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1. Introduction

Qualitative reasoning is an approach for dealing with commonsense
knowledge without using numerical computation. Instead, one tries to
represent knowledge using a limited vocabulary such as qualitative rela-
tionships between entities or qualitative categories of numerical values,
for instance, using {4, —,0} for representing real values. An impor-
tant motivation for using a qualitative approach is that it is considered
to be closer to how humans represent and reason about commonsense
knowledge. Another motivation is that it is possible to deal with incom-
plete knowledge. Qualitative reasoning, however, is different from fuzzy
computation. While fuzzy categories are approximations to real values,
qualitative categories make only as many distinctions as necessary—the
granularity depends on the corresponding application.

Two very important concepts of commonsense knowledge are time and
space. Time, being a scalar entity, is very well suited for a qualitative
approach and, thus, qualitative temporal reasoning has early emerged
as a lively sub-field of qualitative reasoning which has generated a lot of
research effort and important results. Space, in turn, is much more com-
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plex than time. This is mainly due to its inherent multi-dimensionality
which leads to a higher degree of freedom and an increased possibility
of describing entities and relationships between entities. This becomes
clear when enumerating natural language expressions involving space or
time. While temporal expressions mainly describe order and duration
(like “before”, “during”, “long”, or “a while”) or a personal or general
temporal category (like “late” or “morning”), spatial expressions are
manifold. They are used for describing, for instance, direction (“left”,
“above”), distance (“far”,“near”), size (“large”, “tiny”), shape (“oval”,
“convex”), or topology (“touch”, “inside”). It is obvious that most
spatial expressions in natural language are purely qualitative.

Although there are doubts that because of its multi-dimensionality,
space can be adequately dealt with by using only qualitative methods
(the poverty conjecture [Forbus et al., 1987]), qualitative spatial rea-
soning has become an active research area. Because of the richness of
space and its multiple aspects, however, most work in qualitative spatial
reasoning has focused on single aspects of space. The most important
aspects of space are topology, orientation, and distance. As shown in
psychological studies [Piaget and Inhelder, 1948], this is also the order
in which children acquire spatial notions. Other aspects of space include
size, shape, morphology, and spatial change (motion).

Orthogonal to this view is the question for the right spatial ontol-
ogy. One line of research considers points as the basic entities, another
line considers extended spatial entities such as spatial regions as basic
entities. While it is easier to deal with points rather than with re-
gions in a computational framework, taking regions as the basic entities
is certainly more adequate for commonsense reasoning—eventually, all
physical objects are extended spatial entities. Furthermore, if points
are required, they can be constructed from regions [Biacino and Gerla,
1991]. A further ontological distinction is the nature of the embedding
space. The most common notion of space is n-dimensional continuous
space (R™). But there are also approaches which consider, e.g., discrete
[Galton, 1999] or finite space [Gotts, 1996].

The most popular reasoning methods used in qualitative spatial rea-
soning are constraint based techniques adopted from previous work in
temporal reasoning (see Section 2 for a comprehensive introduction to
these techniques). In this chapter, we will focus exclusively on these
techniques. In order to apply them, it is necessary to have a set of qual-
itative binary basic relations which have the property of being jointly
exhaustive and pairwise disjoint, i.e., between any two spatial entities
exactly one of the basic relations holds. The set of all possible relations
is then the set of all possible unions of the basic relations. Reasoning
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can be done by exploiting composition of relations. For instance, if the
binary relation R; holds between entities A and B and the binary re-
lation Ry holds between B and C, then the composition of Ry and Ry
restricts the possible relationship between A and C'. Compositions of
relations are usually pre-computed and stored in a composition table.

The rest of the chapter is structured as follows. In Section 2, we
explain the general idea of constraint-based reasoning. In Section 3, a
number of different constraint calculi are introduced, which cover topol-
ogy, orientation, and distance. Since we are interested in reasoning in
these spatial calculi, we have to consider what computational resources
are necessary to accomplish that. For this purpose, we will introduce
computational complexity theory and explain how it can be applied in
the context of constraint based reasoning. As we will see, almost all
qualitative spatial calculi are computationally intractable. However, it
is impossible to identify tractable subsets, as we will show in Section 5.
Based in these results, we will have a look at the practical efficiency
of reasoning in spatial calculi using tractable fragments in Section 6.
Finally, in Section 7, we consider the combination of different spatial
calculi.

2. Constraint-based methods for qualitative
spatial representation and reasoning

Knowledge about entities or about the relationships between entities
is often given in the form of constraints. For instance, when trying to
place furniture in a room there are certain constraints on the position of
the objects. Unary constraints such as “The room is 5 metres in length
and 6 in breadth” restrict the domain of single variables, the length
and the breadth of the room. Binary constraints like “The desk should
be placed in front of the window”, ternary constraints like “The table
should be placed between the sofa and the armchair”, or in general n-
ary constraints restrict the domain of 2, 3, or n variables. Problems like
these can be formalised as constraint satisfaction problems.

Given a set of m variables V = {z1,...,2,} over a domain D, an
n-ary constraint consists of an n-ary relation R; C D™ and an n-tuple of
variables (z;,,...,x;,), written R;(z;,,...,x;,). For binary constraints,

we will also use the infix notation z1R;xs. A (partial) instantiation f
of variables to values is a (partial) function from the set of variables
V to the set of values D. We say that an instantiation f satisfies the
constraint R;(z;,,...,x;,) if and only if (f(z;,),..., f(zi,)) € R;.

A constraint satisfaction problem (CSP) consists of a set of variables
YV over a domain D and a set of constraints ©. The intention is to find
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a solution which is an instantiation such that all constraints in © are
satisfied.

In this work we restrict ourselves to binary CSPs, i.e., CSPs where
only binary constraints are used. A binary CSP can be represented by a
constraint network which is a labelled digraph where each node is labelled
by a variable x; or by the variable index ¢ and each directed edge is
labelled by a binary relation. We will use the notation R;; to denote the
relation constraining the variable pair (z;,2;). By overloading notation,
we also use R;; to denote the constraint R;;(x;,x;) itself.

A CSP is consistent if it has a solution. If the domain of the variables
is finite, CSPs can be solved by backtracking over the ordered domains
of the single variables. Backtracking works by successively instantiating
variables with values of the ordered domain until either all variables are
instantiated and a solution is found or an inconsistency is detected in
which case the current variable is instantiated with the next value of
its domain. If all possible instantiations of the current variable lead
to an inconsistency, the previous variable becomes the current variable
and the process is repeated. Backtracking is in general exponential in
the number of variables. The process can be sped up by propagating
constraints between the variables and eliminating impossible values as
soon as possible. If the domain of the variables is infinite, backtracking
over the domain is not possible and other methods have to be applied.

2.1 Binary Constraint Satisfaction Problems
and Relation Algebras

One way of dealing with infinite domains is using constraints over a
finite set of binary relations. Ladkin and Maddux [Ladkin and Maddux,
1994] proposed to employ relation algebras developed by Tarski [Tarski,
1941] for this purpose. A relation algebra consists of a set of
binary relations R which is closed under several operations on relations
and contains some particular relations. The operations are union
(U), intersection (N), composition (o), complement (7), and conversion
(-7), where conversion and composition are defined as follows:

sy
~

e

RoS = {{(z,y)|3z: (z,2) € RA(z,y) € S} (1.1)

e

R = {9 | (y,7) € R} (1.2)

I
~

In the following, we will—by abusing notation—identify sets of relations
with their union. For example, we identify {R, S, T} with RUSUT.



2. CONSTRAINT-BASED METHODS FOR QSR )

The particular binary relations mentioned above are the empty rela-
tion () which does not contain any pair, the universal relation * which
contains all possible pairs, and the identity relation Id which contains
all pairs of identical elements. inxxset of constraints

We assume that a set of constraints © contains one constraint for
each pair of variables involved in ©, i.e., if no information is given about
the relation holding between two variables x; and x;, then the universal
relation * constrains the pair, i.e., R;; = *. Another assumption that
we make is that whenever a constraint R;; between z; and z; is in O,
the converse relation constrains z; and z;, i.e., (R;;)™ = Rj;.

Determining consistency for CSPs with infinite domains is in general
undecidable [Hirsch, 1999]. A partial method for determining incon-
sistency of a CSP is the path-consistency method which enforces path-
consistency of a CSP [Montanari, 1974; Mackworth, 1977]. A CSP is
path-consistent if and only if for any partial instantiation of any two
variables satisfying the constraints between the two variables, it is pos-
sible for any third variable to extend the partial instantiation to this
third variable satisfying the constraints between the three variables.

A straight-forward way to enforce path-consistency on a binary CSP is
to strengthen relations by  successively applying the following operation
until a fixed point is reached:

VEk : RijizRij N (Rzk © Rkj)'

The resulting CSP is equivalent to the original CSP in the sense that it

has the same set of solutions. If the empty relation results while perform-
ing this operation, we know that the CSP is inconsistent. Otherwise, the
CSP might or might not be consistent. Provided that the composition
of relations can be computed in constant time, the algorithm sketched
has a running time of O(n®), where n is the total number of nodes in the
graph. More advanced algorithms can enforce path-consistency in time
O(n3) [Mackworth and Freuder, 1985]. Figure 1.1 shows the O(n3) time
path-consistency algorithm by van Beek [van Beek, 1992] which uses a
queue to keep track of those triples of variables that might be affected
by the changes made and which have to be analysed again.

2.2 Relation Algebras based on JEPD Relations

Of particular interest are relation algebras that are based on finite sets
of jointly exhaustive and pairwise disjoint (JEPD) relations. JEPD
relations are sometimes called atomic, basic, or base relations. We refer
to them as basic relations. Since any two entities are related by
exactly one of the basic relations, they can be used to represent defi-
nite knowledge with respect to the given level of granularity. Indefinite
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Algorithm: PATH-CONSISTENCY

Input: A set © of binary constraints over the variables z1,xo,...,z,
Output: path-consistent set equivalent to ©, or fail, if inconsistency is
detected

[

Q (0,4 k), (ki) |1 < ok ik # 71
(7 indicates the i-th variable of ©. Analogously for j and k)
while Q # 0 do
select and delete a path (i, k, j) from Q;
if REVISE(i, k, j) then
if Rij = 0 then return fail
else Q — Q U{(i, j, k), (k,i,5) | k # i,k # j};

S ol o

Function: REVISE(Z, k, j)

Input: three variables i, k and j

Output: true, if R;; is revised; false otherwise.

Side effects: R;; and Rj; revised using the operations N and o
over the constraints involving 4, k, and j.

oldR := R;j;

Rij == RN (Rig © Ryj);

if (oldR = R;j) then return false;
Rji = R;J/v

return true.

U W=

Figure 1.1. Van Beek’s PATH-CONSISTENCY algorithm.

knowledge can be specified by unions of possible basic relations. In this
chapter we denote a set of basic relations with B and it should be clear
from the context which particular set of basic relations we are referring
to. If the set of relations formed by generating all unions over these
basic relations is closed under composition and converse, then this set
of relations is the carrier of a relation algebra. We denote the set of all
relations by 28 alluding to the fact that we identify sets of relations with
their unions.

For these relation algebras, the universal relation is the union over
all basic relations. Converse, complement, intersection and union of
relations can easily be obtained by performing the corresponding set
theoretic operations. Composition of basic relations has to be computed
using the semantics of the relations. Composition of unions of basic
relations can be obtained by computing the union of the composition
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Table 1.1. The thirteen basic relations of Allen’s interval algebra

Interval Sym- Pictorial Endpoint

Base Relation bol Example Relations
x before y =< XXX X" <Y, X <YT|
y after = - yyy | Xt <y-, XT<y"
x meets y m XXXX X" <Y, X <YT|
y met-by x m~ yyyy | Xt =Y~, XT<y"
x overlaps y o XXXX X" <Y~ X <YT|
y overlapped-by x | o~ Vyyy XT>Y", Xt<y™"
x during y d XXX X" >Y , X <YT|
y includes = d— yyyyyyyy | Xt>Y~", Xt <y*
x starts y s XXX X =Y, X <YT|
y started-by x s— yyyyyyyy | Xt >y, Xt <yt
x finishes y f xxx | X >Y , X <YT|
y finished-by x [ yyyyyyyy | Xt>Y-, Xt=Y"
x equals y = XXXX X =Y, X <YT|
yyyy Xt>y", Xt=Y*

of the basic relations. Usually, compositions of the basic relations are
pre-computed and stored in a composition table.

The best known example of such a relation algebra is the Interval Al-
gebra introduced by Allen [Allen, 1983] which defines 13 different basic
relations between convex intervals on a directed line. The basic relations
and a graphical depiction are given in Table 1.1. Even though the inter-
val algebra was introduced for temporal representation and reasoning,
there is a number of spatial calculi which are derived from the interval
algebra. Some of them we will mention in this chapter.

We say that a relation R is a refinement of a relation S if and only if
R C S. Given, for instance, a union of relations {R1, Ro, R3}, then the
relation {R;, Ry} is a refinement of the former relation. This definition
carries over to constraints and to sets of constraints. Then, a set of
constraints ©' is a refinement of © if and only if both CSPs have the
same variables and for all relations jo constraining the pair x;,z; in
©' and all relations R;; constraining the same variables in ©, we have
Ri; C R;;. © is said to be a consistent refinement of © if and only if
©’ is a refinement of © and both © and ©’ are consistent. A consistent
scenario ©4 of a set of constraints © is a consistent refinement of ©
where all the constraints of O, are assertions of basic relations.

This chapter deals with determining consistency of binary constraint
satisfaction problems that are based on JEPD relations. Let B be a finite
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set of JEPD binary relations. The consistency problem CSPSAT(S) for
sets S C 28 over a (possibly infinite) domain D is defined as follows:

Instance: A set V of variables over a domain D and a finite set © of
binary constraints R(x;,z;), where R € S and z;,z; € V.

Question: Is there an instantiation of all variables in © with values
from D such that all constraints are satisfied?

In the general case CSPSAT is undecidable [Hirsch, 1999], but in many
interesting cases it is possible to prove decidability or even tractability
of CSPSAT(S).

If CSPSAT is decidable for a certain subset S C 28 then it is possible
to decide CSPSAT for other subsets of 25 by using a non-deterministic
algorithm. This is done by selecting refinements of the relations such
that the refinements are contained in S. For example, suppose S C 28
contains the relations Sy, ..., Sy, the relation R € 28 is not contained in
S, and R = S U S3U Sy. Then, the constraint R(z,y) can be processed
by guessing non-deterministically one of the relations Si,S3, and Sy.
In general, a subset S C 28 splits another subset 7 C 28 ezhaustively
if for every relation T of 7 there are refinements Sy,...,S; € S such
that T'= S1U...USk. If § splits 7 exhaustively, it is obvious that
decidability of CSPSAT(S) implies decidability of CSPSAT(7). Further-
more, it implies that CSPSAT(7) can be decided in polynomial time on
a non-deterministic Turing machine, if CSPSAT(S) can be decided in
polynomial time.

The non-deterministic algorithm sketched above can be turned into a
deterministic one by employing a backtracking scheme. The backtrack-
ing algorithm given in Figure 1.2 is a generalisation of the one proposed
by Ladkin and Reinefeld [Ladkin and Reinefeld, 1992] and relies on a set
S that splits 28 exhaustively. Note that a set S splits 28 exhaustively if
and only if § contains all base relations. S is called the split set.  The
backtracking algorithm uses a function DECIDE which is a sound and
complete decision procedure for CSPSAT(S). The (optional) procedure
PATH-CONSISTENCY in line 1 is used as forward-checking and restricts
the remaining search space. Nebel [Nebel, 1997] showed that this restric-
tion preserves soundness and completeness of the algorithm — provided
the split set is closed under intersection, composition, and converse. If
the decision procedure DECIDE runs in polynomial time, CONSISTENCY
is exponential in the number of constraints of ©. If enforcing path-
consistency is sufficient for deciding CSPSAT(S), DECIDE(O) in line 4 is
not necessary and one can return true at this point.

The efficiency of the backtracking algorithm depends on several fac-
tors. One of them is, of course, the size of the search space which has to
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Algorithm: CONSISTENCY

Input: A set © of binary constraints over the variables x1, x2, ..., 2, and
a subset S C 28 that splits 28 exhaustively and for which CSPSAT(S)
is decidable.

Output: true, iff © is consistent.

1. PATH-CONSISTENCY (©)
. if © contains the empty relation then return false
. else choose an unprocessed constraint R(x,y) and
split R into S1,...,S5; € S such that S U...US, =R
. if no constraint can be split then return DECIDE(©)
. for all refinements S; (1 <1 <k) do
replace R(z,y) with S;(z,y) in ©
if CONSISTENCY(O) then return true

W N

N o

Figure 1.2. Backtracking algorithm for deciding consistency.

be explored. A common way of measuring the size of the search space is
the average branching factor, i.e., the average number of branches each
node in the search space has. For the backtracking algorithm described
in Figure 1.2 this depends on the average number of relations of the split
set S into which a relation has to be split. The less splits in average the
better, i.e., it is to be expected that the efficiency of the backtracking
algorithm depends on the split set S and its branching factor. Another
factor is how the search space is explored. The backtracking algorithm
of Figure 1.2 offers two possibilities of applying heuristics. One is in
line 3 where the next unprocessed constraint can be chosen, the other
is in line 5 where the next refinement can be chosen. These two choices
influence the search space and the path through the search space. Good
choices should increase efficiency of the backtracking algorithm.

Other fundamental reasoning problems are the minimal label problem
CSPMIN, the problem of finding the strongest entailed relation for each
pair of variables from a given set of constraints, and the entailment prob-
lem CSPENT, i.e., decide whether a particular constraint is entailed by
a set of constraints. As was shown for the corresponding temporal prob-
lems (see the next section), the entailment problem, the minimal label
problem, and the consistency problem are equivalent under polynomial
Turing reductions [Vilain et al., 1989; Golumbic and Shamir, 1993].
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3. Spatial Constraint Calculi

In qualitative spatial reasoning it is common to consider a particular
aspect of space such as topology, direction, or distance and to develop a
system of qualitative relationships between spatial entities which cover
this aspect of space to some degree and which appear to be useful from
an applicational or from a cognitive perspective. If these relations are
based on a set of jointly exhaustive and pairwise disjoint basic relations
which is closed under several operations, it is possible to apply constraint
based methods for reasoning over these relations (see Section 2). For this
it is only necessary to give a composition table; either for all relations or
for the basic relations plus a procedure for computing the compositions
of complex relations.

The composition table should be obtained using the formal semantics
of the relations. Otherwise it is not possible to verify correctness and
completeness of the inferences. Formal semantics of the relations are also
necessary for finding efficient reasoning algorithms which are essential for
most applications. Without formal semantics it is sometimes not even
possible to show that reasoning over a system of relations is decidable
(e.g., the 9-intersection relations [Egenhofer, 1991] as shown by Grigni
et al. [Grigni et al., 1995]).

In the following subsections we survey some important approaches to
the main aspects of space, topology, direction, and distance. Instead of
summarising many different approaches, we focus on those approaches
which have been formally analysed.

3.1 Topology

Topological distinctions between spatial entities are a fundamental as-
pect of spatial knowledge. Topological distinctions are inherently qual-
itative which makes them particularly interesting for qualitative spatial
reasoning. Although there is a large body of work on topology developed
in mathematics, this is not very well suited for qualitative spatial reason-
ing. Mathematical research on topology is not concerned with reasoning
over topological relationships and as such does not provide us with any
reasonable topological calculi and reasoning mechanisms [Gotts et al.,
1996].

Topological approaches to qualitative spatial reasoning usually de-
scribe relationships between spatial regions rather than points, where
spatial regions are subsets of some topological space. Most existing ap-
proaches on formalising topological properties of spatial regions are
based on work from Whitehead [Whitehead, 1929] and Clarke [Clarke,
1981; Clarke, 1985] who axiomatised mereotopology using a single prim-
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Table 1.2. Topological interpretation of the eight base relations of RCC-8. All spa-
tial regions are regular closed, i.e., z = c(i(z)) and y = c(i(y)). i(-) specifies the
topological interior of a spatial region, ¢(-) the topological closure.

RCC-8 Relation Topological Constraints
(z,y) € DC zNy=10

(z,y) € EC i(z)Ni(y) =0, zNy #0
(z,y) € PO i(x)Ni(y) #0, 2 Zy,y
(z,y) € TPP xCy, x Zily)
(x,y) € TPP? yCux,yZi(x)
(z,y) € NTPP z C i(y)

(x,y) € NTPP™! y Ci(x)

(z,y) € EQ T=1y

itive relation, the binary connectedness relation. Some approaches also
distinguish between a mereological primitive, the parthood relation, and
a topological primitive, the connected relation [Borgo et al., 1996].

Using these primitive relations it is possible to define many other
relations. A set of jointly exhaustive and pairwise disjoint relations
which can be defined in all approaches of this kind are the eight rela-
tions DC,EC,PO,EQ, TPP,NTPP, TPP~!,NTPP~!. In the best known
approach in this domain, the Region Connection Calculus by Randell,
Cui, and Cohn [Randell et al., 1992], these relations are known as the
RCC-8 relations. In Table 1.2 we defined the RCC-8 relations using the
interior and exterior of spatial regions. Sample instances of the relations
are given in Figure 1.3. The relation symbols are abbreviations of their
meanings: DisConnected, Externally Connected, Partially Overlapping,
EQual, Tangential Proper Part, Non-Tangential Proper Part and the
converse relations of the latter two relations.

What distinguishes the different approaches and what thereby in-
fluences the definable relations is the interpretation of the connect-
edness relation and the properties of the considered regions. Some
approaches distinguish between open and closed regions [Randell and
Cohn, 1989; Asher and Vieu, 1995] which allows, for instance, to de-
fine different kinds of contact. Asher and Vieu [Asher and Vieu, 1995]
distinguished between strong contact (two regions have points in com-
mon) and weak contact (two regions are disjoint but their topological
closures share common points). Other approaches do not make this
distinction and treat regions which are open, closed, or neither equally
[Randell et al., 1992]. The Region Connection Calculus [Randell et al.,
1992] considers only the topological closure of regions: two regions are
connected if their topological closures share a common point. Cohn et
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5 3 )@

(z,y)eDC  (x,y) €EC  (x,y)€TPP (x,y)cTPP~!

OO

z,y) EPO  (z,y)€EQ (z,y) ENTPP (x,y) ENTPP~!

Figure 1.3. Two-dimensional examples for the eight basic relations of RCC-8.

al. [Cohn et al., 1997] argue that this definition is more appropriate for
commonsense spatial reasoning since there is “no reason to believe that
some physical objects occupy closed regions and others open”. Orthogo-
nal to the interpretation of the connectedness relation is the distinction
of what regions are considered. A very common restriction is to use
only non-empty regular regions. As shown by Asher and Vieu [Asher
and Vieu, 1995], models based on Clarke’s connectedness relation require
all regions to be nonempty and regular. However, it is possible to
specify additional properties of regions such as dimensionality, internal
connectedness, i.e., whether a region consists of one-piece or of multiple
pieces, or the existence of holes. The different approaches are compared
n [Cohn and Varzi, 1998; Cohn and Varzi, 1999]. In particular, the
RCC-8 constraint language uses non-empty, regular closed regions which
are subsets of a regular connected topological space. Regions do not
have to be internally connected and are allowed to have holes.

All of these approaches have in common that the relations are axioma-
tised and defined in first-order logic which provides them with formal
semantics. The formal properties of first-order theories based on a
connectedness relation were studied by Grzegorczyk [Grzegorczyk, 1951],
Dornheim [Dornheim, 1998] and Pratt and Schoop [Pratt and Schoop,
1998; Schoop, 1999]. These are very expressive approaches and lead eas-
ily to undecidability of formal reasoning, i.e., logical implication in these
theories is not decidable in general. When constraining oneself to less
expressive languages such as constraint calculi, the computational costs
are, of course, less. Constraint calculi can be regarded as the special case
of first-order sentences where only existentially quantified region vari-
ables are used. Using the RCC-8 relations, we can state constraints such
as, for example, DC(z1, ), TPP™! (22, 23), {EC, PO} (23, 21). These are
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interpreted over the domain of regular closed regions of any regular topo-
logical space, such as, e.g., the n-dimensional Euclidean space. Now,
given the composition table of RCC-8, we can use the algorithms intro-
duced in the previous section in order to decide whether the set of con-
straint is consistent, or whether other constraints are logically implied.
A prerequisite, however, is that a method for deciding consistency for
some subset of the relation system formed by the the RCC-8 relations
can be found. Bennett [Bennett, 1994] gave an encoding of the RCC-8
relations in propositional modal logic and, thus proved that reasoning
over the RCC-8 constraint language is decidable. In fact, this technique
can be used as a decision method for RCC-8 constraint systems.

A different approach to defining topological relations was given by
Egenhofer [Egenhofer, 1991] in the area of spatial information systems.
Egenhofer defined binary relations according to the 9 different intersec-
tions of the interior, exterior, and boundary of regions, hence, called
9-intersection. Depending on the regions that are used, many different
relations can be defined in this way [Egenhofer et al., 1994; Egenhofer
and Franzosa, 1994]. If only two-dimensional, internally connected reg-
ular regions without holes are considered and only emptiness or non-
emptiness of the intersection is taken into account, this results in the
same set of eight basic relations as definable in the above described ap-
proaches. In contrast to the connection based approaches, this approach
is not provided with formal semantics which makes it very difficult to
study its formal properties. For instance, attempts were made to identify
sound and complete algorithms for reasoning over the eight relations de-
fined by Egenhofer [Smith and Park, 1992; Egenhofer and Sharma, 1993]
while it was taken for granted that path-consistency decides consistency
if only basic relations are used. As shown by [Grigni et al., 1995], this is
not the case for Egenhofer’s definition of the eight topological relations.

3.2 Orientation

Orientation is, like topology, very well suited for a qualitative ap-
proach. In everyday (non-technical) communication, orientation of spa-
tial entities with respect to other spatial entities is usually given in terms
of a qualitative category like “to the left of” or “northeast of” rather
than using a numerical expression like “53 degrees” (which is certainly
more common in technical communication like in aviation). Unlike the
topological approaches we discussed in the previous section, orientation
of spatial entities is a ternary relationship depending on the located
object, the reference object, and the frame of reference which can be
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@ (b) (©

Figure 1.4. Orientation relations between points: (a) cone-based (b) projection-
based (c) double-cross.

specified either by a third object or by a given direction. In
the literature one distinguishes between three different kinds of frames
of reference, extrinsic (“external factors impose an orientation on the
reference object”), intrinsic (“the orientation is given by some inherent
property of the reference object”), and deictic (“the orientation is im-
posed by the point of view from which the reference object is seen”)
[Hernandez, 1994, p.45]. If the frame of reference is given, orientation
can be expressed in terms of binary relationships with respect to the
given frame of reference.

Most approaches to qualitatively dealing with orientation are based
on points as the basic spatial entities and consider only two-dimensional
space. Frank [Frank, 1991] suggested different methods for describing
the cardinal direction of a point with respect to a reference point in
a geographic space, i.e., directions are in the form of “north”, “east”,
“south”, and “west” depending on the granularity. These are, however,
just labels which can be equally termed as, for instance, “front”, “right”,
“back”, and “left” in a local space. Frank distinguishes between two
different methods for determining the different sectors corresponding to
the single directions: the cone-based method and the projection-based
method (see Figure 1.4). The projection-based approach allows us to
represent the nine different relations (n, ne, e, se, s, sw, w, nw, eq)
in terms of the point algebra by specifying a point algebraic relation
for each of the two axes separately. This provides the projection-based
approach (which is also called the cardinal algebra [Ligozat, 1998]) with
formal semantics which were used by Ligozat [Ligozat, 1998] to study its
computational properties. In particular, Ligozat found that reasoning
with the cardinal algebra is NP-complete (See below in Section 4) and,
further, identified a maximal tractable subset of the cardinal algebra by
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Figure 1.5. Two different Star calculi, one with 8 lines forming 33 relations and one
with 4 lines forming 17 relations.

using the concept of preconvex relations, a method which has already
been used for Allen’s interval algebra [Ligozat, 1996].

A generalisation of these calculi was proposed and analysed by Renz
and Mitra [Renz and Mitra, 2004]. Their calculus, the Star calculus
(see Figure 1.5), is based on a number of n lines ; with given angles
d; (for arbitrary n) which define 2n sectors and 4n + 1 basic relations.
The number of lines and the angles of the sectors can be adopted to the
given application, so the Star calculus can be used for representing and
reasoning about qualitative directions of arbitrary granularity. The Star
calculus has some interesting properties. For example, it can be shown
that when having three or more lines it is possible to emulate a coordi-
nate system which is due to having the lines as separate basic relations.
This removes the distinction made between qualitative and quantitative
representation and also means that qualitative reasoning methods like
path-consistency cannot be complete for deciding consistency. Renz and
Mitra therefore proposed to combine the lines and the sectors and to
consider them as new basic relations. In both cases the full calculus is
NP-hard while reasoning over the basic relations is tractable.

A further point-based approach was developed by Freksa [Freksa,
1992], the so-called double-cross calculus, which defines the direction
of a located point to a reference point with respect to a perspective
point. Within this approach three axes are used: one is specified by
the perspective point and the reference point, the other two axes are or-
thogonal to the first one and are specified by the reference point and the
perspective point. These axes define 15 different ternary basic relations
(see Figure 1.4c). The computational properties of this calculus have
been studied by Scivos and Nebel [?]. It turned out that the consistency
problem is NP-hard even if only the 15 basic relations are used.
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Figure 1.6. Orientation relations between extended entities: (a) rectangle algebra
(b) direction-relation matrix.

Developing orientation relations between extended spatial entities is
much more difficult than between points. Extended objects often have
their own intrinsic directions like a natural front. Also, the direction
between extended objects with complex shapes such that, for instance,
their convex hulls intersect is not at all clear. Even for simpler objects
there is often no agreement about which natural language expression de-
scribes their orientational relationship best. Therefore, most approaches
use approximations to the spatial regions or use only spatial regions of
a particular kind. One approach which has been chosen by many re-
searchers results in restricting all regions to be rectangles whose sides
are parallel to the axes determined by the frame of reference [Guesgen,
1989; Papadias and Theodoridis, 1997; Balbiani et al., 1998]. In this ap-
proach all regions can be represented by their projections to the defining
axes which corresponds to having Allen’s interval algebra [Allen, 1983]
for each axis separately, i.e., every relation is a pair of two interval rela-
tions (see Figure 1.6a). For two-dimensional space this results in 13 x 13
different basic relations (also called the rectangle algebra [Balbiani et al.,
1998]) whose formal semantics are provided by the interval algebra.

Balbiani et al. [Balbiani et al., 1998; Balbiani et al., 1999a] studied the
formal properties of the rectangle algebra (and also of the ‘block algebra
which is the n-dimensional extension of the interval algebra [Balbiani
et al., 1999b]). NP-completeness of the algebra carries over from the
interval algebra. Balbiani et al. [Balbiani et al., 1998; Balbiani et al.,
1999a] identified a tractable subset of the rectangle algebra following a
line of reasoning which has been introduced by Ligozat [Ligozat, 1996],
namely, by considering convex and preconvex relations. Unlike for the
interval algebra, the set of preconvex relations is not closed under the
fundamental operations. Thus, Balbiani et al. extended the concept of
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preconvexity by distinguishing between weakly and strongly preconvex
relations, and show that the set of strongly preconvex relations is a
tractable subset of the rectangle algebra for which path-consistency is
sufficient for deciding consistency. In fact the rectangle algebra repre-
sents more than just orientation between two rectangles but also their
topological relations. Hence, the rectangle algebra can be regarded as
an approach to combining topology and orientation. However, because
of the large number of relations of the rectangle algebra (a total num-
ber of 219 relations) reasoning even over a tractable subset can be very
inefficient.

An interesting but less expressive approach to representing orienta-
tional relationships between extended spatial entities was introduced by
Goyal and Egenhofer [Goyal and Egenhofer, pear|. Their calculus con-
sists of a 3 x 3 direction-relation matriz which represents the 9 sectors
formed by the minimal bounding axes of an extended spatial entity (see
Figure 1.6b). For each sector it is possible to specify whether the lo-
cated object is contained in the sector or not, or (non-qualitatively) to
which degree the located object is contained in the sector.

Skiadopolous and Koubarakis [Skiadopoulos and Koubarakis, 2005]
developed reasoning algorithms for this calculus and analysed its com-
putational properties, but their algorithms are not based on constraint
based methods like path-consistency.

3.3 Distance

Together with topology and orientation, distance is one of the most
important aspects of space. Unlike the other two, distance is a scalar en-
tity. Dealing with distance information is an important cognitive ability
in our everyday life. In order to grab something, for instance, we must
be good in judging distances. When communicating about distances,
we usually use qualitative categories like “A is close to B” or qualitative
distance comparatives like “A is closer to B than to C”, but also numer-
ical values like “A is about one meter away from B”. As indicated by
the above examples, one can distinguish between absolute distance re-
lations (the distance between two spatial entities) and relative distance
relations (the distance between two spatial entities as compared to the
distance to a third entity). While absolute distance can be represented
either qualitatively or quantitatively, relative distance is purely qualita-
tive. When representing absolute distance in a qualitative way, this also
depends on the scale of space which is used. Montello [Montello, 1993]
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Figure 1.7. Different approaches to representing positional information: (a) absolute
distances combined with cone-based orientation [Clementini et al., 1997] (b) relative
distances combined with projection-based orientation. [Isli and Moratz, 1999]

suggests four different kinds of scales of space: figural space, vista space,
environmental space, and geographic space.

Most approaches to qualitative distance consider points as the basic
entities. Absolute distance relations are obtained, e.g., by dividing the
real line into several sectors such as “very close”, “close”, “commensu-
rate”, “far”, and “very far” depending on the chosen level of granularity
[Hernandez et al., 1995]. Relative distance can be obtained by comparing
the distance to a given reference distance which results in ternary rela-
tions such as “closer than”, “equidistant”, or “farther than”. Reasoning
about qualitative distances leads to several difficulties. For instance,
given a sequence of collinear points pi,...,p, such that p; is close to
pi+1 for every i, for which n is p, far from p;? Moreover, combining
distance relations does not only depend on the distances itself but also
on the position of the corresponding points. For instance if point B is
far from A and C is far from B, then C can be very far from A if A, B,
and C' are aligned and if B is between A and C'; or C' can be close to A
if the angle between AB and BC' is small. Therefore, it seems advisable
to study distance in combination with orientation. This combination is
called positional information.

One approach for developing a position calculus is by Clementini et
al. [Clementini et al., 1997] who combine a cone-based orientation ap-
proach with absolute distance relations (see Figure 1.7a). Clementini
et al. present different procedures for computing the composition of two
positional relations (A, B) and (B, C'). They consider three special cases
where BC' is the same, opposite, or orthogonal direction to AB. An-
other approach is by Isli et al. [Isli and Moratz, 1999] who propose
several position calculi on various levels of granularity by combining rel-
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ative distance relations with different approaches to orientation such as
the projection-based approach (see Figure 1.7b) or the double-cross cal-
culus. The computational properties of these approaches have not been
studied yet.

4. Computational complexity

Since we are interested in automated reasoning with the spatial calculi
described above, it is a good idea to get an understanding of how compu-
tationally demanding reasoning in these calculi is. Here computational
complexity theory is the right theoretical tool.

In the field of computational complexity [Papadimitriou, 1994], com-
putational problems are classified according to their need for resources
for solving them, usually the running time and the memory consump-
tion. This allows to compare the complexity of different problems and
to design algorithms for a whole class of problems. For classifying com-
putational problems, they are usually expressed as decision problems,
i.e., problems that require a simple yes/no answer. Such problems can
be equivalently viewed as formal languages over some alphabet ¥, which
is formed by all yes-instances.

Most problems can be easily translated into an equivalent decision
problem. Assume for example the problem of finding a satisfying
truth assignment for a propositional formula. The corresponding deci-
sion problem is the  problem SAT: given a set of variables V and a
propositional formula ¢ over V' in CNF, is there a satisfying truth assign-
ment for ¢? The complexity of a decision problem is usually measured
according to the worst-case running time or memory consumption of the
best possible algorithm. If we now can prove lower bounds on the run-
time for the decision problem then these lower bounds apply obviously
to the original problem as well.

Running time as well as memory consumption of an algorithm depends
on the size n of its input, i.e., on the size of the problem instance, and
can be expressed as a function f(n). For classifying algorithms according
to their running time, the asymptotical behaviour is more important
than f itself. This is specified in terms of the O-notation which gives
an upper bound on the running time within a constant factor [Cormen
et al., 1990]. An algorithm with a running time of O(n?) or faster is
usually considered to be efficient. In areas like database systems where
instances have a very large size, a running time of O(n?) is too slow. In
these areas efficient algorithms should have a linear running time.
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4.1 Tractability and NP-completeness

There is a large number of different complexity classes that are used
to categorise decision problems [Johnson, 1990]. Particularly important
is the class of decision problems that can be solved in polynomial
time using a deterministic algorithm. This complexity class is called
P and it is considered to be the class of efficiently solvable problems.
Problems in P are also called tractable problems, problems outside P are
called intractable problems.

Interestingly, there exists a large class of problems for which nobody
has found polynomial-time algorithms yet, but it appears equally hard to
prove that no such algorithms exist. In order to capture these problems,
one extends the notion of algorithm. The class of problems solvable in
polynomial time using a non-deterministic algorithm is called NP, which
is equivalent to specifying that a given solution of an NP problem can
be verified in polynomial time using a deterministic algorithm. In the
sequel, an algorithm will always be a deterministic algorithm, unless
otherwise stated. It is clear that P is a subset of NP, but it is not known
whether P is a proper subset of NP or whether P is equal to NP, which

is called the P = NP problem.

An important method of comparing problems is specifying a reduction
from one problem to another. Given two problems A, B C ¥*, problem
A can be reduced to problem B by giving a constructive transforma-
tion f:3* — ¥* such that f(x) € B if and only if z € A. If f can
be computed in polynomial time, the reduction is a polynomial (time)
reduction. If A is polynomially reducible to B (written as A <, B),
then any polynomial time algorithm for solving B can be used to solve
A. Thus, for showing that a particular decision problem A is in P, it is
sufficient to find another problem B € P such that A <, B.

A decision problem A is said to be NP-hard if any other problem
in NP can be polynomially reduced to A. An NP-hard problem which
is itself contained in NP is called NP-complete. NP-complete problems
are the most difficult problems in NP. In fact, most of the problems
for which nobody has found an efficient algorithms yet but which are
resistant against proving them to be intractable fall into this class. In
order to prove a decision problem A to be NP-hard, it is sufficient
to find another NP-hard problem that can be polynomially reduced to
A. The first problem that was identified to be NP-complete is the SAT
problem [Cook, 1971]. In this work we use the following NP-complete
propositional decision problems [Garey and Johnson, 1979]:

Given: A set of variables V' and a propositional formula ¢ over V in
CNF such that each clause of ¢ has exactly three literals.
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Questions:

1 Is there a satisfying truth assignment for ¢7 (3SAT)

2 Is there a satisfying truth assignment for ¢ such that each
clause has at least one true literal and at least one false literal?
(NOT-ALL-EQUAL-3SAT)

3 Is there a satisfying truth assignment for ¢ such that each
clause has exactly one true literal? (ONE-IN-THREE-3SAT)

Some variants of the propositional satisfiability problem are solvable in
polynomial time. This includes the 2SAT problem, the propositional
satisfiability problem of Krom formulae, and the HORNSAT problem,
the propositional satisfiability problem of Horn formulae, which is of
particular importance in this work. It is generally believed that P £ NP,
and, hence, that NP-complete problems are intractable. This is also the
assumption of this work. So far, any algorithm for an NP-complete
problem has at least super-polynomial running time.

4.2 Phase Transitions

Having proved a problem to be NP-complete is not the end of the
computational analysis of a problem, but rather its beginning. NP-
completeness is just a worst-case measure of a problem. It means that for
any algorithm there exist instances which cannot be solved in polynomial
time. It is possible that only one in a million instances is very hard and
that the other instances can be solved easily.

There are several ways to deal with NP-complete problems. One way
is to develop efficient approximation algorithms which are correct but
not complete for deciding either solubility or insolubility. Another way is
to use complete algorithms which require exponential time in the worst-
case and to develop heuristics which solve many instances efficiently. In
all cases the effectiveness of new algorithms and heuristics should be
verified using a large number of instances. Since it is usually not easy to
obtain a large number of real-world instances, many researchers generate
instances randomly with respect to different control parameters.

Cheeseman, Kanefsky, and Taylor [Cheeseman et al., 1991] found that
randomly generated instances of the NP-complete problems they studied
had a very special behaviour: When ordering these instances according
to a particular problem-dependent parameter, there are three different
regions with respect to the solubility of the instances that occur when
changing the parameter. In one region instances are soluble with a very
high probability, in one region instances are insoluble with a very high
probability, and in between these two regions there is a very small region
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Figure 1.8. Typical phase-transition behaviour of randomly generated instances.

where the probability of solubility of these instances changes abruptly
from very high to very low (see Figure 1.8(a)). Cheeseman et al. [Cheese-
man et al., 1991] called this region phase-transition. In this region a small
change of the local parameter leads to a large change in the solubility of
the instances.

Cheeseman et al. [Cheeseman et al., 1991] further found that almost
all hard instances are located in the phase-transition region. In general,
instances in the phase transition appear to be harder than instances
in the other two regions (see Figure 1.8(b)). This is because instances
in soluble region are under-constrained and for this reason any search
method finds a solution very fast without much backtracking. Similarly,
instances in the insoluble region are over-constrained and for this reason
search methods fail quite early when searching through the space of pos-
sible solutions. In some studies, however, it turned out that some under-
constrained instances are particularly hard [Gent and Walsh, 1996].

The behaviour of randomly generated instances of NP-complete prob-
lems described by Cheeseman et al. was found by many researchers for
many NP-complete problems, although satisfiability problems were the
most studied problems. A typical parameter for satisfiability problems
that causes a phase transition is the ratio of clauses-to-variables. An
interesting selection of papers on the topic can be found in [Hogg et al.,
1996].

4.3 How to prove NP-hardness and NP
membership for spatial CSPs

In order to prove NP-hardness of a decision problem, in our case the
consistency problem of a set of spatial constraints CSPSAT, it is sufficient
to find another NP-hard problem that can be polynomially reduced to
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the problem at hand. Usually this has to be done in a different way for
each new problem again and again and it is in many cases a difficult
task to find a new transformation and to prove that it is a one to one
transformation. The difficulty of this problem can be estimated when
considering that new NP-hardness proofs often deserve a publication.

When looking at spatial CSPs over different sets of relations it is
striking that they all have the same structure with different relations.
One might expect that the same reduction with different parameters can
be used for different sets of relations and that a general transformation
scheme can be used. In this section we present a scheme which we
developed for proving NP-hardness of different subsets of RCC-8 and
which seems to be general in the way that the parameters of the scheme
can be found by exhaustive search over possible relations, no matter what
the relations are. So the transformations could essentially be identified
automatically for any system of relations.

Our scheme uses a transformation from a propositional satisfiability
problem to CSPSAT(S) where S is a subset of a system of relations 25
by constructing a set of spatial constraints © for every instance Z of the
propositional satisfiability problem, such that © is consistent if and only
if 7 is a positive instance. The propositional satisfiability problems we
use are 3SAT, the problem of deciding whether there is a truth assign-
ment for a set of clauses where each clause has exactly three literals, as
well as two variants of 3SAT where truth assignments of particular types
are required. These variants are NOT-ALL-EQUAL-3SAT, the problem of
deciding whether there is a truth assignment such that for every clause
at least one literal is assigned true and one literal is assigned false, and
ONE-IN-THREE-3SAT, the problem of deciding whether there is a truth
assignment such that for every clause exactly one literal in every clause is
assigned true. All three decision problems are NP-hard [Schaefer, 1978].

The different transformations have in common that every variable v of
the propositional satisfiability problem is transformed to two constraints
xy{ R, Rt '}y, and -, {R¢, Ry }y_,, corresponding to the positive and the
negative literal of v, where Ry and R are relations of S with RN Ry = (.
v is assigned true if and only if z,{R;}y, holds and assigned false if
and only if xz,{Rf}y, holds. Since the two literals corresponding to a
variable need to have opposite assignments, we have to make sure that
xy{ R}y, holds if and only if z—,{ R }y_,, holds, and vice versa, for which
additional polarity constraints are required. In addition, every literal
occurrence [ of the propositional satisfiability problem is transformed
to the constraint x;{ R, Rs}y;, where 2;{R;}y; holds if and only if [ is
assigned true. In order to assure the correct assignment of positive and
negative literal occurrences with respect to the corresponding variable,
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polarity constraints are required again. For instance, if the variable v is
assigned true, i.e., r,{ R}y, holds, then z,{R;}y, must hold for every
positive literal occurrence p of v, and z,{Ry}y, must hold for every
negative literal occurrence n of v. Further, clause constraints have to be
added to assure that the clause requirements of the specific propositional
satisfiability problem are satisfied. For example, if {7, j, k} is a clause of
an instance of ONE-IN-THREE-3SAT, then exactly one of the constraints
ri{ R}y, vi{ R}y, and zp{ R }y), must hold.

According to this scheme, all we have to do in order to find a trans-
formation is to identify relations Ry, R; € S, the polarity constraints
which enable to propagate the assignment of literal occurrences to other
literal occurrences, and the clause constraints which ensure that prop-
erties of clauses also hold for their transformation. These constraints
can be found by exhaustively assigning and testing the polarity CSP of
figure 1.9(a) and based on this, the clause CSP of figure 1.9(b). If it
is possible to identify the polarity and the clause constraints, then we
have found a polynomial transformation from a propositional satisfiabil-
ity problem to the consistency problem of S.

The next step is to show that this transformation is a many-to-one
transformation such that whenever we have a positive instance of the
propositional satisfiability problem we get a positive instance of the con-
sistency problem. Unlike finding polarity and clause constraints, this
part of the NP-hardness proof cannot be automated as it depends on
the domains we are using. However, since the CSP we get is very struc-
tured with only the polarity constraints and the clause constraints, this
can be easy to show in many cases. It is actually an advantage that the
domain we are using is infinite as it allows to treat the different polarity
and clause constraints almost independently. Examples for transforming
propositional satisfiability problems to CSPSAT(S) for different subsets
S of RCC-8 can be found in [Renz and Nebel, 1999].

The next step in the complexity analysis of a given spatial calculus
is to prove NP membership of CSPSAT. Recall that in order to show
that a decision problem is a member of NP, we have to show that a
possible solution can be checked in polynomial time. So for showing
that CSPSATis in NP for a system of relations 28 over a domain D it is
sufficient to show that CSPSAT(B) over D is a member of NP. While for
many NP-complete problems the NP-membership proof is easier than
showing NP-hardness, it is the other way around for spatial CSPs. This
is due to the fact that we might have to check arbitrary spatial entities
which might not even be representable in a computational framework
(see e.g. [Renz, 1998]) and due to the infinity of the domain D. Proving
NP membership can be very difficult and has to be done for each system
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Figure 1.9. The polarity constraints (a) assure that positive and negative literals of
the same variable have opposite assignments. The clause constraints (b) assure that
the clause requirements of the particular 3SAT problem are satisfied.

of relations and for each domain separately. Consider for example the
RCC-8 relations and Egenhofer’s relations. The composition table of the
relations are the same, but the domains are different. While the RCC-8
domain consists of regular subsets of a topological space, Egenhofer’s do-
mains consist of connected two-dimensional regions without holes which
is much more restricted. The consequence of this is that while RCC-8 is
in NP [Renz, 1998], NP membership of Egenhofer’s calculus is still an
open problem [Grigni et al., 1995]. Instead of proving NP membership
by showing that a given solution can be verified in polynomial time,
we can also give a polynomial time decision procedure for CSPSAT(B)
over D and show that whenever the decision procedure recognises an
instance © as consistent, there is an instantiation of all variables in ©
with values of the domain D such that all constraints of © are satisfied.
Having a polynomial decision procedure is a stronger result and implies
NP membership. In the next session we will look at how such decision
procedures can be identified.

5. Identifying tractable subsets of spatial CSPs

Reasoning about most interesting spatial calculi is NP-hard. This,
however, is often true only for the full calculus, i.e., if all relations 25
can be used. If we restrict ourselves to subsets S C 28 of the full
set of relations, it might be possible that reasoning over this subset is
tractable. Ideally we are interested in finding maximal tractable subsets
of 28 which are those subsets which are tractable and which become
NP-hard if any other relation is added. This represents the boundary
between tractability and NP-hardness. Some subsets are obviously
tractable such as the set of relations that contain the identity relations
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as a disjunct. The subsets that are most interesting are those that
contain all the basic relations B. So as a minimal requirement and as a
first step we have to show that the set of basic relations is tractable.

For RCC-8, Renz and Nebel [Renz and Nebel, 1999] showed tractabil-
ity of the basic relations by developing a polynomial transformation
of RCC-8 constraints into SAT formulae. Those RCC-8 relations that
transform into a Horn formula together form a tractable subset. Alto-
gether 64 relations were identified in this way, among them were all the
basic relations. While we could try to develop a new algorithm or a
new transformation for every spatial calculus and for different subsets
of them, it is highly desirable that the path-consistency algorithm (see
section 2.1) can be used for deciding consistency of tractable subsets.
If this is the case then consistency can be decided purely by algebraic
operations on the relations without having to fall back to the infinite
domains. And we have to deal with the domains only once for proving
that path-consistency decides consistency. Obviously, this again depends
strongly on the domains and the relations that are used and cannot be
generalised. Therefore we have to find a new tractability proof for every
set of basic relations over every domain. This can be very complicated
as we have to deal with infinite domains.

For RCC-8, for example, the proof that the path-consistency algo-
rithm decides consistency for the basic relations (actually for a larger
set of relations) was done as follows [Renz and Nebel, 1999]. First, it
was analysed how applying path-consistency can lead to an inconsis-
tency. Then it was shown that whenever the path-consistency algorithm
detects an inconsistency, positive unit resolution applied to the SAT
encoding of RCC-8 produces the empty clause. In [Renz, 1998] an algo-
rithm was presented which computes an instantiation for all variables
of any consistent set of constraints over the RCC-8 basic relations. This
algorithm works for Euclidean spaces in all dimensions d. For d > 3 it
also works for connected regions without holes.

Once it has been shown that path-consistency decides consistency for
the basic relations, it is possible to try to extend the set of relations
and to identify larger tractable subsets. There are basically two general
methods which can be used for extending tractability of subsets of rela-
tions to larger subsets: the closure method [Renz and Nebel, 1999] and
the refinement method [Renz, 1999]. We will describe these methods in
the following section. In particular the refinement method seems very
powerful and will be presented in more detail.
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5.1 Closure of sets of relations

Given a system of relations 28, the number of subsets S C 28 that
we might have to analyse for a computational analysis is huge, namely,
22") " This number can be slightly reduced if only those subsets are
considered that contain all the basic relations and possibly the universal
relation. Fortunately, we can reduce the number of subsets further by
noting that the computational complexity associated with an arbitrary
subset § is identical to the complexity associated with the closure of this
subset under composition, intersection, and converse, denoted by S — an
observation that was first used in determining a maximal tractable sub-
set of Allen’s interval calculus [Nebel and Biirckert, 1995, Theorem 14].
Renz and Nebel [Renz and Nebel, 1999] proved this for arbitrary systems
of relations and came up with the following theorem.

THEOREM 1.1 Let C be a set of binary relations that is closed under
composition, intersection, and converse. Then for any subset S C C that

contains the universal relation, the problem CSPSAT(S) can be polyno-
mially reduced to CSPSAT(S).

Note that Theorem 1.1 holds only if there exists an infinite supply of
fresh variables; this is not always the case (e.g., bounded variable prob-
lems which are studied in logic and model theory). Another requirement
of Theorem 1.1 is the possibility to specify more than one constraint for
each pair of variables. Otherwise the identity relation must be contained
in §. The following corollary specifies how Theorem 1.1 will be used.

COROLLARY 1.2 Let S be a subset of 25.

~

1 CSPSAT(S) € P if and only if CSPSAT(S) € P.

~

2 CSPSAT(S) is NP-hard if and only if CSPSAT(S) is NP-hard.

The first statement of Corollary 1.2 can be used to increase the num-
ber of elements of tractable subsets of CSPSAT considerably. With the
second statement of Corollary 1.2 NP-hardness proofs of CSPSAT can
be used to exclude certain relations from being in any tractable subset
of CSPSAT. In any case, we will have to analyse only those subsets that
are closed under composition, converse and intersection.

The computational analysis of RCC-8 shows how powerful this method
is. The closure of the set of 64 relations that transform to Horn formulae
consists of 148 relations (called Hg) and turns out to be a maximal
tractable subset of RCC-8. Furthermore, it has been shown [Renz and
Nebel, 1999] that path-consistency decides CSPSAT (Hs).
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5.2 The refinement method

In this subsection we present a general method for proving tractability
of reasoning over disjunctions of a JEPD set B of binary relations over
a domain D which are atoms of a relation algebra, i.e., a method for
proving tractability of CSPSAT(S) for sets S C 25 (see Section 2.2). In
order to do so, this method requires a subset 7 of 28 for which path-
consistency is already known to decide CSPSAT(7"). Then the method
checks whether it is possible to refine every constraint involving a relation
in § according to a particular refinement scheme to a constraint involving
a relation in 7 without changing consistency. The following definition
will be central for this method.

DEFINITION 1.3 (REDUCTION BY REFINEMENT)
Let S, T C 25. S can be reduced by refinement to T, if the following
two conditions are satisfied:

1 for every relation S € S there is a relation Ts € T with Ts C S,

2 every path-consistent set © of constraints over S can be refined
to a set © of constraints over T by replacing x;Sx; € O with
ziTsz; € © for i < j, such that enforcing path-consistency to ©'
does not result in an inconsistency.

Note that in the above definition constraints x;Sz; are refined only for
i < j. This is no restriction, as by enforcing path-consistency the con-
verse constraint ;5 x; will also be refined. Rather it offers the pos-
sibility of refining, e.g., converse relations to other than converse sub-
relations, i.e., if, for instance, R is refined to r, R~ can be refined to a
relation other than »~. This property of a set of relations can be used
to derive its tractability.

LEMMA 1.4 If path-consistency decides CSPSAT(T) for a set T C 25,
and S can be reduced by refinement to T, then path-consistency decides

CSPSAT(S).

Proof. Let © be a path-consistent set of constraints over S. Since S
can be reduced by refinement to 7, there is by definition a set © of
constraints over 7 which is a refinement of © such that enforcing path-
consistency to ©’ does not result in an inconsistency. Path-consistency

decides CSPSAT(T), so ©' is consistent, and, hence, © is also consistent.
m

Since path-consistency can be enforced in cubic time, it is sufficient for
proving tractability of CSPSAT(S) to show that S can be reduced by
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refinement to a set 7 for which path-consistency decides CSPSAT(7).
Note that for refining a constraint xSy (S € S) to a constraint zTsy
(Ts € T), it is not required that Ts is also contained in S. Thus, with
respect to common relations the two sets S and 7 are independent of
each other. This is in contrast to Theorem 1.1 which states that the
tractability of a set of relations implies the tractability of its closure.

We will now present a method for showing that a set of relations
S C 2B can be reduced by refinement to another set 7 C 28 In order
to manage the different refinements, a refinement matriz is introduced
that contains for every relation S € § all specified refinements.

DEFINITION 1.5 (REFINEMENT MATRIX)
A refinement matrix M of S has |S| x 2/Bl Boolean entries such that for
SeS, Re 25 M[S|[R] = true only if R C S.

For example, if we want to build a refinement matrix which states
that that the relation {DC, EC, PO, TPP} can be refined to the relations
{DC, TPP} and {DC}, then we set M [{DC, EC, PO, TPP}][R] is true only
for R = {DC, TPP} and for R = {DC} and false for all other relations
R € 28. M is called the basic refinement matriz if M[S][R] = true if
and only if ' = R.

Renz [Renz, 1999] proposes the algorithm CHECK-REFINEMENTS (see
Figure 1.10) which takes as input a set of relations S and a refine-
ment matrix M of §. The algorithm uses triples of relations T =
(R12, Ra3, R13) which represent sets of constraints {x R12y, yResz, v R132}
for some variables x, y, z. It computes all possible path-consistent triples
of relations Ryo, Ro3, R13 of S (step 4), and enforces path-consistency
(using a standard procedure PATH-CONSISTENCY) to every refinement

12> B3, Ry for which M[Ry;|[R};] = true for all i,j € {1,2,3},i < j
(steps 5,6). If one of these refinements results in the empty relation,
the algorithm returns fail (step 7). Otherwise, the resulting relations

12, 53, i3 are added to M by setting M[R;;][R];] = true for all
i,7 € {1,2,3},i < j (step 8). This is repeated until M has reached
a fixed point (step 9), i.e., enforcing path-consistency on any possible
refinement does not result in new relations anymore. If no inconsistency
is detected in this process, the algorithm returns succeed.

A similar algorithm, GET-REFINEMENTS, returns the revised refine-
ment matrix if CHECK-REFINEMENTS returns succeed and the basic
refinement matrix if CHECK-REFINEMENTS returns fail. Since B is a
finite set of relations, M can be changed only a finite number of times,
so both algorithms always terminate. If n = |24| is the total number of
relations, then there are at most n3 possible triples of relations in step 4,
at most n> possible refinements of each triple in step 5, and at most n?
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Algorithm: CHECK-REFINEMENTS

Input: A set S and a refinement matrix M of S.

Output: fail if the refinements specified in M can make a path-
consistent triple of constraints over S inconsistent; succeed otherwise.

1. changes « true
2. while changes do
3. oldM — M

4.  for every path-consistent triple
T = (R12, Ros, R13) of relations over S do
5. for every refinement 17" = (R}, Rbs, R}3) of T

with oldM[R12][R},] = oldM|Ra3][Rbs] =
oldM[Ry3][R} 3] = true do

6. T" «— PATH-CONSISTENCY(T")

7. if T" = (RYy, RY5, Rl5) contains the empty
relation then return fail

8. else do M [Ry9][RYs] < true,

M [Ry3][Ros] « true,
MRy3][RY3] < true
9. if M = oldM then changes «— false
10. return succeed

Figure 1.10. Algorithm CHECK-REFINEMENTS.

iterations of the while loop. Thus, a rough estimation of the worst-case
running time of both algorithms leads to O(n®).

LEMMA 1.6 Let © be a path-consistent set of constraints over S and M
a refinement matriz of S. For every refinement ©' of © with z;R'x; €
O only if z;Rx; € O, i < j, and M[R|[R| = true, the following
holds: if CHECK-REFINEMENTS(S, M) returns succeed, enforcing path-
consistency to ©' does not result in an inconsistency.

If CHECK-REFINEMENTS returns succeed and GET-REFINEMENTS re-
turns M’, we have pre-computed all possible refinements of every path-
consistent triple of variables as given in the refinement matrix M’. Thus,
applying these refinements to a path-consistent set of constraints can
never result in an inconsistency when enforcing path-consistency.

THEOREM 1.7 Let S, T C 25, and let M be a refinement matriz of S.
Let M’ be the refinement matriz returned by GET-REFINEMENTS(S, M).
If for every S € S there is a Tg € T with M'[S][Ts] = true, then S can
be reduced by refinement to T .
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By Lemma 1.4 and Theorem 1.7 we have that the procedures CHECK-
REFINEMENTS and GET-REFINEMENTS can be used to prove tractability
for sets of relations.

COROLLARY 1.8 Let S, T C 28 be two sets such that path-consistency
decides CSPSAT(T), and let M be a refinement matriz of S. GET-
REFINEMENTS(S, M) returns M'. If for every S € S there is a Tgs € T
with M'[S][Ts] = true, then path-consistency decides CSPSAT(S).

If a suitable refinement matrix can be found, CHECK-REFINEMENTS
can be used to immediately verify that reasoning over the given set of
relations is tractable. One problem with this method is that the algo-
rithms, though polynomial, are not very efficient. Especially for large
sets of relations the algorithms are very slow. Fortunately, the algo-
rithms are used for determining tractability of reasoning over sets of
relations and not for the reasoning process itself. Renz [Renz, 2002]
proposed a faster version of the algorithm which uses a refinement ar-
ray instead of a refinement matrix which reduces the runtime of the
algorithm to O(n*logn).

In the following subsection we show how the refinement method can
be applied to RCC-8 for proving certain subsets to be tractable. For
RCC-8 it will lead to a complete analysis of tractability by identifying
all three maximal tractable subsets.

5.3 Applying the refinement method

The refinement method requires for any input set of relations S C 25 a
subset 7 C 28 for which path-consistency is known to decide consistency
and a refinement strategy S = 7. Assuming that a set 7 is known, the
main tasks are to find a candidate set S and a refinement strategy, i.e.,
we have to find for every relation of S a relation of 7 and apply the
refinement algorithm using the different refinement strategies.

Candidate sets §; can be found by using the closure method and the
known NP-hard relations. In [Renz, 1999], Renz identified candidate sets
for RCC-8 by computing the largest subsets of RCC-8 that contain the
basic relations, the universal relation, are closed under the operators and
do not contain any of the known NP-hard relations, i.e., the relations
that can be used for the NP-hardness proofs. This resulted in only three
candidate sets (which are called Cg, Qg and the already known maximal
tractable subset 7/'28) which can be tested using the refinement method,
provided that a refinement strategy can be found.

One way of finding a refinement strategy is to use a greedy method of
extending partial refinement strategies by first refining only one or a few
relations, fill the refinement matrix/array using the refinement algorithm
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and if no inconsistency occurs add some more refinements. This can be
repeated until a working refinement strategy can be found or until it
is shown that no refinement strategy exists. It might also be possible
that a particular refinement strategy, the identity refinement strategy, is
applicable. The identity refinement strategy refines each relation R € §
to the relation " = R\ ID, where ID € B is the identity relation.
Renz [Renz, 1999] observed that all relations that are contained in the
two candidate sets for RCC-8 which are not contained in ﬁg can be re-
fined to relations of Hg by removing the identity relation. It turned out
that applying the refinement algorithm to the candidate sets of RCC-8
leads to refinement matrices that contain a basic relation for each re-
lation of the candidate sets. This shows that each of these candidate
sets can be refined to the set of basic relations and, therefore, that the
candidate sets are tractable and can be decided by the path-consistency
algorithm. Renz [Renz, 1999] also applied the identity refinement ma-
trix to the known maximal tractable subset ORD-Horn of the interval
algebra [Nebel and Biirckert, 1995] and it turns out that the refinement
method also works for the interval algebra.

Now we have all the tools for identifying (maximal) tractable sub-
sets of a system of spatial relations. In the next subsection we show
how these sets can be used for finding fast solutions to intractable
CSPSATinstances.

6. Practical Efficiency of Reasoning Methods

In the previous section we described how to find tractable subsets of
the usually NP-hard spatial calculi. For most of the tractable subsets
path-consistency or even simpler methods are sufficient for deciding con-
sistency, so except for very large instances or for calculi over a large set
of relations, there are usually no efficiency problems when considering
instances that contain only relations of a tractable subset. Efficiency
problems occur, however, if we go outside the tractable subsets and
enter the NP-hard territory. As we will see later, instances of an NP-
hard problem can often be solved very fast in practice. basically four
reasons for this. The first one is that the interleaved applications of
path-consistency during the backtracking search is often very powerful
and already eliminates many labels that cannot lead to a solution. The
second reason is that large tractable subsets reduce the size of the back-
tracking search tree by several orders of magnitude. This results from
the possibility of splitting relations into tractable sub-relations instead
of splitting them into all contained basic relations. The third reason is
that different heuristics and strategies can be applied for solving hard
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instances. Often it is the case that there is a heuristic for which a hard
instances turns out to be easy. So the more heuristics and strategies
are available the higher is the likelihood that one of them can solve an
instance fast. The last reason is the observation that most instances
outside the phase-transition region are in almost all cases very easy to
solve. In the following we will discuss these points in more detail and
show results from an empirical investigation of the practical efficiency of
RCC-8.

6.1 Generating Test Instances

In order to test the practical efficiency of reasoning algorithms, it is
necessary to generate a large number of test instances. Ideally these
should be real instances of existing applications. If such an application
is not available, instances have to be generated systematically or ran-
domly. Since many instances are easy to solve, it is important to
try to generate instances that are as hard as possible. When randomly
generating instances, there is usually a parameter that produces a phase-
transition of the probability of satisfiability of the generated instances,
i.e., when increasing the value of the parameter, the probability changes
from almost 1 to almost 0 (or vice versa) within a very small range of
the parameter (see Figure 1.8). Almost all instances outside the phase-
transition region are very easy to solve while the phase-transition region
contains most hard instances [Cheeseman et al., 1991]. The most use-
ful instances for empirical study of reasoning algorithms can therefore
be found in and around the phase-transition region, which has to be
empirically determined.

For randomly generated RCC-8 instances it turned out that one phase-
transition is induced by the degree d of nodes, i.e., how many edges for
each node of the constraint graph are randomly instantiated on average
[?]. The phase-transition turns out to be around d = 10. Another way of
generating hard instances is to randomly generate instances that contain
only relations that are outside the tractable subsets. This, however, is
mainly for testing the behaviour of the algorithms in extreme cases and is
not very representative for practical purposes for which it might better to
analyse a uniform distribution of the relations. Another important factor
when generating random instances is to make sure that the instances are
not trivially flawed [Achlioptas et al., 1997], i.e., the probability that
small inconsistent sub-CSPs, such as inconsistent triples, are contained
in the instances should not be high and should not determine the phase-
transition.
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The following empirical results are taken from [?] and show how ran-
domly generated RCC-8 instances can be solved very efficiently. The ran-
dom RCC-8 instances were generated according to the model A(n,d, ),
where n is the number of variables, d the average degree and [ the av-
erage number of base relations per relation. The relations were selected
among all RCC-8 relations, for RCC-8 [ = 4.0 means that all relations
are selected with equal probability.

6.2 Testing Algorithms

When testing algorithms on the generated instances, several proper-
ties are interesting and should be observed. One is of course the time
it takes to solve the instances, but it is also important to compare the
number of nodes of the backtracking search space that were visited while
solving instances. This value is important for comparing algorithms on
different machines as the run-time differs from machine to machine and
also depends on other factors such as the load and the available memory
of the machine used for the test. Instead of using only the average values
(runtime, visited nodes, etc.) we also look at different percentiles, i.e.,
we order the values and look at the values of the elements at position
50%, 70%, 90%, or 99%.  Since we are dealing with an NP-complete
problem for which some instances take a very long time to solve, tak-
ing the average only would be too erratic. In the following we mainly
look at 99% percentile instances as these give a good indication of the
performance for the hardest among the instances.

6.3 Effect of using large tractable subsets

A very important factor in obtaining more efficient solutions to in-
stances of an NP-hard spatial reasoning problem is the use of large
tractable subsets of the NP-hard set of relations. The backtracking
algorithms split each constraint into sub-constraints that contain only
relations of a tractable subset where each split spans a new subtree of
the search space. Using large tractable subsets makes it possible to split
the constraints into fewer sub-constraints, thus reducing the number of
subtrees and the size of the search space. This can be measured in terms
of the average branching factor of a search tree. For RCC-8, using the
set of basic relations for splitting the constraints leads to an average
branching factor of b = 4 which corresponds in this case to the average
number of basic relations in each of the 256 RCC-8 relations. For the
maximal tractable subsets Hg, Qs, and Cg, the average branching factors
are b = 1.4375, b = 1.516, and b = 1.523, respectively. The average size
of the search spaces can be computed as b(*=1)/2 " As can be seen in
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Table 1.3. Average size of the search space depending on the number of variables

and the branching factor of the split set.
#regions | 5(4.0) | B
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Figure 1.11.  99% percentile running times for solving RCC-8 instances of the phase-
transition region using different tractable subsets (d = 8.0 to d = 10.0, 2,500 instances
per data point).

Table 6.3 this results in considerably smaller search spaces. This how-
ever is not fully reflected in the empirical results because of the effect
of the interleaved applications of the path-consistency algorithm at each
node of the search tree which eliminates inconsistent relations from the
constraints and has a similar effect of reducing the search space. Both
methods together, path-consistency and large tractable subsets, already
lead to quite impressive results for solving randomly generated RCC-8
instances. In Figure 1.11 we see the 99% percentile running times for
solving instances of the phase-transition region using different tractable
subsets. The maximal tractable subset lead to considerably faster solu-
tions but not as much faster as suggested by table 6.3
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6.4 Effect of different heuristics

Another factor for obtaining faster solutions is to use different heuris-
tics for choosing the path through the search space. There are two
positions in the backtracking algorithms where a heuristic choice can
be made. One is the order in which the constraints are selected, the
other choice is the order of the sub-relations when splitting a constraint.
For both choices we can apply different heuristics which influence the
search space and the path through the search space. It is clear that
the choice of the heuristics has more effect on consistent instances. In
order to determine that an instance is consistent, it is sufficient to find
one path from the root of the search tree to a consistent leaf. So if the
perfect heuristic choice is made at all nodes, any consistent instance can
be solved without backtracking. For inconsistent instances, all possible
leafs of the search tree must be inconsistent, so the fastest way to deter-
mine inconsistency is when this can be detected early on in the search
tree. We chose two different heuristics for the ordering of constraints
and two for the ordering of sub-relations [Nebel, 1997].

static/dynamic: Constraints are processed according to a heuristic
evaluation of their constrainedness which is determined statically
before the backtracking starts or dynamically during the search.

local/global: The evaluation of the constrainedness is based on a local
heuristic weight criterion or on a global heuristic criterion [van Beek
and Manchak, 1996].

In Figure 1.12 the 99% percentiles are shown for the different combi-
nations of heuristics, the second column of Table 1.4 shows the number
of hard instances for each combinations. Hard instances are considered
to be those that cannot be solved by using 10.000 visited nodes in the
search space. It can be seen that although some combinations are bet-
ter than others, they are all quite successful and the differences are not
enormous. Their real advantage is described in the following section.

6.5 Effects of combining different strategies

We denote as a strategy a choice of tractable subset for splitting, a
heuristic for constraint selection and a heuristic for sub-relation ordering.

As described in the previous section, every consistent instance can be
solved without backtracking if the right heuristic choice is made at each
node. Therefore it is not surprising that some instances can be solved
faster by one strategy while other instances are solved faster by other
strategies. This means that it might be possible to solve more instances
efficiently by combining different strategies than by each strategy alone.
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Figure 1.12. Percentile 99% CPU time of the different heuristics for solving
A(n,d,4.0) (d = 8.0 to d = 10.0, 2,500 instances per data point).

We tested this hypothesis by running all strategies on the set of all hard
instances identified in the experiment described above. It turns out that
almost all of these hard instances can be solved by at least one strategy
(see Table 1.4). We also looked at which strategy gives the first response,
i.e., which strategy solves each instance fastest, which is shown in the
same table. In most cases, the first response comes very fast, usually
with less than 300 visited nodes in the search space (see Figure 1.13).
It is surprising that the inconsistent instances can be solved particu-
larly fast which shows a clear advantage of the method of combining
different strategies to random methods with restarts. Random meth-
ods are actually completely useless for inconsistent instances because
these methods are not complete. In order to push our methods even fur-
ther, we also looked at how well the different strategies complement each
other, and tried to find the combination of strategies which solves the
instances with the least accumulated number of nodes. It turns out that
four strategies (Hs/static/global, Hs/dynamic/local, Cs/dynamic/local,
B /static/local) complement each other particularly well. By combining
these four strategies, almost all instances in the phase transition region
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Table 1.4. The second column shows the number of hard instances for each heuristic,
there are 788 hard instances in total. Column three shows the percentage of solved
hard instances for each heuristic and column four the percentage of first response
when orthogonally running all heuristics. Note that sometimes different heuristics
are equally fast. Therefore the sum is more than 100%.

A(n,d,4.0)

Heuristics |# Hard Instances Solved Instances 1. Response
Hs /sta/loc 64 91.88% 19.80%
Hsg /sta/glo 42 94.67% 12.56%
Hs /dyn/loc 52 93.40% 24.37%
Hs/dyn/glo 100 87.31% 13.58%
Cs/sta/loc 81 89.72% 6.35%
Cs/sta/glo 58 92.64% 5.20%
Cs/dyn/loc 78 90.10% 5.96%
Cs/dyn/glo 108 86.63% 6.60%
Qg /sta/loc 81 89.72% 9.77%
Qs /sta/glo 54 93.15% 12.06%
Qs /dyn/loc 74 90.61% 10.15%
Qs/dyn/glo 104 86.80% 12.82%
B/sta/loc 68 91.37% 1.40%
B/sta/glo 89 88.71% 1.27%
B/dyn/loc 70 91.12% 0.89%
B/dyn/glo 162 79.44% 0.89%
B/sta/loc 163 79.31% 0.51%
B/sta/glo 222 71.83% 0.25%
B/dyn/loc 209 73.48% 0.51%
B/dyn/glo (303) - 0.13%

combined 788 99.87%

can be solved by restricting the combined number of visited nodes to
a value which is linear in the size of the instances. We tested this for
CSPs up to a size of 500 variables, i.e., CSPs with about 25.000 relations.
At that point the increased run-time of the interleaved path-consistency
computations turned out to be the limiting factor.

6.6 Discussion

We have seen that even though spatial reasoning with RCC-8 is an
NP-complete problem, we were able to solve almost all of the hardest
instances identified in our experiments in reasonable time. This is only
possible through the use of the maximal tractable subsets that we iden-
tified by a theoretical analysis of the reasoning problem. For RCC-8
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First Response for Solving the Hard Instances of A(n,d,4.0)
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Figure 1.13. Fastest solution of the hard instances when running all heuristics in
parallel.

this turns out to work particularly well, which is due to the existence
of three different maximal tractable subsets for RCC-8 but also because
RCC-8 is a rather small algebra. Empirical studies for Allen’s interval
algebra [Allen, 1983] which has 13 basic relations but only one maximal
tractable subset which contains all basic relations, show that reasoning
is still much more efficient in practice when using the maximal tractable
subclass than without [Nebel, 1997], but the overall practical efficiency
was not as impressive as for RCC-8. Nevertheless, identifying maximal
tractable subsets that contain all basic relations is an essential part if
more efficient solutions to an NP-complete spatial or temporal reason-
ing problem are to be found. Although attempts have been made to
identify maximal tractable subsets that do not contain all basic rela-
tions [Krokhin et al., 2003], these subsets cannot be used for obtaining
more efficient solutions to the general NP-complete problem as it is not
possible to split each relation into members of these maximal tractable
subset. Another important finding is that combining different strategies
leads to much better results than trying to optimise one strategy. In
that respect we can conclude that the more strategies the better. This
includes analysing different heuristics as well as using different tractable
subsets which even includes using subsets of tractable subsets.

7. Combination of Spatial Calculi

There has been a large amount of research on qualitative spatial cal-
culi, a fraction of it has been described in this chapter, and more in
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other chapters of this book. The usefulness of these research efforts,
however, largely depends on how well this research can make its way
into practical applications. Without a doubt, space is one of the funda-
mental aspects of our daily life and of our physical world, and therefore
qualitative spatial representation and reasoning should be an essential
part in many applications. It is remarkable, however, that up to now
there are relatively few real applications. One reason for this lack of
applications is that research has mainly focused on understanding and
analysing single, isolated aspects of space, like distance, direction, or
topology. The spatial calculi we presented so far all fall into this “single
aspect” category. On the other hand, almost all possible applica-
tions require different aspects of space and not only topology or only
direction. Future research on qualitative spatial representation and rea-
soning should focus strongly on combining different aspects of space, on
developing and analysing spatial calculi over different aspects of space,
and on methods for dealing with these calculi. In this chapter we will
present some promising first attempts in this direction.

The first approach is by Gerevini and Renz [Gerevini and Renz, 2002]
who combine topology and size information and who introduce several
modifications of the existing constraint algorithms for dealing with differ-
ent kinds of constraints. A second approach is by Renz [Renz, 2001] who
combines directional and topological information for one-dimensional in-
tervals by adding direction of intervals to the interval algebra.

7.1 Different ways of combining multiple aspects
of space

Constraint-based approaches in principle support the use of different
kinds of constraints if they work on the same domains. This is rel-
atively straightforward if finite domains are used where the constraint
algorithms manipulate the domains of the variables. For qualitative spa-
tial reasoning where infinite domains are used and constraint algorithms
work on relation-symbols instead of restricting domains, this turns out
to be a difficult problem. The reason for this is that relations over one
aspect are not independent of relations of another aspect. For exam-
ple if the distance between two objects is large, they cannot overlap.
If one object is contained in the other one it must be smaller. These
are two simple examples which show that topology is neither indepen-
dent from direction nor from size. These restrictions and dependencies
must be enforced on the relational level and must therefore be analysed
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when developing a combined calculus and must be precomputed like a
composition table.

One way of developing a calculus for multiple aspects of space is to
take the relations for each aspect, for example two sets of basic relations
R ={Ri,...,R,} and S = {S1,...,Sn}, and form new relations as the
cross product R X S. Some of the new relations will be empty and can be
removed. The advantage of this approach is that the dependencies of the
different aspects are implicitly encoded in the new composition table and
that all the existing reasoning algorithms can be used. The disadvantage
is the large number of relations that result from this approach (which
makes reasoning and also analysing the combined calculus very time
and space consuming). An example for this approach is by Pujari et
al. [Pujari et al., 1999] in the area of temporal reasoning where the
interval algebra is combined with relative durations of intervals. Another
example is by Renz [Renz, 2001] who added direction of intervals to the
interval algebra.

An alternative approach is to treat the different aspects separately
and to develop new reasoning algorithms for combining different sets
of constraints and their dependencies. Different aspects and different
granularities can then be added in a modular way without having an
explosion in the number of relations. One problem here is how to keep
track of the interactions between the different sets of relations and their
interactions, i.e, how can relations of different sets be composed, in-
tersected etc. This approach will be further discussed in the following
section where we take the combination of topology and qualitative size
as an example.

In any case, it is essential that different aspects can only be combined
when they use the same underlying spatial entities, such as points or
regular regions.

7.2 Combining topological and size information

When having two sets of basic relations A and B over a domain D
where both of them split D x D exhaustively, it is clear that the relations
of the two sets taken together are not pairwise disjoint and, hence, cannot
be independent of each other. Instead of looking at the intersections of
all the relations and to treat them as a new set of JEPD relations, we
will present in this section methods for taking the sets separately and
propagating their interactions. For this it is necessary to first look at
all the interactions that can possibly occur. As an example we take the
work by Gerevini and Renz [Gerevini and Renz, 2002] who combined
RCC-8 with qualitative size relations. Given a set V of spatial region
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Table 1.5. Interdependencies of basic RCC-8 relations () and basic QS relations (s).

r Sizerel(r)| r Sizerel(r)| s Toprel(s)

TPP < DC ? = [ DC,EC,PO,EQ

NTPP £ < EC ? > = DC,EC,PO, TPP™! NTPP™!
TPP~! = > PO £ ? < [k DC,EC,PO, TPP,NTPP
NTPP~' & > EQ E =

variables, a set of OQS-constraints over V is a set of constraints of the
form size(x) S size(y), where S € QS, size(x) is the size of the region x,
size(y) is the size of the region y, and z,y € V. QS ={<,>,=,<,>,#
, <=>}. Their interactions are rather simple and are mainly due to the
fact that regions which are contained in other regions must be smaller
than the containing region. All interactions can be found in Table 1.5.
Sizerel(r) is the qualitative size relation entailed by an RCC-8 relation
r, while Toprel(s) is the RCC-8 relation entailed by a qualitative size
relation.

Now we consider pairs of relations as new relations, i.e., we consider
constraints of the form xRy where R = (R,, Ry) and R, € A and R €
B. This is equivalent to having two sets of constraints © and 3 over
the same set of variables and the same domain where © contains the
RCC-8 constraints and ¥ the qualitative size constraints. If both sets are
independently consistent, it is clear that the two sets taken together are
not necessarily consistent too as their interactions must be considered.

A natural method for deciding the consistency of a set of RCC-8 con-
straints and a set of QS&-constraints, would be to first extend each set
of constraints with the constraints entailed by the other set, and then
independently check the consistency of the extended sets by using a
path-consistency algorithm. However, as the example below shows, this
method is not complete for Hg constraints.

Another possibility, would be to compute the strongest entailed re-
lations (minimal relations) between each pair of variables before propa-
gating constraints from one set to the other. However, this method has
the disadvantage that it is computationally expensive, as the best known
algorithm for computing the minimal network of a set of constraints over
either Hg, Cg or Qg requires O(n®) time.

Finally, a third method could be based on iteratively using path-
consistency as a preprocessing technique and then propagating the in-
formation from one set to the other. A similar method is used by Ladkin
and Kautz to combine qualitative and metric constraints in the context
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of temporal reasoning [Kautz and Ladkin, 1991]. Note that imposing
path-consistency is sufficient for consistency checking of a set of con-
straints over Hg, Cg, Qg, and OS, but is incomplete for computing the
minimal relations [van Beek, 1992; Renz and Nebel, 1999]. The follow-
ing example shows that the information would need to be propagated
more than once, and furthermore it is not clear whether in general this
method would be complete for detecting inconsistency.

ExaMPLE 1.9 Consider the set © formed by the following ﬁg constraints
2o{TPP,EQ}x2, z:{TPP,EQ,PO}xo, x1{TPP,EQ}x2, x4{TPP,EQ}x3,
and the set ¥ formed by the of following QS -constraints

size(xg) < size(xa), size(xs) < size(x1), size(xa) < size(zy).

We have that © and > are independently consistent, but their union
is not consistent. Moreover, the following propagation scheme does not
detect the inconsistency: (a) enforce path-consistency to 3 and © inde-
pendently; (b) extend ¥ with the size constraints entailed by the con-
straints in ©; (c) extend © with the topological constraints entailed by
the constraints in ¥; (d) enforce path-consistency to © and ¥ again.
In order to detect that ® U X is inconsistent, we need an additional
propagation of constraints from the topological set to the size set.

Instead of directly analysing the complexity and completeness of the
propagation scheme illustrated in the previous example, Gerevini and
Renz [Gerevini and Renz, 2002] proposed a new method for dealing
with combined topological and qualitative size constraints. In particu-
lar, they propose an O(n?) time and O(n?) space algorithm, BIPATH-
CONSISTENCY, for imposing path-consistency to a set of constraints in
RCC-8 U QS. BIPATH-CONSISTENCY solves CSPSAT for any input set
O of topological constraints in either Hg, Cg or Qg, combined with any
set of size constraints in QS involving the variables of ©. Thus, despite
this framework is more expressive than a purely topological one over the
same set of relations (and therefore has a larger potential applicability),
the problem of deciding consistency can be solved without additional
worst-case cost.

BIPATH-CONSISTENCY is a modification of Vilain and Kautz’ path-
consistency algorithm [Vilain and Kautz, 1986; Vilain et al., 1989] as
described by Bessiere [Bessiere, 1996], which in turn is a slight mod-
ification of Allen’s algorithm [Allen, 1983]. The main novelty of the
algorithm is that BIPATH-CONSISTENCY operates on a graph of pairs of
constraints. The vertices of the graph are constraint variables, which
in our context correspond to spatial regions. Each edge of the graph is
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Algorithm: BIPATH-CONSISTENCY

Input: A set © of RCC-8 constraints, and a set 3 of QS-constraints over
the variables z1,z2,...,z, of ©.

Output: fail, if X U © is not consistent; path-consistent sets equivalent
to X and ©, otherwise.

1. Q —{(%,4) | i <j}; (i/7 indicates the i-th/j-th variable of ©.)
2. while Q # 0 do
3. select and delete an arc (7, j) from Q;
4. fork# i,k #j (k€ {l..n}) do
if BIREVISION(i, j, k) then

if Rjr, = () then return fail

else add (i,k) to Q;

if BIREVISION(k, i, ) then

if Rij = (0 then return fail
0. else add (k,7) to Q.

2 © 0N o o

Function: BIREVISION(4, k, j)

Input: three region variables 7, k and j

Output: true, if R;; is revised; false otherwise.

Side effects: R;j and Rj; revised using the operations N and o over the
constraints involving ¢, k, and j.

1. if one of the following cases hold, then return false:

(a) Toprel(s;k) Nty = U and Sizerel(t;,) N sy = Us,

(b) Toprel(sy;) Nty; = Uy and Sizerel(ty;) N sy = Us

oldt := tij; olds := Sigs

tij := (tij N Toprel(si;)) N ((ti, N Toprel(siy)) o (ty; N Toprel(sk;)));
sij 1= (845 N Sizerel(t;j)) N ((sip N Sizerel(tiy)) o (sg; N Sizerel(ty;)));
if sij # olds then t;j := (t;; N Toprel(s;j));

if (oldt = t;;) and (olds = s;;) then return false;

tji := Converse(t;j); sji == Converse(s;j);

return true.

0N oA W

Figure 1.14. BIPATH-CONSISTENCY.

labelled by a pair of relations formed by a topological relation in RCC-8
and a size relation in QS. The function BIREVISION(i, k,j) has the
same role as the function REVISE used in path consistency algorithms
for constraint networks (e.g., [Mackworth, 1977]). The main difference
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is that BIREVISION(i, k, j) considers pairs of (possibly interdependent)
constraints, instead of single constraints.

A formal description of BIPATH-CONSISTENCY is given in Figure 1.14,
where R;; is a pair formed by a relation ¢;; in RCC-8 and a relation s;; in
9S; R;j = () when t;; = 0 or s;; = (); U; indicates the universal relation
in RCC-8 and U, the universal relation in 9OS.

Gerevini and Renz [Gerevini and Renz, 2002] prove soundness and
completeness of BIPATH-CONSISTENCY for the maximal tractable subsets
of RCC-8 combined with qualitative size relations.

THEOREM 1.10 Given a set © of constraints in either ﬁg, Cg or Qg,
and a set X of constraints in QS involving variables in ©, consistency
of © UX can be decided using the BIPATH-CONSISTENCY algorithm in

O(n3) time and O(n?) space, where n is the number of variables involved
in © and 2.

Using the BIPATH-CONSISTENCY algorithm combined sets of constraints
can be solved in cubic time just like the normal path-consistency al-
gorithm for each of the two sets alone, i.e., they can be solved with-
out additional worst-case cost. Soundness and completeness of BIPATH-
CONSISTENCY do not hold automatically and has to be proved for each
combination of different relations anew. Sometimes, however, the com-
putational properties of combined calculi can be more favourable than
both of them alone if the interactions with the other type of relations
refines relations that make deciding consistency NP-hard to relations for
which it is tractable. As can be seen in Table 1.5, whenever we have a
definite qualitative size constraint size(z)Ssize(y) with S € {<,>,=}
and this constraint is combined with an RCC-8 constraint xRy resulting
in zR'y, then R’ will contain basic relations of at most one of the sets
{TPP,NTPP}, {TPP!,NTPP '}, {EQ} and possibly some relations of
the set {DC,EC,PO}. In other words, and relation of R € RCC-8\ Hs
will be refined to a relation R’ € 7:\(8 and therefore it is possible that
sets of constraints for which it is NP-hard to decide consistency become
tractable after adding constraints over a different set of relations.

The opposite is of course also possible, that combining two calculi
results in a calculus that has a higher complexity than both alone. This
is the case for another combination that Gerevini and Renz analysed,
namely, combining RCC-8 with metric size information. They considered
metric size constraints of different kinds, metric relative size constraints
size(x)Ra - size(y) where « is a positive rational number, size difference
constraints size(z) — size(y) € I where [ is a continuous interval of
rational numbers, or domain size constraints size(z) € I. The main
difference of combining RCC-8 with metric size information as compared
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Figure 1.15. Four structurally different instantiations of the relation “z behind y”
with directed intervals.

to qualitative size information is that it is possible to express that a set
of regions completely fills another region. Combining RCC-8 with any of
these metric size calculi, which are all independently tractable, leads to
NP-hardness even when combined with only the RCC-8 basic relations.
Without the PO relation, i.e., considering only the 7 other RCC-8 basic
relations, the combination is tractable though.

This was an example of how different calculi can be combined. Future
research effort within qualitative spatial representation and reasoning
should deal with modularising different aspects and different granulari-
ties in a similar way that topology and size was combined here, study-
ing their interactions and developing algorithms for reasoning about
combined calculi. Then different applications could use the modules
that are needed for the particular application, the interactions between
the different modules and combine them using algorithms like BIPATH-
CONSISTENCY. If possible, these combinations should have favourable
computational properties and should enable efficient solutions.

7.3 Combining topological and directional
information for intervals

In this section we give an example for a combination of two aspects
of space that relies upon forming new relations out of two given sets
of relations. One of the two aspects of space we are looking at is the
interval algebra (IA) [Allen, 1983] which was originally defined for tem-
poral reasoning. However, for applications that can require only a one-
dimensional spatial representation, it makes sense to use the interval
algebra. Some possible applications are from the area of traffic man-
agement. Roads and railway lines can be regarded as one-dimensional
routes, but also air and sea traffic mainly operates on given routes. A
single route can be represented as a one-dimensional space and the ve-
hicles on a route as intervals. The main difference of vehicles on a route
to the interval algebra is that vehicles and also routes have a direction.
We therefore have to extend the interval algebra by adding direction in
order to use it for traffic applications. Direction in a one-dimensional
space is quite simple as there are only two directions, front and back, or
same direction and different direction.
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A straightforward way for dealing with directed intervals would be
to add additional constraints on the direction of intervals to constraints
over the Interval Algebra and treat the two types of constraints sepa-
rately while propagating information from one type to the other (similar
to what has been done in [Gerevini and Renz, 1998].) We say that an in-
terval has positive direction if it has the same direction as the underlying
line and negative direction otherwise.  So possible direction constraints
could be unary constraints like “z has positive/negative direction” or bi-
nary constraints like “z and y have the same/opposite direction”. This
approach, however, is not possible since the Interval Algebra loses its
property of being a relation algebra when permitting directed intervals.
This can be easily seen when considering the “behind” relation of Fig-
ure 1.15. The actual converse of “x behind y” is a subset of “y is behind
or in front of ” which cannot be expressed within the Interval Algebra.
If using “y is behind or in front of 2”7 as the converse of “z behind y”,
whose converse is again “x is behind or in front of y”, then applying the
converse operation (-7) twice leads to a different relation than the origi-
nal relation. This is a contradiction to one of the requirements of relation
algebras (R~ = R) [Ladkin and Maddux, 1994]. This contradiction
does not occur when we refine the “behind” relation into two disjoint
sub-relations “behind—" and “behind.” where the subscript indicates
that both intervals have the same (=) or opposite (#) direction. The
converse of both relations is “in-front-of—” and “behind..”, respectively.
Applying the converse operation again leads to the original relations.

Since a relation algebra must be closed under composition, intersec-
tion, and converse, we have to make the same distinction also for all other
IA relations. This leads us to the definition of the directed intervals al-
gebra (DIA). It consists of the 26 basic relations given in Table 1.6,
which result from refining each IA relation into two sub-relations speci-
fying either same or opposite direction of the involved intervals, and of
all possible unions of the basic relations. This gives a total number of
226 DIA relations. Converse relations are given in the same table entry.
If a converse relation is not explicitly given, the corresponding relation
is its own converse. We denote the set of 26 DIA basic relations as B.
Then DIA = 28, Complex relations which are the union of more than
one basic relation Ry, ..., Ry are written as {Ry,..., R;}. The union of
all basic relations, the universal relation, is denoted {x}.

A DIA basic relation R = I; consist of two parts, the interval part [
which is a spatial interpretation of the Interval Algebra and the direction
part d which gives the mutual direction of both intervals, either = or #.
If a complex relation R consist of basic relations with the same direction
part d, we can combine the interval parts and write R = {I',..., I*}4
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Table 1.6. The 26 basic relations of the directed intervals algebra.

instead of R = {I}, ..

Directed Intervals Sym- | Pictorial
Basic Relation bol Example
z behind= y b— -X->
y in-front-of= x f= -y->
2 behind y b <-x-
_y_>
x in-front-of y fs -X->
<-y-
x meets-from-behind— y mb- | x>
y meets-in-the-front— = mf= —y—>
2 meets-from-behind y mby | <-x-
x meets-in-the-front y mf x>
<-y—
x overlaps-from-behind= y ob— —x—>
y overlaps-in-the-front— x of = —y—>
2 overlaps-from-behind y ob <—x—
x overlaps-in-the-front y of . —x—>
<—y—
r contained-in— y c— -X—>
y extends— = e— —y—>
2 contained-iny y (o <X
y extendsx x e —y—>
z contained-in-the-back-of— y | cb= x>
y extends-the-front-of= z ef —y—>
x contained-in-the-back-of y | cb <X
y extends-the-back-of: x eb —y—>
x contained-in-the-front-of— y | cf= x>
y extends-the-back-of— x eb_ —y—>
x contained-in-the-front-of: y | cfx <X
y extends-the-front-of x ef —y—>
r equals— y eq=— —x—>
x equals» y eq —X—>
<—y—

of 2'3 possible interval parts of DIA relations.

., IX}. We write R, (resp. R,) in order to refer to
the union of the interval parts of every sub-relation of a complex relation
R where the direction part is {=} (resp. {#}.) In this way, every DIA
relation R can be written as R = {R.}— U{R,}». DIA; denotes the set
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Table 1.7. 1A basic relations R, their reverses R", and their spatial interpretations
dia(R).

R <|>=| m | mi| o |oi|s |si|d|di|f]|fi]|=
R" | <|m | m/|o |of f |fi|d|di|s]|si]|=
dia(R) || b | f | mb | mf|ob|of [cb|ef |c| e |cf]|eb]|eq

It is important to note that the spatial interpretation of the Interval
Algebra was chosen in a way that the interval part of a relation x/;y only
depends on the direction of ¥ and not on the direction of x. Therefore, if
the direction of x is reversed, written as T, then only the direction part
changes, i.e., xl;y = Tl_4y. This would not be the case in a straight-
forward spatial interpretation of the original temporal relations. For
instance, |A relations like “x started-by y” or “z finished-by y” depend
on the direction of x. Instead, we interpret these relations spatially as
“z extends-the-front /back-of y” and “z contained-in-the-front/back-of
y”. This interpretation is independent of the direction of z. When all
intervals have the same direction, both interpretations are equivalent.
In order to transform the spatial and the temporal interval relations (in-
dependent of the direction of the intervals) into each other, we introduce
two mutually inverse functions dia : IA — DIA; and ia : DIA; — 1A ie.,
dia(ia(R)) = R and ia(dia(R)) = R. The mapping is given in Table 1.7.

All relations of the directed intervals algebra are invariant with re-
spect to the direction of the underlying line, i.e., when reversing the
direction of the line, all relations remain the same. This is obviously not
the case for the Interval Algebra, e.g., if x is before y and one reverses the
direction of the time line, then z is after y. In order to transform DIA
relations into the corresponding IA relations and vice versa, we intro-
duce a unary reverse operator (-") on relations R such that R" specifies
the relation which results from R when reversing the direction of the
underlying line. For all relations R € DIA we have that R" = R. For
IA relations, the reverse relation is given in Table 1.7.  The reverse
of a complex relation is the union of the reverses of the involved basic
relations. The reverse of the composition (o) of two relations is equiva-
lent to the composition of the reverses of the two involved relations, i.e.,
(RoS)" = R"o S". Applying the reverse operator twice results in the
original relation, i.e., R™" = R. Using the reverse operator we can also
specify what happens with a relation xl;y if only the direction of y is
changed. Then the topological relation of the intervals stays the same,
but the order changes, i.e., “front” becomes “behind” /“back” and wvice
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versa. The mutual direction also changes. This can be expressed in the
following way: xl;y = xdia(ia(1)")-q 7.

We now have all requirements for computing the composition (og) of
DIA relations using composition of IA relations (denoted here by o;,) as
specified by Allen [Allen, 1983].

THEOREM 1.11 Let Ry, S, be DIA basic relations.
1 If g = {=}, then R, o4 Sy = dia(ia(R) 04 ia(5)),
2 If ¢ = {#}, then R, 04 S, = dia(ia(R)" 044 ia(5))—p

The composition of complex relations is as usual the union of the com-
position of the contained basic relations. It follows from the closedness of
the Interval Algebra that DIA is closed under composition, intersection,
converse, and reverse.

We have now obtained a new set of relations together with the neces-
sary operations that cover the combination of the original two aspects.
As opposed to the combination of topology and size, we can use the stan-
dard backtracking and path-consistency algorithms for reasoning about
these relations. However, since we now have 26 basic relations, and
226 possible subsets, it is much more difficult to analyse computational
properties for these relations than it is for the interval algebra. Fortu-
nately, it is partly possible to use the complexity results of the interval
algebra in order to find complexity results for the directed interval alge-
bra. NP-hardness of the directed intervals algebra follows immediately
from NP-hardness of the interval algebra. But also tractable subsets
can be identified by exploiting results for the interval algebra. Among
them, most importantly, the set of DIA basic relations was shown to
be tractable. In the proof of this result it is not important that all
non-universal relations are basic relations, only that all non-universal
relations consist of DIA basic relations with the same direction part.
Therefore, tractability for the basic relations can be extend to the fol-
lowing result.

THEOREM 1.12 Let S be a tractable subset of the Interval Algebra which
is closed under the reverse operator. Then ST = {dia(R)=|R € S} U
{dia(R)£|R € S} U {x} is a tractable subset of the directed intervals
algebra.

Renz [Renz, 2001] showed that ORD-Horn, the only maximal tractable
subset of the interval algebra that contains all basic relations is closed
under the reverse operator. Therefore, the above theorem also applies to
ORD-Horn. What’s more, it was shown that path-consistency decides
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consistency for H*, the set of DIA relations which results from ORD-
Horn (see Theorem 1.12).

THEOREM 1.13 Path-consistency decides CSPSAT (H*).

Apart from these initial results the complexity of the directed inter-

vals algebra is open and maximal tractable subsets have not yet been
identified.

8. Conclusions

In this chapter we have shown how spatial information can be repre-
sented using constraint calculi. This is a natural way of using qualitative
spatial calculi and allows us to use methods and techniques developed
for constraint satisfaction problems. We introduced qualitative spatial
calculi, constraint satisfaction methods for reasoning over these calculi
and presented methods for analysing the computational properties of
spatial calculi. These methods are very general and can be used for dif-
ferent kinds of spatial calculi. We showed how a computational analysis
can lead to very efficient reasoning even though the reasoning problems
are NP-hard.

Using the presented methods we can specify a roadmap for how spatial
calculi should be analysed in order to find efficient reasoning methods:

1 Define a useful set of basic relations B over a certain aspect of
space, on a certain level of granularity and over a certain spatial
domain.

2 Formally compute the composition table.

3 Try to find an NP-hardness proof for CSPSAT (25) using the method
of polarity and clause constraints.

4 Try to show that CSPSAT(B) is tractable and that path-consistency
decides consistency.

5 Identify larger tractable sets by applying the closure and the re-
finement methods. If possible identify maximal tractable subsets.

6 Using an empirical analysis, identify the combination of strategies
that is most effective in solving instances CSPSAT (25).

These methods work for calculi based on a single aspect of space. For
most practical applications, however, it is necessary to combine more
than one aspect of space. In this chapter we presented some example
of how relations can be combined. One way is to form new relations
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that cover the combined aspects, another way is to treat the relations
separately and to keep track of and propagate their interactions like it
is done by Gerevini and Renz’ bipath-consistency algorithm.

It is one of the main challenges of qualitative spatial reasoning to
provide general methods for combining different calculi and for analysing
the computational properties of combined calculi. What we presented
here is only a small step in this direction and lots of future research is
required. The goal of such an analysis could be a toolbox of calculi for
different spatial and also temporal aspects on different granularities and
efficient algorithms for their combinations. Each application could then
pick the required sets of relations and the most efficient algorithms for
combining these relations.

2SAT —021 3SAT —021 9-intersection —013
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