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Abstract

Allen’s well-known Interval Algebra has been de-
veloped for temporal representation and reasoning,
but there are also interesting spatial applications
where intervals can be used. A prototypical ex-
ample are traffic scenarios where cars and their re-
gions of influence can be represented as intervals
on a road as the underlying line. There are several
differences of temporal and spatial intervals which
have to be considered when developing a spatial in-
terval algebra. In this paper we analyze the first
important difference: as opposed to temporal inter-
vals, spatial intervals can have an intrinsic direc-
tion with respect to the underlying line. We de-
velop an algebra for qualitative spatial representa-
tion and reasoning about directed intervals, identify
tractable subsets, and show that path-consistency is
sufficient for deciding consistency for a particular
subset which contains all base relations.

1 Introduction
Qualitative spatial representation and reasoning has become
more and more important in recent years. The best-known
approach in this field is the Region Connection Calculus�������

[Randell et al., 1992] which describes topological rela-
tionships between � -dimensional spatial regions of arbitrary
shape. For some applications, however, it is sufficient to use
spatial regions with more restricted properties. The block al-
gebra [Balbiani et al., 1999], for instance, considers only spa-
tial regions which are � -dimensional blocks whose sides are
parallel to the defining axes. The most restricted spatial re-
gions are (one-dimensional) intervals. A prototypical spatial
application of intervals are traffic scenarios. Vehicles usually
move only along given ways (also sea-/airways). Therefore,
when looking at vehicles on one particular way, vehicles and
their regions of influence (such as safety margin, braking dis-
tance, or reaction distance) could be represented as intervals
on a line which represents the possibly winded way. Similar
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to the well-known Interval Algebra [Allen, 1983] developed
for temporal intervals, it seems useful to develop a spatial in-
terval algebra for spatial intervals.

There are several differences between spatial and temporal
intervals which have to be considered when extending the In-
terval Algebra towards dealing with spatial applications. (1)
spatial intervals can have different directions, either the same
or the opposite direction as the underlying line. (2) ways usu-
ally have more than one lane where vehicles can move, i.e., it
should be possible to represent that intervals are on different
lanes and that one interval is, e.g., left of, right of, or beside
another interval. (3) it is interesting to represent intervals on
way networks instead of considering just isolated ways. (4)
intervals such as those corresponding to regions of influence
often depend on the speed of vehicles, i.e., it should be possi-
ble to represent dynamic information. This is also necessary
for predicting future positions of vehicles which is an impor-
tant task in traffic control. As for temporal intervals it is also
important to represent qualitative or metric information on the
length of intervals and on the distance between intervals.

We start this spatial odyssey of the Interval Algebra by ana-
lyzing the first important difference between spatial and tem-
poral intervals, namely, direction of intervals. We define the
directed intervals algebra which consists of 26 jointly exhaus-
tive and pairwise disjoint base relations, identify tractable
subsets, and show that path-consistency decides consistency
for a particular subset which contains all base relations.

2 Directed Intervals
The Interval Algebra ( 	 
 ) describes the possible relationships
between convex intervals on a directed line. The default ap-
plication of the Interval Algebra is temporal, so the directed
line is usually considered to be the timeline. The 13 	 
 base
relations (before � , after � , meets 
 , met-by 
�� , overlaps� , overlapped-by � � , equals � , during � , includes ��� , starts � ,
started-by ��� , finishes � , and finished-by � ) describe a combi-
nation of topological relations (disconnected, externally con-
nected, partial overlap, equal, non-tangential proper part, tan-
gential proper part, and the converse of the latter two) and
order relations ( � , � ). The topological distinctions are ex-
actly those which are made by

�������
. Therefore,

�������
is

often considered as the spatial counterpart of the Interval Al-
gebra. Or, from another point of view, what distinguishes
the Interval Algebra from

�������
and what makes it its key
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Figure 1: Four structurally different instantiations of the rela-
tion “ � behind � ” with directed intervals

feature is the given direction of the (one-dimensional) line.
This given direction naturally imposes a direction also on the
intervals: an interval can have the same or the opposite direc-
tion as the underlying line. However, because of its original
temporal interpretation (no event can end before it starts), di-
rection of intervals has never been considered in AI. Actually,
directed intervals have been studied in the large field of Inter-
val Arithmetics, but work in this field is completely different
from the qualitative and constraint-based approaches studied
in AI. When using the Interval Algebra for spatial applica-
tions, direction of intervals has to be taken into account. This
leads to the obvious question: can the large body of work and
the large number of results obtained on the Interval Algebra
such as algorithms and complexity results also be applied to a
spatial interpretation of the Interval Algebra, or is it necessary
to completely start from scratch again?

Before answering this question, consider the example of
Figure 1 which illustrates the differences of having directed
intervals from having only intervals of the same direction.
Since all four combinations of the directions of the two in-
tervals are possible, there are four structurally different in-
stantiations of every relation instead of just one. Therefore, it
is possible that inconsistent instances of the Interval Algebra
become consistent when allowing directed intervals.

3 The Directed Intervals Algebra
A straightforward way for dealing with directed intervals
would be to add additional constraints on the direction of in-
tervals to constraints over the Interval Algebra and treat the
two types of constraints separately while propagating infor-
mation from one type to the other (similar to what has been
done in [Gerevini and Renz, 1998].) We say that an interval
has positive direction if it has the same direction as the un-
derlying line and negative direction otherwise. So possible
direction constraints could be unary constraints like “ � has
positive/negative direction” or binary constraints like “ � and
� have the same/opposite direction”. This approach, however,
is not possible since the Interval Algebra loses its property of
being a relation algebra when permitting directed intervals.
This can be easily seen when considering the “behind” re-
lation of Figure 1. The converse of “ � behind � ” is “ � is
behind or in front of � ”, whose converse is “ � is behind or in
front of � ”, i.e., applying the converse operation ( ��� ) twice
leads to a different relation than the original relation. This
is a contradiction to one of the requirements of relation al-
gebras ( �����	�
� ) [Ladkin and Maddux, 1994]. This con-
tradiction does not occur when we refine the “behind” rela-
tion into two disjoint sub-relations “behind � ” and “behind �� ”
where the subscript indicates that both intervals have the same
( � ) or opposite ( 
� ) direction. The converse of both relations
is “in-front-of � ” and “behind �� ”, respectively. Applying the

Directed Intervals Sym- Pictorial
Base Relation bol Example

� behind ��� ��� -x- �
� in-front-of � � � � -y- �� behind �� � ���� � -x-

-y- �� in-front-of �� � � �� -x- �
� -y-� meets-from-behind � � ��� � –x– �

� meets-in-the-front � � � � � –y– �� meets-from-behind ���� ��� �� � –x–
–y– �� meets-in-the-front ���� � � �� –x– �
� –y–� overlaps-from-behind ��� ����� —x— �

� overlaps-in-the-front � � � � � —y— �� overlaps-from-behind �� � ������ � —x—
—y— �� overlaps-in-the-front �� � � � �� —x— �
� —y—� contained-in ��� ��� –x– �

� extends � �  � —y— �� contained-in �� � �!�� � –x–
� extends �� �  �� —y— �� contained-in-the-back-of � �"��� � –x– �
� extends-the-front-of � �  #� � —y— �� contained-in-the-back-of ��$�"��� �� � –x–
� extends-the-back-of �� �  ���� —y— �� contained-in-the-front-of ���%� � � –x– �
� extends-the-back-of � �  ��� —y— �� contained-in-the-front-of �� �%� � �� � –x–
� extends-the-front-of �� �  #� �� —y— �� equals ���  '& � —x— �

—y— �� equals �� �  '& �� —x— �
� —y—

Table 1: The 26 base relations of the directed intervals algebra

converse operation again leads to the original relations.
Since a relation algebra must be closed under composition,

intersection, and converse, we have to make the same dis-
tinction also for all other 	 
 relations. This leads us to the
definition of the directed intervals algebra (DIA). It consists
of the 26 base relations given in Table 1, which result from
refining each 	 
 relation into two sub-relations specifying ei-
ther same or opposite direction of the involved intervals, and
of all possible unions of the base relations. This gives a total
number of (*)#+-, 	 
 relations. Converse relations are given in
the same table entry. If a converse relation is not explicitly
given, the corresponding relation is its own converse. We de-
note the set of 26 , 	 
 base relations as . . Then , 	 
/�"(�0 .
Complex relations which are the union of more than one base
relation ��132�45454�2#�-6 are written as 78��1!25454�492#�-6;: . The union
of all base relations, the universal relation, is denoted 7!<=: .

A , 	 
 base relation �>�@?�A consist of two parts, the in-
terval part ? which is a spatial interpretation of the Interval
Algebra and the direction part B which gives the mutual di-
rection of both intervals, either � or 
� . If a complex relation
� consist of base relations with the same direction part B , we
can combine the interval parts and write �C�C73? 1 2�45454�2#? 6 : A
instead of �D�E78? 1A 25454�492#? 6A : . We write �-F (resp. �HG ) in
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� ��� ��� � � ��� � � ��� � � ���  #� �  � �  �  '&

Table 2: 	 
 base relations � , their reverses ��� , and their spa-
tial interpretations ��� ��� �! 
order to refer to the union of the interval parts of every sub-
relation of a complex relation � where the direction part is
7!��: (resp. 7 
��: .) In this way, every , 	 
 relation � can be
written as � � 78�-F�: �#" 78�HG : �� . , 	 
%$ denotes the set of ( 1	&
possible interval parts of , 	 
 relations.

It is important to note that the spatial interpretation of the
Interval Algebra was chosen in a way that the interval part
of a relation � ? A � only depends on the direction of � and not
on the direction of � . Therefore, if the direction of � is re-
versed, written as � , then only the direction part changes, i.e.,
� ? A �%� � ?(' A � . This would not be the case in a straight-
forward spatial interpretation of the original temporal rela-
tions. For instance, 	 
 relations like “ � started-by � ” or “ �
finished-by � ” depend on the direction of � . Instead, we inter-
pret these relations spatially as “ � extends-the-front/back-of
� ” and “ � contained-in-the-front/back-of � ”. This interpre-
tation is independent of the direction of � . When all inter-
vals have the same direction, both interpretations are equiv-
alent. In order to transform the spatial and the temporal in-
terval relations (independent of the direction of the intervals)
into each other, we introduce two mutually inverse functions
� � �*)�	 
�+, , 	 
%$ and � �-) , 	 
%$.+, 	 
 , i.e., � � ��� � ��� �� / �"�
and � �0� � � ��� �� 	 � � . The mapping is given in Table 2.

All relations of the directed intervals algebra are invari-
ant with respect to the direction of the underlying line, i.e.,
when reversing the direction of the line, all relations remain
the same. This is obviously not the case for the Interval Al-
gebra, e.g., if � is before � and one reverses the direction of
the timeline, then � is after � . In order to transform , 	 
 re-
lations into the corresponding 	 
 relations and vice versa, we
introduce a unary reverse operator ( �1� ) on relations � such
that �!� specifies the relation which results from � when re-
versing the direction of the underlying line. For all relations
�32 , 	 
 we have that �!� � � . For 	 
 relations, the reverse
relation is given in Table 2. The reverse of a complex relation
is the union of the reverses of the involved base relations. The
reverse of the composition ( 4 ) of two relations is equivalent
to the composition of the reverses of the two involved rela-
tions, i.e., � �54768 	���/�9�:476;� . Applying the reverse operator
twice results in the original relation, i.e., �<�=� � � . Using
the reverse operator we can also specify what happens with
a relation � ? A � if only the direction of � is changed. Then
the topological relation of the intervals stays the same, but
the order changes, i.e., “front” becomes “behind”/“back” and
vice versa. The mutual direction also changes. This can be
expressed in the following way: � ? A ��� � � � ��� � ��� ?0 ��> 	' A � .

We now have all requirements for computing the compo-
sition ( 4 ) of , 	 
 relations using composition of 	 
 relations
(denoted here by 4�?A@ ) as specified by Allen [1983].

Theorem 3.1 Let �CB 2D6FE be , 	 
 base relations.

1. If G�� 7 ��: , then �CBC4�6FE�� ��� ��� � ��� �� H4�?I@ � ���J68 / KB
2. If G�� 7 
��: , then �CBC4�6FE�� ��� ��� � ��� �� ��%4�?I@ � ���K68 	 /'
B

Proof. Assume that � �LB!� and �M6FEON holds. If P �QG �
7!��: and � 2 � 2/N have positive direction, it is clear that the
interval part of the composition of the , 	 
 relations is the
same as the composition of the 	 
 relations (with respect to
the different interpretations.) The result of the composition is
the same if � 2 � 2/N have negative direction, since , 	 
 relations
are invariant with respect to the direction of the underlying
line. � only depends on the direction of � and 6 only depends
on the direction of N . Therefore, reversing the direction of �
(i.e., P �>7 
��:�2=G � 7!��: ) does not change the result of the
interval part of the composition, only the resulting direction
part. This proves the first rule.

Assume that P �RG � 7 
��: and � 2=N have positive direc-
tion while � has negative direction. If we reverse the direc-
tion of � , which changes the relations to � � � ��� � ��� �! �  � �
and to �M6 � N , then we can apply the first composition rule.
This results in � �� 4S6 �� � � � ��� � ��� �� ��T � 4S6 � �VU 1DW X
� � ��� � ��� � � ��� � ��� �� ��T / Y4�?I@ � ���K68 	 � � � � ��� � ��� �! 	�94�?I@ � ���K68 	 � ,
the second composition rule. As in the first case, this rule
does not change when we reverse the direction of � (i.e.,
P � 7!��:;2/G � 7 
��: ) or the direction of all three intervals.
This proves the second rule.

The composition of complex relations is as usual the union
of the composition of the contained base relations. It follows
from the closedness of the Interval Algebra that , 	 
 is closed
under composition, intersection, converse, and reverse.

4 Reasoning over Directed Intervals
The main reasoning problem in spatial and temporal reason-
ing is the consistency problem CSPSAT( Z ) where Z is a set
of relations over a relation algebra [Renz and Nebel, 1999].

Instance: A set [ of variables over a domain \ and a finite
set ] of binary constraints � �H� ( ��2*Z and � 2 �*2-^ .)

Question: Is there a consistent instantiation of all � variables
in ] with values from \ which satisfies all constraints?

The consistency problem of the directed intervals algebra,
CSPSAT(DIA), is clearly NP-hard since the consistency
problem of the Interval Algebra is already NP-hard. On the
other hand it is not clear whether the consistency problem is
tractable if only the , 	 
 base relations are used.

Additional to the , 	 
 relations, we also give the possi-
bility of explicitly specifying the direction of intervals. We
maintain them in a set _ which contains unary direction con-
straints of the form � � 2#B0 where � is a variable over a directed
interval and B-` 7�a 2Tb-: gives the direction of � , either pos-
itive 7�a�: , negative 7cb-: , or indefinite 7�a 2Tb-: . Unary direc-
tion constraints and , 	 
 constraints interact in two ways.

Proposition 4.1 Given two intervals � 2#� , the , 	 
 constraint
� �H� with � � 73� 1d�e 25454�492#� 6d�f : , and the unary direction
constraints � � 2 B 1T and � � 2 B )  . These constraints interact in
the following way:

1. If all g-? ( h �ji 4�454/k ) are equivalent, then (a) B 1��/B 1Fl
B ) and B ) � B 1cl B ) if g 1 � 7!��: and (b) B 1 � B 1
lLm B )
and B ) �nm B 1 l B ) if g 1 �%7 
��: .

2. If B 1 and B ) are both definite, then (a) � � 73��F�: � if
B 1�� B ) and (b) � � 78�HG : �� if B 1�
� B ) .



If all information is propagated from ] to _ and from _ to ]
we write the resulting sets as ]�� and _�� . If the empty con-
straint occurs during this propagation, then ] is inconsistent.

There are several ways of deciding consistency of a given
set of constraints over a set of relations Z . The most common
way is to use backtracking over a tractable subset of Z which
contains all base relations and enforce path-consistency as
forward-checking (this is done by applying for each triple of
constraints � �H� , �M6;N , � � N the operation

� ) � � lS� � 4�6% ;
if the empty relation is not contained, the resulting set is path-
consistent) [Ladkin and Reinefeld, 1997]. Before we can use
this method for deciding CSPSAT(DIA), we must prove that
the consistency problem is tractable for the , 	 
 base relations
and preferably that path-consistency decides consistency for
these relations. In order to prove this, we need a different
method for deciding consistency and we have to show that
this method is polynomial for the set of , 	 
 base relations.

For the Interval Algebra most tractability proofs were car-
ried out using the endpoint encoding of the 	 
 relations
(e.g. [Nebel and B ürckert, 1995]) which describes the qual-
itative relations between the four endpoints of the two in-
volved intervals. For instance, the “before” relation can be
encoded as � F ���	� plus the default relations �
����� F and
� � ��� F which hold for all non-directed intervals ( � � 2
� � de-
note the start points and � F82
� F the end points of the intervals
� 2�� .) It is also possible to specify an endpoint encoding
of the , 	 
 relations. Since spatial intervals can have different
directions, the default relations do not hold anymore. Further-
more, we have to take into consideration that , 	 
 relations
are invariant with respect to the reverse operation. There-
fore, it is the most compact way to use the “betweenness”
predicate for specifying an endpoint encoding of , 	 
 rela-
tions. ����������� �8��� F82�� � 2
� �  means that � � is between �$F
and �	� , no matter which direction the intervals have. Using
this predicate, the relation � �� , for instance, can be encoded
as ����������� �8��� � 2
� � 2
� FO �������������� �8���$F82�� � 2
� �  . Since the
BETWEENNESS problem is NP-hard [Garey and Johnson,
1979], this encoding does not seem to be helpful for proving
any tractability results. We will therefore refrain from speci-
fying the endpoint formulas of the , 	 
 base relations.

Another possibility of deciding the , 	 
 consistency prob-
lem is to transform a set of , 	 
 constraints ] into an equiv-
alent set of 	 
 constraints ]�� and decide consistency of ]�� .
In order to make such a transformation, the direction of ev-
ery interval must be known. Then it is possible to reverse
the direction of certain intervals such that all intervals have
the same direction and transform the updated , 	 
 constraints
into 	 
 constraints. We call this the normal form of a set of
, 	 
 constraints ] and a set of definite unary direction con-
straints _ for each interval involved in ] . The normal form
(written as � �T� ] 2=_. ) is obtained as follows.

Proposition 4.2 Given a set of , 	 
 constraints ] and a set
_ of definite unary direction constraints for each interval in-
volved in ] . The normal form � �T� ] 2=_. is obtained by apply-
ing the following procedure.

1. For each constraint � � A � 2 ] � do

2. If � has negative direction, add ��� ��� �� /� � to � �T�K] 2D_. 
3. If � has positive direction, add � � ��� �� =� to � � � ] 2=_. 

Lemma 4.3 Given a set of , 	 
 constraints ] and a set _ of
definite unary direction constraints for each interval involved
in ] . � �T�K] 2D_  can be computed in time !.� � )> .
Proof. ] � can be computed in time !.� � )  , since all con-
straints of _ are definite and information has to be propa-
gated only from every pair of intervals to the corresponding
constraint in ] using rule 2 of Proposition 4.1. ]"� is trans-
formed to � �T� ] 2=_. in time !.� � )  , since each of the !.� � )> 
constraints is transformed separately in constant time.

Lemma 4.4 Given a set of , 	 
 constraints ] and a set _ of
definite unary direction constraints for each interval involved
in ] . ] � is consistent if and only if � �T� ] 2=_. is consistent.
Proof. Suppose that ] � is consistent and that # is an instan-
tiation of ] � . The direction of each interval of # is as spec-
ified in _ and the relation between each pair of intervals � 2#�
is a base relation ���A which is a sub-relation of � � A �-2�] � .
We can now reverse the direction of all intervals of # with
negative directions, resulting in #%$ . Since all , 	 
 relations
� �H� only depend on the direction of � , the relations between
the intervals of #&$ are now � � � ��� � ��� ���I 	�T � � if the direction
of � was negative in # and � �"�� � if the direction of � was
positive in # . Transforming these relations into 	 
 relations
results for every pair of intervals in sub-relations of � � �K] 2=_. .
Thus, #&$ is a consistent instantiation of � �T� ] 2=_. . The oppo-
site direction can be proved similarly. Suppose that � � �K] 2=_. 
is consistent and that ' is an instantiation of it where all in-
tervals are considered to have positive direction. Let ]"$ be
the set of constraints between all intervals of ' using , 	 

base relations. Reversing the direction of all intervals which
must have negative direction according to _ results in ')(
and adopting the constraints of ]�$ results in ]"( . Since ap-
plying the reverse operator twice gives the original relation,
each constraint of ]"( is a sub-constraint of a constraint of
] � . Thus, '*( is a consistent instantiation of ]�� .

Using the normal form, we can now decide consistency of
a set of , 	 
 constraints ] by computing or guessing a set _
containing the direction of all intervals, computing � �T� ] 2=_. ,
and deciding consistency of � �T�K] 2D_. using the methods de-
veloped for the Interval Algebra. Since there are ( G different
direction combinations of � directed intervals, it is in general+-,

-hard to find a suitable set _ for which � �T�K] 2D_  is con-
sistent or to show that there is no such set. If, however, we
can show that for a given set Z of , 	 
 relations all possible
candidate sets _ can be identified in polynomial time and if
� �T�K] 2D_  contains only relations of a tractable subset of the
Interval Algebra, then CSPSAT( Z ) is tractable. Using this
method, we identify several tractable subsets of the directed
intervals algebra in the following section.

5 Tractable Subsets of .0/21
The first set we analyze is the set of , 	 
 base relations . .
Lemma 5.1 CSPSAT( . " 7!<;: ) is tractable.
Proof. Consistency of a set ] of constraints over . " 7!<=: can
be decided in polynomial time by using the following steps.

1. Transform ] into a graph 3 � � �K^ 2�4V where ^ is the
set of variables involved in ] and 4 contains an (undi-
rected) edge � � 2#�� if � �H��25] where ��2 . .



2. Split ^ into disjoint subsets ^ � ^ 1 " 454�4 " ^ 6 such that
for each pair of variables � 2 �S2 ^ ? there is a path from
� to � in 4 and for each pair of variables � 2 ^ ? , �*2 ^��
( h 
��� ) there is no path from � to � in 4 .

3. Generate a set of direction constraints _ by selecting
one variable � ? for each ^ ? and adding ( � ? 257�a�: ) to _ .

4. Compute � �T� ] 2=_ �8 and decide its consistency.

It is clear that each of the four steps can be computed in poly-
nomial time. For each pair of variables of different sets ^ ?#2=^ �
there are only constraints involving the universal relation, i.e.,
] �J^ ?  and ] �K^ �  which specify subsets of ] containing all
constraints involving only variables of ^ ? or ^�� , respectively,
are completely independent of each other. There is a path
from each variable of ^ ? to every other variable of ^ ? and each
path consists of constraints where each constraint involves
only , 	 
 relations with the same direction part. Therefore, it
is sufficient to have the direction of only one variable �:?82 ^ ?
given in order to compute the direction of all variables � 2 ^ ? .
If the path contains an odd number of constraints involving
, 	 
 relations of the type ���� , the direction of � is opposite
to the direction of � ? . Otherwise they have the same direc-
tion. Thus, _�� contains definite unary direction constraints
for all variables of ] . If there are conflicting paths, then _ �
is inconsistent. Since , 	 
 relations are invariant with respect
to changing the direction of the underlying line, it does not
matter for consistency purposes if we select the direction of
� as positive or negative. � �T�K] 2D_ �  contains only relations
of a tractable subset of 	 
 . It follows from Lemma 4.4 that its
consistency is equivalent to the consistency of ] .

In the above proof it is not important that all non-universal
relations are base relations, only that all non-universal rela-
tions consist of , 	 
 base relations with the same direction
part. Therefore, we can easily extend the above result.

Theorem 5.2 Let Z be a tractable subset of the Interval
Algebra which is closed under the reverse operator. Then
Z-( � 7 ��� ��� �� ��� � 2 Z : " 7 � � ��� �� ����� � 2�Z�: " 7 <;: is a
tractable subset of the directed intervals algebra.

Proof. We can apply the same proof as given for Lemma 5.1.
But only if all 	 
 relations contained in the normal form are
contained in a tractable subset of the Interval Algebra. This
is clearly the case if Z is closed under the reverse operator
which is used in the transformation into the normal form.

ORD-Horn (also denoted � ) is the only maximal tractable
subset of the Interval Algebra which contains all 	 
 base re-
lations (and for which path-consistency decides consistency)
[Nebel and B ürckert, 1995]. Using a machine-assisted com-
parison of the ORD-Horn relations we found that they are
closed under the reverse operator. This is not true for some
of the maximal tractable subclasses identified in [Drakengren
and Jonsson, 1998] which do not contain all 	 
 base relations.

All tractability results we have given so far rely on given
mutual directions of intervals. For some applications this is a
realistic assumption, but what happens if this is not given in
all cases, if some constraints involve relations with different
direction parts such as � 7 � � 2�� �� 2 
 � �� :�� ? Assume that we
have given a set ] of constraints over arbitrary , 	 
 relations.

� A �;A N!A � �H� �M6;N � � N
a a a � ��� � F  � ���J6 F  � ��� � F  
a a b � ��� � F  � ���K6 G  �� � ��� � G  	�
a b a � ��� � G  	� � ���J6 G  � ��� � F  
a b b � ��� � G  	� � �0�K6 F  �� � ��� � G  	�
b a a � �0� �HG  � ���J6 FO � �0� � GM 
b a b � �0� �HG  � ���K6 GM �� � ��� � F  	�
b b a � ��� �-FO 	� � ���J6 GM � �0� � GM 
b b b � ��� �-FO 	� � �0�K6 FO �� � ��� � F  	�

Table 3: Transformation of , 	 
 constraints over a triple of
variables � 2 � 2/N (depending on their directions � A*2#��A*2/N!A ) into
	 
 relations of the normal form.

One way of obtaining a possible candidate set _ of definite
unary directions for each interval in ] is to look at each triple
of variables � � 2 � 2/N0 of ] separately and check all ( & differ-
ent combinations of directions � � A�2 ��A*2/N!A> of � � 2 � 2=Nc ( � A can
be either a or b ). If enforcing path-consistency to the normal
form gives the empty relation for a particular choice of � � A 2
��A*2/N!A> , then this choice makes ] inconsistent. If we combine
all such inconsistent triples � ? � 70� � 2 � A> 92T� � 2#��AT 92T�JN 2=N3A  ': ,
then ] is inconsistent if 	 ��
 ? �
��� ����� ������ is satisfiable ( ���
is a placeholder for m � A if � � 2TbL �2 ��? and for � A if � � 2 a! �2
� ? , analogously for � � and � � .) A possible candidate set _ can
be obtained by computing a model of the complement of this
formula, namely, � ��m�	 ��� ? �Jm������*m������*m����> . This for-
mula is an instance of 3SAT and, thus,

+-,
-hard to compute.

Eventually, since we did not propagate information between
different triples, we have to check all possible models of � .

Because of its
+-,

hardness, this way of generating a can-
didate set _ does not seem to be helpful. However, we can
show that it leads to a tractability proof for a restricted but
interesting set of , 	 
 relations, namely, those , 	 
 relations
.�� which correspond to the set � of 13 base relations of the
Interval Algebra, i.e., .�� � 7�7 � � �c� �� � 2 � � ��� �� �� : � ��2!��: .
Theorem 5.3 Let ] be a set of , 	 
 constraints over the
variables � 1 25454�452#� G which contains a constraint � ? �H� � with
��2 .�� if and only if h �"� . Consistency of ] can be decided
in polynomial time.

Proof. For each triple of variables � ?#2 � � 2 � 6 of ] with
h 
�#�"
� k 2/h � k we check for all ( & possible directions
if the normal form of the triple is consistent or not. Depend-
ing on whether h �$� , either � ? �H� � or � � �H� ? is given in ] .
Equivalently, either �%�>6 � 6 or � 6 6 �%� is given in ] . Since
h �jk , � ? � � 6*2 ] . Obviously, it is not possible that � � �H� ?
and � 6�6 � � are both in ] . Therefore, we compare in the nor-
mal form either (1) � 4%6 , (2) ����4%6 , or (3) � 4 6 � with

�
in order to check consistency of the triple. In all three cases,
the result is invariant with respect to the direction of one of
the three variables and depends only on the direction of the
other two variables. We can verify this using Table 3. In
the first case, the only thing which changes in Table 3 when
varying the direction of � ? (which is � A in the table) are the
subscripts of � and

�
: �-F changes to �HG ,

� F changes to
� G

and vice versa. Since all relations used in ] are of the form
78?5� 2#?��� : , ? F and ? G are always equivalent, i.e., the result of
comparing � 496 with

�
is invariant with respect to the di-

rection of � ? . In the second case, the result is invariant with



respect to the direction of � � (which is � A in the table.) When
varying � A in the table, 6 F changes to 6 G , � ��� �-�F  changes
to � ��� ���G  	� , and � ��� � �G  changes to � �0� ���F  	� and vice versa.
Since 6 F is always equal to 6 G , the change of 6 does not
change the result. The change of ��� is more difficult. Us-
ing a case analysis of the 13 different cases, we were able to
prove that � �0� � �F  � � ��� ���G  �� and that � �c� ���G  � � ��� ���F  	�
if � is of type 78?5� 2#?;�� : . As an example consider the re-
lation � � 7 � � 2 � �� : whose converse is � � � 7 � � 2 � �� : .
� ��� �D �%7 �-: � � ������ �� and � ������ � 7 �-: � � ��� �= �� . In the third
case, the result is invariant with respect to the direction of � ?
which can be proved equivalently to the first case.

Because consistency of every triple depends on the direc-
tion of only two of the three variables, the resulting formula
� (see above) is an instance of 2SAT and, thus, solvable in
polynomial time. For any model of � , the resulting set _ of
unary direction constraints leads to a consistent normal form
� �T�K] 2D_  . This is because � � �K] 2=_. contains only 	 
 base
relations and because all triples are consistent (as it has been
checked when � was generated.) Therefore, enforcing path-
consistency does not change any relation of � �T�K] 2D_  .

Instead of transforming every set ] of , 	 
 constraints to
the normal form in order to decide consistency, it would be
nice to know if and for which sets of , 	 
 relations path-
consistency is sufficient for deciding consistency when ap-
plied directly to ] . We show this for � ( , the set of , 	 

relations which results from ORD-Horn (see Theorem 5.2).
Theorem 5.4 Path-consistency decides CSPSAT( � ( ).
Proof. Consistency of a set ] of , 	 
 constraints over � ( can
be decided in polynomial time by deciding consistency of its
normal form ]�� as it is obtained by applying the steps given
in the proof of Lemma 5.1. Assume that ] is path-consistent,
i.e., for every triple of variables � 2 � 2/N with � �H� 2 �M6;N 2 � � NV2
] we have that

� ` � 4;6 . If ] � is also path-consistent, then
] is consistent. In order to show that ] � is path-consistent,
we have to show that

� ` �*4 6 implies
� �:` � �=4 ?A@ 6 � for all

triples � 2 � 2=N ( � ��� � 2 �M6 � N 2 � � � N�2 ] � .) Since all relations of
� ( consist of , 	 
 base relations with the same direction part,
we can extend the composition rules given in Theorem 3.1 to
all � ( relations. According to these rules,

� ` � 496 can
be written as either

� �� ` ��� ��� � ��� �-FO ��L4�?I@ � �0�J6 G  	 �� ,
� �� `

� � ��� � ��� �HGM F4�?A@ � ���J6 FO / �� ,
� � ` � � ��� � ��� � GM 	�%4�?A@ � �0�K6 G  	 � , or� � ` ��� ��� � ��� � F  M4 ?A@ � ���J6 F  / � depending on the directions of

� 2#� 2/N . The corresponding restrictions of
� � can be derived

using Table 3. If N A � 7�a�: , the restrictions of
� � are equiv-

alent to the results of applying � � to the interval parts of the
above given restrictions of

�
. If N A � 7 b-: , we have to re-

verse
�

and the restrictions of
�

. Since ��� 4
?I@ ^# �� ���!��4�?A@J^V�
and ���/����� for all 	 
 relations � 2D^ , the restrictions of� � are also equivalent to the results of applying � � to the in-
terval parts of the restrictions of

�
(e.g. the first restriction

� � ��� �HF( ��94�?I@ � ���K6 G  	 	� � � ��� �HF( 4�?A@ � ���J6 GM �� is the same as
line 2 in Table 3.) Thus,

� ` �S4 6 implies
� �F` ���T4�?A@ 6 � .

This result enables us to decide consistency of arbitrary
sets ] of , 	 
 constraints by backtracking over the � ( re-
lations and by using path-consistency as a forward-checking
method and as a decision procedure for sub-instances of ]
which contain only relations of � ( .

6 Discussion & Future Work
We extended the Interval Algebra for dealing with directed
intervals which occur when interpreting intervals as spatial
instead of temporal entities. Reasoning over the directed in-
tervals algebra , 	 
 is more difficult than over the Interval
Algebra 	 
 , but it is possible to transform a set of , 	 
 con-
straints into an equivalent set of 	 
 constraints if the mutual
directions of all intervals are known. This enabled us to trans-
fer some tractability results from 	 
 to , 	 
 . If the mutual
directions are not known, a tractable subset of , 	 
 can be
identified if two potentially exponential nested problems can
be shown to be tractable for the subset: (a) compute a set of
mutual directions and (b) decide consistency of the resulting
set of constraints. We proved this for a small but interesting
subset of , 	 
 , but the problem is mostly open. Consequently,
no maximal tractable subset of , 	 
 has been identified so far.
, 	 
 can also be used instead of 	 
 as a basis for defining

a block algebra [Balbiani et al., 1999]. Then it is possible to
reason about � -dimensional blocks with intrinsic directions.
Remotely related to directed intervals are line segments with
arbitrary directions which were analyzed by Moratz [2000].

The spatial odyssey of the Interval Algebra is to be con-
tinued as follows: (1) extend , 	 
 to deal with intervals on
parallel lines and on networks of lines, (2) add qualitative and
metric information on the length of intervals and on the dis-
tance between intervals, and finally (3) extend the algebra to
deal with dynamic instead of just static information, e.g., in-
tervals move on lines with a certain velocity and sometimes
switch to accessible lines. These are the desired properties of
a calculus for representing and reasoning about traffic scenar-
ios, a prototypical application of spatial intervals. Hopefully,
contact with applications will be made before 2010...

References
[Allen, 1983] J. F. Allen. Maintaining knowledge about temporal

intervals. Comm. ACM, 26(11):832–843, 1983.
[Balbiani et al., 1999] P. Balbiani, J.-F. Condotta, and L. Farinas

del Cerro. A tractable subclass of the block algebra: constraint
propagation and preconvex relations. In Proc. EPIA’99, 1999.

[Drakengren and Jonsson, 1998] T. Drakengren and P. Jonsson. A
complete classification of tractability in Allen’s algebra relative
to subsets of basic relations. AIJ, 106(2):205–219, 1998.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson. Com-
puters and Intractability. Freeman, San Francisco, CA, 1979.

[Gerevini and Renz, 1998] A. Gerevini and J. Renz. Combining
topological and qualitative size constraints for spatial reasoning.
In Proc. CP’98, 1998.

[Ladkin and Maddux, 1994] P. B. Ladkin and R. Maddux. On bi-
nary constraint problems. J.ACM, 41(3):435–469, 1994.

[Ladkin and Reinefeld, 1997] P. B. Ladkin and A. Reinefeld. Fast
algebraic methods for interval constraint problems. Annals of
Mathematics and Artificial Intelligence, 19:383-411, 1997.

[Moratz et al., 2000] R. Moratz, J. Renz, and D. Wolter. Qualitative
spatial reasoning about line segments. In Proc. ECAI’00, 2000.
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