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Abstract
Relative direction information is very commonly
used. Observers typically describe their environ-
ment by specifying the relative directions in which
they see other objects or other people from their
point of view. Or they receive navigation instruc-
tions with respect to their point of view, for exam-
ple, turn left at the next intersection. However, it is
surprisingly hard to integrate relative direction in-
formation obtained from different observers, and to
reconstruct a model of the environment or the lo-
cations of the observers based on this information.
Despite intensive research, there is currently no al-
gorithm that can effectively integrate this informa-
tion: this problem is NP-hard, but not known to be
in NP, even if we only use left and right relations.
In this paper we present a novel qualitative repre-
sentation, StarVars, that can solve these problems.
It is an extension of the STAR calculus [Renz and
Mitra, 2004]) by a VARiable interpretation of the
orientation of observers. We show that reasoning
in StarVars is in NP and present the first algorithm
that allows us to effectively integrate relative direc-
tion information from different observers.

1 Introduction
Research in qualitative spatial reasoning (QSR) develops the
theoretical foundations for abstract, symbolical representa-
tion and reasoning with spatial knowledge. Most spatial rep-
resentations developed in QSR are so-called qualitative cal-
culi [Ligozat and Renz, 2004b], which are spatial logics in
the sense of [Aiello et al., 2007] with the syntax of a con-
straint language, i.e., qualitative representations are conjuncts
of constraint relations. A fundamental reasoning task for such
representations is that of deciding consistency, i.e., to com-
pute a yes/no answer to the question whether a spatial model
exists that satisfies all constraint relations.

From the perspective of applications in autonomous agents,
representations that can handle directional knowledge are par-
ticularly important. Directional knowledge describes the po-
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sition of an object relative to the position and orientation of an
observer, i.e., it uses an ego-centric frame of reference which
allows observations of an agent to be described. This is es-
sential for many navigation problems, including interpreting
route directions and representation and reasoning with navi-
gation rules. In the last 20 years, various approaches to rep-
resenting directional knowledge have been proposed, starting
with the works [Freksa, 1992; Ligozat, 1993] to, more re-
cently, [Moratz, 2006; Mossakowski and Moratz, 2012]. It
was however discovered that deciding consistency for these
representations is NP-hard and it remains an open question
whether an NP algorithm exists [Wolter and Lee, 2010].
Moreover, previous research has focused on deciding consis-
tency of a qualitative representation, the question of how a
spatial model can be computed remains largely unanswered.

This poses a severe limitation for human machine interac-
tion, since it is not possible to visualize the represented spatial
knowledge.

In this paper we develop the new constraint language Star-
Vars, which allows us to represent relative direction knowl-
edge of arbitrary granularity and accuracy.

We present an NP algorithm that computes a spatial model
for a given StarVars constraint formula and fails if and only
if the constraint formula is unsatisfiable. Doing so, we obtain
an important answer to the two longstanding questions of how
one can reason effectively with relative direction relations and
how to present this knowledge visually.

2 Qualitative Spatial Reasoning
In QSR, constraint languages are used to represent spatial
knowledge [Cohn and Renz, 2008]. Let a constraint language
L defined as a finite collectionR of binary relations on an in-
finite domain of spatial entities D. A central problem of QSR
is solving the constraint satisfaction problem for L (CSP(L)
for short), i.e., deciding the satisfiability of a formula∧

i,j∈{1,...,n},i6=j

vi Rij vj , (1)

where v1, . . . , vn are variables defined on D, and each Rij

is a finite union of members of R.1 We call Rij a rela-
tion of L and formula (1) a CSP(L) instance. If Rij is the

1CSP(L) for ternary or n-ary relations is defined analogously.
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Figure 1: (a) ST AR4 relations. (b) The nine directional LR
relations. (c) Relation A∠1

7B in OPRA2.

union of all members of R, we call it the universal relation
of L. If Rij involves only one member of R, then Rij is
said to be an atomic relation of L, and we call a CSP(L)
instance atomic, if all of its relations Rij are atomic. Typ-
ically, in view of composition-based constraint propagation
as reasoning method [Renz and Nebel, 2007], the members
of R are supposed to be jointly exhaustive and pairwise dis-
joint (JEPD)2 and form a partition scheme [Ligozat and Renz,
2004a]; a constraint language with this property is called a
qualitative calculus.

2.1 Cardinal Direction Relations
One example of a spatial constraint language is ST AR that
represents qualitative directions between points in the plane
[Renz and Mitra, 2004]. For each point p, ST AR defines a
number of direction sectors and half-lines that determine the
spatial relationship of other points q with respect to p (see
Figure 1a). The qualitative direction constraint pRq is the
sector (or the half-line) R in which q is located relative to
p. ST ARm allows us to adjust the granularity by varying
the number m of lines that determine the direction sectors.
The angular range of the sectors may be chosen freely, but
commonly all sectors are equally large.

Given a choice of sectors, all direction information be-
tween any two points is expressed with respect to these
sectors and half-lines whose orientation is globally aligned.
Therefore, ST AR relations are cardinal direction relations
that do not depend on the orientation of the points.

2.2 Relative Direction Relations
Relative direction relations describe directions between two
objects relative to a reference object. The most elemen-
tary system of directional relations is called FlipFlop or LR
[Ligozat, 1993], see Figure 1b. The qualitative relations of
LR are defined based on a reference system generated by a
directed line connecting two points. The position of a third
point is then categorized as to be either left or right of the
line, or on 5 different segments of the reference line (two ad-
ditional relations describe degenerate cases and are omitted
here). Other point-based approaches like, for example, the
direction relations “double cross” [Freksa, 1992] or TPCC
[Moratz and Ragni, 2007] are refinements of LR relations.

Binary relations are sufficient to determine relative direc-
tions for objects comprising an intrinsic direction (e.g., the
island is on the starboard side of a sailing ship). Domains

2A set of relations is JEPD, if for each pair of elements (x, y) ∈
D×D, there is one and only one relation ofR that contains the pair.
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Figure 2: (a) An SV8 object A with θA = 90◦. (b) Configu-
ration of two SV8 objects, where A[[5 ..7]]B and B[[0]]A hold

considered in QSR are, for example, directed lines or oriented
points, i.e., points that have been equipped with an orienta-
tion. One particularly interesting representative of this class is
the set of OPRAm relations [Moratz, 2006], which is based
on the domain R2 × [0, 2π) of oriented points. Half-lines
and angular sectors are instantiated to describe the position
of one oriented point as seen from another. The relations of
OPRAm are defined with respect to a granularity parameter
that determines how many sectors are used (OPRAm usesm
lines to divide the full circle evenly, giving 2m angular sec-
tors and 2m half-lines). Figure 1c presents an example of an
OPRA2 relation ∠1

7. In the example, B is located in sector
7 as seen from A, which, in turn, is located in sector 1 as seen
from B. OPRAm is very similar to ST AR, but the sectors
in OPRAm depend on the relative orientation of the point,
while for ST AR their direction is globally fixed.

While representing knowledge in an ego-centric frame
of reference is well-suited for applications with navigating
agents, reasoning with relative direcions is not tractable.
Even for the most elementary set of LR’s directional rela-
tions “left of” and “right of” the problem of deciding whether
an atomic instance of CSP(LR) is consistent is NP-hard
[Wolter and Lee, 2010], while NP-membership has not been
shown so far. Since all known point-based relative direction
calculi are more expressive than LR they are all NP-hard
and their NP-membership remains unclear as well. From the
perspective of a practitioner wanting to utilize relative direc-
tional knowledge it may be even more impeding that no ef-
fective decision procedure is known so far. In particular, the
composition-based reasoning widely used in QSR is ineffec-
tive for deciding consistency of CSPs involving directional
relations [Lücke et al., 2008].

3 The Spatial Constraint Language SVm

We will now define StarVarsm or SVm—a constraint lan-
guage for relative direction relations that integrates the ex-
pressiveness of relative direction representation with the well-
behaved properties of cardinal directions. The relations of
SVm are obtained by generalizing ST ARm relations to ac-
commodate for relative direction information. Our idea is to
retain the fixed arrangement of sectors given by ST ARm re-
lations but to interpret directions with respect to an observer’s
orientation. An example of two SV8 objects are shown in
Figure 2a.

In detail, the constraint language SVm is defined over the
domain R2 × Θm, where m ∈ N,m ≥ 2 is the granularity



parameter and Θm = {k· 360
◦

m |k = 0, 1, . . . ,m−1} the orien-
tation domain. Given an oriented point A = (xA, yA, θA) ∈
R2 × Θm, the value of (xA, yA) ∈ R2 determines the posi-
tion and the value of θA ∈ Θm the angle of the orientation of
A. In Figure 2b an oriented point A in SV8 is illustrated with
θA = 90◦. By definition the higher the value m, the finer
adjustable is the orientation of an SVm object.

We define relations in SVm as follows. Given a pair
of oriented points, the position of the second point is de-
scribed with respect to the first point which serves as refer-
ence. To this end, we partition the plane into m evenly sized
angular sectors centered at the reference point—see Figure
2a for illustration. The sectors of the reference point are
bounded by m−1 half-lines numbered 0, 1, . . . ,m−1 coun-
terclockwise with half-line 0 aligned with the orientation of
the reference point. Sector s is bounded by half-lines s and
s + 1 (mod m), where half-line s belongs to that sector and
half-line s + 1 (mod m) does not. Oriented points A and B
are said to be in relation [[s]] if B is positioned in sector s
of A. Additionally, we establish a special relation S for the
case of super-position, i.e. for two oriented points sharing the
same position in R2 but not necessarily the same orientation.
In summary, relations [[0]], [[1]], . . . , [[m − 1]],S constitute the
JEPD setR of atomic relations in SVm.

We will use the notation [[c..d]] as an abbreviation of re-
lation [[c]] ∪ [[c + 1]] ∪ · · · ∪ [[d − 1]] (i.e., the angular sector
bounded by half-lines c and d). Here, and throughout the pa-
per all operations on numbers associated with SVm relations
are taken modulo m.
Example 1. A CSP(SV8) instance v1[[6]]v2∧v2[[0]]v1 is satis-
fiable as v1 and v2 can be instantiated withA andB as shown
in Fig. 2a.
Example 2. A CSP(SV8) instance

∧
i,j∈{1,2,3},i6=j vi[[1]]vj

cannot be satisfiable, because all three interior angles of the
triangle which is spanned by v1, v2, v3 are constrained to be
less than 45◦ by the atomic relation [[1]]. This contradicts the
fact that the interior angles of a triangle add up to 180◦.

4 NP-Hardness of CSP(SV2)
In this section we show that deciding CSP(SV2) is NP-hard.
The NP-hardness result suggests that developing an algorithm
parametrized with m that decides CSP(SVm) in polynomial-
time for all m is not possible.

For our proof we use a reduction from the BETWEEN-
NESS problem, originally introduced as total ordering prob-
lem [Opatrny, 1979]. In BETWEENNESS we are given a set
of constraints in the form B(qi, qj , qk), i, j, k ∈ {1, . . . , n}
where qi, qj , qk are variables that range over the set of rational
numbers Q. A constraint B(qi, qj , qk) stands for (qi < qj <
qk) ∨ (qi > qj > qk), stating that “qj is between qi and qk”.
Deciding whether there exists a valuation satisfying all BE-
TWEENNESS constraints is NP-complete [Opatrny, 1979].
Theorem 3. CSP(SV2) is NP-hard.

Proof sketch. Given an instance χ of BETWEENNESS over
n variables. We translate the BETWEENNESS constraints
to CSP(SV2) constraints. First, for every variable qj occur-
ring in a BETWEENNESS constraint we introduce a variable

v1j in SV2. If a variable qj occurs tj times as the second
argument of a BETWEENNESS constraint we additionally
introduce one new variable v2j , v

3
j , . . . , v

tj
j in SV2 for every

occurrence. We tie together all v1j , v
2
j , . . . , v

tj
j by introducing

constraints v`jSv
`+1
j for all 1 ≤ ` ≤ tj − 1. Thus, we en-

sure that the points are co-located but possibly equipped with
different orientations from Θ2 = {0◦, 180◦}. For every con-
straint B(qi, qj , qk) in χ we introduce two SV2 constraints,
v1i [[1]]v`j ∧ v`j [[1]]v1k, with ` being the `th appearance of qj as
second argument. All other variables are related via the uni-
versal relation to each other. Finally, we obtain a CSP(SV2)
instance φ involving only atomic relations and the universal
relation, where the BETWEENNESS to CSP(SV2) reduction
is done in polynomial time in the number of variables.

We need to show that φ is satisfiable if and only if χ has
a solution. First, assume χ is satisfiable. Then there ex-
ists a valuation function f that assigns to each variable qj
a point in Q, such that all BETWEENNES constraints are
satisfied. Then, by assigning (0, f(qj), θ

`
j) ∈ R2 × Θ2 to

each v`j we obtain a valuation that satisfies each constraint
v1i [[1]]v`j ∧ v`j [[1]]v1k, where we choose θ`j = 0◦ if f(qi) <

f(qj) < f(qk) and θ`j = 180◦ if f(qk) < f(qj) < f(qi).
Let us now consider φ is satisfiable. Then there is a

valuation function that assigns to each variable v`j a value
(xj , yj , θ

`
j) ∈ R2 × Θ2, such that v1i [[1]]v`j ∧ v`j [[1]]v1k is sat-

isfied. Wlog. we can assume that all xj are zero, and all yj
rational, because a solution for φ is invariant under projection
to the y-axis and a sufficiently small perturbation of yj . Then
by assigning to each qj a rational number yj for j = 1, . . . , n
we obtain a solution for χ

5 The NP-Membership of CSP(SVm)
In this section we give a decision procedure for SVm. This
NP-membership proof establishes a connection to the prob-
lem of solving a system of linear inequalities which we later
utilize to develop the practical decision procedure.

The following lemma from vector algebra establishes a
connection between the determinant of two vectors in R2 and
their relative directions. Recall that the determinant of a 2-
by-2 matrix is defined as

det
(
a b
c d

)
= ad− bc. (2)

Lemma 4. Let two vectors ~v, ~w ∈ R2 be given and let (~v, ~w)
be a 2× 2 matrix having ~v and ~w as its column vectors. Then
~w is to the left (right) of ~v, if and only if the determinant of
two vectors, i.e, det(~v, ~w), is greater (less) than 0. Vector ~w
is parallel to ~v, if and only if det(~v, ~w) = 0.

Convex SVm relations play an important role in the algo-
rithm presented in the next section. We say that an SVm rela-
tion [[c..d]] is convex, if for a given SVm object A the sector
of A that relation [[c..d]] describes is convex (i.e., the central
angle of the sector is less or equals 180◦). This is the case if
and only if mod(d − c, m) ≤ m/2. Any atomic relation is
for example convex. In SV8 (cf. Figure 2a) relation [[5 ..1]]
is convex. By contrast, relation [[5 ..2]] is not convex, because
the union of sectors 5 to 2 in counterclockwise order span
225◦.



Lemma 5. A constraint v1[[c..d]]v2 with a convex relation
[[c..d]] can be formulated as a conjunction of nonlinear in-
equalities.

Proof. Let ~v = (x2, y2) − (x1, y1) ∈ R2 be a vector
with initial point (x1, y1) and terminal point (x2, y2), where
(x1, y1) and (x2, y2) are the positions of variables v1 and
v2 in R2, respectively. Let u(v1, s) be a unit vector hav-
ing the same orientation as half-line s of variable v1, i.e.,
u(v1, s) = (cos(θ1+s 360

◦

m ), sin(θ1+s 360
◦

m )), where θ1 is the
orientation component of v1. Then constraint v1[[s]]v2 is sat-
isfiable, if and only if ~v is to the left of or parallel to u(v1, c)
and ~v is to the right of u(v1, d), i.e., by Lemma 4

det(u(v1, c), ~v) ≥ 0 and det(u(v1, d), ~v) < 0.

By expanding the determinant expression according to (2) we
obtain a conjunction of two inequalities which are linear in
x1, x2, y1, y2 and nonlinear in θ1.

Theorem 6. CSP(SVm) is in NP.

Proof. An NP algorithm for CSP(SVm) is obtained by non-
deterministically choosing the atomic relations and values for
the orientations of the input formula φ, and translating each
conjunct of φ to inequalities by Lemma 5. These inequalities
are all linear as the non-linear parts containing θi are already
instantiated, and can be solved in polynomial time by [Schri-
jver, 1986].

6 A Practical Algorithm for CSP(SVm)
The decision procedure in Theorem 6 is not yet practical as
it non-deterministically and non-systematically selects values
for orientation variables θ1, . . . , θn. In this section we present
an improved algorithm that searches for the values of the ori-
entation variables in a systematic manner. The algorithm de-
cides CSP(SVm) and returns a model of the input formula for
all m = 2r where r is a positive integer.

The idea behind the algorithm is based on the following
four observations:

1. If we fix orientations θ1, . . . , θn of all variables
v1, . . . , vn of an atomic CSP(SVm) instance φ, then φ
can be solved in polynomial time. However, there are
mn possible choices for fixing the orientations.

2. To overcome this exponential complexity in searching
for the orientations we use a duality between the uncer-
tainty about the orientation and the uncertainty about the
direction relation. The next example illustrates this du-
ality.

Example 7. An atomic constraint vi[[1]]vj where the ori-
entation of vi is restricted to {135◦, 180◦, 225◦} (see Fig-
ure 3a) is satisfiable if and only if constraint vi[[4 ..7]]vj is
satisfiable where the orientation of vi is fixed to 0◦ (see Fig-
ure 3b). Here, the uncertainty about the orientation (i.e.,
{135◦, 180◦, 225◦}) is transferred to the uncertainty of the
direction relation (i.e., [[4 ..7]]). Though solving both con-
straints is equivalent, the latter can be solved more efficiently,
because we do not have to search for the orientations, and
convex relations like [[4 ..7]] allow for efficient reasoning.

(a) (b)

Figure 3: Illustration of duality between uncertainty of orien-
tation and direction relation.

3. By using this duality we can solve a weaker problem ef-
ficiently. Parameters that do not even satisfy the weaker
problem can therefore be pruned.

4. By using the weaker problem a binary search with prun-
ing can be realized that recursively restricts the domain
of orientation variables until a model is found or unsat-
isfiability is shown.

The four observations are employed in algorithm DE-
CIDESTARVARS (Algorithm 1) which has SEARCH (Algo-
rithm 2) as a subroutine. In what follows, for two variables
vi = (xi, yi, θi) and vj = (xj , yj , θj) we will use notations
viRij vj and Rij(xi, yi, xj , yj , θi) interchangeably to denote
an SVm constraint. Note that the orientation variable θj is
omitted in Rij(xi, yi, xj , yj , θi), as an SVm relation is not
dependent on the orientation of the second variable.

Algorithm 1: DECIDESTARVARS(φ,m, n)

Input: A CSP(SVm) instance
φ =

∧
i6=j Rij(xi, yi, xj , yj , θi), granularity

m = 2r(r ∈ N), and number n of variables.

Output: If φ is satisfiable, then a model is returned.
Otherwise, fail is returned.

1 begin
2 for each Rij in φ do
3 Choose an atomic relation [[sij ]] ∈ R such that

[[sij ]] ⊂ Rij . Then substitute [[sij ]] for Rij in
formula φ.

4 ψ ← φ
5 for each conjunct [[sij ]](xi, yi, xj , yj , θi) in ψ do
6 Substitute θij for θi.
7 return SEARCH(ψ,m, n,Θm|m0 , . . . ,Θm|m0 )

We now detail the algorithm: On input φ,m, n algo-
rithm DECIDESTARVARS first makes φ atomic by picking an
atomic relation for each relation in φ non-deterministically
(lines 2–3). In a deterministic variant this procedure can be
realized with a backtracking search.

To enable pruning of the parameter space with the duality
property previously mentioned, a new formula ψ is gener-
ated by substituting θij for θi (lines 4–6). Then formula ψ
is passed to the subroutine SEARCH, which systematically
searches for the values for θij . The notation dom(θij) =
Θm|ba is used to denote a reduced parameter space of the val-
ues for θij , where dom(θij) stands for the domain of θij and

Θm|ba := {k · 360
◦

m | k = a, a+ 1, . . . , b− 1}.



Algorithm 2: SEARCH(ψ,m, n,Θm|b1a1
, . . . ,Θm|bnan

)

Input: An atomic formula
ψ =

∧
i6=j [[sij ]](xi, yi, xj , yj , θij), granularity

m = 2r(r ∈ N), number n of variables, and
domain restrictions Θm|biai

for i = 1, . . . , n.

Output: If ψ satisfiable with dom(θij) = Θm|biai
for

i, j = 1, . . . , n, i 6= j, then a model of ψ is
returned. Otherwise, fail is returned.

1 begin
2 for i← 1 to n do
3 Θm|biai

←CHOOSE
(

Θm|(ai+bi)/2
ai , Θm|bi(ai+bi)/2

)
4 if ψ has a model with dom(θij) = Θm|biai

then
5 if bi − ai = 1 for i = 1, . . . , n then
6 return a model of ψ

7 return SEARCH(ψ,m, n,Θm|b1a1
, . . . ,Θm|bnan

)

8 return fail

For example the orientations values {135◦, 180◦, 225◦} in
Example 7 is given by Θ8|64. We note that Θm|m0 is the com-
plete orientation domain Θm.

For brevity of presentation SEARCH is realized in a non-
deterministic way using selection (CHOOSE, line 3) and fail-
ure (fail, line 8). CHOOSE will always return the correct
halves of Θm|biai

, i = 1, . . . , n for which the input formula ψ
is satisfiable (line 4). If these do not exist, the algorithm will
terminate and return fail. The satisfiability check in line 4
prunes the search space in the deterministic variant of algo-
rithm SEARCH. In what follows we prove that this can be
done in polynomial time by applying the duality property and
solving a conjunction of linear inequalities.

As already observed in Example 7, there is a duality be-
tween the uncertainty about orientations and the uncertainty
about direction relations, i.e., the disjunction of sectors in
Figure 3a is equal to the sector in Figure 3b. In general,
the following duality equation holds for two oriented points
A = (x1, y1, θ1) and B = (x2, y2, θ2) with fixed position
(x1, y1) of A:

{(x2, y2) ∈ R2 | ∃θ1 ∈ Θm|ba [[s]](x1, y1, x2, y2, θ1)}
= {(x2, y2) ∈ R2 | [[s+ a..s+ b]](x1, y1, x2, y2, 0

◦)} (3)

Theorem 8. Finding a model of formula ψ :=∧
i 6=j [[sij ]](xi, yi, xj , yj , θij), where each θij is restricted to

Θm|biai
with bi − ai ≤ m/2, i, j = 1, . . . , n, i 6= j, can be

done in polynomial time.

Proof sketch. We first show that the satisfiability of the stated
problem is equivalent to the satisfiability of formula ψ′ :=∧

i 6=j [[sij+ai ..sij+bi]](xi, yi, xj , yj , 0
◦):

{((x1, y1), . . . , (xn, yn)) ∈ R2n |
∃θij ∈ Θm|biai

∧
i6=j [[sij ]](xi, yi, xj , yj , θij)}

= {((x1, y1), . . . , (xn, yn)) ∈ R2n |∧
i 6=j ∃θij ∈ Θm|biai

[[sij ]](xi, yi, xj , yj , θij)}

= {((x1, y1), . . . , (xn, yn)) ∈ R2n |∧
i 6=j [[sij + ai ..sij + bi]](xi, yi, xj , yj , 0

◦)}

The first equality is due the fact that each θij appears in ex-
actly one conjunct and can therefore be pulled into the con-
junction. The second equality follows from equation (3).
Now we show that ψ′ is solvable in polynomial time. Solv-
ing ψ′ is equivalent to solving a conjunction of inequalities,
because all relations in ψ′ are convex (bi − ai ≤ m/2) such
that each conjunct of ψ′ can be translated to inequalities by
Lemma 5. These inequalities are all linear as the non-linear
parts containing θi evaluate to constants, and can be solved in
polynomial time by [Schrijver, 1986].

Corollary 9. The satisfiability check in line 4 of Algorithm 2
can be done in polynomial time.

Now we prove that DECIDESTARVARS is sound and com-
plete. The next lemma states that satisfiability of ψ is a
weaker problem, i.e., a necessary condition for satisfiability
of the input formula φ.

Lemma 10. Let φ :=
∧

i6=j [[sij ]](xi, yi, xj , yj , θi) and
ψ :=

∧
i 6=j [[sij ]](xi, yi, xj , yj , θij) be two formulas with

dom(θi) = dom(θij) = Θm|biai
for i, j = 1, . . . , n, i 6= j.

Then φ is satisfiable only if ψ is satisfiable.

Proof. Let a model M of φ be given. Then we vacuously
obtain a model of ψ which is same as M except for the fact
that the valuation of θi is extended to θij .

After some recursive application of SEARCH each re-
stricted orientation domain Θm|biai

consists of only one ele-
ment. Then a model of ψ induces a model of φ:

Lemma 11. Let φ and ψ be defined as in Lemma 10. If all
Θm|biai

consists of only one element, i.e., bi − ai = 1 for
i = 1, . . . , n, then φ is satisfiable if ψ is satisfiable and a
model of ψ can be identified with a model of φ.

Proof. Because Θm|biai
consists of only one element, say ti,

all θij for all j = 1, . . . , n are evaluated to the same value ti.
Thus, given a model of ψ, the assignment of the value ti to
θi while preserving the values for xi, yi for each i, yields a
model of φ.

Theorem 12. DECIDESTARVARS is a sound and complete
algorithm.

Proof. For the soundness assume that on input φ, m and
n DECIDESTARVARS returns a model. Then, according to
line 5–6 in Algorithm 2, ψ is satisfiable with dom(θij) =
Θm|biai

with bi − ai = 1 for i = 1, . . . , n. Then by applying
Lemma 11 we obtain a model of φ.

For the completeness assume that DECIDESTARVARS re-
turns fail. Then ψ is not satisfiable, because SEARCH imple-
ments a complete search for finding the values for θij such
that there is a model of ψ. It follows that φ is not satisfiable
by Lemma 10.



7 Evaluation
We evaluated DECIDESTARVARS for 100 random atomic
CSP(SVm) instances with varying m and n, and have
recorded the average computing time in seconds (the vari-
ance is shown in parentheses). For solving systems of linear
inequalities we used function linprog from the MATLAB
Optimization Toolbox. The evaluation was done on a ma-
chine with Intel R© CoreTM2 E6700 CPU and 4 GB RAM.

m

n 4 8 16 32

3 0.27 (0.02) 0.62 (0.15) 1.25 (0.91) 1.73 (2.24)
4 0.64 (0.15) 1.15 (0.50) 2.01 (1.28) 2.63 (2.60)
5 1.06 (0.34) 1.66 (1.58) 2.56 (4.57) 4.35 (14.99)
6 2.55 (0.00) 3.16 (2.68) 4.27 (12.14) 6.10 (34.58)
7 6.83 (0.01) 7.55 (0.01) 8.30 (3.32) 8.76 (7.19)

From the table we conclude that the increase of computing
time in the size of granularity m is only logarithmic in aver-
age case. This efficiency, which is obtained by the pruning
step integrated in the algorithm, can be utilized to approxi-
mate relative directions with a high resolution.

However, as the algorithmic complexity suggests, the com-
puting time increases exponentially in the number n of vari-
ables. Thus, the proposed algorithm is suitable for applica-
tions which allow for precomputation or which involve only
a limited number of objects.

8 Application Example
Mossakowski and Moratz [2012] present representation of
navigation regulations as a relevant application domain for
directional calculi. We pick up the example from this paper
which is set in the context of sea navigation. Maritime traffic
regulations issued by the International Maritime Organization
(IMO) comprise the following rule:

When two sailing vessels are approaching one another, as
to involve the risk of collision, one of them shall keep out
of the way of the other as follows: (i) when each has the
wind on a different side, the vessel which has the wind
on the port side shall keep out of the way of the other.
(Rule 12 i, IMO)

See Figure 4a for an illustration of the rule in which vessel G
has to give way and vessel K has to keep course, using the
common avoidance behavior of turning away from the vessel
that has right of way. Vessel G aims to pass behind the stern
of vessel K, thus turning towards it. Considering rule and
avoidance pattern are stated for exactly two vessels, an impor-
tant question is: does this rule also handle a 3-ship encounter?
Or can it lead to contradicting recommendations? To answer
this question we model the rule in SV8, mapping natural lan-
guage terms to qualitative spatial relations as shown in Fig-
ure 4b. Assuming the same wind direction for both vessels,
we obtain the following conjunction of qualitative relations:

φ(K,G,W ) :=


K [[0 ..4]]W (wind on port)
∧G [[4 ..0]]W (wind on starboard)
∧G [[7 ..1]]K (G heading towards K)
∧K [[7 ..1]]G (K heading towards G)

wind

wind
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port

0
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7
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Figure 4: (a) G must give way to K according to Rule 12
(ii). (b) qualitative modeling with SVm. (c) Rule conflict
for multi-vessel encounter, vessel C has to turn port and star-
board at the same time.

Additionally, vessel G should give way by turning to star-
board, if vessel K approaches from starboard, and turning to
port, otherwise. We can thus describe the situations that lead
to mutually exclusive turning actions by formulas α and β:

α(K,G,W ) = φ(K,G,W ) ∧G[[0 ..4]]K,

β(K,G,W ) = φ(K,G,W ) ∧G[[4 ..0]]K

To answer our question about a 3-ship encounter we con-
struct a CSP with variables for vessels A,B,C and wind W :

α(A,C,W ) ∧ β(B,C,W ) (4)

If formula (4) is satisfiable, then there exists a configuration
that requires two mutually exclusive commands to be carried
out and the rule is known to not generalize to 3-ship encoun-
ters. Our sound decision method determines satisfiability of
formula (4) and it outputs a configuration from which we gen-
erated Figure 4c, showing a conflict for vessel C.

One could approach the task with constraint propagation
using relation composition as suggested by [Mossakowski
and Moratz, 2012]. This outputs, however, false-positives and
cannot compute a realization. Thus one has to check each
output manually which is an infeasible task. Our reasoning
method is thus the superior approach to the task. For more
information on the application of StarVars in the sea naviga-
tion domain we refer to [Kreutzmann et al., 2013].

9 Summary and Conclusions
We have developed a spatial representation, StarVars, which
augments cardinal direction relations to represent relative di-
rectional knowledge. By introducing orientation variables we
are able to apply computationally cheaper decision proce-
dures for cardinal directions to the hard problem of handling
directional knowledge. We gave an NP decision procedure
for StarVars, and therefore it can replace existing directional
relation languages for which no effective decision procedures
are available today. Additionally, our algorithm can deter-
mine a model of consistent CSP instances, which is valuable
for many applications that require a visual presentation.

Future works aims to improve our decision procedure, in
particular to counter-act the exponential growth with respect
to the number of variables using heuristics.
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