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Abstract
Qualitative spatial reasoning deals with relational
spatial knowledge and with how this knowledge
can be processed efficiently. Identifying suitable
representations for spatial knowledge and check-
ing whether the given knowledge is consistent
has been the main research focus in the past two
decades. However, where the spatial information
comes from, what kind of information can be ob-
tained and how it can be obtained has been largely
ignored. This paper is an attempt to start filling this
gap. We present a method for extracting detailed
spatial information from sensor measurements of
regions. We analyse how different sparse sensor
measurements can be integrated and what spatial
information can be extracted from sensor measure-
ments. Different from previous approaches to qual-
itative spatial reasoning, our method allows us to
obtain detailed information about the internal struc-
ture of regions. The result has practical implica-
tions, for example, in disaster management sce-
narios, which include identifying the safe zones in
bushfire and flood regions.

1 Introduction
There is the need for an intelligent system that integrates dif-
ferent information such as sensor measurements and other
observations with expert knowledge and uses artificial intel-
ligence to make the correct inferences or to give the correct
warnings and recommendations. In order to make such an in-
telligent system work, we need to monitor areas of interest,
integrate all the available knowledge about these areas, and
infer their current state and how they will evolve. Depending
on the application, such an area of interest (we call it a spatial
region or just region) could be a region of heavy rainfall, a
flooded region, a region of extreme winds or extreme temper-
ature, a region with an active bushfire, a contaminated region,
or other regions of importance.

Considering such a region as a big blob or as a collection
of pixels on a screen is not adequate, because these regions
usually have a complex internal structure. A bushfire region
for example, might consist of several areas with an active fire,
several areas where the fire has passed already but are still

hot, several areas that are safe, or several areas where there
has been no fire yet, etc. These areas form the components of
the bushfire region. Knowing such detailed internal structure
of a region can help predict how the region evolves, as well
as for determining countermeasures to actively influence how
a region evolves.

In this paper, we present methods for
• integrating measurements of spatial regions from differ-

ent sensor networks to obtain more accurate information
about the regions;
• extracting spatial information from the integrated sensor

measurements in the form of a symbolic representation.
Having a symbolic representation of the internal structure in-
stead of a collection of pixels on a screen allows us to an-
swer queries, derive new knowledge, identify patterns, or to
express conditions and rules, for example, when a warning
must be issued. It also allows us to obtain an accurate ap-
proximation in the first place: by being able to represent the
internal structure of a spatial region, we can build up a partial
representation of the internal structure of a monitored region,
track the region over time, and refine the partial representa-
tion whenever we obtain new sensor measurements or other
new information.

The remainder of this paper is organised as follows: in Sec-
tion 2 we motivate and formally define the problem in ques-
tion. This is followed by a review of related literature in Sec-
tion 3. In Section 4 we describe the methods for matching
sensor measurements and for extracting spatial information
and evaluate them in Section 5. We conclude the paper in
Section 6.

2 Our Approach
The problem we are trying to solve, i.e. extracting accurate
spatial information about the internal structure of a region
using sensor measurements, is a very general problem with
many facets. It depends on (1) what assumptions we make
about the regions, (2) what assumptions we make about the
sensors, and (3) what kind of spatial information we are con-
sidering. We will make some restrictions on all three points to
see if the desired outcome (i.e. accurate spatial information)
can be achieved at all. In future work we plan to lift these
restrictions and to allow greater generality. The restrictions
and assumptions we make in this paper are the following:



(a) A complex region
consisting of positive
components r1, r2 and
negative components
r0, r3, r4, r5.

(b) A complex region
moving over a set of arbi-
trarily placed sensors on
the plane.

(c) Normalised sensor
measurement of a com-
plex region. Thick lines
represent positive inter-
vals and thin lines nega-
tive intervals.

(d) Normalised sensor
measurement of the same
region using a different
set of sensors.

(e) Integrating two mea-
surements reveals partial
information about which
positive intervals belong
to the same components.

Figure 1: A complex region measured by two sets of sensors.

Regions: A complex region R is a two-dimensional spatial
entity in the plane that can have a finite number of compo-
nents. Each component can have arbitrary shape, extent and
location and can have a finite number of holes of arbitrary
shape, extent and location. Each hole can recursively contain
a complex region which is part of the original complex re-
gion. We say that each component, independent of whether
it is inside a hole or not, is a positive component of R, while
each hole and each bounded or unbounded area of the plane
that is not a positive component is a negative component of
R. See Figure 1a for an example of such a region.
Restrictions on regions: We assume that a given complex re-
gion is rigid, i.e. does not change shape, extent or relative
location of any of its components. We allow regions to move,
to change speed, direction of movement and their orientation.
We further assume that during a sensor measurement, regions
have constant speed, direction and orientation.

Sensors: A sensor s is a point in the plane that can measure
whether it is inside a region or outside a region at time t, that
is it senses 1 if s is in a positive component of R and 0 if
s is in a negative component of R. As a practical example,
consider a sensor that measures (absence of) direct sunlight.
If a positive component of a region is between the sun and
the sensor it measures 1, otherwise 0. We consider sets S of
sensors si located on arbitrary but known locations on a plane
(see Figure 1b).
Restrictions on sensors: We assume that sensors are static
and do not change their locations. Sensor plane and region
plane can be different, but must be parallel.

Sensor measurements: A single sensor measurement (in
short: a measurement) M occurs when a complex region R
moves over a set {s1, . . . , sn} of sensors. Given the above as-
sumptions and restrictions on regions and sensors, each mea-
surement M corresponds to a set {`1, . . . , `n} of parallel di-
rected lines, where each line `i corresponds to one sensor si.
The lines (more precisely line segments) start at the begin-
ning of the measurement M and end at the end of the mea-
surement. Each line may contain zero or more alternating
positive and negative intervals, where each positive interval
corresponds to the time when the sensor was in a positive

component of R and each negative interval corresponds to
when the sensor was outside of R (see Figure 1c). We as-
sume that each measurement covers all positive components
of the region. Note that the ordering of the parallel lines and
the distances between lines depend on the direction of move-
ment of the measured region and the actual location of the
sensors on the plane relative to this direction.

A normalised measurement M is a measurement where
all sensors are located on a line orthogonal to the direction
of movement of the measured region, with arbitrary distance
between sensors. Any measurement can be converted to its
corresponding normalised measurement M if the direction of
movement of the measured region and the actual sensor loca-
tions are known. This can be achieved by the following steps:
(1) select a line orthogonal to the direction of movement such
that all sensors are on the side of the line where the region is
coming from, (2) project all sensors orthogonally on this line,
and (3) subtract the distance between the line and each sensor
si at the beginning of each `i.
Restrictions on sensor measurements: We assume that the di-
rection of movement of regions is known, which can be easily
obtained if there is at least one sensor consisting of multiple
pixels. Then we can always obtain a normalised measure-
ment. Note that this is independent of the orientation of a
region, i.e. how it is rotated, which is unknown. We further
assume that different measurements of the same region are
independent, in particular that distances between sensors of a
normalised measurement vary. This could result from differ-
ent sets of sensors or from a different direction of movement.

Consequences of our assumptions and restrictions: Our
assumptions are relatively general, the strongest restriction
we make is that complex regions are rigid. Except for di-
rection of movement and location of sensors, everything else
is unknown and unrestricted. Given two independent nor-
malised measurements, these measurements correspond to
two sets of parallel lines that cut through the measured region
at independent and unknown angles δ (due to unknown orien-
tation of regions). Depending on the speed during a measure-
ment, regions appear stretched/skewed along the direction of
movement. The slower the movement, the more stretched is
the appearance of the region as each sensor stays within the



region longer. In addition, due to the unknown distance be-
tween sensor plane and region plane, the relative scale of each
measurement is also unknown. In the example of a direct
sunlight sensor, regions closer to the sensors appear larger in
the measurement. Note that under our assumptions, it is in-
terchangeable to have moving regions and static sensors, or
moving sensors and static regions.

Spatial information: The spatial information we are consid-
ering is the topology of R (for a complex region this refers
to the number of components and holes and their hierarchy;
cf. [Li, 2010]), the relative size of the components of R, the
relative direction and the relative distance between compo-
nents of R.

Problem description and motivation: In the following, we
take as input two different measurements M and M ′ as sets
of parallel lines obtained in the way described above. The
distance between the parallel lines is arbitrary and it does not
matter which sensor corresponds to which line. That means
that the only input we have available are the parallel lines and
their intervals, we do not know what is happening between
these lines. In order to obtain accurate spatial information
about R we need to be able to infer this missing information.
This will be achieved by integrating the different measure-
ments through reconstructing the actual relationship between
the measurements and the region.

Our approach is motivated by the following observations:
1. Given a single measurement M where two adjacent par-

allel lines have overlapping positive intervals i1 and i2,
i.e. there is a time when both sensors are in a positive
component of R. Without knowledge about the area
between the two adjacent lines, we cannot say for sure
whether i1 and i2 refer to the same positive component
of R or to two different ones (see Figure 1c).

2. Given a second measurement M ′ that measured R using
a different angle δ′ (see Figure 1d). Assume there is a
positive interval i3 in M ′ that intersects both i1 and i2,
then we know for sure that i1 and i2 and also i3 are part
of the same positive component of R (see Figure 1e).

It is clear that by integrating two or more measurements we
obtain much more accurate information about a region than
having one measurement alone. However, obtaining this in-
formation is not straightforward as the angle and the scale of
the measurement is unknown. This results from our assump-
tion that distance between region and sensors and orientation
of the measured region are unknown. Therefore, our first task
is to develop a method to identify a translation, rotation, and
scaling that allows us to convert one measurement into an-
other such that the intervals can be matched. Once we have
obtained a good match, we will then extract detailed spatial
information from the integrated sensor information. We then
evaluate our method and determine how close the resulting
spatial information is to the ground truth and how the quality
depends on factors such as sensor density.

3 Related Work
Although the setting of our problem seems related to classi-
cal sensor fusion techniques [Crowley, 1993; LaValle, 2010],

no such techniques are known to be adequate to tackle our
problem. For example, a sensor fusion method such as the
extended Kalman filter requires a state transition model with
specific parameters for each individual region and measure-
ments of system inputs for its implementation, which is in
practice difficult to obtain. Our approach is generic and does
not have any of these requirements. In particular, it does not
require a description of region geometry in terms of equa-
tions.

In the context of qualitative spatial reasoning [Cohn and
Renz, 2008], most research has taken the objects (e.g. re-
gions or relations) of a symbolic reasoning process as given
and paid only little attention to the problem of acquiring such
information from the environment. In [Santos and Shana-
han, 2003] a stereo vision sensor measures 2D depth pro-
file of a 3D environment taken at a particular height. The
objects in the environment are represented as peaks of the
depth profile graph. The depth peaks from different snap-
shots are then matched to provide a qualitative interpretation
of their transitions. Inglada and Michel [2009] use remote
sensing to extract topological relations between complex ob-
jects. A graphical representation of the relations is built to
allow recognising objects using graph-matching techniques.
Both mentioned methods, however, are not suitable for cap-
turing detailed internal structures of regions that result from
environmental parameters, such as light, sound, chemicals,
temperature, pressure or magnetism. Our work makes no as-
sumptions about the sensor type and includes sensor networks
based on microelectromechanical system (MEMS) [Gardner
et al., 2005] sensors that overcome such deficiencies.

Similar to our work there are approaches that employ a
MEMS based sensor network: Worboys and Duckham [2006;
2013] describe a computational model for tracking topologi-
cal changes in spatial regions monitored by a sensor network.
Jiang and Worboys [2009] go further and provide a system-
atic formal classification of the possible changes to a region,
based on point-set topology and graph homomorphism. All
these algorithms, however, assume the regions to be con-
structed from connected subgraphs of adjacent sensor nodes
that detect the region, which do not allow us to reason about
the internal structure of the areas between the sensors mea-
surements. By contrast, this paper considers all aspects of the
internal structure of regions and uses it to infer knowledge
about the areas between sensor measurements.

Finally, there are interpolation techniques from computer
vision [Szeliski, 2010] and spatial statistics [Cressie, 2011],
which are not suitable for situations where the sensor network
is sparse and only partial information about regions without
further statistical information is known.

4 Closing the Gap in Sensor Measurements
In this section we present a method for integrating two in-
dependent sensor measurements of a complex region (Sec-
tion 4.1) which allows us to extract more precise spatial in-
formation about the complex region (Section 4.2).

4.1 Integration of Sensor Measurements
For integrating two independent measurements we search for
parameter values for translation τ , rotation ρ and scaling σ



(a) An overlay of two
sensor measurements
with mismatches that are
indicated by circles.

(b) A partition of the
measurement from Fig-
ure 1c, which consist of
two clusters c1 and c2.

(c) A partition of the
measurement from Fig-
ure 1d, which consist of
two clusters c′1 and c′2.

(d) Initial match based on
the spatial structures of
the clusters. There are 4
mismatches.

(e) Result after fine-
tuning with a local
search.

Figure 2: Integration of sensor measurements based on Algorithm 1.

of the second measurement that minimise mismatches with
the first measurement. A mismatch occurs if, in the over-
lay of the sensor measurements, a positive interval from one
measurement intersects with a negative interval from another
measurement (see Figure 2a). An uninformed local search
in the parameter space will likely lead to local minima. In
order to avoid such local minima, we first build clusters in
the individual measurements that give us information about
spatial structures of the measurements (Figure 2b and Fig-
ure 2c), and exploit this information to obtain a good initial
match (Figure 2d). Once good initial values for τ, ρ, σ are
found, we fine-tune and improve the match by using a local
search method that further reduces the number of mismatches
between the measurements (Figure 2e).

The details of our procedure are given in Algorithm 1. The
main function is IntegrateSensorMeasurements, which takes
two sensor measurements and first determines for each sensor
measurement a set of possible partitions (lines 2–3) by calling
GenPartitions. A partition P of a measurementM consists of
clusters, where a cluster is again comprised of positive inter-
vals inM that potentially belong to the same positive compo-
nent of underlying regionR (see Figure 2b and Figure 2c). To
be precise, we say two positive intervals i1 and i2 are neigh-
boured and write i1 ∼ i2, if i1 and i2 are from adjacent sensor
lines and temporally overlap. We furthermore say that posi-
tive intervals i1 and i2 belong to the same cluster (or to the
same equivalence class), if i1 ∼+ i2, where ∼+ is the tran-
sitive closure of ∼. This allows us to obtain a partition (or
quotient set) M/∼+ of the sensor measurement M .

Since some of these clusters could actually belong to the
same component of R (unless there exists a negative inter-
val in M that clearly separates the clusters), we consider all
coarser partitions of M/∼+ induced by combining clusters
that could potentially belong to the same connected compo-
nent ofR. This is done by calling Function GenCoarserParti-
tions (line 16), where two clusters are merged if the distance
between the clusters is less than a threshold value. This value
controls the number of possible coarser partitions which is at
most 2|M/∼+|. Note that it is irrelevant if the detected clus-
ters reflect the positive components of R truthfully, as they
are only used to find a good initial match and not for obtain-
ing spatial information.

From collections L,L′ of all coarser partitions of measure-

ments M,M ′ that we obtained in the previous step, we now
try to find a pair of partitions from L × L′ that will lead to
the best match of M,M ′. As a heuristic for finding such a
pair we rank all pairs (P, P ′) ∈ L × L′ according to the
structural similarity between P and P ′ by means of Func-
tion StructDist (line 4). More precisely, Function StructDist
measures the structural distance between partitions P and P ′,
for which we consider the relative sizes and relative directions
(i.e. angles) of the clusters in each partition. Given two lists
of clusters (c1, c2, . . . , ck) of P and (c′1, c

′
2, . . . , c

′
k′) of P ′

sorted according to their sizes (the lower the index, the bigger
the size), we determine angular information of salient clusters
(the lower the index, the more salient is the cluster), and com-
pare the similarity between P and P ′. This is achieved by the
following formula:

max{k,k′}−2∑
i=1

|∠cici+1ci+2 − ∠c′ic
′
i+1c

′
i+2| · wi, (1)

where wi is a weight given by the maximum of the sizes of
ci and c′i. The formula in (1) captures the angles between
salient clusters and returns a large value, if the the angles be-
tween salient clusters of the two partitions are dissimilar, and
returns a smaller value if the angles between salient clusters
are similar.

After ranking the pairs of partitions according to the sim-
ilarity criteria in formula (1), we start with the pair with the
highest similarity from the ranked list S, and calculate initial
parameter values τ, ρ, σ respectively for translation, rotation
and scaling. To overcome local minima we choose the pair
of partitions with the next highest similarity from S until ei-
ther the number v of mismatches are below a threshold ε or
no more pairs of partitions are left in S (lines 6–10). Ob-
taining the number v of mismatches and the parameter values
from a pair of partitions is achieved by calling function Get-
Parameter (line 8), which compares the two most salient and
clearly distinguishable clusters (c1, c2) and (c′1, c

′
2) from the

partitions and determines the translation, rotation and scale
between those pairs. After obtaining the initial parameters,
function MinMismatches further reduces the number of mis-
matches and fine-tunes the result by performing a local search
around the initial parameter values (line 11). This is done by
means of point set registration, which is a local search tech-
nique for matching 2D point sets [Jian and Vemuri, 2011]. As



Algorithm 1: Integrating sensor measurements.
1 Function IntegrateSensorMeasurements(M, M’)

Input : Two different measurements M and M ′.
Output: The merged version of M and M ′.

// initial match
2 L← GenPartitions(M)
3 L′ ← GenPartitions(M ′)
4 S ← Rank(L× L′, key = StructDist)
5 v∗ ←∞, τ∗ ← 0, ρ∗ ← 0, σ∗ ← 0
6 while v∗ > ε and S 6= ∅ do
7 (P, P ′)← Pop(S)
8 (v, τ, ρ, σ)← GetParameter(P, P ′)
9 if v < v∗ then

10 (v∗, τ∗, ρ∗, σ∗)← (v, τ, ρ, σ)

// local search
11 (τ∗, ρ∗, σ∗)← MinMismatches(M,M ′, τ∗, ρ∗, σ∗)
12 return M ∪ Rotateρ∗(Translateτ∗(Scaleσ∗(M ′)))

13 Function GenPartitions(M)
Input : A sensor measurements M .
Output: A list L of partitions of M .

14 foreach positive intervals i1, i2 ∈M do
15 Set i1 ∼ i2, if i1 and i2 are from adjacent sensors

and temporally overlap.
16 L← GenCoarserPartitions(M/∼+)
17 return L

18 Function StructDist(P, P ′)
Input : Two sets P, P ′ consisting of clusters.
Output: The structural distance between P and P ′.

19 (c1, c2, . . . , ck)← SortSize(P )
20 (c′1, c

′
2, . . . , c

′
k′)← SortSize(P ′)

21 return∑max{k,k′}−2
i=1 |∠cici+1ci+2 − ∠c′ic

′
i+1c

′
i+2| · wi

point set registration requires two sets of points as its input,
we uniformly sample points from positive sensor intervals of
both of the sensor measurements. The final outcome is the
union of two sensor measurements, where the second sensor
measurement is transformed using the parameters found.

4.2 Spatial Knowledge Extraction
After integrating sensor measurements, it is now possible
to extract more precise spatial information. For example,
from only one sensor measurement it was impossible to ex-
tract precise information about the connected components of
a complex region, as all positive intervals are disconnected.
From the merged sensor measurements, however, it is possi-
ble to extract this information, as overlaying different mea-
surements connects the intervals that were previously dis-
connected. In what follows we present an algorithm (Algo-
rithm 2) for extracting spatial information from the merged
sensor measurements.

The main function ExtractSpatialKnowledge takes as its
input a merged sensor measurement and extracts spatial in-

Algorithm 2: Extracting spatial knowlege.
1 Function ExtractSpatialKnowledge(M)

Input : Sensor measurement M .
Output: An augmented containment tree of M .

2 C ← GetConnectedComponents(M)
3 T ← ContainmentTree(C)
4 T+ ← Augment(T )
5 return T+

6 Function GetConnectedComponents(M)
Input : Sensor measurement M
Output: List of connected pos. and neg. components

7 foreach positive intervals i1, i2 ∈M do
8 Set i1 ∼ i2, if i1 intersects i2.
9 foreach negative intervals i1, i2 ∈M do

10 Set i1 ∼ i2, if i1 intersects i2.

11 return M/∼+

formation. The extracted spatial information is represented
in the form of a tree, which is called an augmented contain-
ment tree, where each node is either a positive component or
a negative component and the parent-child relation is given
by the containment relation of the components, i.e. a negative
(resp. positive) component is a child of a positive component
(resp. negative component), if the former is inside the latter.
Additionally, for each node we provide spatial relations (di-
rections, distances, and sizes) between its children nodes and
between parent and children nodes. Most other relations can
be inferred or they can be extracted as well. This allows us
to obtain information about the internal structure of any con-
nected component of a complex region. Which spatial rela-
tions we extract is actually not relevant anymore as we now
have a reasonably fine grained actual representation of the
complex region which allows us to obtain spatial relations of
most existing spatial representations.

Function ExtractSpatialKnowledge first determines con-
nected components in the sensor measurement (line 2). We
not only detect positive components, but also negative com-
ponents (i.e. holes), as holes play a role in several applications
as mentioned in the introduction, e.g. disaster scenarios. We
first identify the class of all intervals that are connected by
the intersection relation ∼, and obtain the partition M/∼+,
where ∼+ is the transitive closure of ∼ (line 11).

From the connected components we build a tree that re-
flects the containment relations between the components
(line 3). We first detect the root r0 of the tree, i.e. the neg-
ative component in the background which contains all other
components. This can be easily done by finding the first neg-
ative interval of any sensor measurement and returning the
negative component that contains the negative interval. Af-
terwards, we recursively find the children nodes of a parent
node ri, which are components “touching” ri. This too can
be realised easily by determining the interval (and the com-
ponent containing the interval) that is immediately next to an
interval of the parent component. We generate the contain-



Figure 3: An illustration of the augmented containment tree
extracted from the merged measurements in Figure 2e.

ment tree using breadth-first search.
Once the containment tree is built, we augment the tree

with spatial relations from the spatial calculi that are most
suitable for a given application. We recursively detect the in-
ternal structure of each component by going through every
node of the containment tree using breadth-first search and
extract spatial information (directions, distances, and sizes) of
its children. The final outcome is then an augmented contain-
ment tree (see Figure 3). Having such a tree, one can answer
spatial queries such as “right of(x,A) ∧ size<(x,B)”
by finding nodes in the tree that satisfy the queries. These re-
lations can then be used for spatial reasoning in the standard
way [Cohn and Renz, 2008].

5 Evaluation
The purpose of this paper was to obtain accurate information
about the internal structure of a complex region by integrating
sensor measurements. In order to evaluate the quality and ac-
curacy of our method, we developed a tool that can randomly
generate arbitrarily complex spatial regions (see Figure 4).
The generated regions are initially bounded by polygons, but
the edges are then smoothened. We also randomly generate a
line of sensors (corresponding to a normalised measurement),
with random orientation and gap between sensors and random
speed and take measurements for each choice. The regions
are 800× 600 pixels with 8–9 components on average.

For our experiments, we selected equidistant sensors, since
we want to analyse how the gap between sensors influences
the accuracy of the outcome. It does not affect our method.
The chosen orientation, scale and speed of the sensor mea-
surement is unknown to our method and will only be used
to compare accuracy of the resulting match with the ground
truth. We are mainly interested in how good the resulting
match is to the correct match. The closer orientation and scale
is to the true values, the more accurate the spatial informa-
tion we can extract, provided the sensors are dense enough.
A perfect match (i.e. orientation and scale differences are 0)
leads to the best possible information for a given sensor gap.
We therefore measure the difference in orientation and scale
to the correct values. We also measure the percentage of
mismatches of all possible intersections. While orientation
and scale differences can only be obtained by comparing to
the ground truth, mismatches can be obtained directly. The
denser the sensors, the more mismatches are possible.

We created 100 random complex regions and two measure-
ments with random angle per region and per sensor density
and applied our method to match the measurements and to

Figure 4: A randomly generated complex region.

extract the spatial relations from the resulting match. We then
evaluated the effectiveness of the initial match and the addi-
tional fine-tuning step by treating them separately, and also
compared the result against the point set registration method
from [Jian and Vemuri, 2011], which is used for the local
search in our algorithm.

As shown in Table 1, the initial matches before the fine-
tuning with local search are already close to the correct match
and are significantly better than point set registration alone.
However, the number of mismatches is as expected fairly
large for sparser sensor density (i.e. higher gap size). This
is significantly reduced by adding the fine-tuning step and
could be further reduced by using more advanced local search
heuristics. The point set registration method requires more
computational resources when the sensor network is dense,
because there are more points to match. By contrast, the run-
time in the initial match increases with growing gap size. This
is because sparse sensors lose more information than dense
sensors. The possibility for building different combinations
of clusters of a measurement increases as the gap size grows,
which significantly increases the runtime.

The number of components detected by our algorithm is
generally greater than the ground truth. There are two main
reasons for this observation: first, some components are only
connected by very slim parts which are usually missed by the
sensors; second, some mismatches causes some very small
components to be detected. However, the difference between
the number of components we detected and the ground truth
is reasonable and can be improved by integrating further mea-
surements.

6 Conclusions
In this paper we presented a sophisticated method for obtain-
ing accurate spatial information about the internal structure
of complex regions from two independent relatively sparse
sensor measurements. The task was to develop a method that
can infer information about what happens in the areas the sen-
sors cannot sense by integrating different independent mea-
surements of the same complex region. The intention was
to obtain more information than just the sum of individual
measurements, each of which does not contain much accu-
rate information. Furthermore, we wanted to obtain a sym-
bolic representation of the sensed region that allows intelli-
gent processing of the knowledge we obtained, such as query
processing, change detection and prediction, or the ability to
specifying rules, for example when warnings are issued. One
of the benefits of our method is that it is very generic and does



Table 1: Evaluation based on 100 randomly generated complex regions.

Sensor Gap (px) PSR a Initial Match Initial Match + Local Search

MM b RT MM AD SD RT MM AD SD RT

5 48.95 1077685 1.83 0.03 0.73 46663 1.46 0.03 0.61 1126474
15 48.06 152179 8.68 0.12 1.49 91730 4.09 0.05 0.66 219884
20 49.27 83273 18.68 0.14 2.58 98244 6.19 0.05 0.99 147899
25 46.35 60832 22.36 0.16 2.69 133326 7.85 0.07 1.34 173744

a PSR: Point Set Registration in [Jian and Vemuri, 2011]
b MM: Mismatch (%), AD: Angle Difference (radian), SD: Scale Difference (%), RT: Runtime (ms)

not require any complicated state transition models or object
parameterisations that are typically used in the area of sensor
fusion.

As our evaluation demonstrates, our method can success-
fully integrate different independent sensor measurements
and can obtain accurate spatial information about the sensed
complex regions. We make some restrictions about the sen-
sor setup and the complex regions we sense. In the future we
plan to lift these restrictions and analyse if we can obtain sim-
ilar accuracy when using a less restricted sensor setup, such
as, for example, using mobile phones as sensors which can
follow any path. Allowing non-rigid regions and to detect
their changes also seems a practically relevant generalisation
of our method.

In this paper we restricted ourselves to the detection of
the internal structure of a single complex region. Obviously,
this restriction is not necessary and we can easily apply our
method to the detection of multiple complex regions and the
relationships between the regions. In that case we can mod-
ify our sensors so they detect in which regions they are in
at which time. Using the same procedure as for an individ-
ual complex region, we can obtain an integration of sensor
measurements that allows us to infer the relations between
multiple regions. What is not as straightforward is to change
what sensors can measure, for example, a degree of contain-
ment, or continuous values rather than 1/0 values. Integrating
such measurements requires significant modifications to our
algorithms.
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