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Abstract
Increasing the expressiveness of qualitative spatial
calculi is an essential step towards meeting the re-
quirements of applications. This can be achieved
by combining existing calculi in a way that we can
express spatial information using relations from
both calculi. The great challenge is to develop
reasoning algorithms that are correct and com-
plete when reasoning over the combined informa-
tion. Previous work has mainly studied cases where
the interaction between the combined calculi was
small, or where one of the two calculi was very sim-
ple. In this paper we tackle the important combina-
tion of topological and directional information for
extended spatial objects. We combine some of the
best known calculi in qualitative spatial reasoning
(QSR), the RCC8 algebra for representing topolog-
ical information, and the Rectangle Algebra (RA)
and the Cardinal Direction Calculus (CDC) for di-
rectional information. Although CDC is more ex-
pressive than RA, reasoning with CDC is of the
same order as reasoning with RA. We show that
reasoning with basic RCC8 and basic RA relations
is in P, but reasoning with basic RCC8 and basic
CDC relations is NP-Complete.

1 Introduction
Qualitative Spatial Reasoning (QSR) is a multi-disciplinary
research field that aims at establishing expressive representa-
tion formalisms of qualitative spatial knowledge and provid-
ing effective reasoning mechanisms. QSR has developed in
the last two decades, and dozens of models have been pro-
posed [Cohn and Renz, 2007]. Most of the models focus on
single aspect of space, e.g. topology, direction, or shape. This
is one major shortcoming of the current QSR formalisms,
since many potential applications require multiple aspects.

This paper aims at alleviating this weakness by solving
spatial constraints concerning topology and direction, as they
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are two of the most important aspects of space. More spe-
cially, we confine ourselves to the combination of topologi-
cal and directional constraints over extended planner regions,
which are closed, regular and bounded, may have multiple
pieces or even holes. We adopt the RCC8 algebra [Ran-
dell et al., 1992] to express topological constraints, which
is one of the most influential formalism for topological re-
lations. As for directional relations, there are two well-
known formalisms that can cope with extended objects, the
Rectangle Algebra [Balbiani et al., 1999] and the Cardi-
nal Direction Calculus (CDC) [Goyal and Egenhofer, 2001;
Skiadopoulos and Koubarakis, 2005]. RA approximates
both the reference and the primary object by their minimum
bounding rectangles (MBRs), and relates them by the interval
relations between the projected intervals. On the other hand,
CDC only approximates the reference object by its MBR,
leaving the primary object unchanged. Reasoning with ba-
sic CDC constraints is still tractable [Zhang et al., 2008].

Combining spatial constraints of different calculi is a very
important problem in QSR. Given a network Θ of topologi-
cal (RCC8) constraints, and a network ∆ of directional (RA
or CDC) constraints over the same variables of Θ, the joint
satisfaction problem (JSP) is to decide when the joint net-
work Θ ]∆ is satisfiable. Note that we use ], instead of ∪,
to indicate that Θ and ∆ involve the same variables.

Since topological and directional information is not inde-
pendent, Θ ] ∆ may be unsatisfiable despite both Θ and ∆
being satisfiable. Solving the joint satisfaction problem is
at least as hard as solving the separate satisfaction problem,
which means JSP is NP-hard. In this paper, we only consider
basic RCC8 constraints and basic RA or CDC constraints.
Since arbitrary constraints can always be backtracked to basic
constraints, this does not restrict the usefulness of our results.

We show that the JSP over basic RCC8 and basic RA net-
works can be solved in polynomial time. We also prove that,
the JSP over basic RCC8 and basic CDC networks is NP-
Complete, by reducing the 3SAT problem to it and devising
an exponential decision algorithm.

The rest of this paper proceeds as follows. Section 2 intro-
duces basic notions and related qualitative calculi, including
the RCC8 algebra, the Rectangle Algebra (RA), and the Car-
dinal Direction Calculus (CDC). Sections 3 and 4 consider
the computational complexity of the combination of RCC8
with RA and CDC, respectively. Section 5 is the conclusion.



2 Qualitative calculi
The establishment of a proper qualitative calculus is the key
to the success of the qualitative approach to temporal and spa-
tial reasoning. This section introduces basic notions and ex-
amples of qualitative calculi.

2.1 Basic notions
Let U be the universe of temporal or spatial entities, and set
Rel(U) to be the set of binary relations on U. With the usual
relational operations of intersection, union, and complement,
Rel(U) is a Boolean algebra. A finite set B of nonempty rela-
tions on U is jointly exhaustive and pairwise disjoint (JEPD
for short) if any two entities in U are related by one and only
one relation in B. Write 〈B〉 for the subalgebra of Rel(U)
generated by B. Clearly, relations in B are atoms in the al-
gebra 〈B〉. We call 〈B〉 a qualitative calculus on U, and call
relations in B basic relations of the calculus.

A constraint over 〈B〉 has the form xγy, where γ is a re-
lation in 〈B〉. We call xγy a basic constraint if γ is a basic
relation in B. An important reasoning problem in a qualitative
calculus is to determine the satisfiability or consistency of a
network Γ = {viγijvj}n

i,j=1 of constraints over 〈B〉, where Γ
is satisfiable (or consistent) if there is an instantiation {ai}n

i=1
in U such that (ai, aj) ∈ γij holds for all 1 ≤ i, j ≤ n.

Since general constraint networks can be reduced to basic
networks by backtracking, we confine ourselves to the con-
sistency of basic networks in this paper.

A basic network Γ = {viγijvj}n
i,j=1 is path-consistent if

every subnetwork involving at most three variables is consis-
tent. Path-consistency can be determined in cubic time. For a
basic network, it is easy to see that consistency implies path-
consistency. The opposite proposition does not always hold,
it is true for RCC8 and RA, but not true for CDC.

We use JSP(B1,B2) to denote the basic joint satisfaction
problem over B1 and B2. Suppose Θ = {viθijvj}n

i,j=1 is a
basic constraint network over 〈B1〉, and ∆ = {viδijvj}n

i,j=1

is a basic constraint network over 〈B2〉 involving the same
variables. Then we say Θ]∆ is an instance of JSP(B1,B2).
We say Θ ]∆ is bipath-consistent if Θ and ∆ are both path-
consistent and θij ∩ δij 6= ∅ for any 1 ≤ i, j ≤ n (recall
θij and δij are subsets of U× U). Bipath-consistency can be
determined in polynomial time [Gerevini and Renz, 2002].

2.2 RCC8 algebra
A plane region (or region) is a nonempty regular closed sub-
set of the real plane. In this paper, we only consider bounded
regions, which could have multi-pieces and/or have holes.
The relations in Table 1 and the converses of TPP and NTPP
form a JEPD set [Randell et al., 1992]. Write Btop for this
set, and the RCC8 algebra is generated by Btop.

It is known that, for basic RCC8 networks, path-
consistency implies consistency. A cubic realization algo-
rithm was proposed in [Li, 2006]. Since a similar algorithm
will be devised later for the combination cases, we give a
short description of this algorithm.

Given a basic RCC8 network Θ = {viθijvj}n
i,j=1, suppose

Θ is path-consistent. An ntpp-chain in Θ is defined to be a se-
ries of variables vi1 , vi2 , · · · , vik

such that vis
NTPPvis+1 ∈

Relation Symb. Meaning
equals EQ a = b

disconnected DC a ∩ b = ∅
externally connected EC a ∩ b 6= ∅ ∧ a◦ ∩ b◦ = ∅

partially overlap PO a◦ ∩ b◦ 6= ∅ ∧
a 6⊆ b ∧ a 6⊇ b

tangential proper part TPP a ⊂ b ∧ a 6⊂ b◦
non-tangential proper part NTPP a ⊂ b◦

Table 1: The set of basic RCC8 relations Btop, where a, b are two
plane regions and a◦ and b◦ are, resp., their interiors.

Θ for all s = 1, · · · , k − 1. The ntpp-level l(i) of a variable
vi is defined to be the maximum length of the ntpp chains
contained in Θ that ends with vi.

A realization can be constructed as follows. Note that a
variable can be interpreted as a bounded region with multiple
pieces. We first define for each variable vi a finite set Xi of
control points as follows. For each i, introduce a point Pi to
vi; if viECvj or viPOvj , then introduce a point Pij to vi;
if viTPPvj or viNTPPvj , then put all Xi points into Xj .
We then expand each point P in Xi a little to obtain a square
s(P ). These squares are pairwise disjoint. Then, taking the
union of these squares, we obtain an instantiation of bounded
regions to these vi. This works for all but the EC and NTPP
constraints. Further modifications are needed to cope with
these constraints (cf. [Li, 2006], or Section 3 of this paper).

2.3 Interval Algebra and Rectangle Algebra
The interval algebra IA [Allen, 1983] is generated by a set
Bint of 13 basic relations between closed intervals (see Ta-
ble 2). For basic IA constraint networks, path-consistency is
sufficient to decide consistency. Moreover, we can construct
a canonical solution in the following sense.

Relation Symb. Conv. Meaning
precedes p pi x+ < y−

meets m mi x+ = y−

overlaps o oi x− < y− < x+ < y+

starts s si x− = y− < x+ < y+

during d di y− < x− < x+ < y+

finishes f fi y− < x− < x+ = y+

equals eq eq x− = y− < x+ = y+

Table 2: The set of basic interval relations Bint, where x =
[x−, x+], y = [y−, y+] are two intervals.

Definition 2.1 (canonical set of intervals). Suppose m =
{[m−

i ,m+
i ]}n

i=1 is a set of intervals. Let E(m) be the set
of end points of intervals in m. We say m is canonical iff
E(m) = [0,M ]∩Z, where M is the largest number in E(m).

For a basic satisfiable IA network, it is not hard to work out
the total order of all the end points. Hence we can obtain a
canonical solution (by assigning 0 to the first end point, 1 to
the second, etc). This gives us the following proposition.
Proposition 2.1. If a basic IA constraint network is satisfi-
able, then it has a unique canonical solution.

IA can be naturally extended to two-dimensional space.
We assume an orthogonal basis in the Euclidean plane, and



focus on the rectangles sides of which are parallel to the axes
of this basis. For a rectangle r, write Ix(r) and Iy(r) as, resp.,
the x- and y-projection of r. The basic rectangle relation be-
tween two rectangles a, b is α⊗ β iff (Ix(a), Ix(b)) ∈ α and
(Iy(a), Iy(b)) ∈ β, where α, β are two basic IA relations.
Apparently, there are 13 × 13 = 169 basic rectangle rela-
tions, and we write Brec for this set, i.e., Brec = {α ⊗ β :
α, β ∈ Bint}. The Rectangle Algebra (RA) is generated by
Brec. The following lemma is straightforward.
Lemma 2.1. Let ∆ = {vi(αij ⊗ βij)vj}n

i,j=1 be a basic
RA network. Then ∆ is satisfiable iff its projections ∆x =
{xiαijxj}n

i,j=1 and ∆y = {yiβijyj}n
i,j=1 are satisfiable IA

networks.
We also extend the concept of ‘canonical’ to RA.

Definition 2.2 (canonical set of rectangles). A set of rect-
angles {mi}n

i=1 is canonical iff its x- and y-projections,
{Ix(mi)}n

i=1 and {Iy(mi)}n
i=1 are canonical sets of intervals.

From Prop. 2.1, clearly each path-consistent basic RA net-
work has a unique canonical solution.

The RA relations can be extended from rectangles to arbi-
trary bounded regions. For a bounded region b, its minimum
bounding rectangle (MBR), denoted by M(b), is defined to
be the smallest rectangle containing b. The extended RA rela-
tion between two bounded regions a and b is defined to be the
RA relation between M(a) and M(b). These extended RA
relations are useful for expressing directional information.

2.4 Cardinal Direction Calculus
Given a bounded region b in the real plane, by extending the
four edges of M(b), we partition the plane into nine tiles,
denoted by bij (1 ≤ i, j ≤ 3), see Fig. 1 (left) for illustration.

For a primary region a and a reference region b, the CDC
relation of a to b, denoted by δab, is encoded in a 3 × 3
Boolean matrix (dij)1≤i,j≤3, where dij = 1 iff a◦ ∩ bij 6= ∅
(here a◦ is the interior of a). For example, in Fig. 1 we have
δab = δa′b′ =

[0 0 0
1 0 0
0 0 0

]
, δba = δb′a′ =

[0 0 1
0 0 1
0 0 1

]
.

Figure 1: Illustrations of the Cardinal Direction Calculus

A CDC relation could be any but the zero Boolean matrix,
so there are 29 − 1 = 511 basic relations in CDC. We denote
this set by Bcdc. Since only the reference object is approxi-
mated, CDC is in general more expressive than the RA.
Definition 2.3. For a pair of basic CDC relation (δ, γ),
the x-projective interval relation of (δ, γ), written ιx(δ, γ),
is defined to be the union of all IA basic relation α s.t.
(Ix(m1), Ix(m2)) ∈ α, where {m1,m2} is a solution of
{v1δv2, v2γv1}.

If {v1δv2, v2γv1} is consistent, we can prove that ιx(δ, γ)
is either a basic IA relation in {o, s, d, f, eq, oi, si, di, fi} or a

non-basic IA relation in {p∪m, pi∪mi}. A similar definition
and result holds for the y-direction. For example, from Fig. 1,
we have ιx(δab, δba) = p ∪m, ιy(δab, δba) = d.

We call ι(δ, γ) = ιx(δ, γ) ⊗ ιy(δ, γ) the RA relation in-
duced by (δ, γ). In general, for a basic CDC constraint net-
work ∆ = {viδijvj}n

i,j=1, we call ι(∆) = {viιijvj}n
i,j=1 the

induced RA constraint network of ∆, where ιij = ι(δij , δji).
We next consider special solutions of CDC networks.

Definition 2.4 (maximal solution). A solution {mi}n
i=1 of a

CDC constraint network ∆ is maximal if m′
i ⊆ mi holds for

any solution {m′
i}n

i=1 of ∆ with M(mi) = M(m′
i).

Definition 2.5 (regular solution). A solution m = {mi}n
i=1

of a CDC constraint network is regular if m is maximal and
{M(mi)}n

i=1 is a canonical set of rectangles.

Although a basic CDC network may have more than one
regular solutions, we have the following lemma.

Lemma 2.2. Suppose ∆ is a basic CDC network with a so-
lution {mi}n

i=1. Then there exists a unique regular solution
{m′

i}n
i=1 of ∆ s.t. for any i, j the basic RA relation between

m′
i and m′

j is the same as that between mi and mj .

[Zhang et al., 2008] devised a cubic algorithm which deter-
mines whether a basic CDC network has a (possibly discon-
nected) solution, and gives a regular one if possible. Here we
review the algorithm as it will be used in Section 4. First, we
compute a canonical solution of the induced (possibly non-
basic) RA network, which yields a grid space. Next, we re-
move the grids that violate some constraints from each rect-
angle. Third, we check whether what we have obtained is a
valid solution. In the following, we give a detailed description
with a running example illustrated in Table 3 and Fig. 2.

δij δji ιxij ⊗ ιyij ρx
ij ⊗ ρy

ij

(1, 2)

[0 0 0
1 1 0
1 0 0

] [0 1 1
0 1 1
0 0 0

]
o⊗ o o⊗ o

(1, 3)

[0 0 0
1 0 0
1 0 0

] [0 0 0
0 1 0
0 0 0

]
(m ∪ p)⊗ fi p⊗ fi

(2, 3)

[1 1 0
1 0 0
0 0 0

] [0 0 0
0 0 1
0 1 1

]
o⊗ oi o⊗ oi

Table 3: example of solving a basic CDC network

Step 1. Compute the induced RA network Γ0 of ∆.
Step 2. Refine Γ0 to a basic RA network Γ = {vi(ρx

ij ⊗
ρy

ij)vj}n
i,j=1 by setting ρx

ij = ιxij\(m ∪ mi) and ρy
ij =

ιyij\(m ∪ mi). If Γ is unsatisfiable, then it can be proven
that neither is ∆. Suppose Γ is satisfiable and calculate its
canonical solution mΓ = {mΓ

i }n
i=1 (cf. Fig. 2 left).

Figure 2: Solution m derived from a canonical solution mΓ.



Step 3. This step tries to find a solution m = {mi}n
i=1 s.t.

M(mi) = M(mΓ
i ). Recall a basic CDC relation δij is repre-

sented as a 3× 3 Boolean matrix ((δij)xy). If m is a solution,
m◦

i ∩ (mj)xy = ∅ holds for any (δij)xy = 0, where (mj)xy

is one of the nine tiles generated byM(mj) (cf. Fig. 1). This
means, to make m a solution to ∆, we need to exclude all
impossible grids from mΓ

i . Set Ti =
⋃{(mΓ

j )xy : (δij)xy =
0}n

j=1. Let mi be the closure of mΓ
i \ Ti (cf. Fig. 2 left).

Step 4. Note we may have removed too many tiles so that
some constraint like (δij)xy = 1 is violated. The last step
then checks whether m = {mi}n

i=1 is a solution of ∆. If m
is not, we can prove that ∆ has no solution at all. Otherwise,
it’s not difficult to find out that m is a regular solution.

We need to point out that other regular solutions may exist
(cf. Fig. 2 right). We can get all of them by repeating Step 2
to 4 using every possible refinement of Γ0.

3 Combination of RCC8 and RA networks
We now consider the combination of RCC8 and RA. First we
show that bipath-consistency is not sufficient for consistency
in JSP(Btop,Brec). Let Γ = {viγijvj}4i,j=1 be the basic RA
network as specified in Fig. 3, where mΓ = {mΓ

i }4i=1 is the
canonical solution of Γ. Let Θ = {viθijvj}4i,j=1 be the RCC8
network where θ12 = θ34 = EC and θ13 = θ24 = DC.
Although we can verify Θ ] Γ is bipath-consistent, it is not
satisfiable. Otherwise, for any solution {mi}4i=1, we have
M(m1) ∩M(m2) = M(m3) ∩M(m4) is a singleton, say
P . As θ12 = θ34 = EC, we know P ∈ mi (i = 1, 2, 3, 4),
which contradicts θ13 = DC.

Figure 3: A bipath-consistent but inconsistent network Γ

We call point P in the above configuration a conflict point.
Definition 3.1 (conflict point). Let Θ be a basic RCC8 net-
work and Γ a basic RA network. Suppose mΓ is the canonical
solution of Γ. A point Q is called a conflict point of mΓ

i if
there exists j such that mΓ

i ∩mΓ
j = {Q} and θij = EC. We

write Ci for the set of all conflict points of mΓ
i .

Clearly, each conflict point of mΓ
i is also a corner point

of mΓ
i . This implies that mΓ

i and mΓ
j may have at most one

common conflict point. Moreover, if m = {mi}n
i=1 is a so-

lution of Θ ] Γ s.t. M(mi) = mΓ
i for all 1 ≤ i ≤ n, then

Q ∈ mi. This means Ci ⊂ mi. As a consequence, we have

θij = DC ⇒ Ci ∩ Cj = ∅ (1 ≤ i, j ≤ n) (1)

The following theorem shows that this is also sufficient.
Theorem 3.1. Suppose Θ]Γ is bipath-consistent. Then Θ]Γ
is satisfiable iff Equation 1 holds.

Proof. We only need to show the ‘only if’ part. Similar to
the method for RCC8 alone (cf. Section 2.3 and [Li, 2006]),

assuming the ntpp-level l(i) has been computed, we construct
a solution m = {mi}n

i=1 which also satisfies M(mi) = mΓ
i .

Step 1. Selection of control points
For each vi we select a set of control points Xi. First select

one point from each edge of mΓ
i and for Xi. Then, for any

j > i with θij = EC or PO, select a point Pij from mΓ
i ∩

mΓ
j (which is nonempty because of the bipath-consistency of

Θ ] Γ) for both Xi and Xj . Note that mΓ
i ∩mΓ

j could either
be a single point, or a line segment, or a rectangle. When
choosing Pij from mΓ

i ∩ mΓ
j , we should avoid the special

points as much as possible in order to make Step 3 simpler.
Moreover, the points are required to be distinct if possible.
We write P for the set of all the control points.
Step 2. Basic regions associated to control points

For each control point Q, we construct a series of sectors
{qi,k : k = 1, · · · , 4}n

i=1 and a series of squares {q(i)}n
i=1

(see Fig. 4). We call them the basic regions associated to
Q. Note that we use an upper case letter to denote a control
point, and the corresponding lower case letter (with indices)
to denote basic regions. The sectors are chosen in such way
as it allows us to distinguish up to four connecting regions in
cases where Q is a corner point (such as point P in Fig.3).

Figure 4: Basic regions of a control point Q

For any two different control points, we require their outer-
most squares to be disjoint. Furthermore, a basic region must
be small enough so that it is not crossed by the border of any
mΓ

i of which Q is not a boundary point.
Step 3. Region construction

For each control point Q, set qi =
⋃4

k=1 qi,k. Let

a1
i = mΓ

i ∩
⋃
{qi : Q ∈ Xi}

a2
i = a1

i ∪ (mΓ
i ∩

⋃
{qj : θij = PO, Q ∈ Xi ∩Xj})

a3
i = a2

i ∪
⋃
{a2

j : θji = TPP or θji = NTPP}
a4

i = a3
i ∪

⋃
{q(l(i)) : θji = NTPP, Q ∈ a3

j}
Set mi = a4

i and m = {mi}n
i=1. It is easy to prove that

m satisfies all RCC8 constraints in Θ. To show m also sat-
isfies Γ, we need only prove M(mi) = mΓ

i for each i. It
is clear that a1

i and a2
i are subsets of mΓ

i . By the choice of
Xi, we know mΓ

i = M(a1
i ) = M(a2

i ). If θji = TPP or
NTPP, then mΓ

j ⊆ mΓ
i by bipath-consistency. This im-

plies M(a3
i ) = mΓ

i . Furthermore, if θji = NTPP, we have
(mΓ

j ,mΓ
i ) ∈ d⊗ d by bipath-consistency. So for any control

point Q in a3
j ⊆ mΓ

j , Q is also in the interior of mΓ
i . There-

fore, by the choice of basic regions, we know the outmost



square q(n) at Q, hence q(l(i)), is contained in mΓ
i . Therefore,

M(a4
i ) = mΓ

i . This proves that m is a solution to Θ]Γ.

As a corollary, we have JSP(Btop,Brec) is in P.

Corollary 3.1. For a basic RCC8 network Θ and a basic RA
network Γ, consistency of Θ]Γ can be decided in cubic time.

Proof. Bipath-consistency of Θ ] Γ can be checked in cubic
time. We can construct the unique canonical rectangle solu-
tion of Γ in cubic time. The conflict point set Ci can also be
computed in cubic time. That is, the condition of Theorem 3.1
can be checked in cubic time.

4 Combination of RCC8 and CDC networks
This section discusses the joint satisfaction problem of a ba-
sic RCC8 network and a basic CDC network. We first show
JSP(Btop,Bcdc) is NP-hard, and then show it is also in NP.

Let Θ = {viθijvj}n
i,j=1 be a basic RCC8 network and

∆ = {viδijvj}n
i,j=1 a basic CDC network. Suppose Θ ] ∆

is bipath-consistent, and let m∆ = {m∆
i }n

i=1 be one regu-
lar solution of ∆. Clearly, m∆

i and m∆
j may meet at two or

more but finite points (see Fig. 2 for example). These points
may introduce conflicts when combined with topological con-
straints. This is different from RA, where two variables may
have at most one conflict point. This will essentially increase
the computational complexity.

Lemma 4.1. There is a polynomial reduction from 3SAT to
JSP(Btop,Bcdc).

Proof. For each 3SAT instance ϕ =
∧m

i=1(qi1∨qi2∨qi3) with
n propositional variables {pk}n

k=1, where qij ∈ {pk}n
k=1 ∪{¬pk}n

k=1, we construct a JSP(Btop,Bcdc) instance Θϕ]∆ϕ

such that ϕ is satisfiable iff Θϕ ]∆ϕ is consistent. There are
three types of spatial variables in Θϕ and ∆ϕ.
Step 1. Grid variables

We introduce 10n spatial variables Gij as grid variables,
where 1 ≤ i ≤ 2n and 1 ≤ j ≤ 5. The reason we call them
‘grid variables’ will become clear soon. The CDC constraints
between them are specified as in Fig. 5 (left). The RCC8
constraint between Gij , Gi′j′ is EC if they are 4-neighbors
(i.e. {|i − i′|, |j − j′|} = {0, 1}), otherwise DC. These EC
constraints make sure that there is no gap between the MBRs
of two neighboring grid variables.

Grid variables are mainly used to locate other spatial vari-
ables. For a new variable v and a grid variable Gij , we say
v occupies Gij if v ∩M(Gij) is nonempty, and its MBR is
M(Gij), i.e. M(v ∩M(Gij)) = M(Gij).

Figure 5: Grids; spatial variables for propositional variables

Step 2. Spatial variables for propositional variables
For each propositional variable pi in ϕ, four spatial vari-

ables Ai, Bi, Ci and Di are introduced. Take Ai as example.
By assigning the CDC constraints between Ai and the grid
variables, we require Ai occupies G2i−1,1 and G2i−1,4, but
has an empty intersection with the interior of the MBR of any
other grid variable, see Fig. 5 (right) for illustration, where
A+

i and A−i are used to denote the two parts of the sketch of
Ai. Easy to see, Ai∩Bi contains at most two points, viz. P+

i

and P−i , and so does Ci ∩Di.
As for the topological constraints, we set θAj ,Bj

=
θCj ,Dj

= EC, and all the others to be DC. The EC con-
straints imply that both Ai ∩ Bi and Ci ∩ Di are nonempty.
On the other hand, since AiDCCi, we can get the conclusion
that Ai and Bi must share only one of P+

i and P−i , while Ci

and Di share the other one.
Step 3. Spatial variables for clauses

For each clause (qj1∨qj2∨qj3) in ϕ, two new spatial vari-
ables Ej and Fj are introduced, both of which occupy three
grids. The precise occupied grids are set according to the
variables and signs of qjk. One example is given in Fig. 6 to
illustrate the construction, where we assume qj1 = pi1 , qj2 =
¬pi2 , qj3 = ¬pi3 . As for the topological constraints, we set
θEj ,Fj

= EC, while all others (e.g., θAj ,Ei
) are DC. This

implies Ej ∩ Fj contains at least one point of P−i1 , P+
i2

, P+
i3

.
We assert that it won’t be the case that Ai1 ∩ Bi1 = {P−i1 },
Ai2 ∩Bi2 = {P+

i2
} and Ai3 ∩Bi3 = {P+

i3
}. Otherwise, some

DC constraint, e.g. that between Ai1 and Ej , will be violated.

Figure 6: Spatial variables for clauses

So far we have finished the construction. Next, we show
that ϕ is satisfiable iff Θϕ ]∆ϕ is consistent.

If Θϕ ]∆ϕ has a solution m, we can obtain an assignment
π : {pi}n

i=1 → {true, false} s.t. π(pi) = true iff Ai∩Bi =
{P+

i } by m. By Step 3, we can verify that π satisfies ϕ. On
the other side, if π is an assignment that satisfies ϕ, we show
Θϕ ] ∆ϕ is consistent. The idea is to introduce an instance
of JSP(Btop,Brec), in which we have two spatial variables
A+

i and A−i instead of Ai (also for Bi, Ci, Di), and three
variables Ek

j (1 ≤ k ≤ 3) instead of Ej (also for Fj). The
RA constraints are set according to Fig. 5 and Fig. 6, while
the RCC8 constraints are set by Θϕ and π. It can be proved
that this new joint network satisfies Eq. 1, and a solution can
be obtained in cubic time. A solution of Θϕ ] ∆ϕ can then
be obtained by merging the related regions (e.g. merging A+

i

and A−i into Ai). The verification is straightforward.

In this way we proved that 3SAT can be reduced to
JSP(Btop,Bcdc). The following theorem is clear.



Theorem 4.1. JSP(Btop,Bcdc) is NP-hard.
In the remainder of this section, we show JSP(Btop,Bcdc)

is also in NP. Let Θ]∆ be an instance of JSP(Btop,Bcdc). If
Θ]∆ is consistent, then it can be proved that ∆ has a regular
solution (cf. Dfn. 2.5) m∆ = {m∆

i }n
i=1 and Θ ] ∆ has a

solution m = {mi}n
i=1 such that

• mi ⊆ m∆
i for each i;

• mi ∩M(g) 6= ∅ for each grid g ⊆ m∆
i and each i.

If this is the case, we call m∆ a consistent regular solution,
and say m is consistent with m∆. Therefore, to determine
whether Θ ] ∆ is consistent, we need only check if there
exists a consistent regular solution.

Suppose m∆ is a regular solution of ∆. Set

Ui = {all end points of m∆
i } (2)

Ni =
⋃
{∂m∆

i ∩ ∂m∆
j : θij = NTPP}, (3)

where ∂A is the boundary of A. Set U =
⋃n

i=1 Ui. A func-
tion f from I = {1, 2, · · · , n} to P(U), i.e. the power set
of U , is called a (conflict point) selection function if for any
1 ≤ i, j ≤ n

f(i) ⊆ Ui \Ni

θij = DC ⇒ f(i) ∩ f(j) = ∅
θij = EC & m∆

i ∩m∆
j is finite ⇒ f(i) ∩ f(j) 6= ∅

A consistent regular solution m∆ satisfies:
• edgek(M(m∆

i )) ∩m∆
i 6⊆ Ni;

• if θij = PO then (m∆
i ∩m∆

j )◦ 6= ∅;

• there exists a selection function f : I → P(U),
where edgek(r) returns the k-th edge of a rectangle r (1 ≤
k ≤ 4). The first two conditions are easy to check. As for the
third, suppose m is a solution of Θ]∆ that is consistent with
m∆. Define f(i) = mi ∩ Ui. It is straightforward to check
that f is a selection function.

On the other hand, suppose m∆ is a regular solution of ∆
that satisfies the above three conditions. Then we can con-
struct a solution of Θ ] ∆ that is consistent with m∆. This
process is similar to that used in JSP(Btop,Brec). We include
each point in f(i) into the control points set Xi. Besides, for
every variable vi, we select a control point from each grid in
m∆

i . The process is polynomial. Note that the cardinality
of regular solutions of ∆ and the cardinality of all possible
selection functions f are of order 2n. We have
Theorem 4.2. JSP(Btop,Bcdc) is in NP.

Together with the NP-hard result, we have
Theorem 4.3. JSP(Btop,Bcdc) is NP-complete.

5 Conclusion
In this paper, we analyzed the interaction between topolog-
ical and directional constraints for extended spatial regions.
We used the rectangle algebra RA and CDC to describe di-
rection information, and RCC8 to express topological con-
straints. We have shown that the problem of deciding consis-
tency of a joint basic network of RCC8 and RA constraints is
still in P, while the one for RCC8 and CDC is NP-Complete.

Our results represent a large step towards the applicabil-
ity of qualitative spatial reasoning techniques for real-world
problems. In particular the result about RCC8 and RA is very
promising as it enables efficient reasoning about these two
important calculi. It also means that if efficient reasoning is
important for a potential application, developers should aim
for representing direction information using RA rather than
using CDC. Our results about combining RCC8 and CDC are
important from a theoretical point of view as they are the first
formal results for this combination.

Some related results have been obtained in [Li, 2007],
where RCC8 was combined with DIR9, which is a very small
sub-algebra of RA that contains only nine basic relations. For
a set of directional constraints over DIR9 and a set of topolog-
ical constraints over a maximal tractable subclass of RCC8,
[Li, 2007] proved that the joint satisfaction problem can be
reduced to two independent satisfaction problems over RCC8
and RA, respectively. It is worth noting that this work does
not restrict constraints to basic ones. While [Li, 2007] shows
that reasoning with RCC8 and DIR9 is decidable, it is the
present work which proves the decidability of reasoning with
RCC8 and the whole RA. Our future work will extend results
obtained here to large tractable subclasses of RA and RCC8.
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