4V dappytat il L ruvt.

LUl Lot oWt oot J UL LIUTO LI LIcLL UTe £AT Loy olbl £100LuboyyLioLL (LS /018 T 1/, tNagi)yd, Japyadll, fuUusgust LJJ1

On the Complexity of Qualitative Spatial Reasoning: A Maximal
Tractable Fragment of the Region Connection Calculus *

Jochen Renz

Bernhard Nebel

Institut fiir Informatik, Albert-Ludwigs-Universitat Freiburg
Am Flughafen 17, D-79110 Freiburg, Germany

Abstract

The computational properties of qualitative
spatial reasoning have been investigated to
some degree. However, the question for the
boundary between polynomial and NP-hard
reasoning problems has not been addressed yet.
In this paper we explore this boundary in the
“Region Connection Calculus” RCC-8. We ex-
tend Bennett’s encoding of RCC-8 in modal
logic. Based on this encoding, we prove that
reasoning is NP-complete in general and iden-
tify a maximal tractable subset of the rela-
tions in RCC-8 that contains all base rela-
tions. Further, we show that for this subset
path-consistency is sufficient for deciding con-
sistency.

1 Introduction

When describing a spatial configuration or when reason-
ing about such a configuration, often it is not possible or
desirable to obtain precise, quantitative data. In these
cases, qualitative reasoning about spatial configurations
may be used.

One particular approach in this context has been de-
veloped by Randell, Cui, and Cohn [1992], the so-called
Region Connection Calculus (RCC), which is based on
binary topological relations. One variant of this calcu-
lus, RCC-8, uses eight mutually exhaustive and pairwise
disjoint relations, called base relations, to describe the
topological relationship between two regions (see also
Egenhofer [1991]).

Some of the computational properties of this calculus
have been analyzed by Grigni et al. [1995] and Nebel
[1995]. However, no attempt has yet been made to de-
termine the boundary between polynomial and NP-hard
fragments of RCC-8, as it has been done for Allen’s [1983]

*This research was partially supported by DFG as part
of the project FAST-QUAL-SPACE, which is part of the DFG
special research effort on “Spatial Cognition”.

interval calculus [Nebel and Biirckert, 1995]. We address
this problem and identify a maximal fragment of RCC-8
that is still tractable and contains all base relations.

As in the case of qualitative temporal reasoning, this
proof relies on a computer generated case-analysis that
cannot be reproduced in a research paper.! Further, we
show that for this fragment path-consistency is sufficient
for deciding consistency.?

2 Qualitative Spatial Reasoning with
RCC

RCC is a topological approach to qualitative spatial rep-
resentation and reasoning where spatial regions are sub-
sets of topological space [Randell et al., 1992]. Relation-
ships between spatial regions are defined in terms of the
relation C'(a,b) which is true iff the closure of region a
is connected to the closure of region b, i.e. if they share
a common point. Regions themselves do not have to be
internally connected, i.e. a region may consist of differ-
ent disconnected parts. The domain of spatial variables
(denoted as X,Y, Z) is the whole topological space.

In this work we will focus on RCC-8, but most of our
results can easily be applied to RCC-5, a subset of RCC-8
[Bennett, 1994]. RCC-8 uses a set of eight pairwise dis-
joint and mutually exhaustive relations, called base rela-
tions, denoted as DC, EC, PO, EQ, TPP, NTPP, TPP ',
and NTPP™', with the meaning of DisConnected, Eax-
ternally Connected, Partial Overlap, EQual, Tangential
Proper Part, Non- Tangential Proper Part, and their con-
verses. Examples for these relations are shown in Fig-
ure 1. In RCC-5 the boundary of a region is not taken
into account, i.e. one does not distinguish between DC
and EC and between TPP and NTPP. These relations are
combined to the RCC-5 base relations DR for DiscRete
and PP for Proper Part, respectively.

Sometimes it is not known which of the eight base
relations holds between two regions, but it is possible

!The programs can be obtained from the authors.

2Full proofs can be found in our technical report [Renz
and Nebel, 1997].
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Figure 1: Two-dimensional examples for the eight base
relations of RCC-8

to restrict to some of them. In order to represent this,
unions of base relations can be used. Since base relations
are pairwise disjoint, this results in 2% different relations,
including the union of all base relations, which is called
universal relation. In the following we will write sets of
base relations to denote these unions. Using this nota-
tion, DR, e.g., is identical to {DC, EC}. Spatial formulas
are written as X RY', where R is a spatial relation. Apart
from union (U), other operations are defined, namely,
converse (), intersection (N), and composition (o) of
relations. The formal definitions of these operations are:

VX,Y: X(RUS)YY < XRYVXSY,
VX,Y: X(RNS)Y < XRYAXSY,
VX,Y XR-Y & VYRX,

VX,Y: X(RoS)Y <« 3Z:(XRZAZSY).

The compositions of the eight base relations are shown
in Table 1. Every entry in the composition table specifies
the relation obtained by composing the base relation of
the corresponding row with the base relation of the cor-
responding column. Composition of two arbitrary RCC-8
relations can be obtained by computing the union of the
composition of the base relations.

A spatial configuration can be described by a set ©
of spatial formulas. One important computational prob-
lem is deciding consistency of O, i.e. deciding whether
it is possible to assign regions to the spatial variables
in a way that all relations hold. We call this problem
RSAT. When only relations of a specific set S are used
in ©, the corresponding reasoning problem is denoted
RSAT(S). In the following S denotes the closure of S

under composition, intersection, and converse.

3 Encoding of RCC-8 in Modal Logic

In this work we use Bennett’s [1995] encoding of RCC-8
in propositional modal logic.? Bennett obtained this en-
coding by analyzing the relationship of regions to the
universe . He restricted his analysis to closed regions

3We assume in the remainder that the reader is familiar
with modal logic as presented, e.g., by Fitting [1993].
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Table 1: Composition table for the eight base relations
of RCC-8, where * specifies the universal relation

Relation | Model Constraints| Entailment Constraints
DC (X AY) -X,Y
EC -(IX ATY) (X AY),-X,-Y
PO — -(IXAIY), X =Y,

Y - X,-X,-Y
TPP X->Y X->1IYY - X, -X, Y
TPP! Y - X Y 5 IX, X -5V, =X, Y
NTPP X -1y Y - X, -X,-Y
NTPP! Y — IX X 5V, =X, Y
EQ X->YY->X -X,Y

Table 2: Encoding of the base relations in modal logic

that are connected if they share a point and overlap if
they share an interior point. If, e.g, X and Y are discon-
nected, the complement of the intersection of X and Y
is equal to the universe. Further, both regions must not
be empty, i.e. the complements of both X and Y are not
equal to the universe. In this way the eight base relations
can be represented by constraints of the form (m = U),
called model constraints, and (m # U), called entail-
ment constraints, where m is a set-theoretic expression
containing perhaps the topological interior operator i.
Any model constraint must hold, whereas no entailment
constraint must hold [Bennett, 1994].

The model and entailment constraints can be encoded
in modal logic, where spatial variables correspond to
propositional atoms and the interior operator i to a
modal operator I (see Table 2). The axioms for 7 must
also hold for the modal operator I, which results in the
following axioms [Bennett, 1995]:

1.IX - X, 3.IT & T (for any tautology T),
2.IIX «IX, 4I(XAY) IXALY.



Axioms 1 and 2 correspond to the modal logics T and 4,
axioms 3 and 4 already hold for any modal logic K, so I
is a modal S4-operator.

The four axioms specified by Bennett are not suffi-
cient to exclude non-closed regions. In order to account
for that, we add two formulas for each atom, which cor-
respond to topological properties of closed regions. A
closed region is the closure of an open region and the
complement of a closed region is an open region:

X & —I-1X, -X & I-X.

In order to combine the different model and entailment
constraints, Bennett [1995] uses another modal operator
O. Om is interpreted as m = U and =Om as m # U.
Any model constraint m can be written as Om and any
entailment constraint as =Om. If OX is true in a world
w of a model M, written as (M, w |F OX), then X must
be true in any world of M. So O is an S5-operator with
the constraint that all worlds are mutually accessible.
Therefore Bennett [1995] calls it a strong S5-operator.
So the encoding of RCC-8 is done in multi-modal logic
with an S4-operator and a strong S5-operator.

Let © be a set of RCC-8 formulas and Reg(©) be the
set of spatial variables used in O, then m(©) specifies
the modal encoding of ©, where

m((—))—( A\

XRY €O

N ma(X)

m (XRY)) A
XEReg(O)

m1(XRY) is a disjunction of the conjunctively con-
nected model and entailment constraints for the base
relations in R. ms results from the axioms of the I-
operator and the additional properties of closed regions:

mz(X) = D(IX — X) A D(IX — IIX)
/\D(—|X — I—|X) N D(X — —|I—IIX).

D(IIX — IX), D(I—\X — —|X) and D(ﬂI—!IX — X) are
entailed by the other formulas and can be ignored. As
follows from the work by Bennett [1995], © is consistent
iff m(©) is satisfiable.

In order to refer to the single model and entailment
constraints, we will introduce some abbreviations.

Definition 3.1 Abbreviations for the model constraints:

Ay = OF(XAY)) | A,y = OH-HIXALY))
Yoy = O = X) C., = 0O —IX).

As the entailment constraints are negations of the model
constraints, they will be abbreviated as negations of the
above abbreviations. When it is obvious which atoms
are used, the abbreviations will be written without in-
dices. The abbreviations can be regarded as “proposi-
tional atoms”. Then it is possible to write the modal

encoding m; (X RY") of every relation R of RCC-8 as a
“propositional formula” of abbreviations. We will call
this formula the abbreviated form of R. In the remain-
der we will use the encoding of m; (X RY") such that the
abbreviated form is in conjunctive normal form (CNF).

4 Computational Properties of RCC-8

In this section we prove that reasoning with RCC-8 as
well as RCC-5 is NP-hard. A similar but weaker result
has been proven by Grigni et al. [1995] (see Section 8).

In this paper NP-hardness proofs for different sets S
of RCC-8 relations will be carried out. All of them use
a reduction of a propositional satisfiability problem to
RSAT(S) by constructing a set of spatial formulas © for
every instance Z of the propositional problem, such that
O is consistent iff Z is a positive instance. These satisfi-
ability problems include 3SAT, NOT-ALL-EQUAL-3SAT
where every clause has at least one true and one false
literal, and ONE-IN-THREE-3SAT where exactly one lit-
eral in every clause must be true [Garey and Johnson,
1979].

The reductions have in common that every literal as
well as every literal occurrence L is reduced to two spa-
tial variables X and Y, and a relation R = R; U Ry,
where R, N Ry = ) and X RY ;. L is true iff X, R, Y,
holds and false iff X R;Y 1 holds. Additional “polar-
ity” constraints have to be introduced to assure that for
the spatial variables X_ 7 and Y _, corresponding to the
negation of L, X R;Y -, holds iff X R;Y 1, holds, and
vice versa. Using these polarity constraints, spatial vari-
ables of negative literal occurrences are connected to the
spatial variables of the corresponding positive literal, and
likewise for positive literal occurrences and negative lit-
erals. Further, “clause” constraints have to be added to
assure that the clause requirements of the specific propo-
sitional problem are satisfied in the reduction.

Theorem 4.1 RSAT(RCC-5) is NP-hard.

Proof Sketch. Transformation of NOT-ALL-EQUAL-
3SAT to RSAT(RCC-5) (see also Grigni et al. [1995]).
R; = {PP} and R; = {PP~'}. Polarity constraints:
X {PP,PP "} X_ 1, Y {PP,PP 1Y |,
X {PO}Y_., Y {PO}X_,.

Clause constraints for every clause ¢ = {i,j,k}:

X {PP,PP '} X, X;{PP,PP '} X}, X {PP,PP '} X,
Since RCC-5 is a subset of RCC-8, this result can be

easily applied to RCC-8.

Corollary 4.2 RSAT(RCC-8) is NP-hard.

In order to identify the borderline between tractabil-
ity and intractability, one has to examine all subsets of
RCC-8. We limit ourselves to subsets containing all base



relations, because these subsets still allow to express defi-
nite knowledge, if it is available. Additionally, we require
the universal relation to be in the subset, so that it is
possible to express complete ignorance. This reduces
the search space from 22°6 subsets to 2247 subsets. We
proved a property that has likewise been used in iden-
tifying the maximal tractable subset of Allen’s calculus
[Nebel and Biirckert, 1995] that can be used to further
reduce the search space.

~

Theorem 4.3 RSAT(S) can be polynomially reduced to
RSAT(S)

Corollary 4.4 Let S be a subset of RCC-8.

1. RSAT(S) € P iff RSAT(S) € P.

2. RSAT(S) is NP-hard iff RSAT(§) is NP-hard.

The first statement of Corollary 4.4 can be used to
increase the number of elements of tractable subsets
of RCC-8 considerably. With the second statement of
Corollary 4.4, NP-hardness proofs of RSAT can be used
to exclude certain relations from being in any tractable
subset of RCC-8. The NP-hardness proof of Theorem 4.1,
e.g., only uses the relations {PO} and {PP,PP~'}. So
for any subset S with the two relations contained in S,
RSAT(S) is NP-hard. The following NP-hardness results
can be used to exclude more relations.

Lemma 4.5 Let S be a subset of RCC-8 con-
taining all base relations. If any of the rela-
tions {TPP,NTPP,TPP~' NTPP'}, {TPP,TPP '},
{NTPP,NTPP'}, {NTPP, TPP'} or {TPP,NTPP '}
is contained in S, then RSAT(S) is NP-hard.

Proof Sketch. When R; U R; is replaced
by {TPP,NTPP,TPP ! NTPP '}, {TPP,TPP '} or
{NTPP,NTPP '}, the transformation of Theorem 4.1
can be applied. For {NTPP,TPP '} and {TPP,
NTPP '} ONE-IN-THREE-3SAT has to be used. n

By computing the closure of all sets containing the
eight base relations together with one additional relation,
the following lemma can be obtained.

Lemma 4.6 RSAT(S) is NP-hard for any subset S of
RCC-8 containing all base relations together with one of
the 72 relations of the following sets:

Ny = {R|{PO} Z R and ({TPP,TPP '} C R or
{NTPP,NTPP '} C R)},

{R|{PO} R and ({TPP,NTPP '} C R or
{TPP™' NTPP} C R)}.

N2

5 Transformation of RSAT to SAT

For transforming RSAT to propositional satisfiability
(SAT) we will transform every instance © of RSAT to
a propositional formula in CNF that is satisfiable iff © is

consistent. We will start from m (@), the modal encoding
of O, and show that whenever m(0©) is satisfiable it has
a Kripke model of a specific type. This model will then
be used to transform m(©) to a propositional formula.

m(©) is satisfiable if it is true in a world w of a Kripke
model M = (W {R;, = W x W,R, C W x W}, n),
where W is a set of worlds, R; the accessibility rela-
tion of the O-operator, R, the accessibility relation of
the I-operator, and 7 a truth function that assigns a
truth value to every atom in every world. The truth
conditions for M, w |- m(©) can be specified as a com-
bination of truth conditions of the single atoms according
to the form of m(©). In this way M, w |FIp, e.g., can
be written as (Vu : wRyu. M, ul|F¢) and M, w |- —Iyp as
(Fu : wRau. M, u |k —p). We will call this form of writing
M |-m(0) the ezplicit form of m(0©).

Before transforming m(©) to a propositional formula,
we have to show that there is a Kripke model of m (@)
that is polynomial in the number of spatial variables n.

Definition 5.1 Let u € W be a world of the model M.
e u is a world of level 0 if vR>u only holds for v = u.

e u is a world of level | + 1 if vRou holds for a world
v of level I and there is no world v # u of level > .

We assume that every occurrence of a sub-formula of
m(®) of the form —Og, where ¢ contains no O opera-
tors, introduces a new world of level 0. As these sub-
formulas correspond to entailment constraints, the num-
ber of worlds of level 0 is polynomial in 7.

For every spatial variable X and every world w there
might be sub-formulas that force the existence of a world
u with wRyu where X is true or where =X is true. Be-
cause there are n different spatial variables, 2n different
worlds u with wRsu are sufficient for each world w.

Definition 5.2 An RCC-8-frame F = (W,{Ri,Rs})

has the following properties:
1. W contains only worlds of level 0,1 and 2.

2. For every world w of level k (k = 0,1) there are
exactly 2n worlds u of level k + 1 with wRou.

3. For every world w of level k there is exactly one
world u for every level 0 <1 < k with uRsw.

An RCC-8-madel is based on an RCC-8-frame.

Lemma 5.3 m(0) is satisfiable iff M, w |- m(©) for an
RCC-8-model M with polynomially many worlds.

Now it is possible to transform the explicit form of
m(©) to a propositional formula p(m(©)) in CNF such
that p(m(©)) is satisfiable iff m(©) is satisfiable in a
polynomial RCC-8-model M. For this purpose, propo-
sitional atoms X, are introduced which stand for the
truth of atom X in world w of the RCC-8-model M. Fur-
ther, universally quantified truth conditions are trans-
formed into conjunctions and existentially quantified



truth conditions are transformed into truth conditions
on particular worlds, which can be determined using the
structure of the RCC-8-frame and the modal formula.

Theorem 5.4 RSAT(RCC-8) can be polynomially re-
duced to SAT.

With Corollary 4.2 this leads to the following theorem.
Theorem 5.5 RSAT(RCC-8) is NP-complete.

6 Tractable Subsets of RCC-8

In order to identify a tractable subset of RCC-8, we an-
alyze which relations can be expressed as propositional
Horn formulas, as satisfiability of Horn formulas (HORN-
SAT) is tractable.

Proposition 6.1 Applying the transformation p to the
model and entailment constraints, to the axioms for 1,
and to the properties of closed regions leads to Horn for-
mulas.

Since the model constraints a and A are transformed
to indefinite Horn formulas, the transformation of any
disjunction of these constraints with any other constraint
is also Horn. All relations with an abbreviated form
using only abbreviations or disjunctions of abbreviations
transformable to Horn formulas can be transformed to
Horn formulas. In this way 64 different relations can
be transformed to Horn formulas. We call the subset of
RCC-8 containing these relations Hs.

Theorem 6.2 RSAT(Hs) can be polynomially reduced
to HORNSAT and therefore RSAT (Hsg) € P.

Theorem 6.3 ﬁg contains the following 148 relations:
7:28 = RCC—S\ (Nl UN, U./V'f;)
with N1 and N> as defined in Lemma 4.6 and

Ns = {R|{EQ} C R and (({NTPP} C R,{TPP} Z R)
or ({NTPP 'Y C R, {TPP '} Z R))}.

For proving that ’}-Alg is a maximal tractable subset of
RCC-8, we have to show that no relation of N5 can be
added to Hg without making RSAT intractable.

Lemma 6.4 The closure of every set containing ﬁg and
one relation of N3 contains the relation {EQ, NTPP}.

Therefore it is sufficient to prove NP-hardness of
RSAT (Hs U{EQ,NTPP}) for showing that #g is a max-
imal tractable subset of RCC-8.

Lemma 6.5 RSAT(#s U {EQ,NTPP}) is NP-hard.

Proof Sketch. Transformation of 3SAT to RSAT(?-AlgU
{EQ,NTPP}). R, = {NTPP} and R; = {EQ}. Polarity

constraints:

X, {EC,NTPP}X .,V {TPP}V_,,
Xr{TPP,NTPP}Y 1, Y {EC,TPP}X .,
Clause constraints for each clause ¢ = {i,j,k}:
Y {NTPP '}X; Y ;{NTPP '} X, V;{NTPP '}X; =

Theorem 6.6 7-78 is a mazimal tractable subset of
RCC-8.

It has to be noted that there might be other maximal
tractable subsets of RCC-8 that contain all base relations.

As Hg is tractable, the intersection of RCC-5 and Hg
is also tractable. We will call this subset Hs.

Theorem 6.7 7-75 1s the only mazimal tractable subset
of RCC-5 containing all base relations.

7 Applicability of Path-Consistency

As shown in the previous section, RSAT(#s) can be
solved in polynomial time by first transforming a set of
Hg formulas to a propositional Horn formula and then
deciding it in time linear in the number of literals. This
way of solving RSAT does not appear to be very efficient.

As RSAT is a Constraint Satisfaction Problem (CSP)
[Mackworth, 1987], where variables are nodes and rela-
tions are arcs of the constraint graph, algorithms for de-
ciding consistency of a CSP can also be used. A correct
but in general not complete O(n?) algorithm for deciding
inconsistency of a CSP is the path-consistency method
[Mackworth, 1977] that makes a CSP path-consistent
by successively removing relations from all edges using
Vk : Rij < Ri; N (Rix o Ryj), where 4, j, k are nodes and
R;; is the relation between ¢ and j. If the empty relation
occurs while performing this operation, the CSP is not
path-consistent, otherwise it is.

In this section we will prove that path-consistency de-
cides RSAT (Hg). This is done by showing that the path-
consistency method finds an inconsistency whenever pos-
itive unit resolution (PUR) resolves the empty clause
from the corresponding propositional formula. As PUR
is refutation-complete for Horn formulas, it follows that
the path-consistency method decides RSAT(#Hg). The
only way to get the empty clause is resolving a positive
and a negative unit clause of the same variable. Since
the Horn formulas that are used contain only a few types
of different clauses, there are only a few ways to resolve
unit clauses using PUR.

Definition 7.1

e Ry denotes the set of relations of Hg with the con-
junct K appearing in their abbreviated form.

o Rk, K, denotes Rk, U R, .

e Rr denotes RyURqvyURAvyURcURyvcURAvC.

e An Rgi-chain R} (X,Y) is a path from region X
to region Y, where all relations between successive
regions are from Ry .

Lemma 7.2 Let © be a set of Hg-formulas.

e A positive unit clause {X,} can only be resolved
from {Y ,} and a clause resulting from X RrY € 0.
When such a resolution is possible, X R, aY cannot
hold, so XR., cY must hold.



e A negative unit clause {—X,} can only be resolved
from {Y ,,} and a clause resulting from XR, aY € ©.

Lemma 7.3 If the positive unit clause {X,} can be re-
solved with PUR wusing an Rr-chain from X to Y, the
path-consistency method results in X R, cY .

Using Lemma 7.3, it can be proven that the path-
consistency method decides RSAT (Hsg). Using the proof
of Theorem 4.3, it is possible to express every relation of
Hs as a Horn formula. Then the following theorem can
be proven.

Theorem 7.4 The path-consistency method decides
RSAT (Hs).

Another interesting question is whether the path-
consistency method computes minimal possible relations
on Hg. As the following example demonstrates, this is
not the case even for the set Hs. A{PP}D is impossible
although the constraint graph is path-consistent:

8 Related Work

Nebel [1995] showed that RSAT(g) can be decided in
polynomial time, where 5 is the set of the RCC-8 base
relatiolls. Since B C Hg, our result is more geAneral. Fur-
ther, B contains only 38 relations, whereas Hg contains
148 relations, i.e. about 58% of RCC-8.

Grigni et al. [1995] proved NP-hardness of problems
similar to RSAT. For instance, they considered the prob-
lem of relational consistency, which means that there
exists a path-consistent refinement of all relations to
base relations, and showed that this problem is NP-
hard. While our NP-hardness result on RSAT implies
their result, the converse implication follows only using
the above cited result by Nebel [1995].

In addition to this syntactic notion of consistency,
Grigni et al. [1995] considered a semantic notion of con-
sistency, namely, the realizability of spatial variables as
internally connected planar regions. This notion is much
more constraining than our notion of consistency. It is
also computationally much harder.

9 Summary

We analyzed the computational properties of the qualita-
tive spatial calculus RCC-8 and identified the boundary
between polynomial and NP-hard fragments. Using a
modification of Bennett’s encoding of RCC-8 in a multi-
modal propositional logic, we transformed the RCC-8
consistency problem to a problem in propositional logic

and isolated the relations that are representable as Horn
clauses. As it turns out, the fragment identified in this
way is also a maximal fragment that contains all base
relations and is still computationally tractable. Further,
we showed that for this fragment path-consistency is suf-
ficient for deciding consistency.

As in the case of qualitative temporal reasoning, our
result allows to check whether the relations that are used
in an application allow for a polynomial reasoning algo-
rithm. Further, if the application requires an expressive
power beyond the polynomial fragment, it can be used
to speed up backtracking algorithms. Assuming that the
relations are uniformly distributed, the average branch-
ing factor is reduced from 4.0 to 1.4375 using Hsg instead
of B to split the relations (see also [Nebel, 1997]).
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