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Abstract

Although the computational properties of the
Region Connection Calculus RCC-8 are well
studied, reasoning with RCC-8 entails several
representational problems. This includes the
problem of representing arbitrary spatial re-
gions in a computational framework, leading
to the problem of generating a realization of
a consistent set of RCC-8 formulas. A fur-
ther problem is that RCC-8 performs reason-
ing about topological space, which does not
have a particular dimension. Most applica-
tions of spatial reasoning, however, deal with
two- or three-dimensional space. Therefore,
a consistent set of RCC-8 formulas might not
be realizable within the desired dimension.
In this paper we address these problems and
develop a canonical model of RCC-8 which al-
lows a simple representation of regions with
respect to a set of RCC-8 formulas, and, fur-
ther, enables us to generate realizations in
any dimension d > 1, even when regions are
constrained to be (sets of) polytopes. For
three- and higher-dimensional space this can
also be done for internally connected regions.

1 INTRODUCTION

The Region Connection Calculus (RCC) (Randell et
al. 1992) is a topological approach to qualitative spa-
tial representation and reasoning (Cohn 1997) where
spatial regions are regular subsets of a topological
space. Of particular interest for application purposes
is RCC-8, a sub-calculus of RCC that uses eight mu-
tually exhaustive and pairwise disjoint base relations.
The computational properties of RCC-8 have been
studied thoroughly (Nebel 1995; Renz and Nebel 1997)
and efficient reasoning mechanisms were identified.

Despite this, there are still several problems with rep-
resenting spatial regions within RCC-8. As the calculus
is based on topology, spatial regions might be arbitrary
subsets of a topological space which are not necessar-
ily analytically describable; therefore, it appears to be
difficult to represent spatial regions in a computational
framework.

Another representational drawback of using RCC-8 is
that a topological space does not have a particular di-
mension, whereas most applications of qualitative spa-
tial reasoning deal only with two- or three-dimensional
space. It might be possible that a set of RCC-8 formu-
las is consistent but not realizable within a particular
dimension. Lemon (1996) gave an example of a set
of spatial formulas which is realizable in three dimen-
sional space but not in two dimensional space if regions
are internally connected. Lemon used this result to ar-
gue that spatial logics like RCC are not an adequate
formalism for representing space.

A further problem, which also depends on the ability
to represent spatial regions, is finding a realization of
a consistent and realizable set of spatial formulas in a
particular dimension, instead of just knowing whether
the set is realizable or not.

In this paper, we will refer to these representational
topics. In order to represent arbitrary spatial regions,
it is necessary to have a canonical model of RCC-8,
i.e., a structure that allows to model any consistent
sentence of the calculus. Topological space is of course
a canonical model, but, as described above, this does
not seem to be very useful for representing regions.
Therefore, we will present a new canonical model of
RCC-8 that permits a simple representation of spatial
regions by reducing them to their necessary topological
features with respect to their spatial relations. Based
on this model, we will prove that for any consistent set
of spatial formulas there are realizations in any dimen-
sion d > 1 when regions are allowed to be internally



disconnected. This is still true even when regions are
constrained to be sets of polytopes. Actually, inter-
nal connectedness of regions is not at all forced in the
RCC-theory, so RCC can still be seen as an adequate
representation formalism of space. We will also ar-
gue that forcing internal connectedness of all regions
is too restrictive when dealing with spatial regions.
Nevertheless, we will prove that in three- and higher
dimensional space every consistent set of spatial for-
mulas can always be realized with internally connected
regions. Using the new canonical model for represent-
ing spatial regions, it becomes possible to determine
realizations of consistent sets of spatial formulas. We
will give algorithms for generating realizations of both
internally connected and disconnected regions.

The remainder of the paper is structured as follows: In
Section 2 we introduce RCC-8 and some basic topolog-
ical notions. Section 3 sketches the modal encoding of
RCC-8 and presents the new canonical model of RCC-8.
In Section 4 we give a topological interpretation of this
model which is used in Section 5 to prove the results
about realizations in particular dimensions. Section 6
describes how models of sets of spatial relations can
be determined and how realizations can be generated.
In Section 7 we will discuss our results.

2 QUALITATIVE SPATIAL
REPRESENTATION WITH RCC

RCC is a topological approach to qualitative spatial
representation and reasoning where spatial regions are
regular subsets of a topological space (Randell et al.
1992). Relationships between spatial regions are de-
fined in terms of the relation C(r,s) which is true
if and only if the closure of region r is connected to
the closure of region s, i.e., if they share a common
point. Regions themselves do not have to be inter-
nally connected, i.e., a region may consist of different
disconnected pieces. The domain of spatial variables
(denoted as X,Y, Z) is the whole topological space.

RCC-8 (Randell et al. 1992) uses a set of eight pairwise
disjoint and mutually exhaustive relations, called base
relations, denoted as DC, EC, PO, EQ, TPP, NTPP,
TPP~', and NTPP ', with the meaning of DisCon-
nected, Externally Connected, Partial Overlap, EQual,
Tangential Proper Part, Non-Tangential Proper Part,
and their converses. Examples for these relations are
shown in Figure 1.

Sometimes it is not known which of the eight base
relations holds between two regions, but it is pos-
sible to exclude some of them. In order to rep-
resent this, unions of base relations can be used.
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DC(X,Y) EC(X,Y) TPP(X,Y) TPPT(X,Y)
O(X,Y) EQ(X,Y) NTPP(X,Y) NTPP~(X,Y)

Figure 1: Two-dimensional examples for the eight base
relations of RCC-8.

Since base relations are pairwise disjoint, this results
in 28 different relations. A spatial formula S(X,Y)
is a relation between two spatial variables, a spa-
tial configuration is a set © of spatial formulas. ©
is consistent if it is possible to find a realization of
0O, i.e., a model where every spatial variable is in-
stantiated by a spatial region such that all relations
hold between the regions. A consistent instantia-
tion of the spatial variables X,Y,Z will be denoted
as X,Y,Z, respectively. Computational properties of
reasoning with RCC-8 were studied in (Nebel 1995;
Renz and Nebel 1997).

As we will go further into topology, we will define some
common topological terms:

Definition 2.1 Let U be a set, the universe. A topol-
ogy on U is a family T of subsets of U, with

1. ifOl, 0, € T, then O1NO5 € T,

2. ifO; €T foriel, then|JO; €T,

3. 0,UeT.

A topological space is a pair (U, T). Every subset O C
U with O € T is open.

If the particular topology T on a set U is not impor-
tant, we say that U is a topological space.

Definition 2.2 Let U be a topological space, M C U
be a subset of U and p € U be a point in U.

e M is closed if U \ M is open.

e N C U is said to be a neighborhood of p if there
is an open subset O C U such that p € O C N.

e p is said to be an interior point of M if there is
a neighborhood N of p contained in M. The set
of all interior points of M is called the interior of
M, denoted i(M).



p is said to be an exterior point of M if there is
a neighborhood N of p that contains no point of
M. The set of all exterior points of M is called
the exterior of M, denoted e(M).

e p is said to be a boundary point of M if every
neighborhood N of p contains at least one point
in M and one point not in M. The set of all
boundary points of M is called the boundary of
M, denoted b(M).

e The closure of M is the smallest closed set which
contains M, i.e., M Ub(M).

e For any arbitrarily given point p € U, the family
of all neighborhoods of p in U is called the neigh-
borhood system of p in U.

A neighborhood system N has the property that every
finite intersection of members of A/ belongs to V.

It is possible to use any topological space which is a
model for the RCC axioms as specified in (Randell et
al. 1992). Gotts (1996) has shown that every regular
connected topological space is a model for the RCC
axioms (see also Section 7). So, whenever we refer to
a topological space in the remainder of the paper, we
mean a regular connected topological space.

3 MODAL ENCODING &
CANONICAL MODELS

After making a brief introduction to modal logic, we
will introduce the modal encoding of RCC-8 and a
canonical model for this encoding.

3.1 MODAL LOGIC & KRIPKE
SEMANTICS

Propositional modal logic (Fitting 1993; Chellas 1980)
extends classical propositional logic by additional
unary modal operators O;. A common semantic inter-
pretation of modal formulas is the Kripke semantics
which is based on a Kripke frame F = (W, R) consist-
ing of a set of worlds W and a set R of accessibility
relations between the worlds, where R C W x W for
every accessibility relation R € R. A different acces-
sibility relation Rn, € R is assigned to every modal
operator O;. If u,v € W, R € R, and uRv holds, we
say that v is R-accessible from v or v is an R-successor
of u.

A Kripke model M = (W, R,w) uses an additional
valuation 7 that assigns each world and each propo-
sitional atom a truth value {true, false}. Using a
Kripke model, a modal formula can be interpreted with

S(X,Y) | Model Constraints| Entailment Constraints
DC —|(X A Y) =X, Y
EC ~(IXATY) (X AY), =X, =Y
PO — S(IXALY), X =Y,
Y = X, =X,2Y
TPP X =Y X = IY,Y = X, =X, =Y
TPP-! Y = X Y 5 IX, X = Y, =X, =Y
NTPP X —=1IY Y = X, =X, 2Y
NTPP~! Y = IX X =Y, =X, Y
EQ | X=VY,YoX -X, Y

Table 1: Encoding of the base relations in modal logic

respect to the set of worlds, the accessibility relations,
and the valuation. For example, a propositional atom
a holds in a world w of the Kripke model M (written as
M,w |k a) if and only if 7(w,a) = true. An arbitrary
modal formula is interpreted according to its inductive
structure. A modal formula O;¢, e.g., holds in a world
w of the Kripke model M, i.e., M, w |F O;¢p, if and only
if ¢ holds in all Rp,-successors of w. M, w |F-0;¢p if
and only if there is an Rg,-successor of w where ¢ does
not hold.

Different modal operators can be distinguished accord-
ing to their different accessibility relations. In this
paper we are using a so-called S4-operator and an S5-
operator. The accessibility relation of an S4-operator
is reflexive and transitive, the accessibility relation of
an S5-operator is reflexive, transitive, and euclidean.

3.2 MODAL ENCODING OF RCCS8

The encoding of RCC-8 in propositional modal logic
was introduced by Bennett (1995) and extended in
(Renz and Nebel 1997). In both cases the encoding
is restricted to regular closed regions. The encoding
is based on a set of model and entailment constraints
for each base relation, where model constraints must
be true and entailment constraints must not be true.
Bennett encoded these constraints in modal logic by
transforming every spatial variable to a propositional
atom and introducing an S4-operator I which he inter-
preted as an interior operator (Bennett 1995). In order
to distinguish between spatial variables and the corre-
sponding propositional atoms we will write proposi-
tional atoms as X,Y. Table 1 displays the constraints
for the eight base relations. In order to combine them
to a single modal formula, Bennett introduced an S5-
operator! O, where Oy is written for every model con-
straint ¢ and -0 for every entailment constraint
(Bennett 1995). All constraints of a single base rela-
tion are then combined conjunctively to a single modal

!Bennett called this a strong S5-operator as all worlds
are Rp-accessible from each other, i.e., Ru =W x W.



formula. In order to represent unions of base relations,
the modal formulas of the corresponding base relations
are combined disjunctively. In this way every spatial
formula S(X,Y) can be transformed to a modal for-
mula m; (S(X,Y)). Additional constraints mq(X) are
necessary to guarantee that only regular closed regions
are used (Renz and Nebel 1997): every region must be
equivalent to the closure of its interior, and the com-
plement of a region must be equivalent to its interior.

ma(X) = O(X < —~I-IX) A O(=X ¢ I-X).

So, any set of spatial formulas © can be written as a
single modal formula m(©)

m@©) =\ mi(S(X,Y)) A

S(X,Y)e®©

/\ m2(X)7

X€Reg(O)

where Reg(0) is the set of spatial variables of ©.

3.3 A CANONICAL MODEL OF RCCS8

The modal encoding of RCC-8 can be interpreted by
Kripke models. As the modal encoding of RCC-8 is
equivalent to a set of RCC-8 formulas (Bennett 1995),
a canonical model of RCC-8 is a structure that allows a
Kripke model for the modal encoding of any consistent
set of spatial formulas ©. In order to obtain a canon-
ical model, we distinguish different levels of worlds of
W (Renz and Nebel 1997). A world w is of level 0 if
there is no world v # w with vRyw. A world w is of
level if there is a world v of level [ — 1 with vRyw and
there is no world u # w of a level higher than [ — 1
with uRjw. Based on this hierarchy of worlds, we will
define the canonical model of RCC-8.

Definition 3.1 An RCC-8-structure Sgccs = (W,
{Ro, R1},7s) has the following properties:

1. Ws contains only worlds of level 0 and 1.

2. For every world u of level 0 there are exactly 2n
worlds v of level 1 with uRyv. These 2n+1 worlds
form an RCC-8-cluster (see Figure 2).

3. For every world v of level 1 there is exactly one
world u of level 0 with uRyv.

4. For all worlds w,v € Ws: wRyw and wRgwv.

Srccs contains RCC-8-clusters with all possible
valuations® with respect to Ry. A set of RCC-8-clusters
M = (W,{Rp, R1},7) C Srccs is an RCC-8-model of
m(0) if M,w|-m(O) for a world w e W. In a poly-
nomial RCC-8-model the number of worlds is polyno-
mially bounded by the number of regions n.

Figure 2: Three possible RCC-8-clusters of Sgocs-
Worlds are drawn as circles, the arrows indicate Rj.

In (Renz and Nebel 1997) it was proven that if m(0)
is satisfiable, there is a polynomial RCC-8-model M
with M, w |- m(©) that uses O(n?) different worlds of
level 0 — one world of level 0 for every entailment con-
straint. So the RCC-8-structure Sgpccs is a canonical
model® of the modal encoding of RCC-8. In order to
obtain a “topological” canonical model for the topo-
logical calculus RCC-8, we give in the next section a
topological interpretation of RCC-8-models.

4 TOPOLOGICAL
INTERPRETATION OF THE
CANONICAL MODEL

The modal encoding of RCC-8 was obtained by intro-
ducing a modal operator I corresponding to the topo-
logical interior operator and transferring the topolog-
ical properties and axioms to modal logic. Using the
intended interpretation of I as an interior operator,
it is unclear how the Kripke models we consider, es-
pecially the accessibility relations Rg and Ry, can be
interpreted topologically. In this section we present a
way of topologically interpreting RCC-8-models such
that all parts of the models can be interpreted con-
sistently on a topological level. The I-operator will
not be interpreted as an interior operator, but we will
prove that it suffices the intended interpretation.

Because I is an S4-operator and because of the addi-
tional constraints ma(X), exactly one of the following
formulas is true for every world w of M and every
propositional atom X (see Figure 2).

1. M,w|FIX
2. M,w |- I-X
3. M,w|F X A—IX

2As the number of spatial variables is countable, the
number of RCC-8-clusters is also countable.

3The RCC-8-structure does not cover all possible Kripke
models of m(©). The goal of a canonical model is just to
provide a model for any consistent sentence of a calculus,
not to cover all possible models.



Consider a particular world w. Then the set of all
spatial variables can be divided into three disjoint sets
of spatial variables according to which of the three
possible formulas is true in w. Let Z,,, &,, and B,
be the sets where the first, the second, and the third
formula is true in w, respectively, i.e., M,w|FIX A
I-YA(ZA-IZ) for all X € 7,,, Y € &, and Z € B,,.

When looking at points in a topological space, for ev-
ery region there are three different kinds of points: in-
terior points, exterior points, and boundary points of
a region. If a point is interior or exterior point of a re-
gion, there is a neighborhood of the point such that all
points of the neighborhood are also inside or outside
the region, respectively. If a point is boundary point
of a region, every neighborhood contains points inside
and points outside the region (see Definition 2.2).

There seems to be a correspondence between worlds
and points of a topological space, and between the ac-
cessibility relation Ry and topological neighborhoods.
In the following lemma we further investigate this cor-
respondence by deriving topological constraints from
the modal formulas.

Lemma 4.1 Let X and Y be two spatial variables of
O. Depending on which sets T,,E,, or By they are
contained in for a world w, the following relations be-
tween X and Y are impossible. This has some topo-
logical consequences on possible instantiations X,Y:

X | Y | Impossible Relations | Consequences
Tv | Zw | DC,EC i(X)Ni(Y) #0
T, | & | TPP,NTPP,EQ i(X)Ne(Y) #0
Ty | By | DCEC, TPP,

NTPP,EQ i(X) Nb(Y) #0
Ew | Ew | — -
Ew | By | TPPTL NTPP L EQ | e(X) ND(Y) # 0
By | B, | DC,NTPP,NTPP™! | b(X) Nb(Y) # #*

Proof: Most entries in the table follow immediately
from the encoding of the relations in modal logic. The
only more difficult entry is the relation EC(X,Y) in
the third line of the table. This relation is not pos-
sible because of the property O(Y — —I-IY) which
states that for any world w that satisfies Y there is a
world v with wRyv that satisfies IY. As v also satis-
fies IX, the model constraint of EC(X,Y) is violated,
so this relation is not possible. The topological conse-
quences result from distinguishing the impossible from
the possible relations. m|

“If PO(X,Y) holds, X and Y do not necessarily have
a common boundary point if one of them is not internally
connected. However, assuming b(X) N b(Y) # @ in this case
does not contradict any spatial formula since RCC-8 is not
expressive enough to distinguish different kinds of partial
overlap.

It can be seen that when, e.g., IX and IY hold in a
world w, then X and Y must have a common interior.
So, there is a common interior point of X and Y where
w can be mapped to.

Theorem 4.2 Let © be a consistent set of spatial
formulas, m(©) be the modal encoding of ©, and
M = (W,{Ra, R1},7) be an RCC-8-model of m(0).
Then there is a function p : W — U that maps each
world w € W to a point p(w) € U and a function
N : W s 2Y that assigns each world w € W a neigh-
borhood N (w) of p(w) such that p(w) is in the interior
of X if M,w|-IX holds, p(w) is in the exterior of X
if M,w|-1=X holds, p(w) is on the boundary of X if
M,w |F XA-IX holds, and p(u) € N(w) if and only if
wRyu holds.®

Proof: Let w be a world of W and 7,,&,, and
B, be the corresponding sets of spatial variables. We
assume that there is a realization of © such that there
is at least one point in the topological space that is in
the interior of every X, in the exterior of every Y, and
on the boundary of every Z simultaneously (X € Z,,
Y € &, Z € By). It follows from Lemma 4.1 that
this is true for every pair of regions. As RCC-8 permits
only binary constraints between spatial variables and
regions are allowed to be internally disconnected, this
assumption holds. We further assume that p maps w
to one of these points.

Because of Definition 2.2, there must be neighbor-
hoods Nx(w) and Ny (w) of p(w) for every X € 7,
and every Y € &, such that Nx(w) is in the interior
of X and Ny (w) is disjoint with Y. Also, for every
Z € By, every neighborhood Nz(w) of p(w) contains
points inside and outside Z. All these neighborhoods
are members of the neighborhood system of p(w), so
their intersection N (w) is also a neighborhood of p(w)
where all Ry-successors of w can be mapped to. O

Using the above defined functions p and N, M, w |- IX
can be interpreted as “there is a neighborhood N (w)
of p(w) such that all points of N(w) are in X”. This
obeys the intended interpretation of I as an interior
operator, as M, w |F X means that p(w) is in X and
M, w |k IX means that p(w) is in the interior of X.

The function N, as defined in Theorem 4.2, can be
replaced by any function N’ : W — 24, with N'(w) C
N(w) for all w € W, if N'(w) is a member of the
neighborhood system of p(w). p has to be changed ac-
cordingly. In particular, we will regard in the following

®The properties for Ro (p(u) € U if wRou holds and
p(w) € U) can be omitted as we already defined N and p
such that only points of I/ are used.



all neighborhoods as d-dimensional spheres.

In order to make the following argumentation easier,
a world mapped to an interior point of X is denoted
interior world of X, a world mapped to an exterior
point of X exterior world of X, and a world mapped to
a boundary point of X boundary world of X. Accord-
ingly, a region is called interior, exterior or bound-
ary region of a world. In particular, a world w with
M, w|FIX is an interior world of X, a world w with
M, w |FI-X is an exterior world of X, and a world w
with M, w |- X A =IX is a boundary world of X.

5 RCC8-MODELS AND THE
DIMENSION OF SPACE

In the previous section we have shown how the RCC-8-
models introduced in Section 3 can be mapped to topo-
logical space, but we still have no information about
the dimension of the topological space. In this sec-
tion we investigate the influence of dimension on the
possibility to map the RCC-8-models to the topological
space, i.e., which dimension is required in order to find
a realization of a consistent set of spatial formulas ©.
We will start with proving that for any RCC-8-model
there is a realization in two-dimensional space. It is
sufficient to prove this only for sets of base relations
as every realization of © uses only base relations.® For
this proof it is important to keep in mind that regions
do not have to be internally connected, i.e., they might
consist of different disconnected pieces. It will turn out
that our proof leads to realizations in any dimension
d > 1. Finally, for three- and higher-dimensional space
we will prove that every consistent set © can also be
realized with internally connected regions.

For the following examination we restrict regions to
be sets of d-dimensional polytopes. Sets are required
since regions might consist of several disconnected
pieces where each piece is a single polytope. This
restriction will be lifted later and the results can be
generalized to arbitrary regular regions.

Let © be a consistent set of spatial formulas and M
be an RCC-8-model of m(®), the modal encoding of
0. Suppose that only two-dimensional regions are per-
mitted, i.e., the topological space is a two-dimensional
plane Y. All worlds of M are mapped to points of
as specified in Theorem 4.2. The general intuition of
the proof is that every RCC-8-cluster, i.e., every world
of level 0 together with its Rj-successors is mapped to
an independent neighborhood such that each neigh-

5The relation EQ can be omitted as any pair of spatial
variables X and Y with EQ(X,Y) can be combined to a
single spatial variable.
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Figure 3: Permutation P, of the Ry-successors of a
world w. The solid line indicates the boundary of X,
the hashed region the interior of X.

borhood can be placed on an arbitrary but distinct
position on the plane. Each neighborhood will then be
extended to different closed sets that form the pieces
of the spatial regions. In the following we will study
the requirements neighborhoods have to meet in order
to guarantee two-dimensional realizations.

For every spatial variable X; (1 < ¢ < n) and ev-
ery world w of level 0, we define a region wvector

ri = (r,...,r}%,) that represents the affiliation
of the 2n Ry-successors of w to X;, ie., ri¥; = 1 if

M, |- X; and ri?; = 0 if M,v; |/ X; where v; is the
jth Ry-successor of w. Since in the two-dimensional
case the neighborhood N (w) is a disc, we suppose that
the points p(v;) corresponding to the Ry-successors v;
of w are clock-wisely ordered within the disc according
to j. If p(w) is a boundary point of X;, some values of
ri are 1 and some are 0. Otherwise all values of r"
are either 1 (if p(w) is contained in X;) or 0 (if p(w) is
not contained in X;).

Lemma 5.1 If for every world w of level 0 there
is a permutation P, of the values of r such that
(TZ]PM(I)P"’TZ]PMQW,)) is a bitonic sequence for all
1 <i < n, then the neighborhoods N(w) can be placed
in a two-dimensional plane such that all spatial rela-
tions are satisfied within the neighborhoods.

Proof: If r}’ is a bitonic sequence, i.e., the values
of ¥ are in a form 0°1709 or 1¢0719 for e, f,g > 0,
and p(w) is a boundary point of X;, then the map-
pings of the worlds of level 1 corresponding to the val-
ues of 7} can be separated into points inside X; and
points outside X; by at most two line segments meet-
ing at p(w) (see Figure 3). These line segments can
be regarded as the part of the boundary of X; which is
inside N(w). So, neighborhoods can be separated in
an interior and an exterior part of a region by a one-
dimensional boundary. Therefore all neighborhoods
can be placed in a two-dimensional plane. As the per-



mutation of the Rj-successors has no influence on the
relations between the regions, all spatial relations be-
tween the regions hold within the neighborhoods. O

Actually, a permutation as described in the previous
lemma is not necessary to guarantee two-dimensional
realizations. A region might look as shown on the left
of Figure 3, but in this case we restrict the shape and
the internal connection of the regions by the neigh-
borhoods we are using which is not at all desirable.
However, a permutation as described in Lemma 5.1 is
necessary for one-dimensional realizations and realiza-
tions with internally connected regions.

Since a permutation P, is only necessary for boundary
worlds, we will in the following regard only those par-
ticular RCC-8-models M for which only those worlds
are boundary worlds of regions which are explicitly
forced to be boundary worlds of these regions by the
constraints. Therefore, we have to take a closer look
at which worlds are introduced as boundary worlds of
some regions by the entailment constraints, and which
worlds are forced to be boundary worlds of regions by
the constraints. As a world w of level 0 is forced to be a
boundary world of X if M,w|-X and M, v |/ X hold
for a world v with wRyv, we have to find out which of
the model and entailment constraints force M, w |- X if
M, v |/ X holds or force M,v |/ X if M,w |-X holds.

Proposition 5.2 Boundary worlds are introduced
only by the following relations (see Table 1):

1. EC(X,Y): -O(=(X AY)) introduces a boundary
world of X andY because of O(—(IX ATY)).

2. TPP(X,Y): -O(X — 1Y) introduces a boundary
world of X andY because of O(X = Y).

8. TPP™H(X,Y): =O(Y — IX) introduces a bound-
ary world of X and Y because of O(Y — X).

Apart from the above worlds that are introduced as
boundary worlds of particular regions, worlds can also
be forced to be boundary worlds of other regions.

Proposition 5.3 A world w is forced to be a boundary
world of X only with the following constraints:

1. OX = Y): If w is a boundary world of Y and
X is true in w, then w must also be a boundary
world of X.

2. O(Y = X): Ifw is a boundary world of Y and —X
is true in an Ry-successor of w, then w must also
be a boundary world of X.

3. O(=(IXALY)): If X and Y are true in w, then w
must be a boundary world of X and Y.

For the constraints O(X — Y) and O(Y — X), w
must already be a boundary world of some other re-
gion, so w must be introduced by one of the relations
EC(X,Y), TPP(X,Y), or TPP™}(X,Y). If w is forced
to be a boundary world of X and Y with the con-
straint O(—(IX A IY)), then X and Y must both be
true in w. This can only be forced when there is a
Z1 € Reg(0©) with TPP(Z1,X) and Z; is true in w,
a Z € Reg(©) with TPP(Z2,Y) and Z5 is true in w,
and w is a boundary world of Z; and Z, introduced
by EC(Z1, Z2). So, in any case when a world is forced
to be a boundary world of some region it must already
be a boundary world of other regions introduced as
described in Proposition 5.2.

We will now have a look at how regions must be related
in order to force a world to be a boundary world of
these regions using the constraints of Proposition 5.3.
Suppose that w is a boundary world of X and Y in-
troduced by either EC(X,Y) or TPP(X,Y).” We will
write X |Y in order to express that we can either use X
or Y but always the same. With one of the following
constraints it can be forced that w is also a boundary
world of Z # X,Y (v is an Ry-successor of w):

O(Z = (X|Y)) and M,w|-Z  (~ TPP(Z, X|Y))
O(~(IZ AT(X]Y))) and M,w|-Z (~ EC(Z,X|Y))
O((XY) = Z) and M,v|F~Z (~ TPP~Y(Z, X|Y))

M,w |k Z is forced with the following constraint:
OU — Z) and M,w|FU (~ TPP(U, 2))

M, v |- —=Z is forced with the following constraints:

0(Z -+ U) and M, v |--U
O(—~(IZ ATV)) and M,v|FU

(~ TPP™HU, 2))
(~ EC(U, 2))

When we compose these relations (written as o) , we
obtain the possible relations between U and X|Y.

RWU,Z) | S(Z,X]Y) | (RoS)(U,X|Y)

TPP TPP TPP,NTPP
TPP EC DC,EC
TPP ! TPP~t | TPP L, NTPP!
EC TPP! DC,EC

As w is a boundary world of X and Y, DC(U, X|Y)
and NTPP(U,X|Y) are not possible together with
M,w|-U, and NTPP~!'(U, X|Y) is not possible to-
gether with M,v|F—=U. In order to force M,w |- U,

"We omit TPP~*(X,Y) as TPP~!(X,Y) = TPP(Y, X)
and the order is not important.



there must be a sequence of spatial variables U; with
TPP(U,,U), TPP(U;41,U;), until there is a U, that
is equal to X or Y, so TPP(X, Z) or TPP(Y, Z) must
hold. In order to force M,v |- —U, there must be a
sequence of spatial variables U; with TPP™!(U,U),
TPP Y (U41,U;), and EC(U;,U;_1) and M, v |- U;
must hold. In order to force M,v|FU;, there must
be a sequence of TPP-related spatial variables, as de-
scribed above, until one of them is equal to X or Y,
so EC(Z,X) or EC(Z,Y) must hold. This results in
only three different possibilities of how w is forced to
be a boundary world of Z if w was introduced as a
boundary world of X and Y.

a. TPP(X,Y), TPP(X, Z), and TPP(Z,Y) hold.
b. EC(X,Y), TPP(X, Z), and EC(Z,Y) hold.
c. EC(X,Y), TPP(Y, Z) and EC(Z, X) hold.

As different spatial variables Z;, Z;, for which w
is forced to be a boundary world of, all have the
boundary world w in common, only the relations
EC,PO, TPP, or TPP ! can hold between them.

We have shown that only those worlds are boundary
worlds which are introduced as boundary worlds of
some regions by the entailment constraints, and, fur-
ther, that other regions are only forced to be boundary
regions of these worlds when they are related in a par-
ticular way. This will be used in the following lemma.

Lemma 5.4 Let M be an RCC-8-model. Then two
different types of Ry-successors are sufficient for every
world w of level 0.

Proof: If w is not a boundary world of some region,
all Ry-successors of w satisfy exactly the same formu-
las as w. Otherwise, w is introduced as a boundary
world by either EC(X,Y) or TPP(X,Y) (see Propo-
sition 5.2). Let w be forced to be a boundary world
of the spatial variables Z;. For EC(X,Y"), some of the
Ry-successors of w satisfy X but not Y, and some sat-
isfy Y but not X, the others neither satisfy X nor Y.
For all Z; with TPP(X, Z;) and EC(Z;,Y) and all Z;
with TPP(Y, Z;) and EC(Z;, X), all Ri-successors of
w satisfy Z; if they satisfy X and satisfy Z; if they sat-
isfy Y. So all Ry-successors of w that satisfy X satisfy
the same formulas, and all Ry-successors of w that sat-
isfy Y satisfy the same formulas. For the Rj-successors
v of w which do not satisfy X or Y, there are only two
requirements: if TPP(Zy/, Z) holds then Z; must be
true in v whenever Zy is true in v; if EC(Z, Zy/) holds
then Z; and Z; must not both be true in v. However,
there is no constraint that forces the existence of these
worlds, so it can be assumed that all Rj-successors

B> | b
(a) (b)

Figure 4: (a) shows a reduced RCC-8-cluster of the
reduced RCC-8-structure. (b) shows how a neighbor-
hood can be placed in one-dimensional space. The two
brackets indicate a one-dimensional region X where the
neighborhood represents a boundary point of X.

of w satisfy either X or Y. As the respective worlds
all satisfy the same formulas, two different kinds of
Rj-successors of the boundary world w introduced by
EC(X,Y) are sufficient.

For TPP(X,Y), all Ry-successors of w that satisfy X
also satisfy Y, all Rj-successors of w that do not sat-
isfy Y also do not satisfy X, and some Ri-successors of
w satisfy Y but not X. For all Z; with TPP(X, Z;)
and TPP(Z;,Y), all Rj-successors of w satisfy Z;
if they satisfy X. For the Ri-successors of w that
satisfy Y but not X, there is only one requirement,
namely, that Z; must be true whenever Z;, is true in
these worlds for any two spatial variables Zy,, Z, with
TPP(X,Zk),TPP(Zk/,Y) and TPP(Zk,Zkl) How-
ever, there is again no constraint that forces the ex-
istence of these worlds, so it can be assumed that all
Ry-successors of w satisfy X if they satisfy Y. |

Whether a boundary world w is introduced by
EC(X,Y) or by TPP(X,Y), in both cases two dif-
ferent kinds of Rj-successors are sufficient. Thus, by
grouping together the respective Ry-successors for ev-
ery world w of level 0 of M, we can always find a
permutation of the worlds of level 1 such that r* is a
bitonic sequence for all regions.

Instead of having 2n Ri-successors for every world of
level 0 from which we know that they belong to only
two different types, it is sufficient two use only two
Rj-successors for every world of level 0. This leads to
a very simple canonical model shown in Figure 4a. We
call this a reduced RCC-8-structure and the correspond-
ing models reduced RCC-8-models. They are defined in
the same way as in Definition 3.1 except that we have
exactly two worlds of level 1 instead of 2n worlds.

We can now apply Lemma 5.1 and place all neigh-
borhoods independently on the plane while all rela-
tions between spatial regions hold within the neigh-
borhoods. Thereby, neighborhoods corresponding to
non-boundary worlds are homogeneous in the sense
that all points within one of these neighborhoods have



the same topological properties. Neighborhoods corre-
sponding to a boundary world w consist of two homo-
geneous parts corresponding to the two Rj-successors
of w. These two parts are divided by the common
boundary of the boundary regions of w (see Figure 5a).

In order to obtain a realization, we have to find regions
such that the relations between them hold in the whole
plane and not just within the neighborhoods. Since re-
gions do not have to be internally connected, it is pos-
sible to compose every region out of pieces resulting
from the corresponding neighborhoods, i.e., for every
neighborhood a region is affiliated with, we generate a
piece of that region. As the neighborhoods are open
sets and regions as well as their pieces must be regular
closed sets, we have to close every neighborhood, i.e.,
find a closed set X% for every region X and every neigh-
borhood N (w) with M, w |- X such that all relations
hold between the regions composed of the pieces. As
all neighborhoods are independent of each other, we
only have to make sure that the relations of the differ-
ent pieces corresponding to a single neighborhood do
not violate the relations of the compound regions. This
can be done independently for every neighborhood.

Consider a particular neighborhood N (w). If w is not
a boundary world, then only the relations PO, TPP,
NTPP, and their converse are possible between the re-
gions affiliated with N(w), since they share N(w) as
their common interior. For closing the neighborhood
N(w), all pieces must fulfill the “part of” relations
whereas the PO relations cannot be violated as long
as the corresponding pieces have a common interior.

One possibility to fulfill the “part of” relations is using
a hierarchy Hg of the regions, where a region X is of
level Hg(X) = 1 if there is no region Y which is part
of X. A region X is of level Hg(X) = k if there is a
region Y of level Hg(Y) = k — 1 which is part of X
and if there is no region Z which is part of X and has
a higher level than Hg(Z) = k — 1.8 The pieces of
all regions affiliated with N(w) must then be chosen
according to Hg, i.e., pieces of regions of the same
level are equal for this particular neighborhood and
are non-tangential proper part of all pieces of regions
of a higher level. We choose the single pieces to be
rectangles.

If w is a boundary world, the boundary regions of w
are only affiliated with one part of N(w) and their
pieces must share the common boundary. Therefore,
both parts of N(w) must be closed separately accord-

8This corresponds to the finish time of depth-first search
for each vertex of a graph Ge where regions are vertices Vo
and “part of” relations are directed edges Feo, computable
in time O(Ve + Ee) (Cormen et al. 1990, p.477ff)
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Figure 5: (a) shows the two-dimensional neighborhood
of a boundary world which is divided into two parts by
the common boundary of the boundary regions b, d, e,
and f. (b) shows a possible hierarchy Hg of regions.
In (c) the neighborhood is closed with respect to He.

ing to He (see Figure 5¢). In the same way as for
two-dimensional space, neighborhoods can be placed
in any higher dimensional space and closed therein ac-
cording to Hg. As the three points corresponding to
a world w of level 0 and its two Rj-successors can al-
ways be aligned, N(w) can also be placed on a line.
Thus, all neighborhoods can be placed independently
in a one-dimensional space and closed as intervals ac-
cording to He (see Figure 4b).

Theorem 5.5 Fvery consistent set of spatial formu-
las can be realized in any dimension d > 1 where re-
gions are (sets of) d-dimensional polytopes.

So far all regions consist of as many pieces as there are
neighborhoods affiliated with them, i.e., O(n?) many
pieces for every region. We can further show that
for three- and higher-dimensional space all regions can
also be realized as internally connected. For this we
construct a d + 1-dimensional realization of internally
connected regions by connecting all pieces of the same
regions of a d-dimensional realization of internally dis-
connected regions.

Theorem 5.6 Every consistent set © of spatial for-
mulas can be realized with internally connected regions
in any dimension d > 3 where regions are polytopes.

Proof: Suppose that © is consistent. With the fol-
lowing construction we obtain a three-dimensional re-
alization of internally connected regions starting from
a two-dimensional realization. (1a) Place all neighbor-
hoods on a circle in the plane determined by the z- and
y-axes such that the common boundary of every neigh-
borhood corresponding to a boundary world points to
the center of the circle, the z-axis (see Figure 6a). (1b)
Close all neighborhoods according to the hierarchy He
such that all pieces of regions are rectangles. (2a) Pro-



Figure 6: Construction of the three-dimensional re-
alization. (a) placing the two-dimensional neighbor-
hoods on a circle. (b) connecting the pieces of a re-
gion on a particular level. (¢) connecting the pipes of a
region (bold line) that contains the vertically and the
horizontally hashed regions.

ceed from this two-dimensional realization according
to He by first choosing pairwise distinct intervals on
the positive z-axis for every region with Hg = 1, i.e.,
for the regions that do not contain any other region.
(2b) Build a pipe parallel to the z-axis for every piece
of these regions starting from the plane (2=0) up to
the endpoint of the corresponding interval. (2¢) Con-
nect the pipes of the same region within the range
of the corresponding interval using pipes pointing to
the z-axis (see Figure 6b). (3) Next the regions with
Hg = 2 are connected, i.e., those regions that only
contain already connected regions. To do this, (3a)
choose intervals on the z-axis for these regions such
that the intervals contain all intervals of the contained
regions but do not overlap with any other interval.
(3b) Build a pipe for every piece up to the endpoint
of the corresponding interval with the largest z-value,
and (3c) connect the pipes of every region within the
range of all corresponding intervals (see Figure 6c¢). (4)
Repeat step 3. successively for every level of Hg until
all regions are connected. (5) Finally, close all neigh-
borhoods on the negative z-axis according to He.

Obviously, with this construction all regions are inter-
nally connected. Furthermore all internally connected
three-dimensional regions hold the same base rela-
tions as the two-dimensional realizations from which
we started the construction. This is because all inter-
vals on the z-axis are either contained in each other or
are distinct, they have no common boundary points.
All intervals corresponding to region X are contained
in the intervals of region Y if and only if NTPP(X,Y)
or TPP(X,Y). When two regions are disconnected
they remain disconnected as they are not affiliated
with the same neighborhoods. Two externally con-
nected regions remain externally connected because
every neighborhood was placed on the circle such that
the common boundary points to its center. Therefore,

if two of these regions are both affiliated with the same
neighborhood, their pipes are externally connected
and the horizontal connection of the single pipes is
distinct. All other requirements of relations as, e.g., a
common boundary point are already met by the pipes.

With the same construction, a d + 1-dimensional real-
ization of internally connected regions can be obtained
from a d-dimensional realization of internally discon-
nected regions. All constructions kept the polytopic
shape of the regions, so every region can be realized as
a (d-dimensional) polytope. O

The restriction of regions to be polytopes can immedi-
ately be generalized to an arbitrary shape of regions.

6 APPLICABILITY OF THE
CANONICAL MODEL

In the previous sections we reported about the exis-
tence of (reduced) RCC-8-models and how they can be
mapped to topological spaces of different dimensions.
In this section we study how RCC-8-models can be de-
termined and how a realization can be generated from
them. As there is a (reduced) RCC-8-model M for ev-
ery consistent set of spatial relations ©, and as it is
always possible to generate a realization of M, RCC-8
models are suitable for representing spatial regions
with respect to their relations. RCC-8-models repre-
sent the characteristic points and information about
their neighborhoods of a possible realization.

6.1 DETERMINATION OF
RCC-8-MODELS

Given a set of spatial formulas ©, we have to find
a reduced RCC-8-model M for the modal encoding
of RCC-8 such that only those worlds are boundary
worlds of regions which are forced to be by the con-
straints. The Kripke frame of M, i.e., the number
of worlds and their accessibility relations are already
known from the entailment constraints, but we have to
find a valuation for every world and every region. For
some worlds and some regions the valuation is already
given from the constraints, for some it can be inferred
using the constraints, for others it can be chosen. In
order to make the inference step as easy as possible, we
use the propositional encoding of RCC-8 with respect
to a Kripke frame where every world w and every spa-
tial variable X is transformed to a propositional atom
Xy which is true if and only if X holds in w (Renz
and Nebel 1997). The valuation of M can then be
obtained from the satisfying assignment of the propo-
sitional formula. Even if the encoding of the reduced



RCC-8-models is not a Horn formula,® unit-resolution
plus additional choices is sufficient for finding a satis-
fying assignment. As all clauses of the propositional
encoding use worlds of the same RCC-8-cluster, the
inference step is independent for every cluster. From
Proposition 5.2 it is known which RCC-8-clusters con-
tain a boundary world. Suppose that an RCC-8-cluster
contains a boundary world, then the valuation of the
two regions which introduced the boundary world can
be chosen in all worlds of the RCC-8-cluster according
to the relation of the two regions. The valuations of the
other regions are either determined by unit-resolution
or can be chosen according to their other valuations:
If the valuation of a particular region in some world
of the RCC-8-cluster is true, then the other valuations
are also chosen as true, otherwise all valuations are
chosen as false. If an RCC-8-cluster does not contain a
boundary world, all worlds of the RCC-8-cluster have
the same valuation. If the valuation of a region is
not determined by unit-resolution it is chosen as false.
With these choices a satisfying assignment is always
found, even though the propositional formula is not
Horn. As there are O(n?) worlds and n regions, there
are O(n*) clauses (Renz and Nebel 1997), so a reduced
RCC-8-model can be determined in time O(n?).

6.2 GENERATING A REALIZATION

Suppose we have given a reduced RCC-8-model of a
consistent set of RCC-8 formulas ©. We have to distin-
guish the tasks of generating a realization of internally
connected and disconnected regions. A realization of
disconnected regions in d-dimensional space can be ob-
tained by placing the O(n?) different neighborhoods in
the d-dimensional space and close each neighborhood
as specified in Section 5. For this, the hierarchy Hg of
regions must be known, which can be computed in time
O(n + Pg) where Pg € O(n?) is the number of “part
of” relations in © (see Footnote 8). Let Ag € O(n) be
the maximal number of regions affiliated with a neigh-
borhood, then the closure of a neighborhood can be
computed in time O(Ag).

Theorem 6.1 Given a reduced RCC-8 model of a set
of RCC-8 relations O, a realization in d-dimensional
space (d > 1) can be generated in time O(n?Ag) when
regions are allowed to be disconnected.

In order to generate a realization of internally con-
nected regions we can use the construction of the proof
to Theorem 5.6. For every region we have to find the

9This is because of the constraint O(X — —I-IX) which
is transformed to A ewo (=X VXL Vv X2) in the notation

of (Renz and Nebel 1997).

corresponding intervals on the z-axis. The number of
intervals of a particular region X is equal to the num-
ber of regions with Hg = 1 that are contained in X.
Let I € O(n) be the maximal number of regions with
Hg =1 that are contained in a region.

Theorem 6.2 Given a reduced RCC-8 model of a set
of RCC-8 relations ©, a realization of internally con-
nected regions in d-dimensional space (d > 3) can be
generated in time O(n%Agle).

If Po € O(n?) is the maximal number of neighbor-
hoods affiliated with a region, every region can be re-
alized as a polytope with O(Pglg) vertices.

7 DISCUSSION & RELATED
WORK

There is some work on identifying canonical models for
the RCC axioms, i.e., determining what mathematical
structures fulfill all the RCC axioms, as, e.g., every
region has a non-tangential proper part (Randell et
al. 1992). Gotts (1996) found that every connected
and regular topological space is a model for the RCC
axioms. Stell and Worboys (1997) identified a whole
class of models base on Heyting structures. Both ap-
proaches only describe models for the RCC axioms,
i.e., what kind of regions can be used at all. When ad-
ditional constraints expressing relationships between
regions are added, these results do not say anything
about models anymore. 1© They are also by no means
constructive, as they do not provide a way of effectively
representing regions or generating realizations.

Previous approaches on dealing with dimension and
internal connectedness of regions tried to specify pred-
icates and suitable axioms in order to restrict di-
mension and connectedness of regions (Bennett 1996;
Gotts 1994). As all regions must have the same di-
mension anyway, using our results it is not neces-
sary to specify the dimension of regions explicitly if
internally disconnected regions are permitted. If in-
ternally connected regions are required, these predi-
cates only have an influence on the consistency of a
set of spatial relations in one- or two-dimensional ap-
plications. In three- and higher-dimensional space all
regions may be either internally connected or discon-
nected. Forcing internal connectedness of regions in
two-dimensional space leads to difficult computational
problems as there are no complete algorithms for deal-
ing with this task. As Grigni et al. (1995) pointed out,

0 Consider the hypothetical case of a set of spatial formu-
las which is realizable in two- but not in one-dimensional
space. Then, a one-dimensional space is still a model of
the RCC axioms, but not of RCC-8.



a well-known open problem in graph theory which is
NP-hard but not known to be in NP (Kratochvil 1991;
Kratochvil and Matousek 1991) can be reduced to
the consistency problem for two-dimensional internally
connected regions.

It is certainly the better approach to have an addi-
tional connectedness predicate than forcing all regions
to be internally connected which is done, e.g., by the
similar calculus of Egenhofer (1991), as there are many
applications where regions are in fact disconnected.
Within the area of geographical information systems,
e.g., which offer a great variety of possible applications,
many countries or other geographical entities are not
internally connected regions. In areas like computer
vision it is often dealt with two-dimensional projec-
tions of the three-dimensional space where many con-
nected objects are perceived as disconnected objects
due to occlusion. In robot navigation, maps are often
two-dimensional cuttings of a three-dimensional space.

With the result on realizations in one-dimensional
space it becomes possible now to use RCC-8 for tem-
poral reasoning tasks, in particular when non-convex
intervals are allowed and the direction of the time is
not important, as, e.g., in some scheduling problems.
This is in contrast to previous approaches that used
temporal calculi for spatial reasoning (Guesgen 1989).

8 SUMMARY

We identified a canonical model of RCC-8 based on
Kripke semantics. In order to obtain a “topological”
canonical model, we gave a topological interpretation
of the Kripke models such that regions can be repre-
sented by points in the topological space and infor-
mation about the neighborhood of these points with
respect to the spatial relations holding between the
regions. Using this canonical model, we proved that
every consistent set of spatial formulas has a realiza-
tion in any dimension when regions are not forced to
be internally connected, which is the case for regions
as used by RCC-8. Furthermore, we proved that for
three- and higher dimensional space there is always a
realization with internally connected regions. Further,
we give for the first time algorithms for generating real-
izations of either internally connected or disconnected
regions. Future work includes analyzing the usage of
the canonical model for dealing with the special case
of two-dimensional internally connected regions as well
as analyzing the cognitive meaning of the canonical
model (Knauff et al. 1997).
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