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Abstract

The computational properties of qualitative spatial reasoning have been investi-
gated to some degree. However, the question for the boundary between polynomial
and NP-hard reasoning problems has not been addressed yet. In this paper we
explore this boundary in the “Region Connection Calculus” RCC-8. We extend
Bennett’s encoding of RCC-8 in modal logic. Based on this encoding, we prove that
reasoning is NP-complete in general and identify a maximal tractable subset of the
relations in RCC-8 that contains all base relations. Further, we show that for this
subset path-consistency is sufficient for deciding consistency.

Keywords: Qualitative spatial reasoning; Computational Complexity; Region
Connection Calculus; Tractable Subclasses; Path-consistency

1 Introduction

When describing a spatial configuration or when reasoning about such a con-
figuration, often it is not possible or desirable to obtain precise, quantitative
data. In these cases, qualitative reasoning about spatial configurations may
be used [8]. Since space offers a very rich structure, many different aspects of
space such as, e.g., distance, direction, shape, or topology can be treated in
a qualitative way. It is therefore the general goal of qualitative spatial repre-
sentation and reasoning to develop a qualitative theory of space that covers
many of the different aspects of space. Naturally, this general theory must
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grow from different theories focusing on single aspects of space. Apart from
a large expressiveness a general theory of space should have, it is also highly
desirable to allow for efficient reasoning. For this it is necessary to study the
computational properties of the theory.

In this paper we focus on a particular approach to qualitative spatial reasoning
developed by Randell, Cui, and Cohn [36], the so-called Region Connection
Calculus (RCC), which is based on binary topological relations. One variant
of this calculus, RCC-8, uses eight mutually exhaustive and pairwise disjoint
relations, called base relations, to describe the topological relationship be-
tween two regions (see also Egenhofer [12]). These relations can be regarded
as the spatial counterpart of Allen’s well-known interval relations for temporal
reasoning [1].

Some of the computational properties of RCC-8 have been analyzed by Grigni
et al. [19] and Nebel [31]. However, no attempt has yet been made to deter-
mine the boundary between polynomial and NP-hard fragments of RCC-8, as
it has been done for Allen’s interval calculus [33] and recently for RCC-5, a
sub-calculus of RCC-8 [23]. We address this problem and identify a maximal
fragment of RCC-8 that is still tractable and contains all base relations. As
in the case of qualitative temporal reasoning, this proof relies on a computer
generated case-analysis that cannot be reproduced in a research paper.® Fur-
ther, we show that for this fragment path-consistency is sufficient for deciding
consistency.

As topological information is easily accessible, there are many possible and
some existing applications of the calculus in areas like spatial information
systems [20,5], spatial configuration tasks, (robot) navigation [26], computer
vision, natural language processing [26], document analysis, visual languages
[18], and qualitative simulation of physical processes [10,34]. Even when the
expressive power of the calculus is too weak for a particular application, with
the efficient reasoning mechanisms resulting from the work of this paper it can
be used as fast preprocessing for a more expressive spatial representation.

The rest of the paper is structured as follows. In Section 2 we introduce RCC-8
and some basic terminology and definitions that are used in the rest of the
paper. In Section 3 we introduce and extend Bennett’s [3] encoding of RCC-8
in a propositional modal logic. In Section 4, we show that reasoning in RCC-8
is NP-hard by proving that the simpler calculus RCC-5 is already NP-hard.
Using the modal encoding of RCC-8, we show in Section 5 how reasoning in
RCC-8 can be reduced to satisfiability in propositional logic. Based on that,
in Section 6 a tractable subset of RCC-8 is identified which contains only
relations representable as Horn clauses. Further, using a computer generated

3 The programs can be obtained from the authors.



RCC-8 Relation Topological Constraints
DC(a,b) anb=10

EC(a,b) i@ nNi(d)=0,anb#0
PO(a,b) i@nib)#£0,agbbZa
TPP(a,b) aCb,adi(b)

TPP 1(a,b) bCa,b{i(a)
NTPP(a, b) a C i(b)
NTPP~!(a,b) b C i(a)

EQ(a,b) a=>b

Table 1
Topological interpretation of the eight base relations of RCC-8. i(-) specifies the
topological interior of a spatial region, - the topological closure.

case-analysis we prove that the set is maximal. In Section 7 we discuss the
applicability of the path-consistency algorithm, and in Section 8 we give an
estimation of the applicability of the maximal tractable subset to the general
reasoning problem. In the appendices, we give a concise introduction to modal
logic and an enumeration of the tractable fragment of RCC-8.

2 Qualitative Spatial Reasoning with RCC

The Region Connection Calculus (RCC) is a topological approach to qualita-
tive spatial representation and reasoning where spatial regions are non-empty
regular subsets of a topological space [36]. Relationships between spatial re-
gions are defined in terms of the relation C(a, b), read as ‘a connects with &'
In the standard interpretation of the RCC theory, the relation C(a, b) is true if
and only if the closure of region a is connected to the closure of region b, i.e., if
the closures of the two regions share a common point. Regions themselves do
not have to be internally connected, i.e., a region may consist of different dis-
connected parts, and regions are allowed to have holes. The domain of spatial
variables (denoted as X, Y, Z) is the set of all spatial regions of the topological
space. The RCC theory is formulated in first order predicate calculus [36].

RCC-8 [36] is a set of eight jointly exhaustive and pairwise disjoint (JEPD)
relations, called base relations, definable in the RCC theory, denoted as DC,
EC, PO, EQ, TPP, NTPP, TPP™!, and NTPP™!, with the meaning of Dis-
Connected, Fxternally Connected, Partial Overlap, EQual, Tangential Proper
Part, Non-Tangential Proper Part, and their converses. Exactly one of these
relations holds between any two spatial regions. These relations can be given a
straightforward topological interpretation in terms of point-set topology (see
Table 1), which is almost the same as the semantics for the topological rela-
tions given by Egenhofer [12] (though Egenhofer places stronger constraints
on the domain of regions, e.g., regions must be one-piece and are not allowed
to have holes). Examples for the RCC-8 relations are shown in Figure 1.
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DC(X,Y) EC(X,Y) TPP(X,Y) TPP~!(X,Y)
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PO(X,Y) EQ(X,Y) NTPP(X,Y) NTPP~!(X,Y)

Fig. 1. Two-dimensional examples for the eight base relations of RCC-8.

RCC-5 is a set of five JEPD relations [2] definable in the RCC theory on a
coarser level of granularity than RCC-8. For RCC-5 the boundary of a region
is not taken into account, i.e., one does not distinguish between DC and EC
and between TPP and NTPP. These relations are combined to the RCC-5 base
relations DR for DiscRete and PP for Proper Part, respectively. Thus, RCC-5
contains the five base relations DR, PO, PP, PP !, and EQ. In this work we
will focus on RCC-8, but most of our results can easily be applied to RCC-5.

Spatial constraints or RCC-8-constraints are written as XRY or R(X,Y),
where R is an RCC-8 relation. Sometimes it is not known which of the eight
base relations of RCC-8 holds between two regions, but it is possible to exclude
some of them. In order to represent this, unions of base relations can be used.
Since base relations are pairwise disjoint, this results in 2% different RCC-8
relations,* including the union of all base relations, which is called universal
relation. In the following we will write sets of base relations to denote these
unions. Using this notation, DR, e.g., is identical to {DC,EC}. A refinement
of an RCC-8 relation R is any sub-relation of R, e.g., {DC, PO} is a refinement
of {DC, EC,PO}. Apart from union (U), other operations are defined, namely,
converse (), intersection (M), and composition (o) of relations. The formal
definitions of these operations are:

VX,Y: X(RUS)Y + XRYVXSY,
VX,Y: X(RNS)Y + XRYAXSY,
VX,Y XR-Y + YRX,

VX,Y: X(RoS)Y + 3Z:(XRZAZSY).

Converse, intersection and union of relations can easily be obtained by per-
forming the corresponding set theoretic operations. Composition of base rela-
tions has to be computed using the formal definitions of the relations [35,2].
The compositions of the eight base relations are shown in Table 2. Every entry

4 In some papers the set of all possible unions of base relations is denoted as 28¢C8,

We will, however, use RCC-8 to refer to the set of all possible unions of base relations
and B to refer to the set of base relations of RCC-8.



o DC EC PO TPP NTPP TPP! | NTPP! EQ

DC,EC | DC,EC | DC,EC DC,EC

DC * PO,TPP |PO,TPP|PO,TPP| PO,TPP DC DC DC
NTPP | NTPP | NTPP NTPP
DC,EC | DC,EC | DC,EC | EC,PO PO
EC ||PO,TPP'| PO,TPP |PO,TPP| TPP TPP DC,EC DC EC
NTPP?! |TPPLEQ| NTPP | NTPP NTPP
DC,EC | DC,EC PO PO DC,EC | DC,EC
PO ||PO,TPP!|PO,TPP! * TPP TPP PO, TPP!|PO,TPP!| PO
NTPP! | NTPP! NTPP NTPP NTPP! | NTPP!
DCEC | 1pp DC,EC | DC,EC
TPP DC DC,EC (PO, TPP| \rop NTPP PO,TPP |PO,TPP!| TPP
NTPP TPP1EQ| NTPP!
DC,EC DC,EC
NTPP DC DC PO,TPP| NTPP NTPP PO, TPP * NTPP
NTPP NTPP
DC,EC | EC,PO PO | PO,EQ PO —
TpP! |PO,TPP!| TPP! | TPP! | TPP TPP NTPP-1 NTPP! | TPP!
NTPP! | NTPP! |NTPP!| TPP! NTPP
DC,EC PO PO PO PO, TPP!

NTPP!||PO,TPP!| TPP! | TPP! | TPP! |TPP,NTPP| NTPP! | NTPP! |NTPP!
NTPP! | NTPP! | NTPP!| NTPP! |[NTPPLEQ

EQ DC EC PO TPP NTPP TPP! | NTPP! EQ

Table 2
Composition table for the eight base relations of RCC-8, where * specifies the uni-
versal relation.

in the composition table specifies the relation obtained by composing the base
relation of the corresponding row with the base relation of the correspond-
ing column. Composition of two arbitrary RCC-8 relations can be obtained
by computing the union of the composition of the base relations. Note that
the composition table only corresponds to the given extensional definition of
composition if the universal region is not permitted [6].

A spatial configuration can be described by a set © of spatial constraints. One
important computational problem is deciding consistency of ©, i.e., deciding
whether it has a solution, which is an assignment of regions of some topological
space to variables of © in a way that all relations hold.® We call this problem
RSAT. When only relations of a specific set S are used in O, the corresponding
reasoning problem is denoted by RSAT(S). RSAT is a Constraint Satisfaction
Problem (CSP) [28], where variables are nodes and relations are arcs of the
constraint graph and the domain of the variables are subsets of a topological
space. So RSAT can be solved using the standard methods developed for CSP’s

5 Here, the dimension of the topological space is not considered. Renz [37], however,
found that whenever a set of constraints over RCC-8 has a solution in a topological
space of some dimension, it has a solution in topological spaces of any dimension.
This is not the case if regions must be one-piece [19]. See Section 9 for a further
discussion of this topic.



with infinite domains (see, e.g., [24]).

A partial method for determining inconsistency of a CSP is the path-consistency
method which enforces path-consistency on a CSP [30,27]. A CSP is path-
consistent if and only if for any consistent instantiation of any two variables,
there exists an instantiation of any third variable such that the three values
taken together are consistent. It is necessary but not sufficient for the con-
sistency of a CSP that path-consistency can be enforced, i.e., a CSP where
path-consistency cannot be enforced is not consistent, but a CSP is not nec-
essarily consistent when path-consistency can be enforced. A naive way to
enforce path-consistency on a CSP is to strengthen relations by successively
applying the following operation until a fixed point is reached:

VEk - Rij — Rij N (Rzk © Rkj)

where i, j, k are nodes and R;; is the relation between ¢ and j. The resulting
CSP is equivalent to the original CSP, i.e., it has the same set of solutions. If
the empty relation occurs while performing this operation the CSP is incon-
sistent, otherwise the resulting CSP is path-consistent. More advanced algo-
rithms enforce path-consistency in times O(n?) where n is the total number
of nodes in the graph [29].

Other useful computational problems include RMIN, the problem of finding the
minimal relations, i.e., the strongest implied relation for each pair of spatial
regions, and RENT, the problem of whether a spatial constraint is entailed by
©. As it was shown for the corresponding temporal problems [42,17], these
problems are equivalent to RSAT under polynomial Turing reductions.

3 Encoding of RCC-8 in Modal Logic

Another way of solving problems concerning RCC-8 is using the encoding of
the relations in first order predicate logic. Such an encoding does not lead
to efficient decision procedures, however. In order to overcome this problem,
Bennett [2,3] used different encodings of RCC-8 in propositional intuitionis-
tic and modal logic. In this work we will use Bennett’s encoding of RCC-8
in propositional modal logic [3]. An introduction to modal logics is given in
Appendix A.

Bennett obtained the modal encoding by analyzing the relationship of regions
to the universe . For the modal encoding we are using, Bennett restricted
his analysis to closed regions that are connected if they share a point and
overlap if they share an interior point.% If, e.g, X and Y are disconnected, the

6 There is also a modal encoding based on open regions which is not as simple as



Relation Model Constraints Entailment Constraints
DC(X,Y) (X AY) -X,-Y
EC(X,Y) -(IX ATY) (X AY),-X,-Y
PO(X,Y) — -(IXAIY),X Y,V - X,-X,-Y
TPP(X,Y) X—=Y X->IY)Y - X,-X,-Y
TPP1(X,Y) Y - X Y - IX, X -5 Y,-X,-Y
NTPP(X,Y) X 1Y Y - X,=-X,-Y
NTPP~1(X,Y) Y - IX X-Y,-X,-Y
EQ(X,Y) XY,V X -X,-Y

Table 3

Bennetts encoding of the eight base relations in modal logic [3].

complement of the intersection of X and Y is equal to the universe. Further,
both regions must not be empty, i.e., the complements of both X and Y are not
equal to the universe. In the same way all topological constraints corresponding
to the RCC-8 relations (see Table 1) can be written as constraints of the form
(m =U) and (e # U), where m and e are set-theoretic expressions, denoted
as model constraints and entailment constraints, respectively [2]. In the above
example, X NY is the model constraint and X and Y are the entailment
constraints. Any model constraint must hold, whereas no entailment constraint
must hold [2].

For some of the constraints it is necessary to refer to the interior of regions.
For this purpose the topological interior operator ¢ is used. This operator must
satisfy the following axiom schemata for arbitrary sets ¢,y C U [3]:

i(¢) C ¢, (1)
i(i(9)) =1i(¢), (2)
i) (3)

) (4)

The model and entailment constraints can be encoded in modal logic, where
regions correspond to propositional atoms, the interior operator ¢ corresponds
to a modal operator I (see Table 3), and the universe U corresponds to the set
of all worlds W [3]. The axiom schemata for i must also hold for the modal
operator I, which results in the following axiom schemata [3] for arbitrary
modal formulas ¢, 1:

16— ¢, (5)

I1p < 19, (6)

IT ++ T (for any tautology T), (7)
I(6 A 4) ¢ Ig ATy, (8)

the encoding based on closed regions [3].



Axiom schemata 1 and 2 correspond to the modal axioms T and 4 and axiom
schemata 3 and 4 already hold for any modal logic K, so I is a modal S4-
operator (see Appendix A).

The four axiom schemata specified by Bennett are not sufficient to exclude
non-closed regions as it was intended. In order to account for that, we add one
formula for each atom X, which corresponds to the topological property of
regular closed regions: A regular closed region is the closure of an open region.
- X specifies the complement of X, and, thus, =I-X the closure of X.

X & —I-1X (9)

Note that the S4 encoding can be used to reason about any kind of open
or closed regions. Both the non-emptiness constraint, i.e., the entailment con-
straint =X, and the regularity constraint (9) are optional and can be regarded
as properties of regions definable in the modal representation. They are needed

to make the representation conform to the intended interpretation of the orig-
inal RCC theory.

In order to combine the different model and entailment constraints, Bennett
[3] uses another modal operator O. Oy is interpreted as ¢ = U and —Oyp as
@ # U. Since m is a model constraint if m = U holds, any model constraint m
can be written as Om and any entailment constraint e as —Oe. If OX is true
in a world w of a model M, written as M, w |- OX, then X must be true in
any world of M. So O is an S5-operator with the constraint that all worlds are
mutually accessible. Therefore Bennett calls it a strong S5-operator [3]. Now
all model and all entailment constraints containg the strong S5-operator can
be conjunctively combined to a single modal formula. So the modal encoding
of RCC-8 is made with an S4-operator that corresponds to the topological
interior operator and a strong S5-operator that is used to obtain a single
modal formula.

4 Computational Properties of RCC-8

In this section we prove that reasoning with RCC-8 is NP-hard by showing that
reasoning with a subset of RCC-8 is already NP-hard. We will then show how
complexity results for subsets of RCC-8 can be carried over to other subsets
of RCC-8, and, using this result, give NP-hardness proofs for a number of
different subsets S of RCC-8. All of these proofs use a transformation from
a propositional satisfiability problem to RSAT(S) by constructing a set of
spatial constraints © for every instance Z of the propositional satisfiability
problem, such that © is consistent if and only if Z is a positive instance. The
propositional satisfiability problems we use are 3SAT, the problem of deciding



whether there is a truth assignment for a set of clauses where each clause has
exactly three literals, as well as two variants of 3SAT where truth assignments
of particular types are required [15]. These variants are NOT-ALL-EQUAL-
3SAT, the problem of deciding whether there is a truth assignment such that
for every clause at least one literal is assigned true and one literal is assigned
false, and ONE-IN-THREE-3SAT, the problem of deciding whether there is a
truth assignment such that for every clause exactly one literal in every clause
is assigned true. All three decision problems are NP-hard [40].

The different transformations we use in this section as well as in Section 6 have
in common that every variable v of the propositional satisfiability problem is
transformed to two RCC-8-constraints X,{R:, Rf}Y, and X_,{R;, R;}Y -,
corresponding to the positive and the negative literal of v, where R; and
Ry are RCC-8-relations with R, N Ry = (. v is assigned true if and only if
X, {R:}Y, holds and assigned false if and only if X,{R;}Y", holds. Since the
two literals corresponding to a variable need to have opposite assignments, we
have to make sure that X,{R;}Y, holds if and only if X_,{R;}Y -, holds,
and wice versa, for which additional “polarity constraints” are required. In
addition, every literal occurrence [ of the propositional satisfiability problem
is transformed to the RCC-8-constraint X ;{R;, R;}Y, where X ;{R,}Y holds
if and only if [ is assigned true. In order to assure the correct assignment
of positive and negative literal occurrences with respect to the corresponding
variable, polarity constraints are required again. For instance, if the variable
v is assigned true, i.e., X,{R;}Y, holds, then X,{R,}Y, must hold for every
positive literal occurrence p of v, and X, {R;}Y, must hold for every negative
literal occurrence n of v. Further, “clause constraints” have to be added to
assure that the clause requirements of the specific propositional satisfiability
problem are satisfied. For example, if {7, j, k} is a clause of an instance of ONE-
IN-THREE-3SAT, then exactly one of the constraints X;{R,}Y;, X;{R;}Y},
and X ;{R;}Y; must hold. In the constraint graphs displayed in the figures of
this section the relation {PO} is symbolized as a dotted line, spatial variables
are symbolized as circles.

In the following we will prove NP-hardness for RCC-5, since the result can
be immediately transfered to RCC-8. For this proof we will use NOT-ALL-
EQUAL-3SAT and set R; to PP and Ry to PP~ 1. The polarity and the clause
constraints of the transformation are based on the following two properties
that can be verified using the composition table (Table 2).

Property 1 Let X,Y,Z be spatial variables, where the relation {PP, PP_I}
holds between all of them. Then any refinement of these relations to base re-
lations such that a path in the constraint graph starting and ending at X,
and passing Y and Z contains only {PP} or only {PP™'} is inconsistent (see
Figure 2).
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Fig. 2. Property 1: (a) is the original configuration, (b) is an impossible, (c) is a

possible refinement of the relations to base relations.
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Fig. 3. Property 2: (a) is the original configuration, (b) and (c) are the only possible
refinements of the relations to base relations.

Property 2 Let X,Y, Z be spatial variables, where X {PO}Y, Z{PP,PP'} X,
and Z{PP, PPfl}Y hold. Then a refinement of these relations to base relations
is only consistent, if the relations between (Z,X) and between (Z,Y) are re-
fined to the same base relation (see Figure 3).

With Property 1 it can be ruled out that all constraints are refined to the same
base relation (not-all-equal). Using Property 2 a refinement of one constraint
can be propagated to another constraint.

Theorem 3 RSAT(RCC-5) is NP-hard.

Proof. Transformation of NOT-ALL-EQUAL-3SAT to RSAT(RCC-5) (see also
Grigni et al [19]). Let V = {vy,ve,...,v,} be a set of variables and C =
{c1,¢2,...,¢cn} be a set of clauses of an arbitrary instance of NOT-ALL-
EQUAL-3SAT with ¢; = {l;1,li2,li3}, where [;; are literal occurrences over
variables of V. We will construct a set of spatial constraints ©, such that ©
is satisfiable if and only if C is a positive instance of NOT-ALL-EQUAL-3SAT
using the following three transformation steps:

(1) For each variable v;, € V the spatial variables X, Y, X_; and Y_
are introduced by adding the spatial constraints X ,{PP,PP~'}Y; and
X_{PP,PP '}Y_, to ©. Additionally, the following polarity constraints
are added to © (see Figure 4a):

10
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Fig. 4. The polarity constraints (a) for the  transformation
of NOT-ALL-EQUAL-3SAT assure that positive and negative literals of the same
variable have opposite assignments: (b) and (c) are the only possible refinements of
the relations to base relations.

X {PP,PP '}X_., Y {PP,PP 1}V .,
X, {PO}Y_., Y, {PO}X_,.

(2) For each literal occurrence /; ; the spatial variables X;; and Y, ; are in-
troduced by adding the spatial constraint X; ;{PP,PP™'}Y;; to ©. De-
pending on whether the literal occurrence is positive or negative, different
polarity constraints have to be added to ©.

(a) li,j = vr:
X ;{PP,PP™1}X_ .Y, ;{PP,PP !}Y_,,
Xi,j{PO}Y—‘L, Y«i’j{PO}X—‘L.

(b) li,j = g,

X, ;{PP,PP 1} X, Y, ;{PP,PP '}V,
X, ;{PO}Y,Y,; ;{PO}X|.

(3) For each clause ¢; = {li1,li2,l;3} the following clause constraints are
added to © (see Figure 5):

X;1{PP,PP™'} X5, X;2{PP,PP7'} X, 3, X;3{PP,PP7'} X},
Xi,l{PO}Yi’g, XZ',Q{PO}YZ'J, XZ',Q{PO}YZ',:),.

With this transformation for every literal as well as for every literal occurrence
two spatial variables X and Y (with the appropriate indices) are introduced.
When a literal occurrence or a literal is assigned true, the corresponding spa-
tial variables hold the relation X{PP}Y, when a literal occurrence or a lit-
eral is assigned false, the corresponding spatial variables hold the relation
X{PP }Y.

Transformation step (1) introduces the spatial variables corresponding to the
positive and the negative literal of each variable. Property 2 assures that

11



Fig. 5. Transformation of a not-all-equal clause ¢; = {l;1,l;2,1;3} to spatial con-
straints.

positive and negative literals have opposite assignments. This is shown in Fig-
ure 4. Transformation step (2) introduces spatial variables for every literal
occurrence. Again, Property 2 assures correct assignments. Finally, transfor-
mation step (3) together with Property 1 makes sure that the not-all-equal
condition of the literals of every clause is also fulfilled by the corresponding
spatial variables. We now have to show that an instance of NOT-ALL-EQUAL-
3SAT has a solution if and only if the set of spatial constraints © obtained by
the given transformation is consistent.

RSAT=- NOT-ALL-EQUAL-3SAT: Suppose that the set of spatial constraints ©
obtained by transformation from a given instance 3 of NOT-ALL-EQUAL-3SAT
is consistent, and suppose that 6 is a consistent instantiation of ©. Then an
assignment o that satisfies X can be obtained in the following way: For every
variable vy, € V, if (X 1 ){PP}8(Y 1) holds, then o(vy,) is true, otherwise o(vy,)
is false.

NOT-ALL-EQUAL-3SAT = RSAT: Suppose that ¥ is a positive instance of
NOT-ALL-EQUAL-3SAT, and suppose that o is an assignment that satisfies
3. Then the set of spatial constraints © obtained by transformation from X
with respect to o is consistent. We will show this by constructing a spatial
configuration that satisfies all relations of ©. Before that we will point out
some properties of ©. Let ©' be the set of spatial constraints transformed
from ¥ with transformation steps (1) and (2) with respect to o, i.e., if, for
example, o(vy) = true then X ,{PP}Y,, holds. ©' has the following properties:

(i) Since transformation step (3) introduces no spatial variable, ©" contains
the same spatial variables as ©.

(ii) For any variable v;, € V the four corresponding spatial variables are
related as shown in Figure 4(b) or 4(c).

12



(iii) For any literal occurrence [; ; the two corresponding spatial variables to-
gether with two spatial variables of the affiliated variable are in a form
as shown in Figure 4(b) or 4(c).

(iv) Only the relations {PP}, {PP~*}, {PO} and {*} occur in ©’

(v) If X{PP}Y holds for a spatial variable X and a spatial variable Y, then
there is no spatial variable Z in ©" with Z{PP}X.

(vi) If X{PP '}V holds for a spatial variable X and a spatial variable Y,
then there is no spatial variable Z in © with Z{PP '} X.

Because of (v) and (vi), the spatial variables can be divided into two sets. The
“small” set S contains all spatial variables that are proper part of other spatial
variables, the “big” set B contains all spatial variables that are converse proper
part of other spatial variables. The relation PO only holds between regions
of the same set. All other relations are unspecified. For proving that ©’ is
consistent, we will give a spatial configuration M’ that holds all the specified
relations and therefore is a model for ©’. In M’ every spatial variable X; of
the small set S is instantiated by a “small region” S;, every spatial variable
X; of the big set B is instantiated by a “big region” B,.

— Every small region S! € M’ consists of two parts s’ and s}, where ¢ is
common to all small regions. s;{DR}s} for all i # j and s;{DR}s’ for all

i=1...19.

— Every big region B; € B consists of two parts ¢’ and b}, where b’ is common
to all big regions. b;{DR}b’ for all i # j and b;{DR}¥' for all i =1...|B].

— Foralli=1...|S|: s{{PP}V' and s'{PP}¥'.

As every small region is proper part of every big region and all small regions
as well as all big regions partially overlap, © is consistent. © results from
©' after applying transformation step (3). The spatial configuration M’ is no
model for ©, because two relations of every clause do not hold. This can be
seen in Figure 6 which shows two possible refinements of a clause and the
instantiations of the spatial variables with small and big regions. In every
clause there is either one small region which is proper part of another small
region or a big region which is proper part of another big region. In Figure 6
this is the case for B;{PP™'}B, and S;{PP~'}Ss. Also there is one small
region in every clause that partially overlaps one big region. In Figure 6 this
is the case for Bo{PO}S; and B5;{PO}S,.

With a few changes to M’, we can construct a spatial configuration M that is
a model for ©. In M every spatial variable X; of the small set is instantiated
by S;, every spatial variable X; of the big set is instantiated by B;. Apart from
the following exceptions S; is equal to S, and B; is equal to B;:

~ For any 4,5 =1...]S|: If S;{PP~'}S; must hold then S; := 5] U s/.
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Fig. 6. Two different refinements of not-all-equal clauses to base relations.

— Forany i,j = 1...|B|: If B{PP™'}B; must hold then B; := Bj U b}.
— Foranyi=1...|B|,j=1...|S|: If Bi{PO}S; must hold then B; := B;\s}.

As exactly two exceptions occur in every clause and the literal occurrences of
every clause correspond to different regions, no region will be changed more
than once. The regions of M hold all relations of ©.

The transformation takes time linear in the number of clauses, so RSAT(0©) is
NP-hard. O

Since RCC-5 is a subset of RCC-8, this result can be easily applied to RCC-8.
When {PP} is replaced by {TPP,NTPP} and the same for their converse,
Properties 1 and 2 hold accordingly, and the same proof can be carried out.

Corollary 4 RSAT(RCC-8) is NP-hard.

Since we now know that RSAT is NP-hard, we want to find out whether there
are subsets of RCC-8 for which the consistency problem can be decided in poly-
nomial time, and ideally identify the borderline between tractability and in-
tractability. In order to identify this borderline, one has to examine all subsets
of RCC-8. We limit ourselves to subsets containing all base relations, because
these subsets still allow one to express definite knowledge, if it is available.
Additionally, we require the universal relation to be in the subset, so that it
is possible to express complete ignorance. This reduces the number of subsets
we have to analyze from 22°% to 2247, Fortunately, we can reduce the number of
subsets further by noting that the computational complexity associated with
an arbitrary subset S is identical to the complexity associated with the closure
of this subset under composition, intersection, and converse, denoted by S -
an observation that has also been used in determining a maximal tractable
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subset of Allen’s interval calculus [33, Theorem 14]. Instead of reproving this
fact for the RCC-8 relations, we will prove a more general result.

Let S be a set of binary relations over a domain D, then we define the con-
straint satisfaction problem CSPSAT(S) as follows:

Given: A finite set © of constraints (X RY), where R € § and X, Y are
variables for values in D.

Question: Is there an instantiation of all variables in © such that all con-
straints are satisfied?

Theorem 5 Let C be a set of binary relations that is closed under compo-
sition, intersection, and converse. Then for any subset S C C that contains

the universal relation, the problem CSPSAT(S) can be polynomially reduced to
CSPSAT(S).

Proof. Let T =8 \ S. Every element R € T can be expressed by successive
application of composition, intersection and converse of elements of S. Let n
be the maximal number of operations needed for a single element, where for
each element the minimal number of operations is considered.

We will show by induction that for any set © of constraints over S we can
construct a set ©' of constraints over S with |©'| < 2" x |O| and O consis-
tent if and only if © consistent (induction hypothesis). Since n is fixed, the
transformation is polynomial.

Base step (n = 1): ©’ contains all constraints (X SY) € © with S € S. For
any constraint (X RY') € © with R € T one of the following cases applies:

(i) R=S"and S€ 8. Add (Y SX) to ©.
(ii) R=SoT and S, T € §. Add (XS Z) and (ZTY) to ©, where Z is a
fresh variable.

(iii) R=SNTand S,T€S. Add (XSY)and (XTY) to ©.
Then ©' is consistent if and only if © is consistent, and |©'| < 2! x 9.

Inductive step: Suppose that n = k + 1 and that the induction hypothesis
holds for n = k. Let 7' C T be the set of relations that can only be composed
of relations of S using k + 1 operations. Then &\ 77 is the set of relations
that can be composed of S using a maximal number of k£ operations. So the
induction hypothesis is valid for § \ 7". Any relation R € T’ can be composed
of relations of & \ 7' using exactly one operation, so R can be treated as
specified in the base step. O
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Note that Theorem 5 holds only if there exists an infinite supply of fresh
variables; this is not always the case (e.g., bounded variable problems which
are studied in logic and model theory). Since RSAT is a special case of CSPSAT,
Theorem 5 can also be applied to RSAT.

Corollary 6 Let S be a subset of RCC-8.

(i) RSAT(S) € P if and only if RSAT(S) € P.

-~

(i) RSAT(S) is NP-hard if and only if RSAT(S) is NP-hard.

The first statement of Corollary 6 can be used to increase the number of ele-
ments of tractable subsets of RCC-8 considerably. With the second statement
of Corollary 6 NP-hardness proofs of RSAT can be used to exclude certain re-
lations from being in any tractable subset of RCC-8. The NP-hardness proof of
Theorem 3, for example, only contains the relations {PO} and {TPP, TPP™!,
NTPP,NTPP~!} when written in RCC-8 relations. So for any subset S with
the two relations contained in its closure S, RSAT(S) is NP-hard.

A further NP-hardness proof of RSAT(RCC-8) can be specified to exclude more
relations from being in a tractable subset of RCC-8. This proof uses a poly-
nomial transformation from ONE-IN-THREE-3SAT where R, = {NTPP} and
R; = {TPP~'}. Three more properties, which can be verified using the compo-
sition table (Table 2), are necessary for specifying the clause and the polarity
constraints.

Property 7 Let X,Y,Z be spatial variables, where X{NTPP, TPP_I}Y,
Y{NTPP, TPP~'}Z and Z{NTPP, TPP™'} X hold. A refinement of these re-

lations to base relations is consistent only when exactly one of the relations is
refined to {NTPP}.

Property 8 Let X,Y,Z be spatial variables, where X{NTPP, TPP~'}Z,
Y{NTPP, TPP~'}Z and X{PO}Y hold. A refinement of these relations to
base relations is consistent only when the relations between (X,Z) and be-
tween (Y, Z) are refined to the same base relation.

Property 9 Let X,Y,Z be spatial variables, where X{NTPP, TPP’I}Z,
Z{NTPP, TPP™'}Y and X{PO}Y hold. A refinement of these relations to
base relations is consistent only when the relations between (X,Z) and be-
tween (Z,Y) are refined to different base relation.

Property 7 will be used for the one-in-three condition of the literals in a
clause, Properties 8 and 9 are used to propagate a refinement of a constraint
to another constraint.

Lemma 10 Let S be a subset of RCC-8 containing all base relations. If any of
the relations {TPP,NTPP, TPP~*,NTPP '}, {TPP, TPP '}, {NTPP,NTPP '},
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Fig. 7. The polarity constraints (a) for the transformation of ONE-IN-THREE-3SAT
assure that positive and negative literals of the same variable have opposite assign-
ments: (b) and (c) are the only possible refinements to base relations.

{NTPP, TPP™} or {TPP,NTPP™'} is contained in S, then RSAT(S) is NP-
hard.

Proof. NP-hardness of RSAT({B U {TPP,NTPP, TPP~',NTPP~'}) can be
proved by replacing the RCC-5 relations of Theorem 3 with the corresponding
RCC-8 relations. NP-hardness of RSAT({B U {TPP, TPP~'}) and RSAT({BU
{NTPP,NTPP~'}) can be proved by replacing {PP} with {TPP} and {PP~'}
with {TPP~'} or by replacing {PP} with {NTPP} and {PP~'} with {NTPP~'},
respectively. Then Properties 1 and 2 hold accordingly, so the transformation
of Theorem 3 can also be applied using {TPP, TPP'} or {NTPP,NTPP '}
instead of {PP,PP~'}. A model M for a set of RCC-8-constraints © obtained
from this revised transformation can be constructed in the same way as spec-
ified in Theorem 3.

In order to prove NP-hardness of RSAT({B U {NTPP, TPP~'}), Properties 7,
8, and 9 are required. Then ONE-IN-THREE-3SAT can be polynomially trans-
formed to RSAT with the same transformation steps as specified in Theorem 3.
Within these steps {PP} has to be replaced with {NTPP} and {PP '} with
{TPP~'}. The effect of the polarity constraints and the clause constraints
can be seen in Figures 7 and 8. Because of Property 7 exactly one literal must
be true in any clause.

We will now construct a model M for a set of RCC-8-constraints © resulting
from the transformation from a satisfiable instance of ONE-IN-THREE-3SAT.
As in Theorem 3, it can be distinguished between “small” regions S; and “big”
regions B; where a spatial variable X; is instantiated with S; if X;{NTPP}Y;
holds and is instantiated with B; if X;{TPP '}Y; holds. If X; is instanti-
ated with S; then Y; is instantiated with B; and wice versa. It can be seen
in Figure 8(b) that (with two exceptions) all small regions partially overlap
eachother and are part of all big regions which, again, partially overlap ea-
chother. In every clause there are two exceptions, namely, that one big region
is tangential proper part of another big region and one small region partially
overlaps one big region. In Figure 8(b) this is the case for regions B; and Bj
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NTPP,iTPP—1 6 ;
NTPP,TPP~1 :

NTPP TPP—1 .-

Y

(a) (b)

Fig. 8. Transformation of a one-in-three clause ¢; = {l;1,l;2,0;3} to spatial con-
straints (a) and a possible refinement of a the clause to base relations (b).

oo 9 e o
) 2o
o

Fig. 9. A model for the six regions in Figure 8 where By = B \ {b1,1,b1,2,b13,b33},
By, = B\bg, Bs = B\bg,g, S = SU81U51,1, Sy = SUSQUSQJ, and
S3=SUs3U 83,3 U 3%,1

and for regions B; and S5. In order to construct all regions B; and S;, we need
a region B plus the regions S, s;, s;;, s;-,j, and b, ; for all4,5 =1,...,n (nis the
number of spatial variables in ©) which are all non-tangential proper part of
B. All regions in B are disconnected with all other regions in B except for the
following relationships: s; ;{EC}b;; for all 4,5 and s{ ,{NTPP}b;; for all i, j.
Let B! := B\ {b; |7} and S} := S U s;. Then all regions B} partially overlap
eachother, all regions S; partially overlap eachother and are non-tangential
proper part of every region B}. B; and S; can be obtained from B; and S
with some modifications (see Figure 9):

— If S;{{TPP}B; must hold, then S; := S; U s; .
- If S;{PO} B; must hold, then S; := S; U s; .
— If B;{{TPP}B; must hold, then B, := B;\ {b,:|k}

After these modifications, all relations required by © hold for any B; and S,

so by setting B; := B} and S; := S] for all i we obtain a model of ©. Thus,
an instance of ONE-IN-THREE-3SAT has a solution if and only if the set of
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RCC-8-constraints obtained by the specified transformation is consistent. The
transformation is polynomial, therefore, RSAT({B U {NTPP, TPP'}) is NP-
hard.

If {TPP,NTPP™!} is contained in S, then {TPP~! NTPP} is also contained,
so RSAT({B U {TPP,NTPP~'}) is also NP-hard. With Corollary 6 the proof
is completed. O

By computing the closure of all sets containing the eight base relations together
with one additional relation, we obtain the following lemma.

Lemma 11 RSAT(S) is NP-hard for any subset S of RCC-8 containing all
base relations together with one of the 72 relations of the following sets:

Ni={R|{PO} € R and ({TPP,TPP '} C R or {NTPP,NTPP '} C R)},
No={R|{PO} € R and ({TPP,NTPP '} C R or {TPP !, NTPP} C R)}.

Proof. The closure of any of the 72 subsets contains one of the five relations
of Lemma 10. O

5 Transformation of RSAT to SAT

In the previous section we proved that particular relations cannot be added
to the set of RCC-8 base relations without making the consistency problem
NP-hard. In order to identify a tractable subset of RCC-8 we have to find
out for which set of RCC-8 relations S the consistency problem RSAT(S) can
be reduced to a tractable decision problem. We keep on using propositional
satisfiability problems and first transform RSAT to the NP-hard propositional
satisfiability problem SAT [9], the problem of deciding whether a propositional
formula in conjunctive normal form (CNF) is satisfiable. In the next section
we will then determine for which subsets & of RCC-8 RSAT(S) is reduced to
tractable fragments of SAT using the transformation developed in this sec-
tion. In particular we will use HORNSAT, the tractable problem of deciding
satisfiability of propositional Horn formulas, i.e., formulas where each clause
contains at most one positive literal.

For transforming RSAT to SAT we transform every instance © of RSAT to a
propositional formula in CNF that is satisfiable if and only if © is consistent.
We start with analyzing m(©), the modal encoding of ©, and then show that
whenever m(0©) is satisfiable, it has a Kripke model of a specific type. This
model is then used to transform m(©) to a classical propositional formula.
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5.1 Analysis of the modal encoding

In this subsection we analyze the modal encoding of RCC-8 and bring it in a
form which is suitable for the further transformation to classical propositional
logic. Using the modal encoding of RCC-8 given in Section 3, a set of RCC-8
constraints © can be transformed to a modal formula m(©) as follows, where
Reg(©) is the set of spatial variables used in ©:

m©)=( A m1<XRY))A( A w(X)).

XRY €O X€Reg(©)

mgy consists of the modal formulas that have to be true for every region X €
Reg(0). It results from the regularity constraint (9) and the non-emptiness
constraint —X. Instead of (9) we use the regularity constraints O(—-X —
I-X) A O(X — —I-IX) which are equivalent to (9) in S4.

me(X)=0(-X - I-X) AO(X — —I-IX) A -O-X.

The modal encoding m; of a spatial constraint X RY is determined by the
base relations B contained in R:

mi(XRY) = \/ my(XBY).

BCR

The modal encoding of spatial constraints containing only base relations re-
sults directly from Table 3:

m1(X{DC}Y)=0
my (X{EC}Y
m1(X{PO}Y

my (X{TPP}Y

my (X{TPP 1Y
mi (X{NTPP}Y
my(X{NTPP~'}Y
my (X{EQ}Y

(X AY)),

(IXAIY)) A-O(=(X AY)),
SO-(IXAIY)A-OX - V) A-OY — X),
OX —-Y)A-OX - IY)A -0 — X),
OY - X)A-0Y - IX)A-OX —-Y),
OX = IY)A-O — X),
( )
(

|

(=
(-

oY - IX)A-0OX —=Y),

)
)
)
)
)
)
)
)=0(X = Y)ADO(Y — X).

As follows from the work by Bennett [3,4], © is consistent if and only if m(©)
is satisfiable. It is striking that m(©) is composed only of conjunctions and
disjunctions of the model and entailment constraints and the regularity con-
straints without using any other modal operators to combine them. Thus, a
classical propositional formula in CNF can be obtained from m(©) by using
the following steps:
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(i) Regard the model and entailment constraints and the regularity con-
straints as “propositional atoms”.
(ii) Transform m(©), which is a conjunction and disjunction of these “propo-
sitional atoms”, into CNF.
(iii) Transform the “propositional atoms” into propositional formulas in CNF.

In order to make the following application of these steps more readable, we
will introduce some abbreviations for the model and entailment constraints
and for the regularity constraints.

Definition 12 Abbreviations for the model constraints:”

Oy = O(FH(XAY)) |0y = OFIXALY))
T = O0X =Y) Ty = OX = 1Y)
Yoy = O — X) Vg, = O — IX).
Abbreviations for the reqularity constraints:®
CP, = O(-X —I-X)|RP, = O(X — -I-IX)

As the entailment constraints are negations of the model constraints, they
will be abbreviated as negations of the above abbreviations, e.g., = is the
abbreviation for the entailment constraint =0O(—(X A Y')). The entailment
constraint =00-X (non-emptiness constraint) can be written as a combination
of abbreviations, namely, =0, V—m,,. When it is obvious which atoms (regions)
are used, the abbreviations will be written without indices.

Now it is possible to write m(©) using only conjunctions and disjunctions
of abbreviations of Definition 12. We will call this form of writing m(©) the
abbreviated form of m(©). The abbreviated form of a relation R is the modal
encoding m;(X RY’) of R written in abbreviated form. The abbreviated form
of the eight base relations is the following:

my (X{DC}Y) =0
m1(X{EC}Y)=-0 A di
my (X{PO}Y)

my (X{TPP}Y)=7 A =y A —mi

=71 A~y A -6l

" The abbreviations are the first letters of the meaning of the constraints written in
Greek symbols. The constraint O(—(X AY)) means that X and Y are Disconnected,
hence delta (0); O(X — Y') means that X is Part of Y, hence pi (7); and O(Y — X)
means that X Contains Y, hence gamma (7). The “i” in the three abbreviations
01, 71, and i indicates that the interior of regions is involved in the constraints.

8 The abbreviations indicate the meaning of the two properties, namely, the
Closedness Property (CP) and the Regularity Property (RP).
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my(X{TPP™}Y) =1 Ay A i
my (X{NTPP}Y)=-y A 7i

my(X{NTPP~'}Y)
)

m1(X{EQ}Y)=m A vy

=-mTA7

The abbreviated form of the other relations can be obtained by disjunctively
connecting the abbreviated form of the contained base relations. We can now
regard the abbreviations as “propositional atoms” and write the abbreviated
form of m(©) in conjunctive normal form.

5.2  Determining a particular Kripke model

In order to transform the modal encoding m(©) of © to a classical propo-
sitional formula, we must find a finite Kripke frame by which m(©) can be
modelled if it is satisfiable. With respect to this Kripke frame, m(©) will then
be transformed to a classical propositional formula. Since the transformation
must be polynomial in n, the number of spatial variables of O, the Kripke
frame, i.e., the number of worlds of the frame must be polynomial in n.

Before identifying a particular Kripke frame, we will first have a look at the
conditions that must be satisfied if m(©) is satisfiable. m(©) is satisfiable if
it is true in a world w of a Kripke model M = (W,{Rn = W x W, Ry C
W x W}, vy, where W is a set of worlds, Ry the accessibility relation of the
O-operator, Ry the accessibility relation of the I-operator, and v a valuation
that assigns a truth value to every atom in every world. The truth conditions
for M, w|-m(0O) can be specified as a combination of truth conditions of
sub-formulas according to the form of m(©):*

M, wlFm(©) iff MwlF A\ mi(XRY) A Mwl N\ ma(X)

XRY €O X EReg(O)

iff A M,wlFmi(XRY) A N\ M,w|-ma(X).

XRY €O X €Reg(0©)

Since m(©) is composed only of conjunctions of model and entailment con-
straints and regularity constraints as specified in the previous subsection, we
can carry on expressing the truth conditions of m(©) by combining the truth
conditions of sub-formulas until we have only combinations of formulas of
the type M, w |- Op or M, w |- —O¢p. These sub-formulas correspond to the
different modal and entailment constraints and the regularity constraints and
form 15 structurally different formulas. The truth conditions of these formulas

9 Note that the logical operators used to combine expressions of the form M, w |- ¢
are not the usual modal operators, but operators in a meta language.
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can be obtained by combining the truth values of the single atoms. We start

with specifying the truth conditions of the model constraints. 1°

M,w |6 iff Vu. M,ulf XV M,ulfY)
M,wl|F7 iff Vu. Mul XV MulY)
M, wl|Fvy iff Yu. M,ulFXV Mulf V)
M, w |61 iff Vu.(M,u | IX VM, ulf IY)

iff Vu.3v : uRw.(M,v|lf XV M, v/ Y)
M, w7 iff Vu.(M,ulf XV M, u-1Y)

iff Vu.Vv i uRpw.M,ulf XV M,v|FY)
M, wlF~i iff Vu.(M,uFIX VM ulf Y)

iff Vu.Vv i uRpw.M,v|FXV MulfY)

Now the truth conditions of the entailment constraints.

M, w|F—=6
M, w |F -7
M, w ==y
M, w |-=6 VvV -y
M, w |F =61

M, w |-

M, w “— —|’)/i

iff Ju. M,ul-X AM,ulFY)

iff Ju. M,uFXAM,ulf Y)

iff Ju. M,ulf X AM,uFY)

iff Ju. (M, u |- X)

iff Ju.(M,uFIX A M, uF1IY)

iff Ju.Vv: uRw.M,v|FXAM,v|FY)
iff Ju.(M,ulFXAM,ulf 1Y)

iff Ju.3v: uRw.M,ulFXAM,v |/ Y)
iff Ju.(M,ulf IX AM,ulFY)

iff Ju.3v: uRw.(M,v|f X AM,ulFY)

Finally, the truth conditions of the regularity constraints.

M, w |-CP iff Vu.(M,ulF XV M, ulFI-X)
iff VuVv : uRw.(M,ulFXV M,v |/ X)
M, w |-RP iff Vu.(M,ulf XV M, ulf I-IX)

iff Yu.3s: uRys.Vt: sRit.(M,ulf XV M, t|-X)

We call this form of writing m(©) the ezplicit form of m(0).

(23)

(24)

We will construct a polynomial Kripke frame on which a model M for m(©)
can be based if m(©) is satisfiable at all. For this we will successively add

10 Since O is a strong S5-operator and every world is accessible with R from any

other world, the condition for all v with wRpu can be replaced with Yu.
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only those worlds to the frame that are explicitely required by the formulas
(10) — (24). Amongst them are formulas of the type Vw.¢ and formulas of the
type Jw.p. Only formulas of the type Jw.¢ explicitly require a world with the
specified properties ¢. If a world with these properties is not present, it has
to be introduced. Formulas of the type Vw.p affect the properties of worlds
already introduced, but do not require fresh worlds. These properties must
be enforced by the model and not by the frame. So worlds have to be intro-
duced only for existential quantifiers. Since there are also formulas of the type
Yw.3v.¢ a fresh world must not be introduced for every occurring existential
quantifier. In the following we will analyze which existential quantifiers in-
troduce fresh worlds and for which existential quantifiers there already exist
worlds with the specified properties. For this we will classify worlds according
to the accessibility relation Ry holding between them.

Definition 13 Let u,v,w € W be worlds of the frame F.

- u 15 a world of level 0 if vRyu only holds for v = u.

— u s a world of level I+1 if vRyu holds for a world v of level | and if there
is no world w # u of a level higher than | with wRyu.

— If w is a world of level 0 and v is an Ry-successor of w, then w is called the
introductory world of v.

- W; C W is the set of worlds of level 1.

Every occurrence of one of the formulas (16) to (22), which correspond to the
six different entailment constraints, shall introduce a fresh world of level 0.
Formulas (21) and (22) introduce additional worlds of level 1. Every model
shall be designed according to these principles. Instead of analyzing which
world requires a fresh successor by the Vw3v condition of formulas (14) and
(22), we will in the following define a Kripke frame of a particular structure
and prove that whenever m(©) is consistent there is a model based on that
frame.

Definition 14 Let © be a set of RCC-8-constraints and n = |Reg(O)| be the
number of regions in ©. An RCC-8-frame F;, = (W,{Rp, R1}) of level | has
the following properties (see Figure 10):

(i) W contains only worlds up to level I, i.e., W = U\_, W;
(#) For every world u € W; there are exactly 2n worlds v € Wy with uRyv.

(#ii) For every world v € Wy, there is exactly one world v € W; with uRyv for
every level 0 < i < k (ifi =k then u=v).

(iv) For all worlds u,v,w € W: wRnv, wRyw, and wRyv, vRyu implies wRyu.

An RCC-8-model of level | is based on an RCC-8-frame of level I. In a poly-
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level O

Fig. 10. A world w of level 0 together with its 2n Rj-successors of an RCC-8-frame
of level 1. Worlds are drawn as circles, the arrows indicate the accessibility of worlds
with the relation Ry

nomial RCC-8-frame/-model of level | the number of worlds is polynomially
bounded by n.

Note that item (iv) guarantees that every RCC-8-frame of level [ is an S4-
frame. In [38] we used RCC-8-frames of level 2. It turns out, however, that
RCC-8-frames of level 1 are sufficient for our purposes.

Lemma 15 If m(©) is satisfiable, there is a polynomial RCC-8-model M of
level 1 with M, w |- m(©).

Proof. The abbreviated form of every relation contains at most 6 different
negated abbreviations.!! Since they correspond to entailment constraints,
each of these abbreviations introduces a new world of level 0. As there are
n regions and therefore n? relations, there are at most 6n? worlds of level 0.
For each world w and each atom X there might be a sub-formula of m(©) that
forces the existence of an Rj-successor of w that forces X or that forces —X.
Thus, since there are n different atoms X, a maximal number of 2n different
Ry-successors is sufficient for each world. Therefore, if m(0) is satisfiable, it
can be modelled by an RCC-8-model of some level .

Suppose that M’ = (W' {R}, R;}, V') is such an RCC-8-model that models
m(©) and suppose there is no polynomial RCC-8-model of level 1 that models
m(©). We will prove by contradiction that a polynomial RCC-8-model of level
1 exists if m(©) is satisfiable. For this we will construct a polynomial RCC-8-
model M = (W, R,v) of level 1 using M'. Let W = WJU W], Rt = {(u,v) €
Ri|u,v € W}, Ro = W x W, and v(w,a) = V'(w,a) for all w € W and all
propositional atoms a. We now have to find out which of the formulas (10)
to (24) hold for M’ but not for M. Trivially, if the formulas (16) to (22),
corresponding to the entailment constraints, hold for M’ they also hold for
M. The same for the formulas (10) to (12). As the only Rp-successor of a
world of level 1 is the world itself, formulas (14), (15) and formulas (23) and

1 This number results from a straightforwardly computed abbreviated form of every
relation. It might be decreased by optimizing the abbreviated form with respect to
the number of negated abbreviations.
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(24) also hold for M if they hold for M'. So only formula (13) remains to be
checked.

Suppose that formula (13) holds for two atoms X and Y and suppose there is a
world v € W{ with v/(v, X) = true and v'(v,Y) = true and an Ry-successor of
v for which either X or Y is false. Then (13) is satisfied in M’ but not in M.
In this case M is not a model for m(©), but it would be a model if the truth
value of either v(v, X) or v(v,Y) can be set to false without contradicting
any other formula. Therefore it is necessary to find out how an atom can be
forced to be true in a world of level 1. Formulas (11) and (12) force it only
when another atom is already forced to be true in the same world. If the atom
is forced by one of the formulas (14), (20), (24), or axiom schemata (6) to be
true in a world then it is also forced to be true in all Ri-successors of this
world.

So, if both X and Y are forced to be true in v, they must both be true in
any Ry-successor of v and M’ cannot be a model for m(©), so one of them,
say X, is not forced and v(v, X) can be set to false. We have constructed a
polynomial RCC-8-model of level 1 which contradicts our initial assumption
that there is no such model. O

In the following we will use the term RCC-8-frame/-model to refer to an RCC-8-
frame/-model of level 1. A spatial interpretation of the RCC-8-models can be
found in [37]. In this interpretation, worlds are interpreted as points of the
topological space, and the accessibility relation Ry specifies neighborhoods of
points.

5.3  Transformation to a classical propositional formula

We proved that whenever m(©) is satisfiable, a model for m(©) can be based
on a polynomial RCC-8-frame that contains as many worlds of level 0 as entail-
ment constraints are contained in m(©). We will now transform the explicit
form of m(©) to a classical propositional formula p(m(©)) in CNF such that
p(m(©)) is satisfiable if and only if m(©) is satisfiable in a polynomial RCC-8-
frame F = (W, {Rqg, R1}). For this we will introduce a propositional atom
for every world w € W and every region X € Reg(©) such that the atom is
true if and only if v(w, X) = true. In order to preserve the structure of the
RCC-8-frame in propositional logic, two functions have to be defined:

Definition 16 Let F = (W,{Rg, R1}) be an RCC-8-frame.

- f: W — Wy determines the introductory world of every world,
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—g: W = 0U{1...2n} provides all worlds of the same introductory world
with a specific order, i.e., if the worlds u and v are distinct, have the same
level and f(u) = f(v), then g(u) # g(v). g(u) =0, if and only if u has level
0.

For every world w € W and every region X € Reg(©) we introduce the propo-

sitional atom X ?(151)- Before transforming m(©) to a classical propositional
formula p(m(©)) in CNF, we will first transform m(©) in a straightforward
manner to a classical propositional formula ¢(m(©)).

Definition 17 The ezplicit form of m(©) is transformed to a classical propo-
sitional formula g(m(©)) as follows:

- M,w |- X 1s transformed to X“J’r((:‘;))

- M,w |/ X is transformed to ﬂX‘;’c((ﬁ)).
— The meta operators A\ and \V (see Footnote 9) are transformed to the propo-

sittonal operators A and V, respectively.

Since all worlds of the RCC-8-frame F are known, quantifiers can be trans-
formed to propositional operators:

— A universal quantification of particular worlds results in a conjunction over
these worlds.

— An exzistential quantification of a world of level 0 results in a disjunction
over all worlds of level 0.

— An existential quantification of an Ri—successor of world w results in a
disjunction over the 2n Ry—successor of w.

With the specified transformation d, =0 and RP, for example, are transformed
to the following formulas:

q0)= N\ Xy, VYA A ;T\l(ﬁXﬁuvﬁYﬁu)

weEWy wEWp i=1
g(—6)= "\ (XuAYy),
weWy
2n )
a®)= A V(X,VXL).
weWy i=1

Lemma 18 ¢(m(0)) is satisfiable if and only if m(©) is satisfiable.

Proof. It follows from Theorem 15 that if m(©) is satisfiable, there is an
RCC-8-model M based on a particular RCC-8-frame F. Since the RCC-8-frame
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F is known, M is determined by its valuation v which only depends on the
model and entailment constraints and on the regularity constraints contained
in m(©). The explicit form of m(©) contains all conditions of the valuation
v of M explicitly, i.e., only conditions of the form M, w|FX or M,w |/ X
are contained, which correspond to v(X,w) = true or v(X,w) = false, re-
spectively. As there is a one-to-one correpondence between v(X,w) and the
propositional atom X ‘;i((z)) of g(m(©)) for every world w and every region X, it
follows immediately from the transformation specified in Proposition 17 that
q(m(©)) is satisfiable if and only if m(©) is satisfiable, where X “;’c((i‘;)) = true if
and only if v(X,w) = true. O

It is obvious that because of the transformation of existential quantifiers to
disjunctions, ¢(m(©)) is not in CNF. Simply transforming ¢(m(©)) to CNF is,
however, not favorable for the further reduction to HORNSAT which is done in
the next section. Transforming, for example, g(—J) to CNF results in non-Horn
formulas. Also ¢(RP) is not a Horn formula because of the disjunction obtained
from transforming the existential quantifier. Therefore we have to treat the
existential quantifiers differently in order to obtain p(m(©)) in CNF.

As stated before, the entailment constraints, i.e., the negated abbreviations,
introduce fresh worlds of level 0, so instead of a disjunction over all worlds of
level 0, a fresh world of W of level 0 together with it’s 2n Rj-successors will
be explicitly considered in p(m(©)). Then -4, for example, is transformed to
the Horn formula p(=d) = X, AY,, (for a fresh world w of level 0).

Handling existential quantifiers of worlds of level 1 is more difficult. We exploit
the fact that for any statement of the form Ju.wRu : M, u |F X or Ju.wRyu :
M, ult/ X, for all n different spatial variables X € Reg(©), at most 2n Rp-
successors are necessary to assure that there exists a world that makes this
statement true. Since in the RCC-8-model every world of level 1 has 2n R;-
successors, we will reserve one of these 2n Rrp-successors for every statement

of this kind. Therefore we need a function h : Reg(©) U Reg(©) — {1...2n}
that associates every region and the complement of every region with one of
the 2n Ry-successors. Using this function, the following properties must hold
for all Ry-successor:

— If there exists an Rj-successor u of w with M, u |- X, then X g(") = true.

— If there exists an Ry-successor u of w with M, u |/ X, then X Z,(“”) = false.

— If the h(X)-successor of a world w holds =X then every Rp-successor of w
holds = X.

— If the h(—=X)-successor of w holds X then every Rj-successor of w holds X.

To ensure these properties, additional formulas have to be added to p(m(©))
for every region X:
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A Ay -xL) 25)

weEWy i=1

A AXECD v ) (26)

weWyp 1=1

Formula (25) ensures the first and third property, formula (26) the second and
forth property. With these modifications to ¢(m(©)) we obtain a propositional
formula p(m(©)) in conjunctive normal form. The transformation is given in
the following proposition.

Proposition 19 m(0) can be transformed to a propositional formula p(m(©))
by transforming all model and entailment constraints and the regularity con-
straints contained in m(©) in the following way:

p(6) = NXwV Yy) AN /\ (~XLV YY)

weWy weEWp i=1

p(—0) =Xy AYy (for a fresh world w of level 0)

2n
p(m)= A\ (XuVYu)A N ACX,VY,)
weEWp weEWp i=1

p(—m) =Xy A Yy, (for a fresh world w of level 0)

p()= N\ XoV-Yu)A A /\X’ VoY)

weW)p weEWyp 1=1

p(—y) =Xy ANYy (for a fresh world w of level 0)

= A AGXL VY

weEWy i=1
2n

p(=61) = N\ (X%, AYL) (for a fresh world w of level 0)

= /\ /\l(_‘XwVqu)

weWp =1

p(—7i) = Xy A YY) (for a fresh world w of level 0)
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poi)= A ALV Y,)

weEWy i=1

p(—yi) = —|XZ)(”) ANY .y (for a fresh world w of level 0)

p(CP)= A 7\1(Xw vV -X,)

weEWp =1

p(RP)= A (=X, V X))

weWy
p(—m vV —y) =Xy (for a fresh world w of level 0)

Lemma 20 p(m(0©)) is satisfiable if and only if ¢(m(©)) is satisfiable.

Proof. Every entailment constraint introduces a fresh world of level 0 which
explicitely fulfills the requirements of the entailment constraint. Thus, when-
ever one world fulfills the requirements of an entailment constraint it is ful-
filled by the world explicitely introduced by the entailment constraint and wvice
versa. If each of the 2n Rj-successors of a world of level 0 is associated to a
different region or the complement of a region and the formulas (25) and (26)
are added to p(m(©)), then p(—7i), p(—vi), and p(RP) are satisfiable if and
only if g(—mi), g(—vi), and ¢(RP) are satisfiable, respectively. For the model
constraints and for the constraint CP, p is equal to ¢. O

Theorem 21 RSAT(RCC-8) can be polynomially transformed to SAT

Proof. From Lemma 18 and Lemma 20 it follows that m(©) can be trans-
formed to a propositional formula in conjunctive normal form p(m(®)) such
that m(©) is satisfiable if and only if p(m(©)) is satisfiable. Since every world
together with every region corresponds to a literal, which are at most 12n*
many, and the number of clauses of p(m(©)) is polynomial in the number of
worlds of the RCC-8-model of m(©) and the size of m(©), the transformation
is polynomial. O

As SAT is an NP-complete problem, it follows that RSAT is in NP. Together
with Corollary 4 this results in the following theorem.

Theorem 22 RSAT(RCC-8) is NP-complete.
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6 Tractable Subsets of RCC-8

In this section we analyze which relations are transformed to propositional
Horn formulas using the transformation of RSAT to SAT as specified in the
previous section. Since the propositional satisfiability problem for Horn for-
mulas (HORNSAT) is tractable [15], the set of these relations forms a tractable
subset of RCC-8. We will then prove that the set of relations identified in this
way is maximal with respect to tractability, i.e., no other relation can be added
to the set without losing tractability.

6.1 Identifying a large tractable subset of RCC-8

In order to identify the relations transformable to Horn formulas, we study the
abbreviated form of every relation which consists of a conjunction of disjunc-
tions of abbreviations, i.e., the abbreviated form of relations can be regarded
as a “propositional formula” in CNF where the abbreviations are the “propo-
sitional atoms”. We have to find the relations whose abbreviated form consists
only of “clauses” which are transformable to Horn formulas.

Proposition 23 Applying the transformation p to the model and entailment
constraints and to the reqularity constraints as specified in Proposition 19 leads
to Horn formulas. Formulas (25) and (26) are also Horn formulas.

With these formulas further Horn formulas can be specified.

Lemma 24 The following disjunctions of abbreviations are transformed to
propositional Horn formulas:

SV C with C € {m,—m,~, -y, 01, i, wi, -ri, yi, —yi},
v C with C € {=6,m,—~m,~y,y,ni, ~wi, yi, 7yi}.

Proof. The propositional formulas resulting from the model constraints § and
0i are indefinite Horn formulas, i.e., clauses that do not contain any positive lit-
erals. Because the propositional formulas resulting from the other constraints
are Horn formulas, and the disjunction of an indefinite Horn formula with
another Horn formula is again a Horn formula, the lemma holds. O

In our framework some disjunctions of model and entailment constraints are
tautologies. These disjunctions of abbreviations can be eliminated from the
abbreviated form.
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Lemma 25 The following modal formulas written in abbreviated form are
tautologies in S4 in the presence of the mon-emptiness constraints and the
constraints for reqular closed regions:

=6V =, 20V =y, =0 Vi, mV i, vV i,
-V —di, 7y Vi, oy Vo omi Vol o Vo V.

Proof. We prove that the above given modal formulas are tautologies by
showing that the negation of each of these formulas results in a contradiction.
This can be done by using e.g. tableau based proof procedures for modal logic
[13].

IANT=0(XAY)AOX = Y):
contradicts the non-emptiness constraint -0O—.X.

SANy=0O(XAY))AD(Y — X): analogous.

IN=6i=0(-(XAY))A-O(-(IX ATY)):
results in a contradiction when combined with the S4 axiom schemata IX —
X.

A= -0X - Y)ADOX - IY):
results in a contradiction when combined with the closedness constraint
D(—|X — —|IX).

-yAyi=-0Y — X)AO(Y - IX): analogous.

TAM=0X —>Y)AO-(IX ALY)):
the regularity constraint O(X — —I-I1X) and the non-emptyness constraint
—0-X enforce that there is a world v with M, u |-IX. Because of the S4
axiom schemata IX — X, M,u|F X also holds. 7 entails M, u|-Y and
di entails M, u |/ IY. So there is an Ry-successor v of u with M,v |/ Y.
Because M, u |FIX holds, M, v |- X also holds. 7 entails M, v |F Y, which
results in a contradiction.

YA N =0 — X)ADO(-(IX ATY)): analogous.

YATIAi=0Y - X)AOX - IY) A -OY — IX):
because of —vi there is a world v with M,u |/ IX and M,u|-Y. Be-
cause of v, M,u |- X holds and because of 7i, M,u |FIY holds. Since
M, u i/ IX holds, there is an Rp-successor v of u with M,v |/ X. So ~
results in M, v |/ Y and M, u |FIY results in M, v |- Y, which is a contra-
diction.

TAYMA-TM=0X ->Y)AOY — IX)A-O(X — IY): analogous. O

All relations with an abbreviated form using only abbreviations or disjunctions
of abbreviations transformable to Horn formulas can be transformed to Horn
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formulas. In this way 64 relations can be transformed to Horn formulas. They
are listed in Appendix B.1 together with their abbreviated form. We call the
subset of RCC-8 containing these relations Hsg.

Theorem 26 RSAT(#Hg) can be polynomially reduced to HORNSAT

Proof. Every constraint using a relation of Hg is transformable to a Horn
formula. So every set © of Hg-constraints can be written as a conjunction of
the Horn formulas of their elements, which is also a Horn formula. O

Thus, RSAT(Hs) € P and because of Corollary 6 the closure of Hg is also in
P.

Corollary 27 RSAT(Hg) € P

Apart from the relations of N; and N, which cannot be included in any
tractable subset of RCC-8 that contains all base relations (see Lemma 11), the
only relations not contained in Hg are those that contain EQ and NTPP but
not TPP, and the same for the converse relations.

Theorem 28 Hg contains the following 148 RCC-8 relations:
Hg = RCC-8\ (N, UN3 UNG)
where

Ns={R|{EQ} C R and (({NTPP} C R,{TPP} Z R)
or {NTPP '} C R, {TPP '} Z R))}

and N1 and Ny were defined in Lemma 11.

6.2 Mazximality of Hs with respect to tractability

Our goal is to find maximal tractable subsets of RCC-8 since these subsets
mark the boundary between tractability and NP-hardness, i.e., any subset of
one of these sets is tractable, any superset is NP-hard. For proving that Hg
is a maximal tractable subset of RCC-8 we have to show that no relation of
N3 can be added to ﬁg without making RSAT intractable. By computing the
closure of Hg with each relation of A we get the following lemma.

Lemma 29 The closure of every subset of RCC-8 containing Hgs and one re-
lation of N3 contains the relation {EQ,NTPP}.
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Therefore it is sufficient to prove NP-hardness of RSAT(#Hs U {EQ, NTPP}) for
showing that Hg is a maximal tractable subset of RCC-8.

Theorem 30 RSAT(7/-Z8 U{EQ,NTPP}) is NP-complete.

Proof. Transformation of 3SAT to RSAT(Hs U {EQ,NTPP}).12 Let V =
{v1,v9, ...,v,} be a set of variables and C = {ci,co,...,cm} be a set of
clauses of an arbitrary instance of 3SAT with ¢; = {l;1,li2,li 3}, where [; ; are
literals over variables of V. We will construct a set of spatial constraints ©
using only relations of 7/-[\8 U{EQ,NTPP}, such that © is satisfiable if and only
if C is a positive instance of 3SAT, using the following three transformation
steps:

(1) For each variable v;, € V the spatial variables X, Y, X1, and Y_
are introduced by adding the spatial constraints X ,{EQ,NTPP}Y;, and
X_{EQ,NTPP}Y_, to ©. Additionally, the following polarity constraints
are added to © (see Figure 11):

X {EC,NTPP}X_,, Y, {TPP}Y_,,
X, {TPP,NTPP}Y ., Y {EC, TPP} X ..

(2) For each literal occurrence [; ; the spatial variables X; ; and Y’ ; are in-
troduced by adding the spatial constraint X; ;{EQ,NTPP}Y’; ; to ©. De-
pending on whether the literal occurrence is positive or negative different
polarity constraints have to be added to ©.

(a) lz’,j = V-
X;;{EC,NTPP}X ,Y, ,{TPP}Y p,
X;;{TPP,NTPP}Y Y, ,{EC, TPP}X .

(b) li,j = g,

X ;{EC,NTPP} XY, ;{TPP}Y,
X;;{TPP,NTPP}Y ., Y, {EC, TPP}X .

(3) For each clause ¢; = {li1,li2,l;3} the following clause constraints are
added to ©:

Yii{NTPP ™'} X0, Y o{NTPP '} X, 5, V,3{NTPP '} X, ;.

12 The structure of this proof parallels the proof of Theorem 3 in Section 4. Here,
however, Ry = NTPP and Ry = EQ. The comments on “polarity constraints” and
“clause constraints” given in Section 4 hold accordingly.
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(a)

Fig. 11. The polarity constraints (a) for the transformation of 3SAT assure that
positive and negative literals of the same variable have opposite assignments: (b)
and (c) are the only possible refinements of the relations to base relations.

With this transformation for every variable as well as for every literal oc-
currence two spatial variables X and Y (with the appropriate indices) are
introduced. When a literal occurrence or a variable is assigned true, the cor-
responding spatial variables hold the relation X{NTPP}Y. When a literal
occurrence or a variable is assigned false, the corresponding spatial variables
hold the relation X{EQ}Y.

Transformation step (1) introduces the spatial variables corresponding to the
positive and the negative literal of each variable. The polarity constraints
assure that both literals have complementary assignments (see Figure 11).
Transformation step (2) introduces spatial variables for every literal occur-
rence. Again, the polarity constraints assure correct assignments. Finally,
transformation step (3) makes sure that at least one literal occurrence of every
clause is true. If all literal occurrences of a clause are false, the corresponding
spatial variables hold the relation {EQ}. Then there is a path starting at X ,,
passing X;» and X3, and ending at X;; where {NTPP™'} and {EQ} are
the only occurring relations, which is inconsistent. All other combinations are
possible. We now have to show that an instance of 3SAT has a solution if and
only if the set of spatial constraints © obtained by the given transformation
is consistent.

RSAT = 3SAT: Suppose that the set of spatial constraints © obtained by
transformation from a given instance X of 3SAT is consistent, and suppose
that 6 is a consistent instantiation of ©. Then an assignment ¢ that satis-

fies ¥ can be obtained in the following way: For every variable vy, € V), if
O(X){NTPP}#(Y ) holds, then o(vy) is true, otherwise o(vy) is false.

3SAT = RSAT: Suppose that ¥ is a positive instance of 3SAT and suppose
that o is an assignment that satisfies 3. Then the set of spatial constraints
© obtained by transformation from ¥ with respect to ¢ is consistent. We will
show this by constructing a spatial configuration that holds all relations of ©.
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(a) (b)

Fig. 12. Spatial variables corresponding to the variables P and ) and to their literal
occurrences.

First we will point out some properties of ©. For every literal and every lit-
eral occurrence that is assigned false, the corresponding spatial variables
hold the relation EQ and can therefore be treated as a single spatial variable.
Figure 12(a) shows the three spatial variables corresponding to a variable P
with o(P) = true (placed inside the dashed box) and spatial variables cor-
responding to a positive and a negative literal occurrence of P. Figure 12(b)
shows the same for a variable ) where o(Q) = false. For each variable there
might be different corresponding literal occurrences, but all hold the same
constraints. The NTPP relations in Figure 12 pointing to or from nowhere
indicate the clause constraints required by transformation step (3). Note that
for each variable V € V the spatial variable Y_; contains all other spatial
variables corresponding to V' and all spatial variables corresponding to the
literal occurrences of V.

For constructing a spatial configuration that holds all constraints of © we start
with m different regions Cj, one for each clause ¢; € C, such that C;{DC}C;
holds for every ¢ # j. All regions corresponding to the literal occurrences of a
clause ¢; are placed within the region C;. The three regions corresponding to
each variable consist of different pieces where a piece is contained in C; if a
literal occurrence of the variable is contained in ¢;. All regions within region C;
can be arranged consistently in a way that all required relations hold. Since
the regions corresponding to the literal occurrences hold only the relations
{TPP},{NTPP} or {EC} with the pieces of the regions corresponding to the
variables, they hold the same relations with the compund regions. All required
relations hold for these regions, so we have a consistent model for ©.
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The specified transformation takes linear time in the number of clauses, so it
has been proven that RSAT(#Hs U {EQ, NTPP}) is NP-hard. Because of Corol-
lary 22 it is also NP-complete. O

Lemma 29 together with Theorem 30 results in the following theorem.
Theorem 31 7/-[\8 is @ maximal tractable subset of RCC-8.

As it has not been proven that adding relations of A3 to the base relations re-
sults in intractability of RSAT, there might be other maximal tractable subsets
of RCC-8 containing all base relations.

As Hjg is a tractable subset of RCC-8, the intersection of RCC-5 and Hs is also
tractable. We will call this subset #s.

Proposition 32 Hs contains all relations of RCC-5 except for the relations
{PP,PP~'}, {DR,PP,PP~'}, {PP,PP~' EQ} and {DR,PP,PP~' EQ}.

The following lemma can easily be obtained by computing the closure of the
employed sets.

Lemma 33 The closure of the set of all RCC-5 base relations together with
one of the relations {DR,PP,PP~'}, {PP,PP~' EQ} or {DR,PP,PP~' EQ}
contains {PP,PP '}

Theorem 34 7/{\5 1s the only mazimal tractable subset of RCC-5 containing
all base relations.

Proof. 7/{\5 is by definition a tractable subset of RCC-5. To prove NP-hardness
of RCC-5 the relations {PO}, {PP, PP '} and {} were used in Lemma 3. With
Lemma 33 it follows that Hs contains all relations except for those making a
set containing all base relations NP-complete. O

7 Applicability of Path-Consistency

In the previous section we proved that 7/{\8 is a tractable subset of RCC-8. Thus,
RSAT(7/-L\8) can be decided in polynomial time. So far this can be done by first
transforming a set of Hg-constraints to a propositional Horn formula and then
solving the resulting Horn formula in time linear in the number of literals [11].
Because the number of literals is of the order n?*, this way of solving RSAT
does not appear to be very efficient.
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The previously mentioned path-consistency method with a running time of
O(n®) is much easier to apply than the above described method, but it is not
complete in general. In order to apply this simple and popular method also
for deciding consistency of RSAT(’)T-[\g), we have to prove completeness of the
path-consistency method for this task.

In this section we first prove that the path-consistency method is sufficient for
deciding consistency of RSAT(#s) and based on this that it is also sufficient
for deciding consistency of RSAT(#Hsg). This is done by showing that the path-
consistency method finds an inconsistency whenever positive unit resolution
resolves the empty clause from the corresponding propositional formula. Posi-
tive unit resolution (PUR) is a resolution strategy in which in every resolution
step at least one of the two resolved clauses is a positive unit clause, i.e., a
clause containing a single positive literal. As PUR is refutation-complete for
Horn formulas [21], it follows that the path-consistency method decides con-
sistency of RSAT (Hs).

7.1 Applying positive unit resolution to the Horn clauses of RCC-8

The only way to derive the empty clause using PUR is resolving a positive
and a negative unit clause of the same variable. Since the Horn formulas that
are used contain only a few different types of clauses, there are only a few
ways of deriving unit clauses using PUR. In this subsection we will show how
unit clauses can be derived, and how this relates to the structure of the initial
set, of constraints. In the following we will first point out some important
observations made from the transformation of a set of RCC-8 constraints to
propositional logic as specified in Proposition 19 in Section 5. For this we need
some definitions.

Definition 35

— Ry denotes the set of all relations of Hg whose abbreviated form contains the
conjunct K (see Appendiz B.1). Rx(X,Y) means that the relation between
X and Y 1is one of Ri.

- Rk, ...k, denotes Rg, U Rk, U---U Rk,
— R, is written instead of Ry svesive for any abbreviation o.
— The clause {X%} denotes either one of the clauses {X,} or {X"}.

Proposition 36 Let © be a set of Hg-constraints and c(©) be the correspond-
ing set of Horn clauses obtained by the transformation specified in Propo-

sititon 19. The following observations result from the transformation of the
abbreviated form of © to ¢(0):
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(i) For every world w either one or two unit input clauses are contained in
¢(©) and at least one of these is positive.

(i) If the unit clauses { X} and {Y,} or {X"} and {Y'} are input clauses
of ¢(0©), then R5(X,Y) € © or R.5(X,Y) € ©, respectively.

(i4i) If the unit clause {—X,} or {~X"} is an input clause of c(©), there must
be a spatial variableY € Reg(0©) with R-,(X,Y) € © or R_;(X,Y) € O,
respectively. In this case {Y ,} is also an input clause of ¢(©).

(iv) If none of the unit clauses { X} is input clause of c(©) and if one of them
is derivable from ¢(©), then there must be a spatial variable Y € Reg(©)
such that Ry i»(X,Y) holds and the corresponding unit clause {Y7,} is
present. The clauses corresponding to R~ can only be used to derive the
unit clause { X"} but not the unit clause {X,}.

(v) If one of the unit clauses {—X,} is derivable from c¢(©), then there is a
spatial variable Y € Reg(©) such that Rs5(X,Y) holds and the corre-
sponding unit clause {Y7 } is present. The clauses corresponding to R
can only be used to derive the unit clause {~X"} but not the unit clause

{Xw}.
(vi) If {X"} is present, then {X,} can be derived from c(CP).

(vii) If no positive unit clause {X} is present for a world w, it can only be
derived using a clause introduced by R;(X,Y) for some spatial variable
Y or using ¢(RP). In the latter case only the clause {X" @} can be derived.

The sets of relations used in Proposition 36 contain the following relations
(see Appendix B.1):

R, ={{TPP '}, {NTPP '}, {EQ}, {TPP ',NTPP '},
{TPP™',NTPP~' EQ}},

Rsvy={RU{DC}R € R,},

Réi\/v = {R U {EC}‘R € (R7 U R5V7)}7
Ryi={{NTPP™'}},

Rsyi={{DC,NTPP '}},

Rsivyi={{EC,NTPP~'},{DC,EC,NTPP'}},
R;={{DC}},
Rs = {{DC}, {EC}, {DC,EC}}.

It can be seen, that R, C R,, Rsvyi C Rsyy and Rsvyi C Rsivy, S0, for
example, I, can be written instead of R« .

With PUR, positive unit clauses can only be derived in a very specific way
which is based on the above observations. For this and for the rest of this
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section, the notion of “chains” will be central:

Definition 37 An Rg-chain from X to Y, written as R3(X,Y), is a sequence
of constraints Rx(X,Z), Rx(Z,7'),... Rg(Z",Y).

Lemma 38 Let the clauses {Y,} and {Z} } be input clauses of c(©) (if there
is only one positive input clause for w then Y = Z). A new positive unit clause
{X,} can be derived from c(©) only if © contains an R+-chain from X toY
or an R.-chain from X to Z.

Proof. According to Proposition 36, item (iv), a positive unit clause can only
be resolved if there is a spatial variable Z' € Reg(©) such that R-(X,Z")
holds and the corresponding unit clause {Z. } is present. If Z' £ Y or Z' # Z
this clause cannot be an input clause so there must be another spatial variable
7Z? € Reg(©) such that R,-(Z", Z?) holds and the corresponding unit clause
{Z?%} is present. This goes on until there is a spatial variable Z" with Z" =Y
or Z" = Z, i.e., there is an R,«-chain from X to Y or an R,+-chain from X
to Z. O

Applying PUR has some side-effects on the possible relations of ©. In order
to demonstrate this side-effect, consider the constraint X {DC, TPP~'1Y. The
abbreviated form of the relation R = {DC, TPP~'} contains the conjunct 6V y
(see Appendix B.1), i.e., R € Rsyy C R,-. The clauses corresponding to this
conjunct are {-X;, Y X» =Y’} for all u,v € W, and are compounded of
the clauses corresponding to the abbreviations ¢ and vy (see Proposition 19).
These clauses can be used to derive the positive unit clause {X,,} for some w
only if the positive unit clauses {Y,,}, {X .}, and {Y,} are present for some w.
In this case, i.e., if it is possible to derive { X, } as described above, the clause
{=X4, Y.} which corresponds to the abbreviation § produces the empty
clause. Thus, from the initial two possibilities d or « the first one becomes
inconsistent and, since the relation {DC} € R;, the constraint X {TPP™'}Y
must hold. We describe this side-effect by the notion of “refinement by PUR”:

Definition 39 A constraint XRY € © s refined by PUR to a constraint
XR'Y, such that R' C R, if a clause corresponding to the constraint X R"Y,
such that R" = R\ R', can be used to produce the empty clause.

In the above example, X{DC, TPP™'}Y is refined by PUR to X{TPP~'}Y.

Lemma 40 If the positive unit clause { X } is derived using PUR, then every
constraint of the required R.-—chain will be refined by PUR to a constraint in

R,.
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Proof. Let Y and Z be two successive regions of the ,-—chain, holding either
Rsyy (Y, Z) or Rsivy(Y, Z). Then the required unit clause {Y, } is derived from
a clause of the type {Y , =7 =Y. =77}, which consists of two disjunctively
connected parts, the ¢ or 6i part {=Y),—~Z;} and the v part {Y —Z }.
For this resolution the unit clauses {Y} and {Z;} are necessary which are
inconsistent with the clauses corresponding to Rs(Y, Z) and Rg(Y,Z). O

In order to derive a positive unit clause from a particular R,--chain, other pos-
itive unit clauses are necessary for which other R,--chains might be required.
In order to refer to all R,«-chains that are used to derive a particular positive
unit clause we introduce the notion of chain structure.

Definition 41 Let XRY with R € Rsy, sivy be a constraint of an R.«-chain.
The chain structure of XRY contains all R,--chains used to refine XRY by
PUR to a constraint in R.,.

7.2 Relating positive unit resolution to path-consistency

In this subsection we prove that the path-consistency method is suffcient
for deciding consistency of RSAT(Hsg), by showing that for every set © of
constraints over Hg whenever PUR produces the empty clause, the path-
consistency method finds an inconsistency in ©. In order to relate PUR with
the path-consistency method, we first show that if a constraint X RY € © with
R € R, is refined by PUR to a constraint in R,, then the path-consistency
method applied to © also refines the constraint to a constraint in R,. This
is proven by Noetherian induction on chain structures, which is defined on
well-founded relations (see e.g. [43]).

Definition 42 A relation < on a set M is well-founded, if and only if every
non empty subset of M has a minimal element, i.e. VS C M.(S # 0 — 3z €
S.(—3Jy € S,y < x)).

Theorem 43 (Noetherian Induction) Let < be a well-founded relation on
a set M. To prove a property P for all x € M, it suffices to prove:

Vee M.(Vy e M.(y < z) = P(y)) = P(x)

Proof. Suppose that the set A C M of elements not satisfying P is not empty.
Then A has a minimal element m, i.e. P(y) holds for all y < m. Then P(m)
also holds, which contradicts the assumption. So A must be empty, i.e. P holds
forallz € M. O
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Before applying Noetherian induction to chain structures, we have to define a
relation on chain structures and show that this relation is well-founded.

Definition 44 Let < be a relation on chain structures, let S1 be the chain
structure of the constraint X LRYY and let Sy be the chain structure of the
constraint X2R,Y?. S; < Sy holds if and only if the constraint X'R, Y occurs
m SQ.

Lemma 45 < is a well-founded relation.

Proof. By definition, if S is a chain structure where only constraints in R,
occur, then there is no chain structure S’ with S’ < S.

Suppose that S is the chain structure of a constraint X RY and the same
constraint is contained in S. If the occurrence of X RY is recursive in S, then
S cannot be used to refine XRY to a constraint in R,, so S is no chain
structure in our sense. If the occurrence of X RY is not recursive in S, then S
can be replaced by S’, the chain structure belonging to the last occurrence of
XRY in S.

There is only a finite number of regions, so every non empty set of chain
structures has at least one minimal element. O

We have to prove that whenever a constraint X RY of an R,--chain is refined
by PUR to a constraint in R, in the sense of Lemma 40, then the path consis-
tency method also results in R,, i.e., the base relations {DC} and {EC} will
be excluded from R. For this proof we need the following operations which
can be verified using Table 2.

Proposition 46 Let R be a relation of RCC-8.

(i) R, is closed under composition.
(i) Ryio Ry =R, and R,o R,; = Ry
(1) If {DC,OI)EC} NR =0, then {DC,EC} N (R,oR) =0 and {DC,EC} N (Ro
RY)=10.
(iv) {DC,EC} N (R, o Ry) = 0.
(v) {DC} N (R, o {EC} o RY) = 0.
(vi) {DC,EC} N (R, 0 {EC} o R;) = {DC,EC} N (R, 0o {EC} o Ry) =0

Lemma 47 If every constraint of an R,--chain K from X' to Y in © is
refined by PUR to a constraint in R, the path-consistency method applied to
O results in R,(X',Y").
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Fig. 13. The six possible cases of the proof to Lemma 47. In the lower row X is
equal to Y.

Proof. Let P(S) = “If a constraint X RY € ©, such that R € R, is refined
by PUR to a constraint in R, using the chain structure S, then the path-
consistency method applied to © also refines X RY” to a constraint in R,”. We
will prove P(S) with Noetherian induction.

Induction hypothesis: VS’ < 8. P(Y).

Suppose that the constraint X RY is refined by PUR to one of R, in order
to obtain the clause {X} }. If R is already in R, nothing has to be proven.
If R is one of Ryyysivy, the clause {X,, Y, ,—X,, ~Y,} is input clause of
c(©). Since R;5(X,Y) can be excluded with PUR, the unit clauses {X},} and
{Y:} for some u must be present. Let the clauses {XZ} and {}N/Z}A’pe the only
unit input clauses of u, which can only be introduced by R-_;(X ,}N/) or by
R_s(X, }N’) (If X = Y then the unit clause can be introduced by some other
constraint which is not inportant in this analysis.) Then there are R,--chains
from X to X and from Y to Y that are part of S. Six different cases, shown
in Figure 13, must be distinguished:

Case 1: A chain structure S’ < S belongs to every constraint in Ry sivy
of the R,--chains from X to X and from Y to Y. Since P(S’) holds by
induction hypothesis, and R, is closed under composition, R, (X, X) and
R,(Y, Y) are obtained by the path-consistency method.
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a. If R € Rsy,, then R is refined to one of R, by the path-consistency
method because of items (iii) and (v) of Proposition 46.

b. If R € Rsy., then {X%} and {Y" } must be obtained, so the R,--chains
from X to X and from Y to Y must each contain at least one relation
of R, (see Proposition 36 item (vii)). The two clauses cannot be ob-
tained by ¢(CP) because in this case they cannot have the same index
i. Because of item (ii) of Proposition 46 the path-consistency method
results in R.;(X,X) and R,(Y,Y). Because of items (iii) and (vi) of
Proposition 46 it results in R,(X,Y).

The remaining five cases can be handled in the same way as case 1. All the
R,--chains can be reduced to R, by applying the induction hypothesis. With
the operations of Proposition 46 the path-consistency method reduces R to

one of R,.

By Noetherian induction we proved that P(S) holds for all chain structures
S. Every relation of the R,--chain K can now be reduced to one of R, with
the path-consistency method. Because R, is closed under composition, the
path-consistency method results in R, (X', Y"). O

Using this lemma, we can now prove that the path-consistency method decides
RSAT(Hg) by showing that whenever the empty clause can be derived, the
path-consistency method results in an inconsistency.

Theorem 48 The path-consistency method decides RSAT (Hs).

Proof. Let © be an inconsistent set of Hg-constraints and ¢(©) the cor-
responding set of Horn clauses obtained by the transformation specified in
Proposition 19. Since © is inconsistent, the empty clause can be derived from
¢(0) using PUR. There are different possibilities of deriving the empty clause.

(i) The empty clause is derived from {X,} and {—X,}.
(a) {=X,} is input clause of ¢(©). Then, with Proposition 36 item (iii),
{Y,} is also an input clause for some spatial variable Y with R, (X,Y").
{X} is derived from ¢(©), so there must be an R,.-chain from X
to Y. Because of Lemma 47, the path-consistency method results in
R,(X,Y), which is a contradiction to R—,(X,Y).

(b) {X} is the only positive input clause of w in ¢(©). Then {-X,,} is
derived from ¢(©). According to Proposition 36 item (v), there must
be a spatial variable Y with Rs4(X,Y) and {Y,} must be present.
{Y,} is derived using an R,--chain from Y to X, which is reduced
to R,(Y, X) by the path-consistency method. This is a contradiction
to RJ,Ji(X, Y)
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(c) {Xw} is an input clause of ¢(©) and {Z,} is also an input clause
for some spatial variable Z. According to Proposition 36 item (ii),
R_s(X, Z) must hold. {—X,} is derived from ¢(©), so there must be
a spatial variable Y with Rj5(X,Y) (see Proposition 36 item (v)) and
{Y,,} must also be derived from ¢(©). So there is either an R,.-chain
from Y to X, which is equal to (b), or an R,--chain from Y to Z which
is refined to R,(Y’, Z) by the path-consistency method. If Rs5(X,Y")
holds, the path-consistency method results in an inconsistency (see
Table 2). If Rs(X,Y’) holds, then one relation of the R,.-chain from
Y to Z must be from R, so the path consistency method results in
R.i(Y, Z), which is also inconsistent (see Table 2).

(d) Neither {X,} nor {—=X,} are input clauses of ¢(©), so both are
derived using PUR. The negative clause can only be derived if there
is a spatial variable Y with R;5(X,Y) (see Proposition 36 item (v))
and {Y,} can also be derived. As it was shown in the six cases of
Lemma 47, {X,} and {Y,} can only be derived from ¢(©) if the
path-consistency method results in an inconsistency with Rj5(X,Y).

(i) The empty clause is derived from {X’} and {-X%}. Only {X’} or

{=X"2)} can be input clauses of ¢(0).

(a) The empty clause is derived from {X"™®1 and the input clause
{=X"=2)}. According to Proposition 36 item (iii) there is a spa-
tial variable Y with R_;(X,Y) and {Y,} is also input clause. The
clause {X"("®1 is derived using an R,--chain from X to Y. Because
of Proposition 36 item (vii), one of the relations of the chain must
be in R.;, so the path consistency method results in R,;(X,Y") which
contradicts R-;(X,Y).

(b) {X©}isinput clause, then there is a spatial variable Y with R_s(X,Y)
(Proposition 36 item (ii)) and {Y" } is also an input clause of ¢(0).
In order to derive {—X" 1}, there must be a spatial variable Z with
Rs5(X,Z) (Proposition 36 item (v)) and {Z%} must be present.
{Z!} can be derived using an R,.-chain from Y to Z. The path-
consistency method results in R,(Y,Z) which is, composed with
R _5(X,Y), inconsistent with R 4(X, Z) (see Table 2).

(c) Neither {X*} nor {-X"} are input clauses and must be derived
from ¢(©). Then there must be a spatial variable Y with Rs45(X,Y)
(Proposition 36 item (ii)) and {Y* } must be present. In order to
obtain {X" } and {Y",} the six cases of Lemma 47 must be considered,
where R;45(X,Y) holds instead of R,«(X,Y). Since R4 could be
excluded in Lemma 47, it can also be excluded now, so the path-
consistency method finds the inconsistency.

Thus, whenever PUR derives the empty clause, an inconsistency is found
by the path-consistency method. Since positive unit resolution is refutation-
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complete for propositional Horn formulas, the path-consistency method is suf-
ficient for deciding consistency of RSAT(Hg). O

7.8  Path-consistency for the full set of tractable relations

The path-consistency method can be used to decide RSAT(?T-[\g) when every
constraint of 7/-[\8 \ Hg is transformed to  constraints in Hg according to The-
orem 5. As this way of deciding RSAT (#3) is pretty awkward, we will prove
that the path-consistency method can decide RSAT (Hsg) directly without any
preprocessing. This will be shown in the same way as it was shown for Hg,
namely, that the path-consistency method finds an inconsistency whenever
PUR derives the empty clause. For this we have to transform constraints in
Hs \ Hsg to propositional Horn formulas.

Proposition 49 Let S be the set of RCC-8 relations transformable to a propo-
sittonal Horn formula. Then every constraint XSY with S € S can be trans-
formed to the propositional Horn formula p'(S(X,Y)). If S € Hsg, then
P(S(X,Y)) = p(m(S(X,Y))). Since any relation of Hg \ Hs can be obtained
by composition, converse or intersection of relations of Hg, the propositional
Horn formula of X RY where R € Hs \ Hg can be obtained using the following
construction inductively:

(i) If R = SoT, where S,T € S and R ¢ S, then introduce a pseudo variable
Z that is only related with the spatial variables X and Y, holding XSZ
and ZTY . Therefore p'(XRY) = p'(XSZ) Ap'(ZTY). Add R to S.

(i) If R=SNT, where S,T € S and R ¢ S, then p'(XRY) = p'(XSY) A
P(XTY). Add R 1o S.

(i) If R = S, where S € S and R ¢ S, then p'(XRY) =p'(YSX). Add R
to S.

For proving that the path-consistency method decides RSAT(Hg), the R,--
chain was the central part as it is the only way to derive a positive unit
clause. Some relations of ”;T-Zg \ Hs can be constructed using relations of R,-,
so these relations can also be used to derive positive unit clauses. As all of
these relation must be analyzed separately, we try to keep their number as
small as possible. Therefore, we consider only relations of Hg \ Hg that cannot
be constructed without using relations of R,-. In Appendix B.2 we give a
list of all relations of 7/-28 \ Hs and how they can be functionally constructed
from Hg-relations. We have chosen a construction of all relations such that
the following analysis is as simple as possible. The set of relations that can be
used to derive the empty clause will be denoted by R..

Lemma 50 Additional to R, R, contains the following relations:
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{DC,EC,PO,NTPP, TPP~! NTPP'} ={EC,NTPP} o {DC,EQ},
{DC,EC,PO, TPP,NTPP,NTPP~'} ={DC,EQ} o {EC,NTPP™'},
{EC,PO,EQ, TPP™',NTPP~'} ={EQ, TPP™',NTPP~'} 0 {EC,EQ},
{DC,EC,PO,EQ, TPP~! NTPP'} ={EC,EQ} o {DC,EQ},

as well as the intersection of these relations with other relations of Hs.

Proof. This can be proven by computing the closure of Hs \ R,~ under com-
position and intersection. All relations not contained in this closure can be
constructed by intersection of these relations with either the four specified
relations or the relations of R,-. O

Instead of R,~-chains we now consider R.-chains which contain constraints
over R.. Similar to Definition 41 and Definition 44, we define ezxtended chain
structures on constraints over R, and a well-founded relation on extended
chain structures.

Definition 51

(i) The extended chain structure of X RY with R € R, contains all R.-chains
used to refine R to a relation of R, .

(ii) Let <. be a relation on extended chain structures, let Ty be the ertended
chain structure of the constraint X LR Y and Ty, be the extended chain
structure of the constraint X?R,Y?, where Ri,Ry € R.. T\ <. Ty holds
if and only if X' RiY"' occurs in Ty.

Analogous to Lemma 45 it can be proven that <. is well-founded. Similar to
Lemma 47 we can relate positive unit resolution and path-consistency also for
relations of R,.

Lemma 52 If every constraint of an R.-chain K from X' to Y' in © is

refined by PUR to a constraint in R, the path-consistency method applied to
O results in R,(X',Y").

Proof. P(T) = “If a constraint XRY € O, such that R € R,, is refined
by PUR to a constraint in R, using the chain structure 7', then the path-
consistency method applied to © also refines X RY” to a constraint in R,”. We
will prove P(T) by Noetherian induction.

Induction hypothesis: vI' <T. P(T').
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Suppose that the constraint XRY, with R € R,, is refined by PUR to a
constraint in R, in order to obtain the clause {X7 }. We have to distinguish
different cases for R.

(1)

R € R,-: The six different cases of Lemma 47 can also be applied here.
By applying the induction hypothesis, all R.-chains of the extended chain
structure of X RY will be refined to R, with the path-consistency method.
Therefore R will also be refined to R, with the path-consistency method.

R = {DC,EC,PO,NTPP, TPP~! NTPP~'}: Only the second relation of
the construction of R is in R,-, so {X,} cannot be obtained with this
relation.

R = {DC,EC,PO, TPP,NTPP,NTPP~'}: Suppose this relation holds be-
tween the spatial variables X and Y using the pseudo variable Z. Then
clauses of the type {-X}, =27, - X;, Z;}, {-X}, =Z;, X;, =Z;}, and

{—Z;,=Y:, Z;, -Y;} for all a,b € Wy as well as {Z,.}, {Y.}, {Z4} and

{=Y4} for some ¢, d € Wy are input clauses. In order to derive { X7, }, the

unit clauses {7}, {X.}, and {Z]} are necessary for some u. There are

different possibilities of how {Z}} can be derived:

(a) If {Z,} is the only positive input clause of u, then {X,} is derived
using {7} and { X} for some v # u. Then {X } can also be derived
using {Z,} and {X}, which contradicts the assumption that it is
derived using {Z,} and {X,}.

(b) If {Z,} and {Y,} are input clauses, {X,} can either be derived as
described in (a) which results in a contradiction, or there might be
an additional R.-chain from X to Y, not passing Z. By applying the
induction hypothesis, R, (X,Y) is obtained with the path-consistency
method, if it is refined by PUR to the same constraint.

(c) If {Z} is not an input clause, there must be a spatial variable Z,
that introduces u. If the R,-chain from Z to Z, passes X, then the
clauses {Z;} and {X} for some v # u are necessary. This is again
a contradiction to our assumption. If the chain passes Y, then the
clauses {Y7,}, {Z,} and {Y} for some v are necessary. In order to
derive {Z}, the clauses {Y}, {Z:}, and {Y} for some s # v are
necessary. Then {Z} } can also be derived using {Z7} and {Y"} }, which
contradicts the assumption that it is derived using {Z;} and {Y}.

R = {EC,PO,EQ, TPP~! NTPP~'}: Suppose this relation holds between
the spatial variables X and Y using the pseudo variable Z. Then clauses of
the type {X, -2}, {=Z;,-Y., =Z;,Y;}, and {2, =Y. Z;, =Y} } for
alla,b € Wy aswell as {X .}, {Z.}, {Z4}, and {Y 4} for some ¢, d € W, are
input clauses. In order to derive { X }, the unit clause {Z},} is necessary.
If {Z,} is an input clause, the relation between X and Z is not refined
by PUR. If {Z} } is not an input clause, the clauses {Y} }, {Z:}, and
{Y:} for some u are necessary. In order to derive {Z} } the clauses {Y },
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{Z;,} and {Y} for some v # u are necessary. Then {Z}} can also be
derived using {Z;} and {Y;}, which contradicts the assumption that it
is derived using {7} and {Y}.

R = {DC,EC,PO,EQ, TPP~!,NTPP~'}: Suppose this relation holds be-
tween the spatial variables X and Y using the pseudo variable Z. Then
clauses of the type {-X, -2, =X}, Z;}, {-X, - Z;, X3, 7}, {—Z3,
-Yr =Z;, Y}, and {7, Y5 Zy, =Y} for all a,b € Wy, as well as
{X.} and {Z.} for some ¢ € Wj are input clauses. In order to derive
{X;,}, the unit clauses {7} }, {X},}, and {Z, } are necessary for some u.
{Z*} can be obtained with an R,-chain from Z to Z, passing either X or
Y. If it passes X, the clauses {X}, and {Z]} for some v # u are neces-
sary, which is a contradiction. If it passes Y, the clauses {Y7 }, {Y} and
{Z;} for some v # u are necessary. {Z} can be obtained in two ways:
(a) If {Z,} is an input clause, {Y,} can be derived using the clauses {Z}}
and {Y;} for some s. Then {Z}} can also be derived using {Z} and
{Y:}, which contradicts the assumption that it is derived using {77}
and {Y}.

(b) If the chain for obtaining {Z;} passes X, the clauses {Z%} and {X}}
for some s are necessary. If it passes Y, the clauses {Z;} and {Y,}
for some s are necessary. Both possibilities result in a contradiction
to previous assumptions.

R is constructed by intersection: The intersection of two relations is a
refinement of both relations, so if one of the relations is refined to one of
R, this also holds for the intersection of the two relations. Some relations
are refinements of a relation of R, but are not part of R,. These relations
can be treated as if they were part of R, because the specified properties
of Proposition 46 also hold for them.

As R, is closed under composition, the proof is completed. O

We are now ready to prove the main theorem of this section, namely, that the
path-consistency method is sufficient for deciding RSAT (Hs).

Theorem 53 The path-consistency method decides RSAT (Hs).

Proof. Let © be an inconsistent set of Hg-constraints, p' (©) the equivalent
propositional Horn formula as specified in Proposition 49 and ¢/(©) the cor-
responding set of Horn clauses. Since O is inconsistent, the empty clause can
be derived from ¢(©) using PUR. Suppose that the empty clause is derived
by {X;,} and {=X }. The same proof as in Theorem 48 can be applied here,
when it is based on Lemma 52 instead of Lemma 47. The only difference is
that X might be a pseudo variable. In this case {—X } must be input clause,
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Fig. 14. Path consistent but not minimal constraint graph.

as it cannot be derived by PUR. For this there must either be a spatial vari-
able Y with R (Y, X) or a spatial variable Z with R, ,;(X, Z). As there is
no such spatial variable, X cannot be a pseudo variable, and then the empty
clause cannot be derived from {X} } and {-X }. O

This theorem can be easily transfered to RCC-5.
Corollary 54 The path-consistency method decides RSAT(’I?;,).

Another interesting question is whether the path-consistency method also de-
cides the minimal-label problem RMIN(#;). As the following theorem shows
this is not the case even for the set Hs.

Theorem 55 The path-consistency method is not sufficient for solving the
minimal-label problem RMIN(H).

Proof. Figure 14 shows a constraint graph that is path-consistent but not
minimal. The relation between A and D can be refined to PO but not to
PP. O

Since RMIN and RSAT are equivalent under polynomial Turing reductions,
RMIN(#5) as well as RMIN(#g) are solvable in polynomial time.

8 Applicability of the Maximal Tractable Set 7/-[\8

In this section we will discuss some practical advantages of the theoretical
results obtained so far. One obvious advantage of the maximal tractable subset
Hs is that the path-consistency method is sufficient for deciding RSAT if it is
possible to restrict the relations used in an application to the relations of Hs.

In many applications this is certainly not possible. In spatial configuration
tasks or queries to spatial databases, e.g., RCC-8 base relations and negations
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|Reg(©)] | B (4.0) | Hs (1.4375)
5 108 38
7 4.4 x 10'2 2041
10 1.2 x10% | 1.2 x 107

Table 4
Comparison of the average size of the search space.

of the base relations are often used, as in Find a region which is in A but does
not overlap B. Since the closure of these 16 relations is the whole set of 256
RCC-8 relations, all relations have to be considered in this kind of applications.

As in the case of temporal reasoning where the usage of the maximal tractable
subset ORD-HORN has been extensively studied [32], Hg can also be used to
speed up backtracking algorithms for the general NP-complete RSAT problem
using all RCC-8 relations. Previously, every spatial constraint had to be re-
fined to a base relation before the path-consistency method could be applied
to decide consistency. In the worst case this has to be done for all possible re-
finements. Supposing that the relations are uniformly distributed, the average
branching factor, i.e., the average number of different refinements of a single
relation to relations of B is 4.0.

Using our results it is sufficient to make refinements of all relations to relations
of Hg. Except for four relations, each of the 108 relations not contained in Hg
can be expressed as a union of two relations of Mg, the four relations can
only be expressed as a union of three Hg relations. This reduces the average
branching factor to 1.4375 (=(148 + 104 x 2 + 4 x 3)/256). Both branching
factors are of course worst-case measures because the search space can be
considerably reduced when path-consistency is used as a forward checking
method [25].

Table 4 shows the average size of the search space for the average branching
factors given above. The size of the search space is computed as b =1)/2 where
b is the average branching factor, n the number of spatial variables contained
in ©, and (n? — n)/2 the number of different constraints.

In [39] we made an empirical study of reasoning with RCC-8 by randomly
generating instances of up to 100 regions and solving them using different
strategies. It turned out that those strategies applying 7/{\8 where much more
effective in finding a fast solution and solving instances in reasonable time
than those strategies applying B or B. To our surprise, almost all apparently
hard instances of the phase-transition region could be solved in a few seconds
if the different strategies were run in parallel.
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9 Discussion and Related Work

Other complexity results on qualitative spatial reasoning were obtained by
Grigni et al. [19] who worked with Egenhofer’s topological relations [12]. These
relations are defined using the so-called 9-intersection, the 9 possible intersec-
tions of the interior, the boundary, and the complement of two regions. Apart
from the more restricting definition of regions, 8 different relations can be
defined which use the same distinctions of regions as RCC-8. Grigni et al [19]
considered two different notions of satisfiability, the purely syntactical notion
of relational consistency and the semantic notion of realizability, which are
both different from what we call consistency. Relational consistency means
that there is a path-consistent refinement of all relations to base relations, re-
alizability means that there is a model consisting of simply connected planar
regions. Both kinds of satisfiability were found to be NP-hard for Egenhofer’s
eight relations which Grigni et al [19] called high resolution case as well as
a subset of five relations called medium resolution case which uses different
distinctions of regions than RCC-5.!% Both NP-hardness results are indepen-
dent from our NP-hardness result. The notion of realizability is much more
constraining than our notion of consistency. It is also computationally much
harder — realizability for the eight base relations of RCC-8, e.g., is not known
to be in NP. “Realizability”, i.e., finding one-piece regions, in three and higher
dimensional space, however, is equivalent to our notion of consistency [37].

Nebel [31] proved tractability for the set of RCC-8 base relations by trans-
forming the propositional intuitionistic encoding of the base relations given
by Bennett [2] to 2CNF formulas. This tractability result, however, is not
applicable in our case, since Nebel did not consider the regularity condition.
The regularity condition is necessary to rule out certain counterintuitive re-
gions, as, e.g, regions which only consist of a boundary. Moreover, since we are
restricting our analysis to closed regions, the regularity condition is required
in order to guarantee inferences according to the RCC-8 composition table.
Consider, e.g., a non-regular region B with a spike consisting of a piece of the
boundary, like a balloon with a cord, such that only the spike intersects the
two regions A and C' where A{NTPP}C. In this case, since B intersects A and
C but the interior of B does not intersect A and C, B is externally connected
to both A and C, which is not consistent with the composition table.

Jonsson and Drakengren [23] made a complete classification of tractability in
RCC-5. Apart from Hs, the only maximal tractable subclass of RCC-5 con-
taining all base relations, they discovered three other tractable subclasses not
containing all base relations. For all subclasses not contained in one of the

13 In particular PO and EC were joined to a base relation of the medium resolution
case instead of DC and EC as it was done in RCC-5.
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four tractable subsets, RSAT is NP-complete. While a complete classification
of tractability is certainly worthwhile from a theoretical point of view, the
practical usage of subclasses not containing all base relations is limited, as it
is not possible to express definite knowledge within a given calculus even if it
is available. Furthermore, these subclasses cannot be used to speed up back-
tracking algorithms as it is not possible to refine every relation to relations of
these subclasses. So far we have not been able to either identify other maximal
tractable subclasses containing all base relations or prove that Hg is the only
such set.

10 Summary

We analyzed the computational properties of the qualitative spatial calculus
RCC-8 and identified the boundary between polynomial and NP-hard frag-
ments. Using a modification of Bennett’s encoding of RCC-8 in propositional
modal logic, we transformed the RCC-8 consistency problem to a problem in
propositional logic and isolated the relations that are representable as Horn
clauses. As it turns out, the fragment identified in this way is also a maximal
fragment that contains all base relations and is still computationally tractable.
Further, we showed that for this fragment path-consistency is sufficient for de-
ciding consistency. As in the case of qualitative temporal reasoning, our result
allows to check whether the relations that are used in an application allow
for a polynomial reasoning algorithm. Further, if the application requires an
expressive power beyond the polynomial fragment, it can be used to speed up
backtracking algorithms as in the case of qualitative temporal reasoning [32].

Research on this topic has to be continued, as it is still an open question
whether there are other maximal tractable fragments of RCC-8 that also con-
tain all base relations. Among other open problems, the question for a frag-
ment that permits the determination of minimal labels by the path-consistency
method seems to be interesting. Further, the determination of the computa-
tional properties of more expressive calculi like RCC-23 [2] and the design of
efficient algorithms for the case of connected regions with a fixed dimensional-
ity [19] appear to be interesting in an application context. In order to approach
the goal of a general qualitative theory of space, it seems to be useful to extend
RCC-8 by other aspects of space such as direction and distance. A first step
towards this goal has been taken in [16] where qualitative size relations were
added to RCC-8.
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A Basics on Modal Logics

Propositional modal logics [22,14,7] have the same syntax as standard propo-
sitional logic except for an additional unary operator 0. The modal logics we
are interested in are the so-called normal modal logics, i.e., the family of logics
that are obtained by extending the basic normal modal logic K. K contains all
tautologies, the axiom schema O(¢ — 9) — (O¢ — Ov), and is closed under
the following inference rules: modus ponens (if ¢,¢ — 1 € K then ¢ € K),
uniform substitution (if ¢ € K and p occurs in ¢ then ¢[y|p] € K for any 1),
and the rule of necessitation (if ¢ € K then O¢ € K).

Modal formulas are usually interpreted by means of Kripke semantics. A
Kripke model M = (W, R,v) is built upon a frame and a valuation. A frame
F = (W, R) consists of a set of worlds W together with an accessibility rela-
tion R C W x W. A valuation v assigns truth values to all the propositional
atoms in every world. If a world v € W is accessible from a world w € W, i.e.
(w,v) € R, we say that v is an R-successor of w.

The truth of a modal formula ¢ in a world w of a model M, written as
M, w |- ¢, is defined inductively on the structure of ¢:

M, w|-a for an atom a iff v(w,a) = true

M, w |- iff M,wl/ ¢

M,w |- AP iff M,w|-¢ and M,w |-
M,wl-o VvV iff M,wl¢or M,w|-1
Mowléd—1 iff M,wl/ ¢ or M,w|Fv
M, w |- 0¢ iff for all u with wRu: M, u|-¢

Note that the modal operator O is related to the accessibility relation R (see

[41]).

Other normal modal logics are obtained by extending K with axioms that
formalize properties of R. Some well-known examples of modal axioms and
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corresponding constraints on the accessibility relation are given in the follow-
ing table:

Name | Axiom Constraint on R
K D(¢ = ¢) = (B¢ — OY) | ~
T O¢p — ¢ reflexive
4 O¢ — OO¢ transitive
5 —O¢ — O0-0¢ Euclidean
(wRu and wRv implies uRv)

Two modal logics, which are of particular interest in this paper, are S4 and
S5. 5S4 is the extension of the modal logic K by T and 4, closed under modus
ponens, uniform substitution, and the rule of necessitation. This is equivalent
to specifying that the accessibility relation is reflexive and transitive. S5 is a
similar extension of K by T, 4, and 5, which is equivalent to specifying that the
accessibility relation is an equivalence relation. The modal operator is named
according to the modal logic, so, e.g., the operator of an S5-frame is called S5
operator.

Multi-modal logics contain more than one modal operator O. Each differ-
ent O; is associated to a different accessibility relation R; C W x W, i.e.,
M,w|-0;¢ iff for all u with wR;u: M, u |- ¢.
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B Enumeration of the Relations of ’}78

A complete list of all relations of H is given here. The list is separated into
two parts. The first part contains all the relations of Hg together with their
abbreviated form. The second part contains all relations of Hg \ Hg and their
functional construction from relations of Hg. The construction of the relations
is chosen according to Lemma 50. R specifies the complement of R, i.e. R
contains all base relations not included in R.

B.1 Relations of Hg

Relations Abbreviations
{DC} 4]

{EC} = A di

{DC,EC} o1

{PO} -1 A =y A =01
{DC, PO} = A=y A (0 V —6i)
{EC,PO} —d A Ay
{DC,EC, PO} - N\ vy

{TPP} T A~y A i

{DC, TPP} Yy A=A (0V )
{EC, TPP} =0 A=y A—miA (01V )
{DC,EC, TPP} Yy A-miA (§1V )
{PO, TPP} =y A =01 A i
{DC, PO, TPP} =y A =i A (5 V —6i)
{EC, PO, TPP} =d A=y A i
{DC,EC, PO, TPP} -y A i

{NTPP} -y A i
{DC,NTPP} =y A (0 V i)
{EC,NTPP} =6 A=y A (01 V i)
{DC,EC,NTPP} =y A (81 V 7i)
{TPP,NTPP} A -y

{DC, TPP,NTPP} YA (§V )

{EC, TPP,NTPP} A=y A (01V )
{DC,EC, TPP,NTPP} =y A (01V )

{PO, TPP,NTPP} -y A —di

{DC,PO, TPP,NTPP} =y A (0 V —di)
{EC,PO, TPP,NTPP} =d A=y
{DC,EC,PO, TPP,NTPP} | —v
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Relations Abbreviations
{TPP~'} T Ay A i
{DC,TPP'} T A—YiA(6V7)
{EC, TPP™'} =0 A =T A=yi A (8T V)
{DC,EC, TPP'} - A =yi A (6iV )
{PO, TPP !} - A =61 A i
{DC,PO, TPP~'} = A =yi A (6 V =)
{EC,PO, TPP '} =6 A = A i
{DC,EC,PO, TPP~'} - A i
{NTPP~'} -1 A vi
{DC,NTPP~'} - A (6 V i)
{EC,NTPP~'} =6 A =T A (81 V i)
{DC,EC,NTPP~'} - A (6iV 7i)
{TPP~!,NTPP'} - Ay

{DC, TPP~' NTPP'} T A(6V7)

{EC, TPP"',NTPP '} =6 A= A (6iV )
{DC,EC, TPP ' NTPP '} = A (61V )

{PO, TPP~' NTPP '} -7 A —6i

{DC,PO, TPP~' NTPP '} = A (6 V i)
{EC,PO, TPP~' NTPP~'} s
{DC,EC,PO, TPP~* NTPP'} —r

{EQ} ™Ay

{DC,EQ} (OVT)A( V)
{EC,EQ} 0N (6iVT)A(0LVy)
{DC,EC,EQ} (Sivm)A(sivey)
{TPP,NTPP,EQ} ™

{DC, TPP,NTPP,EQ} 6V )

{EC, TPP,NTPP,EQ} =6 A (8iV )
{DC,EC, TPP,NTPP,EQ} (6iV )

{TPP"' NTPP ' EQ} v
{DC,TPP',NTPP ' EQ} 6V )

{EC, TPP~',NTPP' EQ} =6 A (61V )
{DC,EC, TPP ' NTPP ' EQ} (61V )

{PO, TPP,NTPP, TPP~! NTPP~' EQ} —6i

{DC,PO, TPP,NTPP, TPP~' NTPP~ ' EQ} | (6 V —di)

{EC,PO, TPP,NTPP, TPP~' NTPP' EQ} | ¢
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B.2  Construction of the relations of ’ﬁg \ Hg from Hg-relations

Relations of Hg \ Hs

Construction

{EQ}
{EC,PO, TPP,NTPP,EQ}

{TPP~' ,NTPP'}
{NTPP,NTPP~!}
{DC,EC,NTPP '}
{DC,NTPP '}

{NTPP~'}

{NTPP}

{DC,EC,PO, TPP, TPP~'}
{PO, TPP,NTPP, TPP~'}
{DC,NTPP  EQ}
{NTPP' EQ}
{NTPP,EQ}
{DC,EC,EQ}

{EC,EQ}

{DC,EQ}

{TPP,EQ}

{DC, TPP,EQ}

{EC, TPP,EQ}

{DC,EC, TPP,EQ}
{EC,PO, TPP,EQ}
{DC,EC,PO, TPP,EQ}
{PO, TPP,NTPP,EQ}
{DC,PO, TPP,NTPP,EQ}
{PO, TPP, TPP! EQ}
{DC,PO, TPP, TPP~! EQ}
{EC,PO, TPP, TPP ' EQ}
{EC,NTPP™'}
{DC,EC,NTPP}
{EC,NTPP}

{DC,NTPP}

{DC,PO, TPP, TPP '}
{EC,PO, TPP, TPP'}
{PO, TPP, TPP'}

{EC} o {DC, PO}

{EC, TPP,NTPP,EQ} o {TPP,NTPP, EQ}
{DC, TPP,NTPP,EQ} o {TPP,NTPP,EQ}
{EC} o {EC}

{PO, TPP '} o {TPP}

{EC,PO, TPP '} o {TPP}

{EC} o {EC, PO}

{EC} o {DC,EC}

{EQ} N {NTPP,NTPP'}

{EQ} n {DC,EC,NTPP '}

{EQ} N {DC,NTPP '}

{EQ} N {NTPP~'}

{EQ} N {NTPP}

{EQ} n {DC,EC}

{EQ} N {EC}

{EQ} n{DC}

{TPP,NTPP,EQ} N {NTPP,NTPP '}

{DC, TPP,NTPP,EQ} N {NTPP,NTPP~'}
{EC, TPP,NTPP,EQ} N {NTPP,NTPP~'}
{DC,EC, TPP,NTPP,EQ} N {NTPP,NTPP~'}
{EC,PO, TPP,NTPP,EQ} N {NTPP,NTPP '}
{TPP~' NTPP '} N {NTPP,NTPP '}
{EC,PO, TPP,NTPP,EQ} n {DC,EC,NTPP'}
{TPP™' NTPP'} n{EC}

{NTPP,NTPP~'} N {DC,EC,NTPP~'}
{NTPP,NTPP~'} N {EC}

{NTPP,NTPP '} n {DC,NTPP '}

{NTPP™'} n {EC}

{NTPP} N {DC,EC}

{NTPP} n{EC}

{NTPP}n {DC}

{DC,EC,PO, TPP, TPP '} n {EC,EQ}
{DC,EC,PO, TPP, TPP~*} n {DC,NTPP! EQ}
{DC,PO, TPP, TPP"'} N {EC,PO, TPP, TPP"'}
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Relations of Hg \ Hs

Construction

{EC,NTPP ' EQ}
{DC,EC,NTPP,EQ}
{EC,NTPP,EQ}
{DC,NTPP,EQ}

{PO, TPP,EQ}
{DC,PO, TPP,EQ}
{TPP,EQ}

{TPP ' EQ}

{DC, TPP,NTPP}
{TPP,NTPP}
{PO,NTPP}
{DC,PO,NTPP}
{EC,PO,NTPP}
{DC,EC,PO,NTPP}
{PO,NTPP, TPP~'}
{DC,PO,NTPP, TPP'}
{EC,PO,NTPP, TPP'}
{DC,EC,PO,NTPP, TPP '}
{PO,NTPP~'}
{DC,PO,NTPP~'}
{EC,PO,NTPP~'}
{DC,EC,PO,NTPP~!}
{PO, TPP,NTPP '}
{DC,PO, TPP,NTPP '}
{EC,PO, TPP,NTPP'}
{DC,EC,PO, TPP,NTPP'}
{TPP, TPP ' EQ}

{PO, TPP,NTPP,NTPP '}
{EC, TPP ' EQ}

{DC, TPP~" EQ}
{DC,EC, TPP,EQ}

{EC, TPP,EQ}

{DC, TPP,EQ}
{PO,EQ}

{DC,PO,EQ}
{EC,PO,EQ}
{DC,EC,PO,EQ}

{NTPP ', EQ} n {EC,EQ}

{NTPP,EQ} n {DC, EC,EQ}

{NTPP,EQ} N {EC,EQ}

{NTPP,EQ} n {DC,EQ}

{EC,PO, TPP,EQ} N {PO, TPP,NTPP, EQ}
{DC,EC,PO, TPP,EQ} N {DC, PO, TPP,NTPP,EQ}
{EC,NTPP} o {DC,EQ}

{DC,EQ} o {EC,NTPP '}

{TPP !,NTPP ! EQ} o {EC,EQ}
{EC,EQ} o {DC,EQ}

{PO, TPP,NTPP} N {TPP,EQ}

{DC,PO, TPP,NTPP} N {TPP,EQ}
{EC,PO, TPP,NTPP} N {TPP,EQ}
{DC,EC,PO, TPP,NTPP} N {TPP,EQ}
{PO, TPP,NTPP, TPP~'} N {TPP,EQ}
{EC,NTPP~! EQ} N {TPP,EQ}
{DC,NTPP~' EQ} N {TPP,EQ}
{NTPP ' EQ} N {TPP,EQ}
{TPP~1EQ} N {PO, TPP~! NTPP~'}
{TPP~1,EQ} N {DC,PO, TPP~!,NTPP~!}
{TPP~1 EQ} N {EC,PO, TPP~! NTPP~!}
{TPP~!,EQ} N {DC,EC,PO, TPP~!,NTPP!}
{TPP ', EQ} n {DC,EC,NTPP,EQ}
{TPP EQ} n {EC,NTPP,EQ}

{TPP~ EQ} N {DC,NTPP,EQ}

{TPP~' EQ} N {NTPP,EQ}

{TPP 1, EQ} N {TPP,EQ}

{TPP ' EQ} n {DC,EC,EQ}

{TPP ' EQ} n {EC,EQ}

{TPP~' EQ} n {DC,EQ}

{TPP,EQ} N {DC, EC,EQ}

{TPP,EQ} N {EC,EQ}

{TPP,EQ} n {DC,EQ}

{PO,TPP,EQ} N {DC,NTPP, TPP}
{DC,PO, TPP,EQ} N {TPP,NTPP}
{EC,PO, TPP,EQ} N {DC,NTPP, TPP}
{DC,EC,PO, TPP,EQ} N {TPP,NTPP}
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Relations of Hg \ Hs

Construction

{TPP~' EQ}

{PO, TPP ' EQ}
{DC,PO, TPP ' EQ}
{EC,PO, TPP~' EQ}
{DC,EC, TPP~ EQ}
{DC, TPP™! EQ}
{EC,TPP™' EQ}
{DC,EC,PO, TPP ' EQ}
{PO, TPP~!,NTPP ! EQ}
{EC, TPP,NTPP}
{PO,NTPP,NTPP~'}
{DC,PO,NTPP,NTPP~'}
{EC,PO,NTPP,NTPP '}

{PO,TPP, TPP~' EQ} N {TPP~',NTPP ' EQ}
{PO, TPP, TPP ! EQ} N {DC,NTPP, TPP}
{DC,PO, TPP, TPP ', EQ} N {TPP,NTPP}
{EC,PO, TPP, TPP~' EQ} n {DC,NTPP, TPP}

{NTPP,NTPP~'} 0 {PO, TPP,NTPP}
{DC,EC, TPP~1 EQ} n {DC, TPP~* NTPP! EQ}
{DC,EC, TPP~' EQ} n {EC, TPP™' NTPP' EQ}

{NTPP,NTPP '} N {TPP,NTPP}

{DC,NTPP, TPP} n {DC, EC,NTPP}

{TPP,NTPP} N {EC,NTPP}

{TPP, TPP~' EQ} N {PO, TPP,NTPP,NTPP~'}

{TPP, TPP~' EQ} N {EC, TPP' EQ}

{TPP, TPP ' EQ} n {DC, TPP ' EQ}
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