
Evaluating and Minimizing Ambiguities in Qualitative
Route Instructions

Matthias Westphal
Department of Computer Science

University of Freiburg
Freiburg, Germany

westpham@informatik.uni-freiburg.de

Jochen Renz
Research School of Computer Science

The Australian National University
Canberra ACT 0200, Australia
jochen.renz@anu.edu.au

ABSTRACT
Route navigation is a widely studied subject from both cog-
nitive and practical points of view. A particular aspect is
the generation of (verbal) route instructions that are robust
with respect to ambiguous verbal terms. Work in this area
usually builds on counting the number of ambiguous turn
options along a route. Simple graph search can then be used
to derive a route whose description is the most fault-tolerant
according to this measure.

In this paper we contrast this approach with a probabilis-
tic planning one that estimates the probability of reaching
the destination given a probabilistic model of an agent in-
terpreting the route instruction. To this end, we discuss
different models of agents, the evaluation of route instruc-
tions and derive optimal and approximate approaches for
the planning problem.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS; E.1 [Data Structures]: Graphs and networks

General Terms
Algorithms

Keywords
qualitative reasoning, route instructions

1. INTRODUCTION
Getting lost or losing the way is a major nuisance when

navigating in an unknown environment. Even today’s so-
phisticated navigation systems do not prevent us from tak-
ing the wrong exit or missing a turn. GPS-based navigation
systems usually notice our mistakes very quickly and can
then re-plan the best route from the current location to the
destination. However, in such situations, it often takes sig-
nificantly longer to get to the destination and, depending

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’11, November 1-4, 2011. Chicago, IL, USA
Copyright 2011 ACM ISBN 978-1-4503-1031-4/11/11 ...$10.00.

on the situation, it can have other more severe side effects.
When traveling without a navigation system, matters are
even worse, as it usually takes considerable time to recog-
nize that we are lost. Once we notice it, we have to find
out where we are and find an alternative route to the desti-
nation, or ask someone for new route instructions. In both
cases, with or without having a navigation system, route de-
scriptions should be formed in a robust way that takes into
account plausible mistakes of users. Such descriptions ide-
ally still lead to the destination even if a mistake is made.
In other words, they should reduce the probability of acci-
dentally losing one’s way.

Whether or not wrong turns are made depends on the ac-
curacy of the route description, but also on the accuracy of
the terms used therein. If terms and description are per-
fectly accurate, and if we accurately follow every instruction
as intended, then we should not make a wrong turn. How-
ever, such a level of accuracy is not common, neither in
natural language, which is what is generally used for mak-
ing route descriptions, nor in human behavior. Consider, for
example, the route instruction “Turn left at the next inter-
section”. There can be different situations where this might
lead to a wrong turn. Firstly, there could be two streets
that go left at the next intersection. Secondly, there could
be no street that goes left at the next intersection. Thirdly,
there could be confusion about what is the next intersection.
The instructor might have forgotten about a small intersec-
tion that comes before the intended instruction, or the driver
might overlook the next intersection and only turn left at the
second intersection. A possible solution to the first situation
could be to introduce finer grained direction terms such as
“turn sharp left”, “turn slightly left”, etc.. A possible solu-
tion to the second and third situation might be to give an
instruction for absolutely every possible turn, which requires
a long, unnatural and probably unnecessary list of “continue
straight” instructions. An alternative could be to use land-
marks or street names in the instructions, or to use distance
measures, but often there are no visible street names and no
unique landmarks, and distances can be hard to judge.

In this paper we focus on pure directional route instruc-
tions, without using landmarks or street names, and with-
out using distance descriptors, and analyse how accurately
we can reach our destination using such instructions alone.
Our goal is to identify a route instruction in a given street
network that leads us from the origin to the destination with
the highest probability. To this end, we represent several of
the above discussed issues with regard to ambiguity in a
simple probabilistic agent model. The agent model speci-

fies how and with what probability an instruction primitive
(e.g., a turn or “continue straight” instruction) is executed.
Given a route instruction, this model then follows the de-
scription and only stops if either the next instruction cannot
be executed, or all instructions have been executed. Based
on this principle, we can calculate the probability with which
an agent reaches the destination. The route instruction with
the highest probability of reaching the goal is called the most
robust instruction. It is clear that this description will most
likely not coincide with shortest routes, but our assumption
is that accurately reaching the destination is more impor-
tant than a shortest route and that it might bring us to the
destination fastest on average as we do not waste time and
effort with trying to recover from taking the wrong turn.

We develop a novel probabilistic method of computing the
most robust route instruction and compare it with the best
previous approach, the work by Haque et al. [6]. Their ap-
proach is to count the number of ambiguous turns, and thus
avoid ambiguous situations wherever possible. By reducing
ambiguities, this technique increases the chance of reaching
the desired destination, but it does not explicitly take into
account probabilities. This entails that it cannot differen-
tiate between route instructions with the same number of
ambiguous intersections, but different associated probabili-
ties. Further, it avoids ambiguous turns even if they all lead
to the destination.

For our empirical comparison we use different models of
direction relations, one that is very coarse and uses only
“front”, “left”, “right”, and “back”. The second model is
more fine-grained and corresponds to the directions that
were found most useful for navigation in cognitive studies by
Klippel and Montello [7]. We also use two different models
for interpreting and generating route descriptions. One that
gives an instruction for every intersection and one where we
go straight by default until the next instruction can be exe-
cuted. We empirically compare our approach with the work
by Haque et al. for the different models using street net-
works from parts of Paris and Canberra. Canberra is a city
that has been planned from scratch and where all streets fol-
low certain patterns. Paris, instead, is a city where streets
seem to be almost random and where intersections occur
in all angles. For each city we randomly generate 10, 000
pairs of origin and destination points and compute the ro-
bust route instructions. It turns out that for most pairs
all approaches considered in our evaluation can find a route
instruction that leads to the destination with 100% prob-
ability. This is not surprising, because intersections with
multiple turns that match the same turn description are rel-
atively rare. However, even though these intersections occur
infrequently, they are usually the ones that create problems
and that make us take a wrong turn. We, therefore, concen-
trate our analysis on these cases. It turns out that for those
pairs where the approach of Haque et al. does not find a ro-
bust route instruction, our approach leads to better results
in many cases.

The paper is structured as follows. In the next section
we briefly discuss previous work on the subject of gener-
ating route instructions. Section 3 then gives background
on qualitative representations of turn instructions and the
used graph representations. The following Section 4 details
the considered agent models and the relation between in-
structions and sets of paths, as well as success probabilities.
Section 5 gives our algorithms for optimizing route instruc-

start

dest .

Figure 1: An example of two routes from the same
start to the same destination. The dashed route is
easier to describe as it contains fewer turn instruc-
tions.

tions and theoretically compares it to the work of Haque
et al.. Finally, Section 6 contains our empirical evaluation
and findings. Directions for future work and the conclusion
complete the paper.

2. PREVIOUS WORK
Previous work has mainly focused on generating route in-

structions via shortest-path algorithms. Given a specific cost
metric the shortest-path algorithm identifies the route that
is best used for the instruction. The qualitative description
of this route then serves as an instruction. Such an approach
is certainly practical as it is computationally easy to han-
dle. However, it limits the possible criteria for the selection
of routes to those expressible as a cost metric for the search.
Certain criteria are dependent on the actual set of paths
that corresponds to it, e.g., the probability of reaching the
desired destination.

There has been a lot of work on generating suitable routes
(or route instructions) for various purposes. A common
point is the focus on finding routes that are“simple”or“easy
to describe”. The typical approach is to apply graph search
on a route network to obtain one suitable path (in terms of
desired properties) and then to describe this path. Origi-
nally, Mark [11] proposed to use a measure of “description
complexity” in conjunction with metric route length to ob-
tain routes suitable for navigation. Such routes would for
example avoid many turns as these are more complex to de-
scribe than simply continuing straight on a road. Following
work by Duckham and Kulik [4] has studied the problem
using only the complexity of route instructions without re-
gard for metric route length. Here, a shortest-path search is
used in combination with a cost metric that assigns a cost
value to each turn description at an intersection taking into
account the number of outgoing arcs. Figure 1 illustrates
the concept of simple routes.

An adaption of this work by Haque et al. [6] uses the same
shortest-path search idea, but models the weights accord-
ing to how many outgoing arcs are considered “instruction
equivalent”. This leads to their measure of unreliability as
the number of instruction equivalent options minus one. The
unreliability value of an entire route is then simply the sum
of individual unreliability values at all intersections along
the route. The unreliability value is thus zero if the in-
struction has no ambiguous turn instruction. Further, the
authors suggest to break ties with the metric path length.
Finally, their work considers a weighted sum of metric dis-
tance and unreliability value to balance reliability and route
length. This paper will be referenced often in this work,
since their unreliability measure is connected to the prob-

ability of reaching a desired destination. We will formally
define and analyse their unreliability measure in Section 5.

There has also been work on incorporating landmarks into
such schemes, e.g., by Richter and Duckham [16], and Duck-
ham et al. [5]. This extended version of the earlier graph
search algorithm computes the shortest route description ac-
cording to landmarks, i.e., it exploits knowledge about land-
marks in the vicinity. Ambiguities, however, are ignored.
Since the visibility, saliency and availability of landmarks is
a problem in its own right, we do not take into account land-
mark information in our work, but note that an extension
would be a useful endeavor. The contribution and principal
issues presented in this work should be useful to this end.

Generating route instructions has also been studied from
a natural language processing point of view. Marciniak and
Strube [9, 10] used machine learning to derive natural lan-
guage route instructions from a previously learned corpus
of instruction expressions. In a similar context, the idea
of a probabilistic approach to route generation appeared
in a reinforcement learning approach for route instructions.
Cuayáhuitl et al. [2] use hierarchical Markov Decision Pro-
cesses (MDP) [1, 12] to adaptively derive instructions. While
the problem formulation we use in this work is very close to
MDPs, it should be noted that it corresponds to an unob-
servable (or partially observable) MDP as route instructions,
i.e., policies, are only history-dependent (or depend on the
belief state, respectively).

We also want to mention that there has been important
work on cognitive studies detailing the quality of verbal
route instructions e.g., by Lovelace et al. [8] and the vo-
cabulary used in such instruction, e.g., by Klippel and Mon-
tello [7]. While these aspects are not the focus of our work,
we use the turn descriptions proposed by Klippel and Mon-
tello in our empirical evaluation.

3. PRELIMINARIES
To present our ideas and findings, we briefly recall a few

concepts about qualitative turn labels, graph representa-
tions of route networks and directed graphs with multiple
arcs.

3.1 Qualitative Turn Labels and Route
Instructions

As mentioned previously, we work with simple descrip-
tions of routes, that is, each description is a sequence of
turn labels. A qualitative turn label is a qualitative rela-
tion between street segments. Such a qualitative relation
establishes the relation of an agent at a street intersection
to possible outgoing streets. Note that several streets might
map to the same qualitative relation, i.e., outgoing streets
are not necessarily uniquely determined by a qualitative re-
lation. Haque et al. [6] refer to these as “instruction equiv-
alent”. Naturally, different conceptualizations of relations
between street segments exist. In this paper, we consider
two different ones based on the STAR family of qualitative
calculi [14] used in the field of qualitative spatial reasoning.
While STAR calculi are often used to represent and rea-
son with one unique global reference direction (cf. [14]), we
do not require a unique global reference for our represen-
tation purposes. Instead, we use the incoming street of an
intersection as the reference direction to describe the rela-
tion between this segment and the outgoing segments, and
write STARr for such representations. The first one we

straight

right

back

left

right

sharp right

back

sharp left

left

slightly left

straight

slightly right

Figure 2: Two distinct schemata used to define
qualitative turn descriptions for street intersections.
STARr

2 is illustrated at the top and STARr
4 at the bot-

tom.

use, STARr
2, is a näıve representation that divides the plane

into four sectors of equal size “left”, “straight”, “right” and
“back”. The second representation we use, STARr

4, adapts
to the findings of Klippel and Montello [7] and uses six sec-
tors of different size (the same as in STARr

2 plus “slightly
left”, “sharp left”, etc.). Figure 2 shows these two qualitative
representations.

Given a qualitative representation of turn labels, a qual-
itative route instruction is simply a sequence of qualita-
tive relations from one fixed qualitative representation ∆ =
〈r1, . . . , rn〉 (e.g., ∆ = 〈“left”, “right”, “straight”, “left” 〉).

3.2 Abstractions of Route Networks
Route networks can be considered as common directed

binary graphs with positional information for each vertex,
such that they can accurately describe the contour and met-
ric length of route segments. However, for our purposes we
do not need this level of detail. In order to generate or
evaluate route instructions, the only relevant parts of such
a graph are street intersections where a decision has to be
made by an agent. Westphal et al. [17] introduce a suitable
succinct representation for this purpose with the notion of
decision frames. Decision frames give information about the
set of states of an agent (position and orientation at street
intersections) and the possible decisions that can be made
by the agent at each state and where they lead to. Such de-
cision frames can be cast as directed graphs if one considers
multiple arcs between any two nodes. To this end, we define
directed graphs similar to Diestel [3]:

n1

n2

n3

s1e

s2s
s2w

s3nright right

straight

right

back

right

right

straight

Figure 3: Representation of the state space. The left
side shows a route network (decision nodes labeled
with n), and the right side a corresponding decision
frame with qualitative turn labels.

Definition 1. A directed binary graph is a tuple G = (V,E),
where

• V is a set of nodes (or vertices), and

• E is a set of arcs (or edges) with a map E → V 2 that
assigns to each arc a start and end node.

We write e = v1v2, for e ∈ E, v1, v2 ∈ V , to refer to some
arc from v1 to v2. Note, this does not uniquely determine e
as there might be multiple arcs from v1 to v2.

It is indeed sufficient to treat decision frames as directed
graphs and to consider standard search algorithms on them.
In the following we give a general description of the deci-
sion frame representation and refer to the work by Renz
and Wölfl [15], and Westphal et al. [17] for a more formal
discussion and definition of the involved reductions.

The purpose of the decision frame representation is to pro-
vide an overlay to a route network that makes the decisions
of an agent more accessible and allows us to consider (graph
altering) precomputations in Section 5. Essentially, the rep-
resentation abstracts from a route network by only consider-
ing nodes where decisions take place, and summarising other
nodes as links between them. It is therefore reminiscent of
a topological map that contains places and links between
them. However, the crucial difference is that we choose to
explicitly represent the orientation of agents at each such
node to make algorithms simpler and the approach more
general. Orientation is represented by duplicating nodes
whenever there are multiple ways of approaching them.

We can generate a decision frame from accurate metric
input, i.e., a directed graph G and a position in the plane
for each of its vertices (e.g., OpenStreetMap data). The
first abstraction step is to identify a set of decision nodes.
Namely, those nodes which have more than one successor
node, and are thus points where a decision has to be made.
It is further necessary to also consider sources and sinks (i.e.,
nodes without incoming or outgoing arcs, respectively) as
decision nodes, as otherwise parts of G might be completely
ignored. For each such decision node, we create a new state
(node) in the decision frame for each of its incoming arcs
in G. These represent the current orientation of an agent
traveling along the incoming arcs of the decision node in
G. Usually, the corresponding representation for this is the
directed line graph [3], the variant of the graph where arcs are
interpreted as vertices and each connecting node as an arc.

This has been used previously for the shortest-path search
approach to route descriptions [4, 6]. In our case we use the
same basic idea but maintain a reduction to decision nodes.
Finally, we add arcs in the decision frame that correspond
to the paths in G that directly link decision nodes.

As an example, Figure 3 depicts a route graph and a cor-
responding decision frame. Note that whenever two paths
enter a decision node through a shared arc in G, we do not
have two different states (e.g., the two paths from n2 to n3

enter at the same arc in Figure 3), while two paths with
different entrances are represented with two states (e.g., the
two paths entering n2 translates to s2w and s2s).

The following definition gives a formal summary:

Definition 2. A decision frame is a directed binary graph
given by a tuple S := (S,A) based on a directed binary
graph G of a route network, where

• S is a set of states, where each state s ∈ S corresponds
to an incoming arc of a node in G that is considered a
decision node, and

• A is a set of arcs, where each arc a = s1s2, s1, s2 ∈ S,
corresponds to a path in G that links the two decision
nodes s1, s2 without visiting any other decision nodes.

As all possible entries into an intersection are represented
by a different state, we can label all arcs in a decision frame
S = (S,A) using a given set R of qualitative turn labels. In
our case labels from the sets STARr

2 or STARr
4. To this end,

we assume in the following that there is a labeling function l
that assigns to each arc its qualitative turn label. Formally,
l : A→ R assigns to each arc a = ss′ the corresponding qual-
itative turn label that matches the direction of the outgoing
path from s to s′.

We further note that additional labels can represent extra
information on the paths, e.g., path length, visited street
addresses, etc..

4. INTERPRETATION OF ROUTE
INSTRUCTIONS

Qualitative decision frames provide the necessary funda-
mental information to interpret route instructions. However,
the question remains how agents (especially humans) inter-
pret a given route instruction. To this end we follow the
work by Haque et al. [6] and define a simple yet sufficient
agent model by formalizing underlying assumptions.

4.1 The Agent Model
First of all, we assume that the qualitative vocabulary

is fixed, that is, an agent has the same interpretation of
qualitative relations as used in the route graph representa-
tion. Thus, an agent does not confuse different relations.
Secondly, instructions are interpreted step-wise (from be-
ginning to end). We assume here that agents do not prefer
any particular outgoing arc among those with the same turn
label. Thirdly, if in a state the current turn label does not
correspond to any outgoing arc, the agent stops. Similarly,
if there are no more turn labels remaining the agent stops
as well. This corresponds to the model used by Haque et
al. who further consider replanning in cases where agents do
not reach the desired destination. We do not consider re-
planning in this paper, since our focus is on evaluation and
optimization of the robustness of initial route instructions.

A crucial assumption of the above model is that agents
try to match a turn label in the instruction to an option
at the current decision node. However, we argue that it is
not immediately clear whether agents interpret each turn
label as an “immediate instruction”, i.e., a request to turn
at this intersection. As discussed in Westphal et al. [17], we
note that this strict interpretation can be contrasted with
a weaker notion of turn labels as “at the next possibility”,
i.e., agents would continue straight as long as possible un-
til an outgoing arc with the turn label becomes available.
This difference is especially important when considering the
question whether agents would belief to have made a wrong
turn if the next instruction is not immediately applicable.
It can easily be argued that agents would continue straight
ahead in such cases (unless this is not possible). We will
thus treat this assumption separately in our discussion and
evaluation, referring to strict and weak interpretations.

4.2 Interplay Between Route Instructions and
Paths

The agent model easily turns into a (non-deterministic)
recursive expression which yields for a given start state and
description a valid path that could be traversed by an agent.
Let S = (S,A) be the decision frame as usual and s[r] :=
{ s′ | a ∈ A, a = ss′, l(a) = r } the set of successor states of
s reachable with turn label r. For the strict interpretation
we can define the trace(s, 〈r1, . . . , rn〉) expression as{

〈s〉+ trace(s′, 〈r2, . . . , rn〉) for any s′ ∈ s[r1]

〈s〉 s[r1] = ∅ or n = 0

Let st be the turn label for straight , then, for the weak
interpretation, we get the definition
〈s〉+ trace(s′, 〈r2, . . . , rn〉) for any s′ ∈ s[r1]

〈s〉+ trace(s′, 〈r1, . . . , rn〉) s[r1]=∅, for anys′ ∈ s[st]

〈s〉 s[r1] ∪ s[st]=∅ or n = 0

The weak approach raises several interesting points. For
one, the weaker interpretation sounds more reasonable, as
it can be expected that agents assume that a “continue
straight” instruction has been left out (accidentally or on
purpose). On the other hand, this kind of “default action”
raises some issues about shortest route instructions, since ex-
ploiting them can sometimes lead to very succinct descrip-
tions of routes that contain loops, and thus are far from
shortest path considering metric length or visited states.
Figure 4 shows an example of a short description that in-
duces a path with a loop. Even worse, weak interpretations
of instructions may lead to revisiting a state only because of
default straight actions and thus allow for arbitrarily long
paths, although it is implausible any human agent would
get caught in such loops. Note that explicitly generating
shortest instruction without such loops is NP-hard [17].

As long as we do not mind such loops, we can reduce the
weak interpretation to the strict one by augmenting the de-
cision frame with additional arcs that represent “shortcuts”:
for each state s0 without a turn label r, we add an arc a,
a = s0s

′ for each distinct path without a loop s0s1 . . . sns
′

in S, where arcs sisi+1 are traversed because of a straight
action, and sns

′ because of the turn label r. Thus, for such
augmented graphs it is not necessary to search for the next
state where r is applicable.

4.3 Probabilistic Transitions
Assuming we are given a decision frame, we can compile

its set of arcs to transitions with associated probabilities.
To this end, we unify arcs with the same turn label between
the same states and assign the correct probability to this
transition. The multiplicity of arcs in the original decision
frame is merely required to accurately reflect the universe
of arcs in order to compute probabilities. Formally, for each
pair of states s, s′ and turn label r we replace all arcs with
a′ = ss′, l(a′) = r with one arc a labelled with r and its
transition probability

prob(a) =
| { a′ | a′ ∈ A, a′ = ss′, l(a′) = r } |

| { a′ | a′ ∈ A, x ∈ S, a′ = sx, l(a′) = r } | .

Algorithm 1 Compiling arcs in decision frames to proba-
bilistic transitions.
Input: Decision frame S
Output: Decision frame S ′ with transition probability prob

for each arc.
1: function compile(S)
2: Let S = (S,A)
3: A′ ← ∅
4: prob ← ∅
5: for s ∈ S do
6: for each qualitative turn labels r do
7: successors ← ∅
8: for each arc a from s, where l(a) = r do
9: Let a = ss′

10: if not defined successors[s′] then
11: successors[s′]← 0

12: successors[s′]← successors[s′] + 1

13: od ← |{ a | a ∈ A, x ∈ S, a = sx, l(a) = r } |
14: for s′ ∈ S where successors[s′] is defined do
15: Define a′ = ss′ in A′ with l(a′) = r

16: prob(a′)← successors[s′]
od

17: return (S,A′), prob

This procedure is given in Algorithm 1. It should be
noted, that although we have disregarded loops in case of
the weak interpretation, this does not influence our transi-
tion probabilities. We further note that the resulting graph
can be cast as an (unobservable) MDP, but we refrain from
explicitly defining it as such here, since we just focus on suc-
cess probabilities. This compilation step is easy to perform
and must only be applied to networks once.

Finally, given such a decision frame with transition prob-
abilities, the probability of following one path through the
decision frame is simply the product of the transition prob-
abilities. Given a route instruction ∆ = 〈r1, . . . , rn〉, the
probability of reaching a destination state is the sum of the
probabilities of each path to the destination under this de-
scription. This can be calculated in time polynomial in the
size of the graph and description by using dynamic program-
ming as seen in Algorithm 2. In terms of an MDP this is
the evaluation of the policy ∆.

In the following we use the term “decision frame” in the
sense of such a pre-compiled graph with transition probabil-
ities.

Decision frame 〈right , left〉 〈straight , straight , left〉

s0

s1

s2

s3

s4

s5

s6

straight

straight

straight

left

left

left

right

s0

s1

s2

s3

s6

straight

straight

straight

left

right

s0

s1

s2 s6

straight

straight
left

Figure 4: A decision frame (left), where a path from s0 to s6 can be succinctly described by 〈right , left〉, but
this forces a loop in the path (middle). The shortest description without a loop is 〈straight , straight , left〉 (right).

Algorithm 2 Evaluating qualitative route instructions.

Input: Decision frame S with transition probability prob
for each arc, start/destination pair s, s?, route instruc-
tion ∆. Further, let P be a global associative array.

Output: Success probability for current arguments.
1: function evaluate(S, s, s?, ∆)
2: if P [s,∆] defined then return P [s,∆]

3: if ∆ = ∅ then
4: if s = s? then return 1.0 else return 0.0

5: p← 0.0
6: count ← 0
7: r ← ∆.pop front()
8: for all outgoing arcs of s, a = ss′ where l(a) = r do
9: p← p + prob(a)· evaluate(S, s′, s?, ∆)

10: count ← count + 1

11: if count = 0 then return 0.0
12: p← p

count
13: P [s,∆]← p
14: return p

5. ALGORITHMS FOR ROUTE INSTRUC-
TIONS

In this section we contrast the work by Haque et al. with
our approach with respect to the probability that a descrip-
tion leads us from the origin to the destination. We further
describe how graph search can be applied to compute lower
bounds on success probabilities.

5.1 Reliable Routes
In the work by Haque et al. their unreliability measure

accounts for the total number of instruction equivalent al-
ternatives encountered along the chosen path. We sketch
their work here based on decision frames.

Their algorithm to obtain the “most reliable route” per-
forms a shortest-path search on the decision frame, where
the cost of the initial state is 0 and that of a succeeding state
s′ of s is the cost of s plus the number of all successor states
under the same action minus one.1 Formally, the cost of s′

1Originally, it is the number of instruction equivalent outgo-
ing arcs minus one in the underlying route network. Using
decision frames this is already improved, because we do not

s0

s1 s2

s3 s4

s5 s6

straight straight

straight straight

straight straight

s0

s1 s2 s3 s4

straight straight straight straight

Figure 5: Example of two paths with the same “un-
reliability”, but different success probabilities. The
path from s0 to s5 has an unreliability value of 3 in
both cases, but the success probability is 1

8
and 1

4
respectively.

is computed from the used arc a and the cost of s, C[s], by
the function cost(C[s], a), defined as

C[s] + |
{
s′′ ∈ S | a′ ∈ A, a′ = ss′′, l(a′) = l(a)

}
| − 1 (1)

This cost function can be used in a simple graph search
algorithm, for example, the one shown in Algorithm 3.

Unfortunately, this unreliability cost function only roughly
corresponds to some bound on the probability of reaching
the desired destination, since it does not account for the
ambiguities’ depths along the path. For example, the un-
reliability values of 0 and 1 correspond to lower bounds on
the probability of 1.0 and 0.5, respectively. That is, if the
unreliability cost is 0 then there is no ambiguity, if it is 1
then there is one intersection with two outgoing arcs with
the same turn label. However, in general, an unreliability
value of u can only be seen as a lower bound of 2−u on
the probability. This is because the worst case occurs when

count arcs that lead to the same successor state, since such
information is already reflected in the precomputed graph.

there are u states with two ambiguous successors each. The
probability is then only 0.5 · 0.5 · . . . · 0.5, u-times. Figure 5
gives an example.

Algorithm 3 Shortest-path algorithm for route instructions
with cost function and initial cost of s0.

Input: Decision frame S, start/destination pair s0, s?, cost
function cost , and initial cost of s0, c0.

Output: Instruction of least-cost path, cost of path;
false if no path exists.

1: function shortest-path(S, s0, s?, cost , c0)
2: queue ← {s0}
3: link ← ∅
4: for all states s in S do C [s]←∞
5: C [s0]← c0
6: while queue 6= ∅ do
7: s← pick state s from queue with minimal C[s]
8: if s = s? then . Construct instruction
9: ∆← empty list

10: s′ ← s
11: while link [s′] defined do
12: ∆.push front(link [s′][1])
13: s′ ← link [s′][0]

14: return C[s],∆

15: for each outgoing arc a of s, a = ss′ do
16: if cost(C[s], a) < C [s′] then
17: C [s′]← cost(C[s], a)
18: link [s′]← (s, l(a))
19: queue ← queue ∪ {s′}
20: return false

5.2 Success Probabilities
Because decision frames based on our agent model are very

close to unobservable MDPs, it is not surprising that deci-
sion theoretic variants of finding robust route instructions
can be shown to be NP-hard (as in the case of unobserv-
able MDPs [12]). One option to accurately optimize route
instructions is to consider the set of all traces for potential
route instructions, to see which traces lead to the destina-
tion. This could be done by performing a search over route
instruction prefixes and tracking the“frontier”, i.e., the set of
current states for each such prefix. While this is possible, it
comes at a very high computational cost – in the worst case
exponential in the number of states. The computational cost
of tracking sets of states under some instruction(-prefix) is
particularly severe when compared to simple shortest-path
search, which has been used in previous approaches. For this
reason, we follow a more practical alternative in this paper
and do not further consider optimal computations.

Instead of the completely accurate computation, we ap-
proximate the probability of reaching the destination by
again using shortest-path search. Using the same search
as the previous approach (Algorithm 3), we simply replace
the cost function with

cost(C[s], a) := C[s] · prob(a) (2)

where prob(a) is the transition probability of the chosen arc,
and the cost of the initial state is −1.0.2 The shortest-path

2The cost of the initial state has to be negative since the
shortest-path algorithm minimizes cost.

straight

straight

le
ft

le
ft

right

Figure 6: An example of merging paths under the
same instruction in case of STARr

2 and weak inter-
pretations. The instructions is 〈“left”, “right”〉.

found with cost q has an associated route instruction with a
success probability of at least −q, i.e., this probability value
is only a lower bound.

While the found path (and thus instruction) is optimal
with regard to the lower bounds on all other paths, it is
in general not the optimal instruction. In fact, the lower
bound corresponds to the actual probability if and only if
all alternative traces under the given instruction do not lead
to the destination state. This assumption is pessimistic,
but in many cases correct though. Still, we can improve
the lower bound, by mixing the shortest-path search based
on cost function (2) with tracking sets of traces by simply
adding arcs to the decision frame.

The idea behind this approach is that there are cases
where taking a wrong turn has no negative effect as both
lead to the same state using the same instructions. This
will affect the probability of reaching this state. Whenever
there are multiple traces that lead to the same state using
the same instructions, then the probability of reaching that
state increases compared to only considering each trace in-
dividually. To this end, we track sets of traces only up to
a certain number k of subsequent instructions and record
instruction sequences where at least two traces lead to the
same state. We can precompute this kind of look-ahead for
a given decision frame independent of the origin and desti-
nation, that is we have to perform the precomputation only
once for any given network. For each state s, we test all
traces with at most k subsequent instructions. If two traces
meet at the same state s′ after executing the same instruc-
tions, we explicitly store them as a new arc a = ss′ in the
decision frame. Instead of just one label, we associate with
those arcs the sequence of turn labels that leads from s to
s′, and the sum of each traces’ probability as the transition
probability. Obviously, this precomputation is exponential
in k, but if we set k to a reasonably small number then this
precomputation is feasible.

In the experiments in the next section, we use k = 5.
Since we only look ahead k instructions, it is clear that we
might miss those traces that lead to the same states after
more than k instructions. Therefore, the probability we get
is still only a lower bound of the actual probability – but a
better lower bound than what we get without the look-ahead
computation. Figure 6 shows an example for k = 2.

Finally, we note that as suggested by Haque et al., we
break ties during shortest-path search based on the metric

Figure 7: The used road networks: Part of the Paris
area and Canberra.

route length of paths [6] (independent of the used cost func-
tion).

6. EXPERIMENTAL EVALUATION
We performed an evaluation of the proposed algorithms

and compared them with the previous unreliability approach
of Haque et al.. As input data we used OpenStreetMap
data of parts of Paris and Canberra (the networks can be
seen in Figure 7). We compare the following shortest-path
algorithms:

1. the unreliability cost function by Haque et al. (1) on
the decision frame,

2. the probability cost function (2) on the decision frame,
and

3. the probability cost function (2) on the decision frame
with a look-ahead of k = 5.

Further, we ran 2., and 3. on decision frames with weak and
strict assumption, respectively.

For both Canberra and Paris we used 10 000 pairs of dis-
tinct origin/destination states, and ran all algorithms twice:
once with STARr

2 and once with STARr
4. The qualitative

route instructions computed by these algorithms where then
accurately evaluated according to their expected lengths and
success probabilities. Route length and success probability
are sensible criteria that apply to all the three considered ap-
proaches. Although the unreliability cost function by Haque
et al. (1) only indirectly optimises success probabilities, it
is certainly of interest to compare it with our probabilistic
planning approach.

Concerning the exponential-time precomputation for the
look-ahead, we note that for k = 5, a simple implementation

Table 1: Percentage of route instructions with 100%
success probability generated by the probability cost
function without look-ahead.

STARr
2 STARr

4

Canberra Paris Canberra Paris
strict 64.86% 84.80% 89.50% 95.43%
weak 65.03% 85.12% 89.68% 95.58%

in the Python programming language computed the look-
ahead within an hour for each used decision frame on an Intel
Pentium Dual-Core with 2.0 GHz. A more sophisticated
implementation in a lower-level language should significantly
reduce the required time.

6.1 Approximation Quality
Since the shortest-path search with the probability cost

function only computes lower bounds, it is of interest how
often the bound reported by the search is the same as the
success probability of the generated instruction.

With the strict interpretation of turn labels and without
considering a look-ahead, it turns out that in Canberra, for
94.7% of the pairs the search reports the accurate probabil-
ity, independent of the qualitative turn labels used. For the
Paris set, the accuracy is 99.0% when using STARr

2 (using
STARr

4 this improves marginally to 99.2%). When relying
on the look-ahead of k = 5, the accuracy improves further.
Here, for Canberra only the STARr

2 representation causes
one case where the probability was underestimated. Using
STARr

4 the values reported by the search always match the
evaluation. On the Paris set the search achieves an accuracy
of 99.6% for both qualitative turn representations.

These results demonstrate that the probability cost func-
tion provides a very good lower bound. Note that this empir-
ical evidence does not prove that the search produces near-
optimal results. However, given the structure of real-world
networks it would be surprising if more elaborate methods
could produce drastically improved results.

6.2 Cost Functions: Unreliability vs. Proba-
bility

The empirical evaluation presented by Haque et al. showed
that in most cases they found paths with an unreliability
value of 0 or 1. We can confirm their findings; the ma-
jority of route instructions generated with the probability
cost function without precomputed sequences already has
a success probability of 100% (cf. Table 1). Moreover, the
instructions constructed with the unreliability cost function
have the same success probability as those generated with
the probability cost function for the strict interpretation
and no look-ahead. There is also little difference in the ex-
pected route length to the destination between these two ap-
proaches independent of the qualitative direction relations
used. It should be noted here that Haque et al. originally
consider arbitrary graphs as input. Without a reduction
to decision nodes it is not obvious whether two instruction
equivalent outgoing arcs lead to the same decision node, and
thus their cost function would lead to worse results in such
cases. Since we apply their cost function to decision frames,
we implicitly see an improvement for their method.

As far as the qualitative representation is concerned, we
observe that STARr

4 results in very robust route descrip-
tions that are clearly superior to those based on STARr

2. In

Table 2: Percentage of improved non-perfect in-
structions through look-ahead. Percentage points
of average improvement of the success probability
given in brackets.

STARr
2 STARr

4

Canberra Paris Canberra Paris
strict 0.85% 12.76% 0.00% 4.38%

(4.32) (15.86) (0.00) (48.75)
weak 18.90% 33.27% 45.64% 1.81%

(7.07) (30.24) (24.36) (46.88)

Table 3: Average instruction length. Unreliability
cost function (ucf), probability cost function (pcf),
look-ahead (la).

STARr
2 STARr

4

Canberra Paris Canberra Paris
strict, ucf 29.24 48.43 25.55 45.47
strict, pcf 29.01 48.44 25.54 45.47
strict, pcf+la 29.02 48.24 25.54 45.40
weak, pcf 24.98 41.95 18.73 31.47
weak, pcf+la 24.59 42.16 18.92 31.47

particular, using STARr
4 we obtain route instructions which

are close to, or have a success probability over 90%.
In any case, these results raise the question, if the look-

ahead approach can improve the results of the probability
cost function over those of the unreliability cost function.

6.3 Look-Ahead
The look-ahead has a positive effect on those origin/desti-

nation pairs for which originally only route instructions with
a non-perfect success probability (i.e., less than 100%) were
found (the others cannot be improved anyway). As Table 2
shows, route instruction for many pairs can be improved.
It can also be seen that weak interpretations benefit much
more from precomputing traces, since it is more likely that
wrong turns do not lead to an immediate stop and thus more
“look-ahead arcs” can be used.

6.4 Weak Interpretation
It is not surprising that the weak interpretation model

leads to shorter route instructions as can be seen in Table 3.
Moreover, they do not increase the expected path length to
the destination (cf. Table 4). This shows that the weak in-
terpretation of route instructions is a successful approach to
shorten route instructions without increasing metric route
length. Further, we note that route instruction generated
with the strict interpretation model are also valid route in-

Table 4: Expected route length to the destination.
Unreliability cost function (ucf), probability cost
function (pcf), look-ahead (la).

STARr
2 STARr

4

Canberra Paris Canberra Paris

strict, ucf 1876.52 4643.94 2033.27 4570.45
strict, pcf 1876.99 4644.05 2033.31 4570.45
strict, pfcf+la 1877.74 4640.00 2033.31 4524.97
weak, pcf 1890.28 4922.57 2035.32 4530.08
weak, pcf+la 1802.67 5012.55 2095.97 4525.49

struction for the weak interpretation model, and thus a weak
interpretation can never decrease success probabilities.

For completeness, we note here that Haque et al. already
showed that the length of routes generates with the unrelia-
bility cost function is on average about 10% longer than the
shortest (metric) path.

7. FUTURE WORK
It is clear that decision frames, or more generally MDPs,

are a very powerful framework for modeling and generating
route instructions, but within this paper we have only used
simplistic agent models similar to previous work [6].

It would be interesting to use our approach to represent a
more plausible cognitive agent model. Such a model should
ideally cover missing turns and visual saliency of outgo-
ing arcs to produce more accurate probability distributions.
In particular, we have assumed that agents have a precise
understanding of qualitative terms, whereas in practice we
should assume more varied views. Further, it would be ben-
eficial to account for more than just turn instructions, e.g.,
by referencing landmarks. Another interesting aspect is to
deal with the influence of other road users on the behaviour
of agents following an instruction, as considered in traffic
simulation approaches [13].

8. DISCUSSION AND CONCLUSIONS
No one likes to take the wrong turn and even if it happens

only rarely, we still like to avoid it altogether. In this paper
we looked at the problem of finding a robust route instruc-
tion to go from an origin to a destination in a given street
network. As opposed to previous approaches and their eval-
uations, we propose a probabilistic measure for evaluating
the quality of a route description. In particular, we propose
to use the probability of successfully reaching the destination
using a given route description. The higher the probability,
the more robust a route description.

While it is possible to find the most robust route instruc-
tion, it is expected to be exponential time in the number of
states to compute, and is therefore not practical. Instead,
we developed a method for approximating the lower bound
of the success probability. Our method is based on a precom-
putation that performs a look-ahead in the graph to check
whether different routes lead to the same states, when exe-
cuting the same instructions. If we limit the look-ahead to
a small number of instructions, it is practical to precompute
such instruction-equivalent paths in the decision frame. This
pre-processing has to be done only once for a given street
network and can then be used for any origin/destination
pair.

We evaluated our method and compared it with the pre-
viously best method of Haque et al. [6] for computing the
most reliable routes, i.e., routes with as few as possible am-
biguities. We presented different variants of a simple agent
model, one where all instructions have to be “strictly” ex-
ecuted (which is the standard in previous work), and we
also proposed a variant where instructions are executed at
the next possibility (we call it “weak”). We tested both
approaches using different sets of instructions, i.e., differ-
ent sets of qualitative direction relations. We used a large
number of origin/destination pairs in two different cities,
Paris and Canberra. It turned out that both methods pro-
duced robust route instructions in most cases. This is not

surprising, as it usually does not happen regularly that we
have ambiguous instructions and take wrong turns. How-
ever, in those cases where Haque et al.’s method does not
produce a reliable route without ambiguities, it turned out
that our look-ahead method produced more robust route
instructions. In some settings almost 50% of the unreliable
routes could be improved, in some settings the improvement
is by almost 50 percentage points on average. Some interest-
ing results of our evaluation are that the weak execution of
instruction that we proposed leads to more robust route de-
scriptions with much shorter instruction lengths. It also al-
lows for much more natural route descriptions. The average
improvement of the look-ahead method was in most settings
significantly better for weak execution than for strict execu-
tion. Finally, it is not surprising that we found finer grained
direction relations to lead to more reliable routes. The rep-
resentation based on the findings of Klippel and Montello [7],
which only differentiates between eight direction relations,
already results in very robust instructions.

We only used route instructions that are based on purely
qualitative direction relations. It is clear that route instruc-
tions can be further improved by using distance measures,
landmarks, or street names, but these are often hard to
estimate or might not be clearly visible. Qualitative di-
rection relations form the basis of any route instructions,
they are easy to communicate and intuitive to understand.
We were therefore interested in what levels of robustness we
can achieve by only considering direction relations. As such
our results form the baseline for further improvements using
more sophisticated instructions. Our results show that this
baseline has been increased by the look-ahead method we
proposed.

9. ACKNOWLEDGMENTS
The authors thank Bernhard Nebel and Stefan Wölfl for

helpful discussions, and the anonymous reviewers for con-
structive feedback on an earlier draft of this paper.

The map data used in the evaluation was taken from the
OpenStreetMap project: http://www.openstreetmap.org/.

This work was supported by DFG SFB/TR 8 Spatial Cog-
nition project R4-[LogoSpace], an ARC Future Fellowship
(FT0990811), and a joint Go8/DAAD project (D/08/13855).

10. REFERENCES
[1] R. Bellman. A markovian decision process. Indiana

University Mathematics Journal, 6:679–684, 1957.

[2] H. Cuayáhuitl, N. Dethlefs, L. Frommberger, K.-F.
Richter, and J. Bateman. Generating adaptive route
instructions using hierarchical reinforcement learning.
In Spatial Cognition, volume 6222 of LNCS, pages
319–334, 2010.

[3] R. Diestel. Graph Theory (Fourth Edition). Springer,
2010.

[4] M. Duckham and L. Kulik. “Simplest” paths:
Automated route selection for navigation. In COSIT,
volume 2825 of LNCS, pages 169–185. Springer, 2003.

[5] M. Duckham, S. Winter, and M. Robinson. Including
landmarks in routing instructions. Journal of Location
Based Services, 4(1):28–52, 2010.

[6] S. Haque, L. Kulik, and A. Klippel. Algorithms for
reliable navigation and wayfinding. In Spatial

Cognition, volume 4387 of LNCS, pages 308–326.
Springer, 2006.

[7] A. Klippel and D. R. Montello. Linguistic and
nonlinguistic turn direction concepts. In COSIT,
volume 4736 of LNCS, pages 354–372. Springer, 2007.

[8] K. L. Lovelace, M. Hegarty, and D. R. Montello.
Elements of good route directions in familiar and
unfamiliar environments. In COSIT, volume 1661 of
LNCS, pages 65–82. Springer, 1999.

[9] T. Marciniak and M. Strube. Classification-based
generation using TAG. In Natural Language
Generation: Proceedings of INLG-2994, pages
100–109. Springer, 2004.

[10] T. Marciniak and M. Strube. Modeling and
annotating the semantics of route directions. In
Proceedings of the 6th International Workshop on
Computational Semantics, pages 12–14, 2005.

[11] D. M. Mark. Automated route selection for
navigation. Aerospace and Electronic Systems
Magazine, 1(9):2–5, 1986.

[12] C. H. Papadimitriou and J. N. Tsitsiklis. The
complexity of markov decision processes. Mathematics
of Operations Research, 12(3):441–450.

[13] M. Pursula. Simulation of traffic systems - an
overview. Journal of Geographic Information and
Decision Analysis, 3(1):1–8, 1999.

[14] J. Renz and D. Mitra. Qualitative direction calculi
with arbitrary granularity. In PRICAI, volume 3157 of
LNCS, pages 65–74. Springer, 2004.

[15] J. Renz and S. Wölfl. A qualitative representation of
route networks. In ECAI, volume 215 of Frontiers in
Artificial Intelligence and Applications, pages
1091–1092. IOS Press, 2010.

[16] K.-F. Richter and M. Duckham. Simplest instructions:
Finding easy-to-describe routes for navigation. In
GIScience, volume 5266 of LNCS, pages 274–289.
Springer, 2008.

[17] M. Westphal, S. Wölfl, B. Nebel, and J. Renz. On
qualitative route descriptions: Representation and
computational complexity. In IJCAI, pages 1120–1125.
IJCAI/AAAI, 2011.

