower
envelope in the interval (ci, ci+1).

4.1. Complexity Analysis

Both Step 1 and Step 3 clearly take linear time in m and
n. For Step 2, since each interval can split into at most three
intervals, the resulting number of intervals is still linear in
m and n. Let T (k) be the time for computing the lower
envelope of k parabolas. The following recursion holds:

T (k) =

{
2T (k

2 ) +O(k) k > 1,
O(1) k = 1,

(11)

The running time is therefore T (k) = O(k log k).

5. Experiments
We apply the extended pairwise potentials to the task of

image restoration. The goal is to test its ability in incorpo-
rating certain color distributions for the fine-grained control
of image restoration. This might be useful for compression
where very few colors are used to encode an image.

Figure 5 shows our experiment results on synthetic data.
In Figure 6 and Figure 7 we show the results on real images.
In all the cases, λ takes roughly the shape of the inverse
of the intensity histogram of images. The resulting image
restorations therefore use only very few colors to encode an
image. We expect that our method may also be useful for
image segmentation.

Our implementation is adapted from the code in [2]
and is in the form of a MATLAB mex file. The code
is available at http://www.cs.duke.edu/˜steve/
lower_envelope.html.

6. Conclusions
We extended pairwise potentials in MRFs so that they

depend on both the difference of labels and their separate
values. The computation is made efficient by reducing the

http://www.cs.duke.edu/~steve/lower_envelope.html
http://www.cs.duke.edu/~steve/lower_envelope.html


Figure 5. Top row: Left is the input image. Middle is the image
restoration obtained by [2]. Right is our result. The bottom row
shows the zoomed in surface plot of the upper left black cell in the
top row. The weights λ are set low for black and white and high
for other intensity values. Best viewed when enlarged.

message passing to computing the lower envelope of set
of parabolas with unequal eccentricity. We show that this
step can be computed in O(k log k) time using divide and
conquer. Experiments show that the pairwise potential may
be useful in applications like image restoration where a
fine-grained integration of prior knowledge is preferred.
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