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Abstract. This chapter summarizes our ongoing research on topolog-ical spatial reasoning using the Region Connection Calculus. We areaddressing di�erent questions and problems that arise when using thiscalculus. This includes representational issues, e.g., how can regions berepresented and what is the required dimension of the applied space. Fur-ther, it includes computational issues, e.g., how hard is it to reason withthe calculus and are there e�cient algorithms. Finally, we also addresscognitive issues, i.e., is the calculus cognitively adequate.1 IntroductionWhen describing a spatial con�guration or when reasoning about such a con�g-uration, often it is not possible or desirable to obtain precise, quantitative data.In these cases, qualitative reasoning about spatial con�gurations may be used.Di�erent aspects of space can be treated in a qualitative way. Among othersthere are approaches considering orientation, distance, shape, topology, and com-binations of these. A summary of work on these and other aspects of qualitativespatial reasoning can be found in [Coh97].One particular approach in this context has been developed by Randell, Cui,and Cohn [RCC92], the so-called Region Connection Calculus (RCC), which isbased on binary topological relations. One variant of this calculus, RCC-8, useseight mutually exhaustive and pairwise disjoint relations, called base relations,to describe the topological relationship between two spatial regions. A similarcalculus was developed by Egenhofer [Ege91], who de�ned relations by comparingthe intersection of the interior, the exterior, and the boundary of di�erent planarregions and identi�ed the same base relations.In this chapter we are addressing di�erent aspects of using RCC-8. Amongthese are cognitive aspects of RCC-8, namely, whether a formally de�ned topo-logical calculus like RCC-8 can also be regarded as cognitively adequate. We willreport about an empirical investigation on that topic [KRR97] that resulted froma cooperation with the project MEMOSPACE (see their chapter in this volume[KRSS98]).One aspect is concerned with representational properties. As spatial regionsused by RCC-8 are arbitrary regular subsets of the topological space, it is unclearhow these regions should be represented. We will present a canonical model that



allows a simple representation where regions are reduced to their importantpoints and information about the neighborhood of these points [Ren98].Most applications of spatial reasoning deal with two- or three-dimensionalspace and not with arbitrary topological space, where dimension is not consid-ered. Therefore there might be consistent sets of RCC-8 relations which are notrealizable in the desired dimension. Using the canonical model, we can provethat any consistent set is always realizable in any dimension d � 1 if arbitraryregions are used and in any dimension d � 3 if regions must be internally con-nected [Ren98].Another aspect is concerned with computational issues of reasoning withRCC-8. We will prove that reasoning with RCC-8 is NP-hard in general andidentify a large maximal tractable subset of RCC-8 which can be used to makereasoning much more e�cient even in the general NP-hard case [RN97].This chapter is organized as follows. In the second section we introduceRCC-8, Section 3 summarizes our empirical investigation on cognitive validityof RCC-8. In Section 4 we introduce the modal encoding of RCC-8 and identifythe canonical model. In Section 5 this model will be interpreted topologically,which allows a simple representation of regions and also predications about thedimension of regions. Section 6 summarizes our results on computational prop-erties of RCC-8.2 Qualitative Spatial Reasoning with RCCRCC is a topological approach to qualitative spatial representation and reasoningwhere spatial regions are regular subsets of a topological space U [RCC92]. U iscalled the universe, i.e., the whole space. Relationships between spatial regionsare de�ned in terms of the relation C(r; s) which is true if and only if the closureof region r is connected to the closure of region s, i.e. if their closures sharea common point. We consider only regular closed regions, i.e., regions that areequivalent to the closure of their interior. This is no restriction, as with the abovede�nition of C it cannot be distinguished between open, semi-open, and closedregions. Regions themselves do not have to be internally connected, i.e., a re-gion may consist of di�erent disconnected parts. The domain of spatial variables(denoted as X;Y ; Z) is the whole topological space.In this work we will focus on RCC-8, but most of our results can easily beapplied to RCC-5, a subset of RCC-8 [Ben94]. RCC-8 uses a set of eight pairwisedisjoint and mutually exhaustive binary relations, called base relations, denotedas DC, EC, PO, EQ, TPP, NTPP, TPP�1, and NTPP�1, with the meaning Dis-Connected, Externally Connected, Partial Overlap, EQual, Tangential ProperPart, Non-Tangential Proper Part, and their converses. Examples for these rela-tions are shown in Figure 1. In RCC-5 the boundary of a region is not taken intoaccount, i.e., one does not distinguish between DC and EC and between TPPand NTPP. These relations are combined to the RCC-5 base relations DR forDiscRete and PP for Proper Part, respectively.
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XX YX YPO(X;Y ) EQ(X;Y ) NTPP(X;Y ) NTPP�1(X;Y )Fig. 1. Two-dimensional examples for the eight base relations of RCC-8Sometimes it is not known which of the eight base relations holds betweentwo regions, but it is possible to exclude some of them. In order to represent this,unions of base relations can be used. Since base relations are pairwise disjoint,this results in 28 di�erent relations, including the union of all base relations,which is called universal relation. In the following we will write sets of baserelations to denote these unions. Using this notation, the RCC-5 base relationDR = DC [ EC, e.g., is identical to fDC;ECg. Spatial formulas are written asXRY , where R is a spatial relation. A spatial con�guration can be described bya set � of spatial formulas.Apart from union ([), other operations are de�ned, namely, converse (^),intersection (\), and composition (�) of relations. The formal de�nitions of theseoperations are: 8X;Y : X(R [ S)Y $ XRY _XSY ,8X;Y : X(R \ S)Y $ XRY ^XSY ,8X;Y : XR^Y $ Y RX,8X;Y : X(R � S)Y $ 9Z : (XRZ ^ ZSY ):The compositions of the eight base relations are shown in Table 1. Everyentry in the composition table speci�es the relation obtained by composing thebase relation of the corresponding row with the base relation of the correspond-ing column. Composition of two arbitrary RCC-8 relations can be obtained bycomputing the union of the composition of the base relations.Given a particular subset S of RCC-8, the closure of S under composition,intersection, and converse contains all relations that can be obtained by applyingthese operations to the relations of S. The closure of S is denoted bS. The closureof the set of RCC-8 base relations B, e.g., contains among other relations allrelations in the composition table, as they can be obtained by composing thebase relations.One important computational problem is deciding consistency of a set � ofspatial formulas. � is consistent, if it is possible to �nd a realization of �, i.e., aninstantiation of every spatial variable with a spatial region such that all relations



� DC EC PO TPP NTPP TPP-1 NTPP-1 EQDC,EC DC,EC DC,EC DC,ECDC * PO,TPP PO,TPP PO,TPP PO,TPP DC DC DCNTPP NTPP NTPP NTPPDC,EC DC,EC DC,EC EC,PO POEC PO,TPP-1 PO,TPP PO,TPP TPP TPP DC,EC DC ECNTPP-1 TPP-1,EQ NTPP NTPP NTPPDC,EC DC,EC PO PO DC,EC DC,ECPO PO,TPP-1 PO,TPP-1 * TPP TPP PO,TPP-1 PO,TPP-1 PONTPP-1 NTPP-1 NTPP NTPP NTPP-1 NTPP-1DC,EC TPP DC,EC DC,ECTPP DC DC,EC PO,TPP NTPP NTPP PO,TPP PO,TPP-1 TPPNTPP TPP-1,EQ NTPP-1DC,EC DC,ECNTPP DC DC PO,TPP NTPP NTPP PO,TPP * NTPPNTPP NTPPDC,EC EC,PO PO PO,EQ PO TPP-1TPP-1 PO,TPP-1 TPP-1 TPP-1 TPP TPP NTPP-1 NTPP-1 TPP-1NTPP-1 NTPP-1 NTPP-1 TPP-1 NTPPDC,EC PO PO PO PO,TPP-1NTPP-1 PO,TPP-1 TPP-1 TPP-1 TPP-1 TPP,NTPP NTPP-1 NTPP-1 NTPP-1NTPP-1 NTPP-1 NTPP-1 NTPP-1 NTPP-1,EQEQ DC EC PO TPP NTPP TPP-1 NTPP-1 EQTable 1. Composition table for the eight base relations of RCC-8, where � speci�es theuniversal relation.hold between the regions. We call this problem RSAT. For example considerthe set � = fXfNTPPgY; Y fTPPgZ; ZfTPP;NTPPgXg. � is inconsistent as itfollows from Table 1 that NTPP composed with TPP is NTPP, so in our exampleXfNTPPgZ should be true which contradicts XfTPP�1;NTPP�1gZ 2 �. Thisis easy to see, as it is not possible that a region r is part of a region s which ispart of another region t which is part of r. When only relations of a speci�c setS are used in �, the corresponding reasoning problem is denoted RSAT(S).A canonical model of RCC-8 is a model by which every consistent set of RCC-8formulas can be interpreted. The standard canonical model for RCC-8 is thetopological space, as every region can be interpreted as a subset of the topologicalspace. A canonical model for Allen's interval calculus [All83], e.g., is the setof all convex intervals of real numbers. This model allows each interval to berepresented using the two endpoints of the interval. Such a simple representationis not possible with the topological space as a canonical model for RCC-8.3 Cognitive Plausibility of RCC-8Qualitative temporal and spatial calculi are usually justi�ed by application re-quirements and/or the introspection of the researchers developing the calculi.The cognitive signi�cance of these calculi is usually not investigated. One excep-tion is Allen's interval calculus, which has been analyzed from a cognitive point



Fig. 2. Screen dump of the monitor at the beginning of the grouping taskof view by the MEMOSPACE project (see Chapter [KRSS98]). Here the authorsdistinguish between conceptual cognitive adequacy and inferential cognitive ade-quacy [KRS95].According to Knau� et al [KRR97], a spatial calculus is inferentially cognitiveadequate if \the reasoning mechanism of the calculus is structurally similar tothe way people reason about space" and it is conceptually cognitive adequateif \empirical evidence supports the assumption that a system of relations is amodel of people's conceptual knowledge of spatial relationships." Our main aimin assessing the cognitive plausibility of RCC-8 was to �nd out whether thedistinctions made in RCC-8 are conceptually adequate. In particular, we wereinterested in �nding out whether sub-calculi such as RCC-5 are more plausiblethan RCC-8. In cooperation with the MEMOSPACE project, we investigatedthese questions [KRR97] using the grouping task paradigm. 20 subjects (studentsof Albert-Ludwigs-Universit�at, Freiburg) were presented 96 items with varyingcon�gurations of one red and one blue circle. The task of the subjects was togroup similar con�gurations together, where the number of groups was not givento the subjects (see Figure 2). After having completed the grouping task, subjectswere (unexpectedly) asked to give natural language descriptions of the groupsthey had formed.



Applying a cluster analysis to the data obtained in this investigation revealedthat after some clustering steps items for the RCC-8 relations were clustered to-gether. After some more clustering steps items for the relations TPP and TPP�1as well as items for the relations NTPP and NTPP�1 were clustered together,but at no level of the cluster analysis other sub-calculi of RCC-8 were detected.Clustering of TPP and TPP�1 as well as NTPP and NTPP�1 probably hap-pened because some subjects ignored the distinction between reference objectand to-be-localized object.In the analysis of the natural language description of the groupings it be-came evident that in more than 95 % of all cases topological terms were used todescribe the groupings. This and the above described �nding led us to the con-clusion that there is evidence that the RCC-8 system of relations is conceptuallycognitive adequate, i.e., people use them to conceptualize spatial con�gurations[KRR97]. However, more investigations are necessary to con�rm this. For in-stance, one should investigate whether the RCC-8 assumption of regions thatare not internally connected is adequate. Further, it will be interesting to inves-tigate the inferential cognitive adequacy of RCC-8.4 Modal Encoding of RCC-8 and a Canonical ModelAs RCC is de�ned in �rst-order logic, this does not lead to e�cient decisionprocedures. It can even be derived from a result of [Grz51] that RCC is undecid-able. In order to overcome this, Bennett [Ben94] used an encoding of the RCC-8relations in propositional intuitionistic logic whereby RCC-8 is proven to be de-cidable. In this chapter we are using Bennett's encoding of RCC-8 in modal logic[Ben95]. After making a brief introduction to modal logic, we are describing themodal encoding and based on this identify a canonical model of RCC-8.4.1 Propositional Modal Logic and Kripke SemanticsPropositional modal logic [Fit93,Che80] extends classical propositional logicby additional unary modal operators 2i. A common semantic interpretationof modal formulas is the Kripke semantics which is based on a set W of so-called worlds and a set R of accessibility relations between these worlds, whereR �W �W for every accessibility relation R 2 R. Worlds are entities in whichmodal formulas can be interpreted as either true or false. In di�erent worldsmodal formulas are usually interpreted di�erently. A di�erent accessibility rela-tion R2i is assigned to every modal operator 2i. For example if u; v 2 W areworlds, R2i 2 R, and uR2iv holds, then the world v is accessible from u withR2i . v is also called R2i-successor of w.A Kripke model M = hW;R; �i uses an additional valuation � that assignseach propositional atom in each world a truth value ftrue; falseg. Using a Kripkemodel, a modal formula can be interpreted with respect to the set of worlds, theaccessibility relations, and the valuation. For example, a propositional atom ais true in a world w of the Kripke modelM (written asM; w j̀ a) if and only



Relation Model Constraints Entailment ConstraintsDC(X; Y ) :(X ^ Y ) :X;:YEC(X;Y ) :(IX ^ IY ) :(X ^ Y );:X;:YPO(X;Y ) | :(IX ^ IY ); X ! Y ; Y ! X;:X;:YTPP(X;Y ) X ! Y X ! IY ; Y ! X;:X;:YTPP�1(X;Y ) Y ! X Y ! IX;X ! Y ;:X;:YNTPP(X;Y ) X ! IY Y ! X;:X;:YNTPP�1(X; Y ) Y ! IX X ! Y ;:X;:YEQ(X;Y ) X ! Y ; Y ! X :X;:YTable 2. Modal encoding of the eight base relations [Ben95].if �(w; a) = true. An arbitrary modal formula is interpreted according to itsinductive structure. A modal formula 2i', e.g., is true in a world w of the KripkemodelM, i.e.,M; w j̀ 2i', if and only if ' is true in all worlds accessible fromw with R2i .M; w j̀ :2i' if and only if there is a world accessible from w withR2i where ' is false. The operators :;^ and _ are interpreted in the same wayas in classical propositional logic.Di�erent modal operators can be distinguished according to their di�erentaccessibility relations. In this chapter we are using so-called S4-operators andS5-operators. The accessibility relation of an S4-operator must be re
exive andtransitive, the accessibility relation of an S5-operator must be re
exive, tran-sitive, and euclidean. With the accessibility relation R of a strong S5-operatorall worlds are accessible from each other, i.e., R = W �W . The use of Kripkemodels should become more clear in Section 4.3 and Section 5, where worlds andaccessibility relations are displayed (see Figure 3 and Figure 4) .4.2 Modal Encoding of RCC-8The modal encoding of RCC-8 was introduced by Bennett [Ben95] and extendedin [RN97]. In both cases the encoding is restricted to regular closed regions,i.e., regions which are equivalent to the closure of their interior. The modalencoding is based on a set of model and entailment constraints for each baserelation, where model constraints must be true and entailment constraints mustnot be true. Bennett encoded these constraints in modal logic by introducingan S4-operator I which he interpreted as an interior operator [Ben95]. Table 2displays these constraints for the eight base relations. Every spatial variablecorresponds to a propositional atom, so the modal formula X ^ Y correspondsto the intersection of the spatial regions X and Y , X _Y to the union of X andY , :X to the complement of X , and IX to the interior of X . If a modal formula' must be true in all worlds, then the spatial region corresponding to ' is equalto the universe. The model constraint for the relation EC(X;Y ), e.g., states thatthe complement of the intersection of the interior of region X with the interior ofregion Y is equal to the universe. This constraint guarantees that regions X andY have no common interior. The entailment constraints of EC(X;Y ) state thatthe complement of the intersection of region X and region Y is not equal to the



universe. Also the complements of both X and Y are not equal to the universe.These constraints guarantee that regions X and Y have points in common andthat both regions are not empty.In order to combine the model and entailment constraints to a single modalformula, Bennett introduced a strong S5-operator 2, where 2' is written forevery model constraint ' and :2 for every entailment constraint  [Ben95].2' can be interpreted as the spatial region ' is equal to the universe and :2' asthe spatial region ' is not equal to the universe. All constraints of a single baserelation are then combined conjunctively to a single modal formula. In order torepresent unions of base relations, the modal formulas of the corresponding baserelations are combined disjunctively. In this way every spatial formula XRYcan be transformed to a modal formula m1(XRY ). Two additional constraintsm2(X) are necessary to guarantee that only regular closed regions X are used[RN97]: every region X must be equivalent to the closure of its interior and thecomplement of a region must be an open region.1m2(X) = 2(X $ :I:IX) ^ 2(:X $ I:X):So any set of spatial formulas � can be written as a single modal formula m(�)where Reg(�) is the set of spatial variables of �:m(�) =  ^XRY 2�m1(XRY )! ^0@ ^X2Reg(�)m2(X)1A :As follows from the work by Bennett [Ben95], � is consistent if and only if m(�)is satis�able.4.3 A Canonical Model of RCC-8A canonical model of a calculus is a structure that allows to model any consistentformula of the calculus. An obvious canonical model of RCC-8 is the topologicalspace, as every spatial region can be modeled by a subset of the topologicalspace. As described above, the modal encoding of RCC-8 can be interpreted byKripke models. As the modal encoding of RCC-8 is equivalent to a set of RCC-8formulas, a canonical model of RCC-8 is a structure that allows a Kripke modelfor any modal formula obtained by the modal encoding of RCC-8. In order toobtain a canonical model we distinguish di�erent levels of worlds. A world oflevel 0 is a world which cannot be accessed from any other world with RI, theaccessibility relation corresponding to the I-operator. A world of level l is a worldwhich can be accessed with RI from a world of level l � 1 but not from otherworlds with a higher level than l � 1.De�nition 1. An RCC-8-structure SRCC8 = hW; fR2; RIg; �i has the followingproperties (see Figure 3):1 It can be easily veri�ed that :I:' corresponds to the closure of '.



2n-11 2 3 w level 1level 02n
Fig. 3. A world w of level 0 together with its 2n RI-successors as used in an RCC-8-structure. Worlds are drawn as circles, the arrows indicate the accessibility of worldswith the relation RI1. There are only worlds of level 0 and 1.2. For every world u of level 0 there are exactly 2n worlds v of level 1 withuRIv.3. For every world u of level 1 there is exactly one world w of level 0 with wRIu.4. For all worlds w; v 2W : wRIw and wR2v.SRCC8 contains worlds with all possible instantiations with respect to R2 andRI. An RCC-8-model M of m(�) is a �nite subset of SRCC8. In a polynomialRCC-8-model the number of worlds is polynomially bounded by the number ofregions.Every world of level 0 together with its 2n RI-successors forms an independentcluster (see Figure 3). From the de�nition of \level" and De�nition 1 it followsthat RI is re
exive and transitive, so it is guaranteed that I is an S4-operator. Asthe number of regions is countable, the number of worlds ofW is also countable.Lemma 1. If m(�) is satis�able, then there is a polynomial RCC-8-model MwithM; w j̀ m(�) with at most 3n2 worlds of level 0.Therefore the RCC-8-structure is a canonical model of the modal encoding of anyset of spatial formulas. The number of required worlds of level 0 results from thenumber of di�erent entailment constraints.5 Representational Properties of RCC-8It was shown in the previous section that the RCC-8-structure is a canonicalmodel of RCC-8. This model was obtained from the modal encoding of topolog-ical relations, so the model depends mainly on the modal encoding but not ontopology. In order to use this model for representational purposes, we have to�nd a way to interpret it topologically. Then the model can also be used for deal-ing with other properties of regions, e.g., dimension. A more detailed descriptionof representational issues of RCC-8 can be found in [Ren98].



5.1 Topological Interpretation of the RCC-8 ModelThe modal encoding of RCC-8 was obtained by introducing a modal operator Icorresponding to the topological interior operator and transferring the topologi-cal properties and axioms to modal logic. Using the intended interpretation of Ias an interior operator, it is unclear how the RCC-8-model, especially the acces-sibility relations R2 and RI, can be topologically interpreted. In this section wepresent a way of topologically interpreting the RCC-8-model such that all partsof the model can be interpreted consistently. The I-operator will not be inter-preted as an interior operator, but we will prove that it satis�es the intendedinterpretation of an interior operator.Because I is an S4-operator and because of the additional constraints m2,exactly one of the following formulas is true for every world w ofM and everyregion X .1. M; w j̀ IX2. M; w j̀ I:X3. M; w j̀ X ^ :IXConsider a particular world w. Then the set of all spatial variables can be dividedinto three disjoint sets according to which of the three possible formulas is truein w. Let Xw be the set of spatial variables where the �rst formula is true in w,Yw be the set where the second formula is true in w, and Zw be the set wherethe third formula is true in w, i.e., M; w j̀ IXi ^ I:Yj ^ (Zk ^ :IZk) for allXi 2 Xw, Yj 2 Yw , and Zk 2 Zw .Some relations between these spatial variables cannot hold as they contradictthe modal and entailment constraints of these relations. In the following table theexcluded relations and their topological consequences are shown for two regionsX and Y . i(:) denotes the interior, e(:) the exterior, and b(:) the boundary of aregion. Set of X Set of Y Impossible relations ConsequencesXw Xw DC;EC i(X) \ i(Y ) 6= ;Xw Yw TPP;NTPP;EQ i(X) \ e(Y ) 6= ;Xw Zw DC;EC;TPP;NTPP;EQ i(X) \ b(Y ) 6= ;Yw Yw { {Yw Zw TPP�1;NTPP�1;EQ e(X) \ b(Y ) 6= ;Zw Zw DC;NTPP;NTPP�1 b(X) \ b(Y ) 6= ;2It can be seen, e.g., that when IX and IY is true for a world w then the tworegions X and Y have a common interior.Considering points in the topological space, we can distinguish three di�erentways how a point p can be related to a region X :2 Actually this is not necessarily the case for PO(X;Y ) if X or Y are not internallyconnected, but assuming this does not contradict any constraint since RCC-8 is notexpressive enough to distinguish di�erent kinds of partial overlap.



X :X
:X:X :XX XX:X:X:X :X :X:XXX X XX

:X XXw w w
boundary point(M; w j̀ X ^ :IX)exterior point(M; w j̀ I:X)interior point(M; w j̀ IX)Fig. 4. Three di�erent topological interpretations of a world w. The solid line is theboundary of X where the hatched region indicates the interior of X.1. p interior point of X : there is a neighborhood N of p such that all points ofN are contained in X2. p is exterior point of X : there is a neighborhood N of p such that no pointof N is contained in X3. p is boundary point of X : every neighborhood N of p contains points insideof X and points outside of XComparing this to the three modal formulas described above, it can be seenthat there is a connection between the modal formula which is true in a worldw and the topological properties of a point p. It can be proven that there arefunctions p :W 7! U and N : W 7! 2U that map every world w to a point p(w)in the topological space and to a neighborhood N(w) of p(w) such thatp(w) 2 X if �(w;X) = true;p(w) 62 X if �(w;X) = false;p(u) 2 N(w) if wRIu:For this proof we assume that p(w) is in the interior of all regions Xi, in theexterior of all regions Yj , and on the boundary of all regions Zk simultaneously.As there is no contradiction to this neither from the topological constraints norfrom the modal constraints, it can be safely assumed. With this assumption theproof is immediate. Figure 4 shows the three di�erent kinds of interpretationsof worlds as points.Modal formulas can now be transformed stepwise to topological formulas asfollows: M; w j̀ 2' 7! 8u : p(u) 2 U :M; u j̀ '



M; w j6`2' 7! 9u : p(u) 2 U :M; u j6`'M; w j̀ I' 7! 8u : p(u) 2 N(w):M; u j̀ 'M; w j6` I' 7! 9u : p(u) 2 N(w):M; u j6`'M; w j̀ X 7! p(w) 2 XM; w j6`X 7! p(w) 62 XTherefore M; w j̀ IX can be interpreted as \there is a neighborhood N(w) ofp(w) such that all points of N(w) are in X". This satis�es the intended inter-pretation of I as an interior operator, asM; w j̀ X means that p(w) is in X andM; w j̀ IX means that p(w) is in the interior of X .5.2 Dimension of Spatial RegionsThe topological space we have been using so far does not have any particulardimension. This means that a consistent set of spatial relations is realizable insome dimension, but not necessarily in the dimension an application requires,e.g., two- or three-dimensional space. In the following we examine what dimen-sion a space requires in order to realize the canonical model. Suppose that allRI successors of a world w are mapped to points on the boundary of an n-dimensional sphere with p(w) in the center. Then the neighborhoods of Figure4, e.g., can as shown in the �gure be mapped to a two-dimensional plane whereall regions are also two-dimensional. This is possible because the mappings ofthe RI-successors of the rightmost level 0 world can be separated by two line-segments belonging to the boundary of X . If the worlds cannot be separatedby two line-segments for a region, we have to �nd a permutation of the RI-successors such that a separation is possible. A separation is necessary only forthose neighborhoods that contain boundary points of a region, as for the otherneighborhoods all points are the same. By analyzing which points are boundarypoints of which regions and the relationship between those regions, it turns outthat a permutation can always be found such that the worlds can be separated byat most two line-segments for any region. In fact only two distinct RI-successorsare necessary for each world of level 0. Therefore we obtain another canonicalmodel for RCC-8 which allows models which are much more compact than theRCC-8-model as introduced in the previous section. The new canonical model isdenoted reduced RCC-8-structure and the corresponding Kripke models reducedRCC-8-models. One world of level 0 of the reduced RCC-8-structure together withits RI-successors is shown in Figure 5a.In order to obtain regions from the neighborhoods we have to close everyneighborhood, i.e., for every neighborhood N(w) �nd the closure of the part ofevery region which is a�liated with N(w). Both sides of every neighborhood (seeFigure 6a) can be treated almost independently. All regions which are a�liatedwith the same side of a neighborhood are either overlapping or one is part ofthe other, i.e., TPP or NTPP. For the closure of the neighborhoods all \part of"relations must be ful�lled, the partial overlap relation is not important.



X :X(b)(a)1 w 2Fig. 5. (a) shows a world w of level 0 of the reduced RCC-8-structure together withits two RI-successors. In (b) it is shown how the neighborhoods can be placed inone-dimensional space. The two brackets indicate a possible one-dimensional region Xwhere the neighborhood de�nes a boundary point of X.
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Fig. 6. (a) shows the two-dimensional neighborhood of a boundary point which isdivided by the boundary. In (b) the neighborhood is closed with respect to the hierarchyH� of the a�liated regions.In order to ful�ll the \part of" relations, we have to �nd a hierarchy H� ofthe regions such that such that a \part of" b if and only if H�(a) < H�(b).The parts of all regions a�liated with a neighborhood can then be closed asrectangles according to the hierarchy H� , i.e., regions of the same level areequal (for a particular neighborhood) and are part of all regions of a higher level(see Figure 6b). A neighborhood can be closed in any higher dimension d. Thehierarchy of regions is then measured along the diagonal of the d-dimensionalhypercube. In Figure 5b it can be seen that using the reduced RCC-8-model it isalso possible to place the neighborhood in a one-dimensional space where regionsare disconnected intervals.Theorem 1. If a set of spatial formulas � is consistent, the RCC-8-model canbe realized in any dimension d � 1.Starting from a two-dimensional model of possibly non connected regions, it ispossible to construct a three-dimensional model of connected regions.



Theorem 2. If a set of spatial formulas � is consistent, the RCC-8-model canbe realized in any dimension d � 3 using only connected regions.The new canonical model is much better suited for representational purposesthan the RCC-8-model, but, as we will see in Section 6, it has some computationaldrawbacks.5.3 Representing Regions with the Canonical ModelThe RCC-8-models give us a possibility to represent topological regions. Withthe topological interpretation of the model it becomes clear that regions can bereduced to points and information about their neighborhood. The points thatare needed within the model represent the important features of the regions withrespect to a set of relations.Using the canonical model we can give algorithms to generate a realizationof � in the desired dimension. This can be done by simply placing the level0 worlds together with their neighborhoods in the desired space and close theneighborhoods according to the hierarchy H�. In this realization every regionconsists of many disconnected parts (at most 3n2 pieces, as there are at mostthat many distinct worlds of level 0, i.e., neighborhoods). A realization usingonly internally connected regions can be generated in any dimension d � 3 byconnecting all parts of a region of the d� 1 dimensional realization in a speci�cway [Ren98].6 Computational Properties of RCC-8In order to get a deeper insight into a problem and to �nd e�cient algorithms, ananalysis of the computational properties is helpful. First results on computationalproperties of RCC-8were obtained by Nebel, who considered sets of base relations[Neb95]. It was shown that the consistency problem RSAT(B) (where B is theset of RCC-8 base relations) is polynomial and that the path-consistency method(see also Section 6.3), a popular O(n3) approximation algorithm, is su�cient fordeciding consistency. Based on these results we are interested in the complexityof the general consistency problem of RCC-8, where all 256 relations are allowed.In this section we will show that RSAT is NP-hard, i.e., that every algorithmis expected to take time super-polynomial in the number of spatial regions,provided P 6= NP. As we now have intractability of the general consistencyproblem of RCC-8 and tractability of a subset of RCC-8, we are interested inthe boundary between tractability and intractability. Therefore we identify amaximal tractable subset of RCC-8 and prove that the path-consistency methodis su�cient for deciding consistency of this set. A more detailed description ofthe computational properties of RCC-8 can be found in [RN97]6.1 Complexity of RCC-8All of the following NP-hardness proofs use a reduction of a propositional satis�-ability problem to RSAT(S) by constructing a set of spatial formulas � for every



instance I of some propositional problem, such that � is consistent if and onlyif I is a positive instance. These satis�ability problems include 3SAT where allclauses have exactly 3 literals, NOT-ALL-EQUAL-3SAT where every clause hasat least one true and one false literal, and ONE-IN-THREE-3SAT where exactlyone literal in every clause must be true [GJ79].The reductions have in common that every literal as well as every literaloccurrence L is reduced to two spatial variables XL and Y L and a relationR = Rt [ Rf , where Rt \ Rf = ; and XLRY L holds. L is true if and only ifXLRtY L holds and false if and only if XLRfY L holds. Additional \polarity"constraints have to be introduced to assure that for the spatial variables X:Land Y :L, corresponding to the negation of L, X:LRtY :L holds if and only ifXLRfY L holds, and vice versa. Using these polarity constraints, spatial vari-ables of negative literal occurrences are connected to the spatial variables of thecorresponding positive literal, and likewise for positive literal occurrences andnegative literals. Further, \clause" constraints have to be added to assure thatthe clause requirements of the speci�c propositional problem are satis�ed in thereduction. We will �rst prove that the consistency problem for RCC-5 is NP-hard.Theorem 3. RSAT(RCC-5) is NP-hard.Proof Sketch. Transformation of NOT-ALL-EQUAL-3SAT to RSAT(RCC-5) (seealso [GPP95]). Rt = fPPg and Rf = fPP�1g. Polarity constraints:XLfPP;PP�1gX:L; Y LfPP;PP�1gY :L,XLfPOgY :L; Y LfPOgX:L.Clause constraints for every clause c = fi; j; kg:XifPP;PP�1gXj ; XjfPP;PP�1gXk; XkfPP;PP�1gXi,X ifPOgY k; XjfPOgY i; XkfPOgY j .Since RCC-5 is a subset of RCC-8, this result can be easily applied to RCC-8.Corollary 1. RSAT(RCC-8) is NP-hard.In the above NP-hardness proof only the relations fPOg, fPP;PP�1g, andthe universal relation were used, so this set of three relations is already NP-hard.The same or similar proofs can be carried out when we use one of the RCC-8 re-lations fTPP;NTPP�1g, fTPP;TPP�1g, fNTPP;NTPP�1g, fNTPP;TPP�1g orfTPP;NTPP;TPP�1;NTPP�1g instead of fPP;PP�1g, so these sets are also NP-hard. The number of intractable subsets can be increased by using an additionalproperty [NB95].Theorem 4. RSAT( bS) can be polynomially reduced to RSAT(S)Corollary 2. Let S be a subset of RCC-8.1. RSAT( bS) 2 P if and only if RSAT(S) 2 P.2. RSAT(S) is NP-hard if and only if RSAT( bS) is NP-hard.



With this property, all sets of RCC-8 relations whose closure contains one of the�ve relations mentioned above are also intractable. By computing the closure ofall sets containing all base relations plus one additional relation, it turned outthat for 72 relations deciding consistency is NP-hard when one of them is addedto the base relations.Lemma 2. RSAT(S) is NP-hard for any subset S of RCC-8 containing all baserelations together with one of the 72 relations of the following sets:N1 = fR j fPOg 6� R and (fTPP;TPP�1g � R or fNTPP;NTPP�1g � R)g;N2 = fR j fPOg 6� R and (fTPP;NTPP�1g � R or fTPP�1;NTPPg � R)g:6.2 Tractable SubsetsIn order to identify a set of RCC-8 relations as tractable, one either has tospecify a particular algorithm for deciding consistency of this set, or �nd anothertractable decision problem to which the consistency problem of the particular setcan be reduced. We have chosen HORNSAT, the tractable satis�ability problemof propositional Horn formulas, i.e., those propositional formulas where eachclause contains at most one positive literal. For this reduction we �rst reduceRSAT to SAT, the propositional satis�ability problem, and then identify therelations which are reduced to Horn formulas.For reducing RSAT to SAT, we specify a transformation by which every in-stance of RSAT, i.e., every set of spatial formulas �, is transformed to a propo-sitional formula. For this we will start from the modal encoding m(�) and thecorresponding RCC-8-model M. Every world w of level 0 of M together withevery spatial region X results in a propositional atom Xw. In order to preservethe structure of the RCC-8-model in the propositional formula, the 2n worlds oflevel 1 of every level 0 world w are transformed to propositional atoms X iw fori = 1; ::; 2n. Using these atoms, every model and every entailment constraint canbe transformed to a propositional formula. Additionally, the properties of theI-operator, i.e., re
exivity and transitivity and the m2-formulas, also have to betransformed to a propositional formula. It turns out that all these formulas canbe written as Horn formulas. As some of the model constraints can be trans-formed to inde�nite Horn formulas, i.e., formulas where all clauses contain onlynegative literals, disjunctions of these constraints with any other constraint canalso be transformed to Horn formulas. Thus every relation that can be written asa conjunction of constraints and Horn transformable disjunctions of constraintscan be transformed to a Horn formula. For the set of these relations decidingconsistency is thereby tractable. This set consists of 64 di�erent relations and isdenoted H8. Because of Corollary 2, the closure bH8 of H8 is also tractable.Lemma 3. RSAT( bH8) can be polynomially reduced to HORNSAT.The reduction to HORNSAT is not possible for the reduced RCC-8-model, as thetransformation of the �rst part of m2 does not result in a Horn formula.



Theorem 5. bH8 contains the following 148 relations:bH8 = RCC-8 n (N1 [ N2 [ N3)with N1 and N2 as de�ned in Lemma 2 andN3=fRjfEQg � R and ((fNTPPg � R; fTPPg 6� R)or (fNTPP�1g � R; fTPP�1g 6� R))g:For proving that bH8 is a maximal tractable subset of RCC-8, we have to showthat no relation of N3 can be added to bH8 without making RSAT intractable.For relations of the sets N1 and N2 this is already known (see Lemma 2). Thefollowing Lemma can be proven by a computer assisted case-analysis.Lemma 4. The closure of every set containing bH8 and one relation of N3 con-tains the relation fEQ;NTPPg.Therefore it is su�cient to prove NP-hardness of RSAT( bH8 [ fEQ;NTPPg) forshowing that bH8 is a maximal tractable subset of RCC-8.Lemma 5. RSAT( bH8 [ fEQ;NTPPg) is NP-hard.Proof Sketch. Transformation of 3SAT to RSAT( bH8[ fEQ;NTPPg). Rt =fNTPPg and Rf = fEQg. Polarity constraints:XLfEC;NTPPgX:L; Y LfTPPgY :L;XLfTPP;NTPPgY :L; Y LfEC;TPPgX:L;Clause constraints for each clause c = fi; j; kg:Y ifNTPP�1gXj ; Y jfNTPP�1gXk; Y kfNTPP�1gXi:Theorem 6. bH8 is a maximal tractable subset of RCC-8.It has to be noted that there might be other maximal tractable subsets ofRCC-8 that contain all base relations, since, e.g., RSAT(fEQ;NTPPg [ B) hasnot been shown to be NP-hard so far.6.3 Applicability of Path-ConsistencyThe path-consistency method is a very popular approximation algorithm fordeciding consistency of a Constraint Satisfaction Problem (CSP). It can be ap-plied since RSAT is a CSP where variables are nodes and relations are arcs ofthe constraint graph and the domain of the variables is the topological space.The path-consistency method imposes path-consistency of a CSP by successivelyremoving relations from all edges with the following operation until a �xed pointis reached: 8k : Rij  Rij \ (Rik �Rkj)



where i; j; k are nodes and Rij is the relation between i and j. The resultingCSP is equivalent to the original CSP with respect to consistency. If the emptyrelation occurs while performing this operation, the CSP is inconsistent, oth-erwise the resulting CSP is path-consistent. More advanced algorithms imposepath-consistency in time O(n3) where n is the total number of nodes in thegraph [MF85].It has already been mentioned that the path-consistency method is su�-cient for deciding consistency of sets of base relations. It can be shown that itis also su�cient for deciding consistency of sets of bH8 relations. This is doneby showing that the path-consistency method �nds an inconsistency wheneverpositive unit resolution (PUR) resolves the empty clause from the correspond-ing propositional formula. The only way to get the empty clause is resolving apositive and a negative unit clause of the same variable. Since the Horn formulasthat are used contain only a few types of di�erent clauses, there are only a fewways to resolve unit clauses using PUR which were covered by a case-analysis.As PUR is refutation-complete for Horn formulas [HW74], it follows that thepath-consistency method decides RSAT(H8). Using the proof of Theorem 4, it ispossible to express every relation of bH8 as a Horn formula. Then the followingtheorem can be proven.Theorem 7. The path-consistency method decides RSAT( bH8).6.4 Applicability of the Maximal Tractable SubsetOne obvious advantage of the maximal tractable subset bH8 is that the path-consistency method can now be used to decide RSAT when only relations of bH8are used and not only when base relations are used.As in the case of temporal reasoning, where the usage of the maximal tractablesubset ORD-HORN has been extensively studied [Neb97], bH8 can also be used tospeed up backtracking algorithms for the general NP-complete RSAT problem.Previously, every spatial formula had to be re�ned to a base relation before thepath-consistency method could be applied to decide consistency. In the worstcase this has to be done for all possible re�nements. Supposing that the rela-tions are uniformly distributed, the average branching factor, i.e. the averagenumber of di�erent re�nements of a single relation to relations of B is 4:0.Using our results it is su�cient to make re�nements of all relations to rela-tions of bH8. Except for four relations, every relation not contained in bH8 canbe expressed as a union of two relations of bH8, the four relations can only beexpressed as a union of three bH8 relations. This reduces the average branch-ing factor to 1:4375. Both branching factors are of course worst-case measuresbecause the search space can be considerably reduced when path-consistency isused as a forward checking method [LR97].The following table shows the worst-case running time for the average branch-ing factors given above. All running times are computed as b(n2�n)=2 where bis the average branching factor and n the number of spatial variables containedin �. We assumed that 100:000 path-consistency checks can be performed persecond.



#spatial variables B (4:0) bB (2:5) bH8 (1:4375)5 10sec 95msec 3msec7 500days 38min 20msec10 1014years 106years 2minRecent experiments have shown that consistency can be decided much faster thanthese numbers indicate. Almost all instances up to a problem size of 100 spatialvariables can be solved in less than a second. Using bH8 for the backtrackingsearch turns out to be about twice as fast in average than using bB. Also asigni�cantly larger number of di�cult instances can be solved in reasonable timewhen bH8 is used.7 SummaryIn this chapter we reported about our ongoing work on the cognitive, repre-sentational, and computational aspects of the Region Connection Calculus. Wemade an empirical investigation of whether or not people use similar topologicalinformation as in RCC-8 when conceptualizing spatial arrangements and foundthat RCC-8 is a good candidate for a cognitively adequate spatial relation systemand that RCC-5 and other sub calculi of RCC-8 are not cognitively adequate. Weintroduced a new canonical model of RCC-8 that resulted from the encoding ofRCC-8 in modal logic. This model was topologically interpreted which allows amore simple representation of regions than it is possible with the topologicalspace as a canonical model. It could also be shown that a consistent set of rela-tions always has a realization in any dimension d � 3 when regions are internallyconnected and d � 1 otherwise. The consistency problem of RCC-8 was shownto be intractable in general, but a maximal tractable subset of RCC-8 was iden-ti�ed. For this set the path-consistency method was proven to be su�cient fordeciding consistency.Open problems and further work on the topics of this chapter includes a moredetailed analysis of the canonical model with respect to models of internally con-nected two-dimensional regions. Another open problem is whether the maximaltractable subclass we found is the only one containing all base relations. Weare planning to make further empirical investigations on the cognitive validityof RCC-8. This includes studying the inferential cognitive adequacy of RCC-8 aswell as examining whether the complexity results have any cognitive meaning.AcknowledgmentsWe would like to thank Markus Knau� and Reinhold Rauh for their collab-oration concerning the investigation of the cognitive aspects of RCC-8, RonnyFehling and Thilo Weigel for their assistance in developing the software, andMarkus Knau� and Fritz Wysotzki for their helpful comments on earlier ver-sions of this chapter.This research has been supported by DFG as part of the project fast-qual-space, which is part of the DFG special research e�ort on \SpatialCognition."
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