
Automated Complexity Proofs for Qualitative Spatial and Temporal Calculi

Jochen Renz and Jason Jingshi Li
RSISE, The Australian National University, Canberra, ACT 0200, Australia &

NICTA, Canberra Research Laboratory, 7 London Circuit, Canberra ACT 2601, Australia

Abstract

Identifying complexity results for qualitative spatial or tem-
poral calculi has been an important research topic in the past
15 years. Most interesting calculi have been shown to be
at least NP-complete, but if tractable fragments of the cal-
culi can be found then efficient reasoning with these calculi
is possible. In order to get the most efficient reasoning al-
gorithms, we are interested in identifying maximal tractable
fragments of a calculus (tractable fragments such that any ex-
tension of the fragment leads to NP-hardness). All required
complexity proofs are usually made manually, sometimes us-
ing computer assisted enumerations. In a recent paper by
Renz (2007), a procedure was presented that automatically
identifies tractable fragments of a calculus. In this paper we
present an efficient procedure for automatically generating
NP-hardness proofs. In order to prove correctness of our pro-
cedure, we develop a novel proof method that can be checked
automatically and that can be applied to arbitrary spatial and
temporal calculi. Up to now, this was believed to be impos-
sible. By combining the two procedures, it is now possible
to identify maximal tractable fragments of qualitative spatial
and temporal calculi fully automatically.

Introduction
Spatial and temporal information is a very important part
of intelligent systems. All physical entities are embedded
in space and time and actions we perform usually change
spatial and temporal properties of some entities. Similarly,
when describing situations we often describe spatial prop-
erties of entities involved. Humans usually do this using
qualitative descriptions by specifying spatial relationships
between entities (such as “the keyboard is on the desk in
front of the monitor”) rather than, e.g., coordinates of spa-
tial entities. An intelligent system that interacts with human
users should therefore also be equipped with qualitative rep-
resentation and reasoning capabilities.

A qualitative spatial or temporal calculus such as RCC8
(Randell, Cui, & Cohn 1992) (see Figure 1) or the Inter-
val Algebra (Allen 1983) is usually based on a given do-
main D of spatial or temporal entities, such as a set of
three-dimensional regions or time intervals, and a set B
of jointly exhaustive and pairwise disjoint (JEPD) relations

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

y

x

y

EC(x,y)

x

y

TPP(x,y)

x y y x xy x  y

EQ(x,y)PO(x,y)

x y

NTPP(x,y)

x

DC(x,y) TPP   (x,y)-1 -1NTPP   (x,y)

Figure 1: The eight base relations of RCC8

R ⊆ D × D, called base relations. Between any two en-
tities of D exactly one of the base relations holds. If the
exact relation is not known, we can also use the union of
different possible base relations, i.e., the set of all relations
we can use is the power set 2B of the set of base rela-
tions. Reasoning in a calculus is usually NP-hard if all re-
lations are used, but it is sometimes possible to find subsets
of 2B for which reasoning becomes tractable. It has been
shown that if large tractable subsets can be found which con-
tain all base relations, then it is possible to find extremely
efficient solutions to the reasoning problems even in the
general case when all relations are permitted (Nebel 1997;
Renz & Nebel 2001). Since efficient reasoning is of utmost
importance, it has been a major challenge in qualitative spa-
tial and temporal reasoning research to find large tractable
subsets of different calculi. Ideally, we are interested in
finding maximal tractable subsets, i.e., tractable subsets for
which every extension is NP-hard (Nebel & Bürckert 1995).
These subsets mark the boundary between tractable and NP-
hard fragments of a calculus and lead to the most efficient
reasoning algorithms.

In order to find a maximal tractable subset it is necessary
to identify a subset which can be shown to be tractable and
then to find NP-hardness proofs for all extensions of the set.
The first difficulty is to find candidate sets out of the 22|B|

many possible subsets, then to find a tractability proof for
these sets, and then to find different NP-hardness proofs for
all extensions of these sets. Previously all these steps had to
be done manually, sometimes with the help of computer as-
sisted enumerations. Renz (1999) first introduced a general
method for proving tractability of a given subset, the refine-
ment method, but this method required to have a candidate
set already and also relied on heuristics for making refine-
ments. Recently, Renz (2007) presented a fully automatized
procedure for identifying large tractable subsets given only
a set of base relations and their compositions. This proce-
dure automatically identifies the candidate sets and proves
their tractability without relying on heuristics. While it has
been shown that the tractable subsets identified by Renz’s



procedure for RCC8 and the Interval Algebra actually cor-
respond to the maximal tractable subsets, this only followed
from previously known manually obtained results.

In this paper we go a step further and present a proce-
dure which automatically identifies NP-hard fragments of a
calculus. Given a tractable input set, our procedure identifies
relations which lead to NP-hardness when being added to the
input set. The results of our new procedure can be regarded
as an upper bound to tractability, we know which subsets
cannot be tractable subsets, while Renz’s procedure is a
lower bound to tractability, the identified subsets are guar-
anteed to be tractable. For those cases where the upper and
the lower bound meet, we have automatically proven that
the tractable subsets are maximal tractable subsets. When
we use the tractable sets identified by Renz’s procedure as
input sets to our new procedure, we can automatically prove
if they are maximal tractable subsets.

The paper is structured as follows. We first introduce
some background on qualitative spatial and temporal reason-
ing, the refinement method and also some previously used
methods for proving NP-hardness of sets of relations. Af-
ter discussing the novelty of our approach, we present an
efficient procedure for automatically proving NP-hardness
and prove its correctness. We then apply our procedure to
several calculi and automatically identify all their NP-hard
subsets. Finally, we discuss the limitations of our procedure
and conclude the paper.

Qualitative Spatial and Temporal Reasoning
Given a (spatial or temporal) domain D and a set of base
relations B over the domain, there are different reasoning
problems we can study. Since most of these problems can
be reduced to the consistency problem CSPSAT(S) (Renz
& Nebel 1999), it is commonly used as the main reason-
ing problem for qualitative spatial and temporal information:
Given a set of variables V over D and a set Θ of constraints
xRy with x, y ∈ V and R ∈ S ⊆ 2B, we ask whether Θ
is consistent, i.e., can we find an instantiation of every vari-
able in V with a value from D such that all constraints in Θ
are satisfied. The consistency problem is a constraint satis-
faction problem over infinite domains which is NP-hard for
most calculi if all relations 2B are allowed. Given a set of
constraints Θ, a set Θ′ is a refinement of Θ if Θ′ contains
the same variables as Θ and for each constraint xR′y ∈ Θ′

there is a constraint xRy ∈ Θ such that R′ ⊆ R. It is clear
that if Θ′ is consistent, then Θ is consistent too.

The main tools we have for reasoning about these re-
lations are the operators on the relations, namely, union
(∪), converse (^), intersection (∩), complement (¬), and
most importantly composition (◦). Composition of two re-
lations R,S is the relation defined as follows: R ◦ S =
{(a, c)|∃b.(a, b) ∈ R and (b, c) ∈ S}, and is usually pre-
computed and stored in a composition table. Special rela-
tions are the universal relation U which is the union of all
base relations, the empty relation ∅ and the identity rela-
tion id. The path-consistency algorithm uses these operators
as an approximation to consistency of Θ. For each triple
of variables i, j, k it computes Rij := Rij ∩ (Rik ◦ Rkj)

(where Rij is the relation between variables i and j) un-
til either a fixpoint is reached, in which case we call the
resulting set Θ′ path-consistent, or the empty relation is
obtained, in which case Θ is inconsistent. It is clear that
path-consistency which runs in time O(n3) cannot decide
the consistency problem in general, but there are subsets
S ⊆ 2B for which path-consistency does decide consis-
tency. This is particularly interesting for relations where
path-consistency decides CSPSAT(B), i.e., constraint net-
works consisting of only base relations, also called atomic
networks. For some sets of relations it is not possible to
compute composition and only weak composition is known,
which is defined as R ◦w S = {T |T ∈ B, T ∩ (R ◦S) 6= ∅}.
The algorithm corresponding to the path-consistency al-
gorithm with weak-composition instead of composition is
called algebraic-closure algorithm. It is clear that when-
ever weak composition is equal to composition, then the
two algorithms are equivalent. In order to avoid confusion
between weak composition and composition and between
path-consistency and algebraic closure, in this paper we will
only use the more commonly known concepts of composi-
tion and path-consistency. Provided that algebraic closure
decides CSPSAT(B), which will be one of the requirements
for our results, all the results of our paper can be equally
applied to weak composition and algebraic closure. This
follows immediately from the analysis in (Renz & Ligozat
2005) and (Li, Kowalski, Renz, & Li 2008).

For a more comprehensive overview on qualitative spatial
and temporal reasoning see e.g. (Cohn & Renz 2008).

Existing methods for proving complexity
In the past fifteen years it has been one of the main re-
search challenges in this area to identify large subsets S
of 2B for which the consistency problem is tractable, so
called tractable subsets and ideally maximal tractable sub-
sets which form the boundary between tractability and NP-
hardness of subsets of 2B. In order to identify maximal
tractable subsets, we have to first find tractable subsets (and
prove they are tractable) and then show that every extension
of them is NP-hard. While both of these tasks always had to
be done manually, Renz (2007) recently developed a proce-
dure which automatically computes large tractable subsets
of a spatial or temporal calculus given only the relations B
and their composition table. Provided that path-consistency
decides CSPSAT(B), the output sets of Renz’s procedure
are tractable subsets of 2B.

In order to prove that a tractable subset is a maximal
tractable subset, we also need some NP-hardness proofs
for showing that any extension of a tractable subset is NP-
hard. A very helpful result for proving complexity of sub-
sets states that the closure of a set S under composition,
union, intersection and converse has the same complexity as
S (Renz & Nebel 1999). So once we know a set is tractable,
its closure is also tractable, and similarly, if a set is NP-hard,
every set that contains the NP-hard set in its closure is also
NP-hard. This can considerably reduce the number of actual
NP-hardness proofs we need. So far there is no automated
method for finding NP-hardness proofs and these proofs are
usually done manually by using computer assisted enumer-



Figure 2: a: Polarity constraints for a variable v, b: posi-
tive (p) and negative (n) literal occurrences of v, c: clause
constraints for a clause {i, j, k}

ation methods that exploit the closure of sets.
Renz and Nebel (1999) proved NP-hardness of sets of

RCC8 relations S by reducing variants1 of the NP-hard
3-SAT problem to CSPSAT(S). In the next section we
will generalize the reduction schema proposed by Renz and
Nebel and develop an efficient procedure which automati-
cally generates reductions according to this schema. In the
following we will summarize the transformation schema.

A propositional formula φ in 3-CNF can be reduced to a
corresponding set of constraints Φ over the relations S ⊆ 2B
in the following way. Every variable v of φ is transformed to
two literal constraints xv{Rt, Rf}yv and x¬v{Rt, Rf}y¬v
corresponding to the positive and the negative literal of v,
where Rt∪Rf ∈ S with Rt∩Rf = ∅. v is assigned true if
and only if xv{Rt}yv holds and assigned false if and only
if xv{Rf}yv holds. Since the two literals corresponding to
a variable need to have opposite assignments, we have to
make sure that xv{Rt}yv holds if and only if x¬v{Rf}y¬v
holds, and vice versa. This is ensured by additional polar-
ity constraints xv{P1}x¬v , yv{P2}y¬v , xv{P3}y¬v , and
yv{P4}x¬v (see Fig. 2.a). In addition, every literal occur-
rence l of φ is transformed to the constraint xl{Rt, Rf}yl,
where xl{Rt}yl holds if and only if l is assigned true. In or-
der to assure the correct assignment of positive and negative
literal occurrences with respect to the corresponding vari-
able, we need the same polarity constraints P1, P2, P3, P4

again. For instance, if the variable v is assigned true, i.e.,
xv{Rt}yv holds, then xp{Rt}yp must hold for every pos-
itive literal occurrence p of v, and xn{Rf}yn must hold
for every negative literal occurrence n of v (see Fig. 2.b).
Further, clause constraints have to be added to assure that
the clause requirements of the specific propositional satis-
fiability problem are satisfied. For example, if {i, j, k} is
a clause of an instance of ONE-IN-THREE-3SAT, then
exactly one of the constraints xi{Rt}yi, xj{Rt}yj , and
xk{Rt}yk must hold. The clause constraints are all con-
straints between xi, xj , xk, yi, yj , and yk that ensure this
behaviour (see Fig. 2.c).

If relations Rt, Rf , polarity constraints and clause con-

1Renz and Nebel (1999) used three different propositional sat-
isfiability problems for their transformation schema: 3SAT, ONE-
IN-THREE-3SAT and NOT-ALL-EQUAL-3SAT (Garey & John-
son 1979)

straints can be found for a set S, then this transformation
schema gives us a polynomial transformation from φ to Φ.
In order to show that CSPSAT(S) is NP-hard we have to
show that the propositional formula φ is satisfiable if and
only if the resulting set of constraints Φ is consistent, i.e., the
transformation schema must be a many-one reduction. With
the specified transformation schema it is clear that when-
ever the constraints are consistent, then the 3SAT formula
is satisfiable. For the other direction (if φ satisfiable then Φ
consistent), Renz and Nebel (1999, proofs of Theorem 3 and
Lemma 10) had to manually construct a consistent RCC8 re-
alization schema that depends on the 3SAT formula φ .

Novelty of our approach
Using the above described polynomial transformation
schema, it is possible to generate the polarity and the clause
constraints automatically and therefore it seems possible to
generate NP-hardness proofs automatically as well. How-
ever, there are two reasons why this method cannot immedi-
ately be used to automatically find NP-hard subsets.

The main problem is that the transformation schema gives
an NP-hardness proof only if we can prove that it is a many-
one reduction. Previously, this required the construction of a
consistent spatial or temporal realization which is not likely
be automatizable as it has to refer to the infinite domain and
the semantics of the relations. Indeed, it has always been
believed that this is impossible to achieve and that, therefore,
NP-hardness proofs for qualitative calculi require a creative
step that can only be made by a human expert.

The second problem is the required runtime for finding
suitable relations Rt, Rf and the polarity and clause con-
straints. Even for a small calculus like RCC8 with 256 rela-
tions, there are 2556 different constellations that might have
to be checked for finding polarity constraints and 25512 dif-
ferent constellations for clause constraints. If we check one
million constellations per second, this requires a runtime of
almost nine years just for the polarity constraints.

In the following sections we show how we can solve these
two problems and present a highly efficient procedure for
automatically generating NP-hardness proofs based on the
given transformation schema, and prove its correctness. We
solve the first problem by developing a novel proof method
for showing that the transformation schema gives a many-
one reduction. Our proof method requires additional condi-
tions for polarity and clause constraints, which distinguish
valid from invalid polarity and clause constraints. The ex-
periments in Section 4 show that these extra conditions are
essential for the correctness of our procedure. Our proof
method doesn’t require us to identify consistent realizations,
it can be verified automatically and guarantees correctness
of our procedure. The second problem is solved by exploit-
ing several general properties of qualitative calculi and the
transformation schema.

A General Procedure for Proving NP-hardness
In this section we present a procedure for automatically
identifying intractable subsets. As mentioned in the intro-
duction, these subsets mark the upper bound for tractabil-
ity. This procedure automatizes the transformation of a



3SAT instance φ (and its variants NOT-ALL-EQUAL-3SAT
and ONE-IN-THREE-3SAT) into an instance Φ of CSPSAT
by using the polarity and clause constraints method as de-
scribed in the previous section. In this way we can system-
atically identify intractable subsets of a given set of relations
2B. Similar to (Renz 2007) we assume that path-consistency
decides consistency for CSPSAT(B).

Our procedure consists of three steps which we will de-
scribe separately. We start with an input set I ⊆ 2B that is
closed under composition, union, intersection and converse,
and for which path-consistency decides CSPSAT(I). As
the first step, we identify all relations R ∈ 2B with R 6∈ I
for which we can find literal and polarity constraints. With
these, variables and literal occurrences of φ can be trans-
formed to constraints of Φ. The second step is to find clause
constraints for each relation for which we found polarity
constraints. For both steps we use several optimizations
which considerably reduce the runtime of our procedure.
The third step is then to identify those relations R′ ∈ 2B for
which the closure of {R′} ∪ I contains any of the already
identified relations R. Each of these relations R′ leads to
NP-hardness when added to I.

During this procedure we will test several conditions that
the polarity and the clause constraints have to satisfy in order
to guarantee a many-one reduction of φ to Φ. After sketch-
ing the details of our procedure, we prove that the procedure
correctly identifies intractable subsets whenever the polar-
ity and clause constraints satisfy all conditions. The cor-
rectness proof is based on inductive proofs that show how a
set of constraints as generated by the transformation schema
can become inconsistent and which changes preserve con-
sistency. It exploits the fact that there are only finitely many
possible triples of relations that occur in the transformation
of φ to Φ and that once all possible triples are tested for
consistency, no new inconsistencies can be introduced by
adding more triples. The reason why testing triples is suffi-
cient is that we use the path-consistency algorithm for con-
sistency checking, which only looks at triples of relations.

In order to test all possible consistent triples, we will add
particular redundant clauses to φ, i.e., 3CNF clauses that
don’t change satisfiability of φ because they contain at least
one literal of φ that is assigned true. Using the redundant
clauses, we can ensure that all possible triples have been
tested. It is clear that when transforming φ to Φ, these re-
dundant clauses shouldn’t change consistency of Φ. If they
do make Φ inconsistent, then we know that the correspond-
ing clause constraints cannot lead to a many-one reduction.
Properties of redundant clauses are specified in the follow-
ing proposition.

Proposition 1 If the transformation schema gives a many-
one reduction of a 3SAT formula φ to a set of constraints Φ,
then the following properties must hold:

1. If φ is satisfiable, then for any satisfiable 3SAT formula
φ′ over the same variables as φ with φ ⊂ φ′, the corre-
sponding set of constraints Φ′ is a refinement of Φ.

2. Adding a redundant clause to φ does not change consis-
tency of the resulting set of constraints Φ′.

3. For any variable x ∈ φ, we can add arbitrarily many
redundant clauses containing one of the literals x or ¬x.

4. For any pair of variables x, y ∈ φ, we can add arbitrarily
many redundant clauses containing one of the literals x
or ¬x and one of the literals y or ¬y.

While it is clear that redundant clauses can be added to a
3SAT formula φ without changing satisfiability, it is not
clear that this will also hold for the resulting set of con-
straints Φ. By proving that it does hold for Φ when using
the transformation schema, we can show that the transfor-
mation schema gives a many-one reduction.

Step 1: Finding polarity constraints
Polarity constraints are the core part of the transformation
and ensure proper assignments of literal constraints.

Definition 1 (Polarity constraints) Given a set of relations
2B, four variables xv ,x¬v ,yv ,y¬v and a relation Rtf =
{Rt, Rf} ∈ 2B. The constraints xv{P1}x¬v , yv{P2}y¬v ,
xv{P3}y¬v , and yv{P4}x¬v with P1, P2, P3, P4 ∈ 2B
(see Fig. 2a) are called polarity constraints of Rtf (ab-
breviated as (Rt, Rf ;P1, P2, P3, P4)) if they ensure oppo-
site assignment of the literal constraints xv{Rt, Rf}yv and
x¬v{Rt, Rf}y¬v , i.e., if they satisfy the following five basic
requirements:2

Original Instantiation Path-Consistent Refinement
(xv, yv) (x¬v, y¬v) (xv, yv) (x¬v, y¬v)
{Rt, Rf} {Rt, Rf} {Rt, Rf} {Rt, Rf}
{Rt, Rf} {Rt} {Rf} {Rt}
{Rt, Rf} {Rf} {Rt} {Rf}
{Rt} {Rt, Rf} {Rt} {Rf}
{Rf} {Rt, Rf} {Rf} {Rt}

The task of the transformation schema is to prove NP-
hardness of the set of relations that are used for the con-
struction of polarity and clause constraints. In order to find
NP-hard subsets, we could generate all possible polarity
and clause constraints, but, since we are mainly interested
in finding relations that make a given tractable subset NP
hard, we can restrict the relations we use for the polarity and
clause constraints. For our procedure we will therefore use a
tractable set T as input set and assume that path-consistency
decides consistency for CSPSAT(T ). This is the case if we
use the large tractable subsets resulting from Renz’s proce-
dure (Renz 2007) as input sets to our procedure. For a given
input set I, we want to test for all relations R ∈ 2B \ I
whether CSPSAT(closure(I ∪ R)) is NP-hard. Therefore,
we have to test if we can find a relation Rtf and polarity
constraints for Rtf which are all contained in closure(I∪R).

In order to prove that the polarity constraints are valid,
they have to satisfy two additional conditions. We need both
of these condition for proving that a satisfiable instance φ
is transformed to a consistent set Φ. The key for this proof
is to show that whenever all variables of φ are consistently

2The original instantiation consists of the to-be-tested polarity
constraints and the given literal constraints. If we enforce path-
consistency, we have to obtain the specified path-consistent refine-
ment in order to get the required flip-flop behaviour.



Figure 3: Extra conditions for polarity constraints as speci-
fied in Condition 1. a: Relations of the set Θ, b: Additional
literal constraints added to Θ (see Condition 1.2a.)

assigned and the corresponding relations Rtf of Φ are each
set to Rt or Rf , then enforcing path-consistency to Φ results
in a set Φ′ which consists only of relations of I, for which
we know that path-consistency decides consistency.

Condition 1 (Extra conditions for polarity constraints)
Given a variable v of φ and the corresponding set of

polarity constraints (Rt, Rf ;P1, P2, P3, P4) over the
variables xv ,x¬v ,yv ,y¬v , as shown in Figure 2.a. The
polarity constraints are valid, if they satisfy the following
two conditions:

1. If we impose xv{Rt}yv and x¬v{Rf}y¬v or vice versa,
and enforce path-consistency, then P1, P2, P3, and P4

must be refined to relations of I.
2. Given a positive literal occurrence p1 of v and a nega-

tive literal occurrence n1 of v. We transform these to the
corresponding constraints (as shown in Figure 3.a) and
apply path-consistency, resulting in the set of constraints
Θ. We construct a set Θ′ by modifying Θ in the following
way:

(a) We add two more positive (p2, p3) and two more nega-
tive (n2, n3) literal occurrences of v. We transform the
literal occurrences to the corresponding literal and po-
larity constraints (see Figure 3.b) and add them to Θ.
This introduces the new variables xpi , xni , ypi

, ypi
for

i = 2, 3.
(b) We add constraints to ensure that each new pair of vari-

ables is different from any other pair, i.e., xpi 6= xpj or
ypi

6= ypj
, and xni 6= xnj or yni

6= ynj
, for each

i, j ∈ {1, 2, 3} with i 6= j.
(c) We apply path-consistency.

Then Θ must be a proper subset of the resulting set Θ′,
i.e., no constraint in Θ changes by adding more literal
occurrences.

Both conditions can be easily tested by constructing the
required sets of constraints and applying path-consistency
to them. The first condition ensures that path-consistency
will be sufficient for determining consistency. We will use
the second condition for proving that an arbitrary number of

redundant clauses can be added to a variable (see Proposi-
tion 1.3). This is proven in the following Lemma.

Lemma 1 Given a 3SAT formula φ, a set of relations 2B
and polarity constraints P1, P2, P3, P4 for a relation Rtf ∈
2B. If the polarity constraints satisfy Condition 1.2, then
we can add an arbitrary number of literal occurrences of
v, transform them to the corresponding constraints and en-
force path-consistency without changing the constraints of
the existing literal occurrences.

Proof Sketch. Assume we can add n literal occurrences
and enforcing path-consistency does not change any exist-
ing constraints. We now show that we can add n + 1 literal
occurrences. We assume wlog. that we add a positive lit-
eral p which results in adding the corresponding constraints
xp{Rtf}yp, the polarity constraints connecting xp, yp with
x¬v, y¬v , and the constraints that xp and yp are not both
identical to any existing variable. The constraints between
xp, yp and any other variable u are exactly the same as be-
tween any other existing positive literal occurrence q when
it was added and u. Since we have already shown as a
precondition that it is possible to add three literal occur-
rences, we have already computed every possible triple of
variables that can occur when adding xp, yp and therefore
the result of enforcing path-consistency is the same as with
any existing triple. Since none of the previous literal occur-
rences changed any existing constraints, the new one will not
change anything either. The lemma follows by induction.

Improvements in finding polarity constraints
The following modifications can reduce the runtime for
computing polarity constraints considerably.

Symmetry of Polarity Constraints: For any valid
polarity constraints for Rtf , we can modify the polar-
ity constraints and apply them to other relations with-
out having to compute them again. So if {Rt, Rf ;
P1, P2, P3, P4} is a valid assignment of the six con-
straints, then the following five assignments are also valid
via symmetry: {Rf , Rt; P1, P2, P3, P4}, {Rt

^, Rf
^;

P2, P1, P4, P3}, {Rf
^, Rt

^; P2, P1, P4, P3}, {Rt, Rf ;
P2

^, P1
^, P3

^, P4
^}, {Rf , Rt; P2

^, P1
^, P3

^, P4
^}.

Improving Path-consistency: The path-consistency al-
gorithm always looks at triples of variables. For a given set
of relations, the possible number of different triples is lim-
ited. Instead of computing all triples again and again, we can
pre-compute all possible triples and store the path-consistent
ones in a table. Then we only need to look up relations in a
table to decide whether a particular triple is path-consistent,
which is much faster than making it path-consistent. In addi-
tion, we are hard-coding path-consistency for networks with
four nodes instead of using a queue.

Path-consistency-based selection: In order to iden-
tify polarity constraints for Rtf we normally have to loop
through all possible instantiations of the four relations
P1, P2, P3, P4. However, we are only looking for polar-
ity constraints which are already path-consistent. There-
fore, a more efficient method for a given xv{Rt, Rf}yv , is
to first select any P1 such that xv{P1}x¬v . Then the P4

for yv{P4}x¬v can only be selected from those relations



that make {xv, x¬v, yv} a path-consistent triple. Since we
have already precomputed all path-consistent triples, we can
easily look up which relations we can choose for P4 and
likewise for P2 and P3. There are four triples in a well-
connected graph with four nodes, therefore if the probabil-
ity of a triple being path-consistent is m, we only have to
perform a factor m4 of the original computation.

Step 2: Finding clause constraints
Once we identified valid polarity constraints, we then have
to find clause constraints in order to transform all clauses of
an instance of one of the three 3-SAT variants into CSP-
SAT. Each literal occurrence lij of a clause {li1, li2, li3} is
transformed into a literal constraint xij{Rt, Rf}yij . The
clause constraints have to ensure that at least one of the
three literal constraints will be Rt for 3SAT, exactly one of
them will be Rt for ONE-IN-THREE-3SAT and one or two
of them will be Rt for NOT-ALL-EQUAL-3SAT. So each
clause is transformed into a set of constraints with six vari-
ables. The clause constraints consist of the twelve remaining
constraints between these six variables (see Fig. 2c). It is
impossible to systematically enumerate all possibilities for
these twelve constraints as these would be far too many com-
binations. We can, however reduce the twelve constraints
to only four different ones: The literals of a clause can be
permutated without changing the truth value of the clause.
Therefore, we must also be able to permute the clause con-
straints without changing consistency as it doesn’t make a
difference which of the three literal constraints are assigned
Rt. This has the consequence that whenever it is possible
to find clause constraints, it is possible to find clause con-
straints such that the four clause constraints between any
two literal constraints are the same. We need four clause
constraints of type xijC1xik, yijC2yik, xijC3yik, yijC4xik

(for j, k = (1, 2), (2, 3), or (3, 1)). Similar to the po-
larity constraints, we abbreviate the clause constraints as
(Rt, Rf ;C1, C2, C3, C4). Enumerating all possibilities for
four different constraints is possible. Especially if we use
the same optimizations as described for polarity constraints.
The basic property of clause constraints is that they have to
be path-consistent and, if some of the literal constraints are
refined to either Rt or Rf , path-consistency must enforce
one of the possible behaviours of the three 3SAT variants
to the other literal constraints. As we did for polarity con-
straints, we also require valid clause constraints for an input
set I to satisfy additional conditions which will be used for
proving correctness of our procedure. We provide the condi-
tions only for 3SAT and leave it as an exercise to the reader
to specify similar conditions for the other two 3SAT variants.

Condition 2 (Extra conditions for clause constraints)
Given a set of clause constraints (Rt, Rf ;C1, C2, C3, C4).
The clause constraints are valid, if they satisfy the following
three conditions:

1. Given three variables u, v, w of φ and the corresponding
set of clause constraints (Rt, Rf ;C1, C2, C3, C4) over
the variables xu,yu,xv ,yv ,xw,yw (see Figure 4.a). If
we set each of the three literal constraints (xi, yi) for
i ∈ {u, v, w} to either true or false, then path-consistency

refines all clause constraints to relations of I. We test this
for all eight possible instantiations of u, v, w.

2. Given three instantiated variables u, v, w of a satisfiable
3SAT instance φ, i.e., each of u, v, w is either true or false.
There are eight different clauses {u/¬u, v/¬v, w/¬w},
seven of them will be true (i.e., they are redundant
clauses) and one of them will be false—which one de-
pends on the instantiation of u, v, w. We select the seven
redundant clauses and also the seven redundant clauses
in reverse order (w, v, u). We transform these 14 redun-
dant clauses and the variables u, v, w to the correspond-
ing constraints and apply path-consistency, resulting in
the set of constraints Θ (see Figure 4.b). Then Θ contains
only constraints over relations of I.

3. We construct a set Θ′ by modifying Θ in the following
way: We triple the 14 redundant clauses from the previous
condition, resulting in 42 redundant clauses. We trans-
form them to the corresponding constraints, add the con-
straints to Θ and apply path-consistency. Then Θ must be
a proper subset of the resulting set Θ′, i.e., no constraint
in Θ changes by adding more redundant clauses.

Even though the previous conditions sound complicated,
they can be quickly tested with one application of the path-
consistency algorithm and a simple comparison of con-
straints. We use the second and third condition to prove that
an arbitrary number of redundant clauses can be added to
a pair of variables (see Proposition 1.4). Note that the last
two conditions do not restrict any possible polarity or clause
constraints as these conditions have to be satisfied by any
many-one reduction. Only polarity and clause constraints
that don’t lead to a many-one reduction will be eliminated.

Lemma 2 Given a set of relations 2B, valid polarity con-
straints P1, P2, P3, P4 for a relation Rtf , clause constraints
C1, C2, C3, C4, three instantiated variables u, v, w ∈ φ and
a corresponding set of constraints Θ as specified in Condi-
tion 2.2.

If the clause constraints satisfy Condition 2.2 and 2.3,
then we can add to u and v any number of redundant clauses
containing one of the literals u or ¬u and one of the literals
v or ¬v, transform them to the corresponding constraints,
add them to Θ and enforce path-consistency without chang-
ing the existing constraints of Θ.

Proof Sketch. We first prove the case where all redun-
dant clauses have either w or ¬w as a third literal. Simi-
lar to Lemma 1, we prove this by induction over the num-
ber of redundant clauses. The induction base holds because
Condition 2.2 holds. When adding three new literal occur-
rences for a new redundant clause and the corresponding
clause constraints, then there is at least one existing redun-
dant clause for which we added exactly the same constraints.
We have already computed every possible triple of variables
that can occur when adding these constraints and therefore
the result of enforcing path-consistency is the same as with
the existing redundant clause. Since adding the previous re-
dundant clause didn’t changed any existing constraints (this
is guaranteed by Condition 2.2 and 2.3), the new one will
not change anything either.



Figure 4: Extra conditions for clause constraints. a: the clause constraints of Condition 2.1; b: this highlights one of the 14
redundant clauses of Condition 2.2 for three variables u, v, w and shows literal constraints for the other redundant clauses.

Now we prove the case where the third literal of a redun-
dant clause can be any other variable wi. We assume that all
redundant clauses have one of wi or ¬wi as a third literal,
where i ∈ {1, 2, 3, . . .} and each wi is instantiated. We first
group the variables wi into those that are instantiated as true
and those instantiated as false. All wi that are instantiated as
true can have the same 2× 7 redundant clauses as described
in Condition 2, and likewise for for all wi that are instanti-
ated as false. Since there are no other constraints between
the different wi other than those given by the clause con-
straints of the redundant clauses, we can assume that all true
wi are equal and also all false wi are equal, we call them
wt and wf , respectively (Assumption 1). If we replace all
wf in the redundant clauses with ¬w′

t and all ¬wf with w′
t,

then both wt and w′
t can have exactly the same 2× 7 redun-

dant clauses, and therefore we can assume that wt and w′
t

are equal (Assumption 2). It follows from the above proven
case that adding any number of redundant clauses over three
variables u, v, w cannot change the existing constraints of
Θ. Since both, assumption 1 and assumption 2 make the ad-
ditional constraints on Θ more restrictive, it follows that the
redundant clauses that use the different variables wi cannot
change the existing constraints Θ either.
With Lemma 1 and Lemma 2 we have shown that the prop-
erties of redundant clauses for satisfiable 3SAT formulas φ
as specified in Proposition 1 also hold when transforming
φ to a set of constraints Φ using the given transformation
schema.

Step 3: Applying closure
In the previous two steps we identified relations R for which
we can find a literal constraint, and polarity and clause con-
straints when adding them to a tractable set I ⊂ 2B. In the
final step of our procedure, we compute for which relations
R′ ∈ 2B the closure of I with R′ contains a relation R.
Adding R′ to I gives the same complexity as adding R. It
is possible to interleave this step with the previous steps and
once we have found polarity and clause constraints for one
relation R immediately transfer the result to all relations R′

that contain R in their closure. We can speed up our proce-
dure by selecting the order in which we process the relations
according to the size of their closure, relations with smaller

Algorithm: NPHARD-EXTENSIONS(I,E)
Input: A tractable subset I and possible extensions E
Output: A set O ⊆ E of relations which make I NP-hard
1. O = ∅;
2. For all R ∈ E do
3. C = closure(I ∪ {R}); loop = true;
4. If C ∩ O 6= ∅ then O = O ∪ {R}; continue;
5. while (loop == true) do
6. Find a Rtf and new pol. constraints for Rtf in C
7. If none can be found then loop = false; continue;
8. If pol. constraints don’t satisfy Cond. 1 continue;
9. Find new clause constraints in C for the Rtf and

the pol. constraints which satisfy Condition 2;
10. If found, then O = O ∪ {R}; loop = false;
11. end while
12. end for
13. return O

Figure 5: Procedure for finding NP-hard extensions of I
closure first. Another improvement is to first test whether a
relation R can be shown to be NP-hard when adding it to the
base relations B. This reduces the search space for finding
polarity and clause constraints and implies NP-hardness of
I ∪ {R} if successful. If unsuccessful, we test I ∪ {R}.

We can now prove that every set of literal constraints,
polarity constraints and clause constraints that satisfies our
conditions gives us a many-one reduction of 3SAT to CSP-
SAT. The procedure is sketched in Figure 5. Note that not
all mentioned impovements are included in the sketch. De-
pending on which clause constraints we use, we can use the
same procedure also to reduce ONE-IN-THREE-3SAT or
NOT-ALL-EQUAL-3SAT to CSPSAT.
Theorem 1 Given a set of relations 2B and a tractable sub-
set I ⊂ 2B for which path-consistency decides consistency
as input to our procedure. For every relation H of the output
set O of our procedure, CSPSAT({H} ∪ I) is NP-hard.
Proof Sketch. We have to show that for every H ∈ O
our procedure finds a many-one reduction of a 3SAT variant
to CSPSAT({H} ∪ I). It is clear from the transformation
schema that whenever a 3SAT instance φ is unsatisfiable,
then the corresponding set of CSPSAT constraints Φ is in-
consistent. We now show that whenever φ is satisfiable, Φ



will be consistent. We assume that we have a satisfiable in-
stantiation of all variables of φ. Since φ is consistent, we
know that all clauses of φ are redundant clauses. We now
show that a refinement of Φ is already consistent:

Given a satisfiable 3SAT formula φ(n) with n variables
that contains all possible redundant clauses. The transfor-
mation schema transforms φ(n) to Φ(n), applying path-
consistency leads to Φ′(n). We prove by induction over the
number of variables n that Φ(n) is consistent for any n ≥ 3.
The induction base with n = 3 holds, because the trans-
formation schema satisfies Condition 2.2. Therefore, Φ′(3)
is a path-consistent set that contains only relations of I, and
hence Φ′(3) is consistent. We assume that Φ(n) is consistent
and prove consistency of Φ(n + 1). We successively trans-
form the redundant clauses for the new variable vn+1 to the
corresponding constraints. Each new redundant clause con-
tains two literals over variables in φ(n). By Lemma 2 we
know that these new constraints do not change any existing
constraints of Φ′(n). Therefore, the only possibility how
Φ(n + 1) can become inconsistent is via the newly intro-
duced constraints. However, the path-consistency algorithm
only ever looks at triples of relations and any triple can be-
long to constraints corresponding to at most three different
variables vi, vj , vk. Because of Condition 2, we have already
tested all possible triples for three variables vi, vj , vk and
none of them can lead to an inconsistency. The additional
literal constraints also do not affect consistency, as shown in
Lemma 1. Since all redundant clauses are the same for all
triples of variables, it makes no difference if vn+1 is one of
the three variables. Therefore, Φ(n + 1) must be consistent
too, and by induction it follows that Φ(n) is consistent for
all n.

We know that φ ⊆ φ(n) and therefore Φ(n) must be a
refinement of Φ. Since Φ(n) is consistent, Φ must be con-
sistent too.

Empirical Evaluations of the Procedure
Our procedure can be applied to any binary spatial or tem-
poral calculus, and correctness of our procedure is guaran-
teed if path-consistency decides consistency for the input
set. The only limitation of our procedure is the runtime it
takes to compute polarity constraints for a given set of re-
lations (computing clause constraints is much faster and the
different conditions can be checked instantly). In the worst
case, this is of the order O(n6) where n is the cardinality
of the largest closure we test. Using the optimizations we
presented we can bring this down considerably, but there is
clearly a limit in the size we can handle. We will further
discuss the limitations in the following section.

We did all tests on an Intel Core2Duo 2.4GHz proces-
sor with 2GB of RAM and only use the 3SAT version of
our procedure. We initially applied our implementation to
RCC8 and used the set of base relations as input set, i.e., we
tested NP-hard subsets as well as tractable subsets. Our pro-
cedure terminated in less than four hours and we identified
all 76 known NP-hard relations. It turned out that none of
the polarity and clause constraints we found violated the ad-
ditional conditions we require, i.e., polarity and clause con-
straints were only found for NP-hard relations. We then used

the three known tractable subsets (Renz 1999) that were also
identified automatically in (Renz 2007) as input sets. We
showed maximality of Ĥ8 in 12 minutes, Q8 in 17 minutes
and C8 in 30 minutes. This means that for RCC8 we can
identify all maximal tractable subsets automatically, prove
that they are tractable and now also that they are maximal.

The next calculus we tested was the Cardinal Direction
Calculus (Ligozat 1998). It has nine base relations and 512
relations in total. Ligozat (1998) identifed one maximal
tractable subset which consists of all relations with the pre-
convexity property. We first ran our algorithm with the base
relations as input set. After 21 hours it returned a set of
NP-hard relations that was exactly the complement of the
set of preconvex relations. One interesting observation we
made was that there were many relations for which we found
polarity and clause constraints but for which the additional
conditions were not satisfied. This shows that the conditions
we identified in order to be able to prove correctness of our
procedure are very important in practice. We ran our proce-
dure again with the set of preconvex relations as input and
were able to prove maximality of the set in two minutes.

Our next test was the Interval Algebra. As for the pre-
vious calculi, we first tried to use the set of base relations
as input set. Again, we found many polarity and clause
constraints for tractable relations, but none of them satis-
fied the additional conditions. While some relations were
solved quickly, we stopped our procedure as for some rela-
tions the computation took too long. Then, we used ORD-
Horn as input set (Nebel & Bürckert 1995), the only maxi-
mal tractable subset of the Interval Algebra that contains all
base relations. It was also identified as tractable by (Renz
2007). Our procedure found that there are only 27 distinct
closures when adding relations to ORD-Horn, but some of
them are also very large. Fortunately, it turned out that two
of the 27 closures are contained in all the remaining 25 clo-
sures. Our procedure, therefore, had to test only these two
relations: (d,di) has 106 relations in its closure with B, and
(o,oi) has 162 relations. Our procedure proved NP-hardness
of the two sets (and consequently maximality of ORD-Horn)
in 1.5 hours.

Discussion of the Limitations of our Procedure
We proved correctness of our algorithm, i.e., whenever the
algorithm identifies a set to be NP-hard, then it is indeed
NP-hard, but we didn’t prove completeness, i.e., whenever
a set is NP-hard, then our algorithm identifies it. Due to the
definition of NP-hardness, there must be a polynomial trans-
formation from 3SAT to CSPSAT(S) whenever S is NP-
hard. The question is whether this transformation always co-
incides with our transformation schema. Our schema is very
generic and doesn’t have any restrictions regarding the set S
of relations it can be applied to. It individually transforms
variables, literals, and clauses of a 3SAT formula to corre-
sponding sets of constraints over S in a very natural and
intuitive way. The transformation is invariant with respect
to the order of literals in clauses and scales to any number
of clauses. These are good indications that the procedure
might be complete. This is also supported by the tests we



have done so far, where all NP-hard subsets were identified.
Apart from these indications, a completeness proof seems

impossible. If our procedure is complete, we would be able
to use it for proving that a set is tractable, which seems too
good to be true — and as a side-effect we would get a proof
for P 6=NP! Tractability, however, can already be shown by
the sound procedure developed by Renz (2007). It will be
very interesting to analyze the interactions of these two pro-
cedures. Together, they might give us a sound and complete
decision procedure for NP-hardness and tractability.

The main limitation of our procedure is its runtime. Even
though our procedure can be applied to any binary calculus
with a given composition table, it is clear that for large cal-
culi our procedure might not terminate in reasonable time.
The worst case complexity of our procedure is O(n6) where
n is the size of the largest subset we have to fully analyze.
On todays computers, the limit of an O(n6) algorithm is
reached if n ≈ 1000. We assume that the practical limit for
our procedure are calculi of a size not much larger than the
Interval Algebra. This covers many existing and useful spa-
tial and temporal calculi. Much larger calculi are unlikely to
terminate in reasonable time on todays computers.

However, large calculi such as the rectangle algebra (Bal-
biani, Condotta & del Cerro 1998) with 169 base relations
and approximately 1050 relations in total (exactly 2169 rela-
tions), are impossible to analyze computationally anyway.
For these calculi we cannot even enumerate all relations.
The minimum requirement for analysing a calculus with
computer assistance is to be able to compute all possible
closures of the base relations with any other relation. If this
is not possible, an analysis can only be done manually. A
simple approximation whether a computational analysis is
possible for a calculus is to compute and to store its full
composition table. Given these limitations, the gap between
calculi that can be analyzed computationally and calculi that
can be solved by our procedure is very small.

Conclusions
We developed a procedure for automatically proving NP-
hardness of subsets of qualitative spatial or temporal calculi.
Our procedure produces correct proofs provided that path-
consistency decides consistency for the input set of our pro-
cedure. The results of our procedure mark the upper bound
of tractability. When combining it with the lower bound of
tractability, which can also be obtained automatically using
the procedure presented by Renz (2007), it becomes possible
to identify maximal tractable subsets of a calculus fully auto-
matically. We tested our procedure on different well-known
calculi and reproduced all known NP-hardness results auto-
matically in a very reasonable time. Future work is to an-
alyze situations where upper and lower bound do not meet
and to develop ways in which the two procedures can inter-
act in order to bring the two bounds together. It would also
be interesting to find algebraic conditions which guarantee
that relations satisfy the additional conditions we require.
From a more general perspective, our results demonstrate
that automatic generation of complexity results is possible.
We hope that this inspires other researchers to develop algo-
rithms for automatically solving other problem classes.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Communications of the ACM 26(11):832–843.
Balbiani P.; Condotta J-F.; and del Cerro, L. F. 1998. A
model for reasoning about bidimensional temporal rela-
tions. Proceedings of the Sixth International Conference
on Principles of Knowledge Representation and Reasoning
(KR’98), 124–130.
Cohn, A. G., and Renz, J. 2008. Qualitative Spatial Repre-
sentation and Reasoning. In Handbook of Knowledge Rep-
resentation. Elsevier, 551-596.
Garey, M. R., and Johnson D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman.
Li J. J., Kowalski T., Renz J., and Li S. 2008. Combining
binary constraint networks in qualitative reasoning. Pro-
ceedings of the 18th European Conference on Artificial In-
telligence (ECAI’08).
Ligozat G. 1998. Reasoning about cardinal directions.
Journal of Visual Languages & Computing 9(1):23–44.
Nebel, B., and Bürckert, H.-J. 1995. Reasoning about tem-
poral relations: A maximal tractable subclass of Allen’s
interval algebra. Journal of the ACM 42(1):43–66.
Nebel, B. 1997. Solving hard qualitative temporal reason-
ing problems: Evaluating the efficiency of using the ORD-
Horn class. Constraints 3(1):175–190.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial
logic based on regions and connection. Proceedings of the
3rd International Conference on Principles of Knowledge
Representation and Reasoning (KR’92), 165–176.
Renz, J., and Ligozat, G. 2005. Weak Composition for
Qualitative Spatial and Temporal Reasoning. Proceedings
of the 11th International Conference on Principles and
Practice of Constraint Programming (CP’05), 534-548.
Renz, J., and Nebel, B. 1999. On the complexity of qualita-
tive spatial reasoning: A maximal tractable fragment of the
Region Connection Calculus. Artificial Intelligence 108(1-
2):69–123.
Renz, J., and Nebel, B. 2001. Efficient methods for qual-
itative spatial reasoning. Journal of Artificial Intelligence
Research 15:289–318.
Renz, J. 1999. Maximal tractable fragments of the region
connection calculus: A complete analysis. Proceedings of
the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI 99), 448–455.
Renz, J. 2007. Qualitative spatial and temporal reason-
ing: Efficient algorithms for everyone. Proceedings of the
20th International Joint Conference on Artificial Intelli-
gence (IJCAI’07), 526–531.


