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Abstract. Information about the relative size of spatial regions is often
easily accessible and, when combined with other types of spatial informa-
tion, it can be practically very useful. In this paper we combine a simple
framework for reasoning about qualitative size relations with the Region
Connection Calculus RCC-8, a widely studied approach for qualitative
spatial reasoning with topological relations. Reasoning about RCC-8 re-
lations is NP-hard, but a large maximal tractable subclass of RCC-8
called #s was identified. Interestingly, any constraint in RCC-8 — Hs
can be comnsistently reduced to a constraint in Hg, when an appropriate
size constraint between the spatial regions is supplied. We propose an
O(n®) time path-consistency algorithm based on a novel technique for
combining RCC-8 constraints and relative size constraints, where n is the
number of spatial regions. We prove its correctness and completeness for
deciding consistency when the input contains topological constraints in
7/{\8. We also provide results on finding a consistent scenario in O(n?®)
time both for combined topological and relative size constraints, and for
topological constraints alone. This is an O(n?) improvement over the
known methods.

1 Introduction

The Region Connection Calculus (RCC) [14] is a well studied topological ap-
proach for qualitative spatial reasoning, where regions are non-empty regular
subsets of a topological space. Regions need not be one-piece. Binary relations
between regions are based on the “connected” relation C(a,b) which is true if
the closure of region a and the closure of region b have a non-empty intersection.

RCC-8 is a set of eight jointly exhaustive and pairwise disjoint relations called
basic relations definable in the RCC-theory, and of all possible disjunctions of
the basic relations, resulting in 28 different RCC-8 relations altogether.

An important reasoning problem in this framework is deciding consistency
of a set of spatial constraints of the form zRy where z,y are region variables
and R is a relation in RCC-8. Another related problem is finding a consistent
scenario for a set of RCC-8 constraints, that is a consistent refinement of all the



constraints in the set to one of their basic relations. These problems are in general
NP-hard, but they can be decided in polynomial time for a large subset of RCC-8
(denoted Hg) which is a maximal tractable subclass of RCC-8 [16]. In particular,
Renz and Nebel [16] proved that the consistency of a set of constraints over Hs
can be decided in O(n®) time, where n is the number of variables involved.

This paper contains two main contributions. In the first part o/f the paper we
address the problem of finding a consistent scenario for a set of Hg constraints,
and we propose an O(n?) time algorithm for solving this task. This is an O(n?)
improvement over the bound of the previously known methods.

In the second part of the paper, we study the combination of RCC-8 with
qualitative information about region sizes, which is often easily accessible and
practically useful. As a very simple example, suppose to have three geographical
regions A, B and C for which the only topological information available is that
B is contained in A. In addition we know that A is smaller than C, and that C
is smaller than B. The combined set of topological and relative size information
is inconsistent, but we cannot detect this by just independently processing the
two kind of information, or by just expressing the size information as topological
constraints.!

Specifically, we consider the following qualitative relations between region
sizes, which have been largely studied in the context of temporal reasoning (e.g.,
[18,17,6)): <, <, >, >, #, =, <=>. Interestingly, any constraint in RCC-8 —
ﬁg can be consistently refined to a constraint in ’ﬁg, when an appropriate size
constraint of this class is supplied.

We propose an algorithm, BIPATH-CONSISTENCY, based on a novel technique
for dealing with combined topological and qualitative size constraints,/\and we
prove that, despite our extended framework is more expressive than Hg (and
therefore it has a larger potential applicability), the problem of deciding con-
sistency can be solved in cubic time (i.e., without additional worst-case cost).
BIPATH-CONSISTENCY is a general algorithm, in the sense that it can be applied
not only to spatial relations. For example, in the context of temporal reasoning
it can be used to combine relations in Allen’s Interval Algebra [1] and qualitative
constraints on the duration of the temporal intervals. Of course, different classes
of relations might need different completeness and complexity proofs.

The proof of the completeness of this algorithm is based on a particular
method of constructing a consistent scenario for a set of constraints over #g,
which is analyzed in the first part of the paper. Moreover, this method can
also be used in combination with BIPATH-CONSISTENCY to compute, in cubic
time, a consistent topological scenario satisfying an input set of qualitative size
constraints between the spatial regions.

The rest of the paper is organized as follows. In the first part we briefly intro-
duce RCC-8 (Section 2) and give the results concerning computing a consistent
scenario (Section 3). The second part deals with the combination of topological
and size constraints (Sections 4 and 5).

! Another more complex example illustrating interdependencies between topological
and size constraints is given in Section 5.
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Fig. 1. Two-dimensional examples for the eight basic relations of RCC-8

2 The Region Connection Calculus RCC-8

RCC-8 is a set of binary spatial relations formed by eight jointly exhaustive and
pairwise disjoint relations definable in the RCC-theory called basic relations,2 and
by all possible disjunctions of the basic relations (resulting in 28 different RCC-8
relations altogether). The basic relations are denoted by DC (DisConnected), EC
(Externally Connected), PO (Partial Overlap), EQ (EQual), TPP (Tangential
Proper Part), NTPP (Non-Tangential Proper Part), and their converse TPP~*
and NTPP~! [14]. Figure 1 shows two-dimensional examples of these relations.
In the following, an RCC-8 relation will be written as a set of basic relations.

An important reasoning problem in this framework is deciding consistency
of a set O of spatial constraints of the form xRy where z,y are region variables
and R is an RCC-8 relation. @ is consistent if and only if there is a model
of O, i.e., an assignment of spatial regions to the variables of @ such that all
the constraints are satisfied. This problem (denoted by RSAT) is NP-complete
[16]. RSAT is a fundamental reasoning problem since several other interesting
reasoning problems can be reduced to it by polynomial Turing reduction [7].

A set of constraints in RCC-8 can be processed using an O(n?®) time path-
consistency algorithm, which makes the set path-consistent by eliminating all
the impossible labels (basic relations) in every subset of constraints involving
three variables [12,13]. If the empty relation occurs during this process, the set
is not consistent, otherwise the resulting set is path-consistent. Since RSAT is
NP-complete, in general imposing path-consistency is not sufficient for decid-
ing consistency of a set of RCC-8 constraints. Renz and Nebel [16] identified a
subset of RCC-8 (denoted by 7—78) for which RSAT can be decided in polynomial
time. They also proved that ﬁg isAmaximal with respect to tractability, i.e.,
if any RCC-8 relation is added to Hg, then the consistency problem becomes
NP-complete. FinAally they showed that computing path-consistency for a set of
constraints over Hg is sufficient for deciding its consistency.

Hg contains 148 relations, i.e., almost 60% of the RCC-8 relations. The fol-
lowing 108 RCC-8 relations are not contained in #s, where (N)TPP denotes TPP

2 Le., between any two regions exactly one of the basic relations holds.



or NTPP:

RCC-8\Hs={R | ({(N)TPP,(N)TPP~'} C R and {PO} ¢ R)
or ({EQ,NTPP} C R and {TPP} ¢ R)
or ({EQ,NTPP™ '} Cc Rand {TPP '} ¢ R)}

We assume that a set of constraints © contains one constraint for each pair of
variables involved in O, i.e., if no information is given about the relation holding
between two variables = and y, then the universal constraint z{*}y is implicitly
contained in @ (x denotes the universal relation, i.e., the union of all the basic
relations). Another assumption that we make is that whenever a constraint xRy
is in @, also yR ™~z is present, where R~ is the converse of R.

We say that a set of constraints @' is a refinement of © if and only if the
same variables are involved in both the sets, and for every pair of variables x, y,
if tR'y € © and vRy € O then R' C R. @' is said to be a consistent refinement
of O if and only if @' is a refinement of © and both @ and @' are consistent. A
consistent scenario O, of a set of constraints @ is a consistent refinement of ©
where all the constraints of @5 are singletons, i.e., assertions of basic relations.

3 Finding a Consistent Scenario for RCC-8

In order to decide the consistency of a set of RCC-8 constraints O, a path-
consistent refinement of @ containing only constraints over Hg must be found?
(usually by applying backtracking). However, for other tasks such as finding a
model of @ this is not sufficient. For these tasks it is rather necessary to have
basic relations between any pair of variables involved in O, i.e., a consistent
scenario for @ is required.

A naive algorithm for finding a consistent scenario for @ is based on itera-
tively selecting a label and enforce path-consistency on tEe restricted set. This
requires O(n%) time if @ contains only constraints over Hg, and to the best of
our knowledge no algorithm with a better worst-case complexity is known. As
in the case of qualitative temporal reasoning (e.g., [11], [17]), by exploiting some
properties of the particular class of used relations, it is possible to design more
efficient algorithms. For instance, a more efficient algorithm is possible for a
certain set of relations when path-consistency implies minimal labels or strong
consistency [4] for this set. However, this is not the case for Hg [16].

__ Inthe following we will prove that given a consistent set © of constraints over

Hs, a consistent scenario @, can be obtained in O(n?®) time by reducing all the
constraints of © to constraints over the basic relations in a very particular way. In
order to prove this, we will use several “refinement strategies” of the form “given
a particular set S C Hg, a relation R’, and a path-consistent set @ of constraints
over S, © can be consistently refined to ©' by replacing each constraint xRy in
©, such that R’ C R, with the constraint zR'y.” In the following the set S will
be indicated with #,,.

3 This is of course also true for any other tractable subclass of RCC-8 for which path-
consistency is sufficient for deciding consistency.



By using the encoding of RCC-8 in classical propositional logic as specified in
[16], it is possible to prove that these refinement strategies preserve consistency.
In this encoding, every set of RCC-8 constraints © is transformed to a proposi-
tional formula p(@) such that © is consistent if and only if p(@) is satisfiable.
In particular, every variable z involved in @ is transformed to a set of proposi-
tional atoms {X}, | k = 1,...,m;m < cn?} (cis a constant), and every constraint
xRy € O is transformed to a set of clauses involving literals over X and Y} for
some k. §ince each constraint x Ry is transformed to a propositional Horn clause
if R € Hg, consistency of a set @ of constraints over Hg can be decided by
applying positive unit resolution (PUR) to p(©).* Here we will use a property
which was proved in [16], namely, that a new positive unit clause {X,,} can be
derived from p(©) by using PUR only if (1) there is a variable y in © such that
the clause {Y,,} is present, and (2) © contains a so-called Rr-chain from x to
y. An Rp-chain from z to y is a sequence of constraints xRz, zR'2',..., 2" R"y,
where all relations R, R',..., R"' are from a particular set of relations Ry.> We
also need another property which can be proven by using similar methods as
those applied in [16]:

Lemma 1. Let © be a set of constraints over ﬁg that contains an Rp-chain
from z to y for some variables x and y. If for some w € {1,...,m} the clause
{Xw} can be derived from p(©) and {Yy,} by using PUR, then {X} can be
derived from p(©) and {Y} by using PUR for oll k € {1,...,m}.

We will only sketch some of the proofs involving the encoding of RCC-8 in clas-
sical propositional logic, and refer to the technical report for the full proofs [5].
We will use refinement strategies for the following sets of relations:

Definition 1.

- H¢Dc = HB
’H¢Ec ={Re€ Hg | R does not contain both DC and EC}
- ’H“,o ={Re€ Hs | R does not contain any of DC,EC, or EQ,
unless R is a basic relation}
- ’ﬁwwp ={R¢€ H | R does not contain any of DC,EC, EQ, or PO,
unless R is a basic relation}

Lemma 2 (DC-refinement). Let © be a path-consistent set of constraints over

Hipe- © can be consistently refined to ©' by replacing every constraint xRy € ©
such that {DC} C R with the constraint {DC}y.

Proof Sketch. Let xRy with R = {DC} U R’ be one of the constraints of @, and
suppose that © becomes inconsistent if Ry is replaced with 2{DC}y resulting
in ©". Since the propositional encoding of z{DC}y is p(z{DC}y) = Aj=; (= Xk V
—Y}) (see [16]), no new positive unit clause can be derived by using these Horn
clauses. Thus, the empty clause can be derived from p(6©") by using PUR only

4 PUR is complete for deciding satisfiability of a set of propositional Horn clauses [8].
® Rr is the set of relations that contains one of the basic relations TPP™*, NTPP ™1,
or EQ, but does not contain any of TPP,NTPP, or PO [16]



when for some w € {1,...,m} both the unit clauses {X,} and {Y;,} can be
derived from p(©). It follows from [16] that if this were possible, then ® would
not be path-consistent. This contradicts our assumptions. Since no new positive
unit clause is derivable from p(@"), any constraint zRy of © that contains {DC}
can be replaced with z{DC}y simultaneously, for any pair of variables z and y
in ©, without applying a path-consistency algorithm after each refinement. O

The proofs of the following three refinement strategies are more complex than
the proof of the previous one since there are more cases to consider. However,
all cases can be handled with similar methods as used in the previous proof,
namely, by looking at whether the changes to the propositional encodings re-
sulting from the refinement of constraints permit to derive the empty clause by
using PUR. In all of these cases it turns out (mostly by applying Lemma 1) that
if the empty clause is derivable after the refinements, then it was also derivable
before the refinement. Therefore the refinements preserve consistency of the set
of constraints.

Lemma 3 (EC-refinement). Let © be a path-consistent set of constraints over

H e © can be consistently refined to ©' by replacing every constraint Ry € O
such that {EC} C R with the constraint x{EC}y.

Lemma 4 (PO-refinement). Let © be a path-consistent set of constraints over

H Iro- © can be consistently refined to @' by replacing every constraint Ry € O
such that {PO} C R with the constraint z{PO}y.

Lemma 5 (NTPP-refinement). Let © be a path-consistent set of constraints

over Hiyme- @ can be consistently refined to ©' by replacing every constraint
zRy € O such that {NTPP} C R with the constraint t{NTPP}y.

In addition to the four refinement strategies described above, we need a
further constraint refinement technique for handling relations containing {EQ}.

Lemma 6 (EQ-elimination). Let © be a path-consistent set of constraints over

ﬁg. O can be consistently refined to @' by eliminating {EQ} from every constraint
zRy € O unless R = {EQ}.

Proof Sketch. Let xRy be one of the constraints of @, and suppose that ©
becomes inconsistent if {EQ} is eliminated from zRy resulting in ©". Since
eliminating {EQ} from a relation R is equivalent to intersecting R with the
relation {EQ} expressible as {EQ} = {EC} o {DC,PO},® ©" is equivalent to
OU{z{EC}z,2{DC,PO}y} where z is a fresh variable which is only related with
z and y. As neither {EC} nor {DC,PO} are contained in Rp, no positive unit
clauses for literals of p(@) can be derived from p(©") by PUR using the clauses
resulting from the propositional encoding of the two new constraints. Thus, the
empty clause can only be derived from p(©") by using the unit clauses in the
propositional encodings of the new constraints. Because of Lemma, 1 there must
be a way in which only the unit clauses of the newly added constraints can be

6 Rel denotes the complement of Rel, Ri o Ry denotes the composition of Ry with Ro.



used to derive the empty clause, and not the unit clauses derivable from p(©).
It follows from [16] that this is possible only if @ contains an Rp-chain from z
to y and an Rp-chain from y to z. But if this were the case, it follows from [16]
that © would not be path-consistent, and thus the initial assumptions would be
contradicted. Since no new Rp-chain is introduced in ©", {EQ} can be elimi-
nated from all relations simultaneously without applying the path-consistency
algorithm after each elimination. O

We can now combine the five strategies to derive an algorithm for determining
a consistent scenario for a consistent set of constraints over Hg.

Theorem 1. For each path-consistent set © of constraints over ﬁg, a consistent
scenario Oy can be determined in time O(n®), where n is the number of variables
involved in ©.

Proof. The following algorithm, SCENARIO(@), solves the problem:

(1) apply DC-refinement, (2) apply EC-refinement, (3) apply EQ-elimination,
(4) apply PO-refinement, (5) apply NTPP-refinement, (6) return the set

of the resulting constraints.

Impose path-consistency after each of the steps (1)—(5).

SCENARIO(O) terminates in O(n?) time since each of the steps (1)—(5) takes
time O(n?) and path-consistency, which takes time O(n®), is computed 5 times.
By Definition 1 we have that #H e C #H o C H tee C ’;qg. It follows from
Lemmas 2 to 6 that after applying each refinement step, © is refined to a set
of constraints containing only relations for which the next refinement step is
guaranteed to make a consistent refinement. Since the interleaved applications
of the path-consistency algorithm can only refine constraints and never add new
basic relations to the constraints, the possible set of relations obtained after each
step is not extended by applying the path-consistency algorithm. R

Thus, since O is consistent and contains only constraints over Hg, the out-
put of SCENARIO(O) is consistent. Moreover, since any (non-basic) relation of
Hg contains one of DC,EC,PO,NTPP, or NTPP ! (see the definition of #s in
Section 2), the interleaved applications of path-consistency and steps (1)—(5)
guarantee that the output of SCENARIO(@) is a consistent scenario for ©. O

By applying SCENARIO(O) to a path-consistent set of constraints over g
we obtain a particular consistent scenario @, of ©. Since exactly this consistent
scenario is used in the proof of the main theorem of Section 5, in the following
lemma we explicitly describe the relationship between ©; and 6.

Lemma 7. Let © be a path-consistent set of constraints over ﬁs involving the
variables x and y, and let O, be the output of SCENARIO(O).

— The constraint {EQ}y is contained in O, only if it is also contained in O.
— The constraint x{TPP}y is contained in O5 only if © contains either x{TPP}y
or z{TPP,EQ}y.



— The constraint £{NTPP}y is contained in O, only if © contains either
z{NTPP}y, z{NTPP, TPP}y or z{NTPP, TPP,EQ}y.

In all the other cases, xRy € © is refined to one of x{DC}y, x{EC}y or z{PO}y
in O.

Proof Sketch. If the path-consistency algorithm were not applied after each of
the steps (1) - (5) in SCENARIO(@), the proof would immediately follow from
the applications of the refinements in the algorithm. Considering the inter-
leaved path-consistency computations, it might be possible that after refining
a constraint of © to one of {DC}, {EC}, or {PO} by one of the steps (1), (2),
or (4), another constraint xRy € O, such that R N {DC,EC,PO} # @ and
RN {TPP,TPP~' NTPP,NTPP ' EQ} # 0, is refined by the path-consistency
algorithm to zR'y such that R' N {DC,EC,PO} = . In this case, Ry would
be refined by SCENARIO(O) to one of z{NTPP}y, z{TPP}y, z{NTPP™ '}y,
z{TPP '}y, or z{EQ}y in O, which contradicts the lemma. However, by an-
alyzing the composition table of the RCC-8 relations (see, e.g.,[16]) it follows
that this is never possible for the sets of relations used by the different refine-
ment strategies. ]

4 Combining Topological and Qualitative Size Relations

In this section we introduce QS, a class of qualitative relations between region
sizes, and we combine this class with RCC-8. We also give some technical results
that will be used in the next section, where we present an algorithm for processing
constraints in the combined framework.

In the following we will assume that all the spatial regions are measurable
sets in R™ [2]. Note that this assumption does not compromise the computational
properties of ﬁs, because from [15] it follows that the regions of every consistent
set of RCC-8 constraints can always be interpreted as measurable sets (e.g., as
sets of spheres in R3). We will also assume that the size of an n-dimensional
region corresponds to its n-dimensional measure [2]. For example, the size of a
sphere in R3 corresponds to its volume.

Given a set V of spatial region variables, a set of QS constraints over V is
a set of constraints of the form size(z) S size(y), where S € QS, size(x) is the
size of the region z, size(y) is the size of the region y, and z,y € V.

Definition 2. QS is the class formed by the following eight qualitative relations
between the size of spatial regions: <, >, <, #, =, >, <=> and ), where <=>
is the universal relation, and <, >, and = are the basic relations.

Proposition 1. The relations of QS form a Point Algebra.

It is obvious that the topological RCC-8 relations and the relative size rela-
tions are not independent from each other. Table 1 gives the size relations that
are entailed by the basic RCC-8 relations, and the topological relations that are
entailed by the basic size relations. Sizerel(R) indicates the strongest size rela-
tion entailed by the topological relation R, and Toprel(S) indicates the strongest
topological relation entailed by the size relation S.



The dependencies from a non-basic relation R can be obtained by disjunc-
tively combining the relations entailed by each basic relation in R. For example,
{TPP,EQ} entails “<”.

r Sizerel(r)| r Sizerel(r) || s Toprel(s)

TPP E < DC E <=> = E DC,EC,PO,EQ
NTPP | < EC F <=> > |k DC,EC,PO,TPP~! NTPP!
TPP™! > PO E <=> | < [ DC,EC,PO, TPP,NTPP
NTPP™! | > EQ =

Table 1. Interdependencies of basic RCC-8 relations (r) and basic QS relations (s)

Since any topological relation — and any sub-relation thereof — entailed by

the basic size relations <, >, = is contained in ﬁg, the following proposition is
true.

Proposition 2. The relation R € RCC—8\7/{\8 of any constraint xRy can be con-
sistently refined to a relation R' € ﬁg, if an appropriate size constraint between
z and y is given. In particular, if definite size information is given, then R can
always be consistently refined to a relation R' € ﬁg.

For example, the RCC-8 \ s constraint z{TPP, TPP~! NTPP,DC,EC}y can
be consistently refined to the #s constraint z{TPP,NTPP,DC, EC}y if the size
constraint size(x) < size(y) is given. Before giving an algorithm for processing
RCC-8 constraints combined with qualitative size constraints, we need to give
some further technical definitions and results that will be used in the next section
to prove the formal properties of the algorithm.

Definition 3 (Model for X). Given a set X' of constraints in QS, we say that
an assignment o of spatial regions to the variables of X is a model of X' if and
only if o satisfies all the constraints in X.

Definition 4 (Consistency for OUX). Given a set © of constraints in RCC-8
and a set X of constraints in @S, @ U X is consistent if there exists a model of
© which is also a model of X.

We say that a consistent scenario for a set © of constraints is size-consistent
relative to a set X of constraints if and only if there exists a model for the
scenario that is also a model of X.

The next lemma states that non-forced equalities can be omitted from a
path-consistent set of size constraints in QS without losing consistency.

Lemma 8. Let X be a path-consistent set of size constraints over QS and X'
the set of size constraints such that, for each constraint size(i) S size(j) in X,

if S € {<,>} then size(i) S size(j) € X',
if S = “<” then size(i) < size(j) € X',
if S = “>” then size(i) > size(j) € X',
if S = “=" then size(i) = size(j) € X',
if S = “<=>" then size(i) # size(j) € X'.

AR IR



X" is consistent and any model of X' is also a model of X.

Proof Sketch. 1t follows from van Beek’s method of computing a consistent sce-
nario for a set of relations in the temporal Point Algebra [17]. o

Let © be a set of constraints in RCC-8, X a set of of constraints in QS,
ti; the relation between ¢ and j in @, and s;; the relation between size(i) and
size(j) in X. We say that: t;; entails the negation of s;; (t;; = —sy;) if and only
if Sizerel(ti;) Nsi; = 0; s;; entails the negation of ¢;; (si; |= —ts;) if and only if
Toprel(s;j) Nti; =0

Proposition 3. A consistent set © of constraints in RCC-8 entails the negation
of a QS relation s;; between size(i) and size(j) if and only if Sizerel(t;;)Ns;; =
0, where fz-j is the strongest entailed relation between © and j in ©.

Proof. It follows from the fact that, for any ¢ and j, © = —s;; if and only if
ti; = —sij, and from the definition of Sizerel. ]

Proposition 4. A consistent set X of constraints in QS entails the negation of
a RCC-8 relation t;; between i and j if and only if Toprel(§;;) Nti; = 0, where
3;5 is the strongest entailed relation between ¢ and j in X.

Proof. Tt follows from the fact that, for any ¢ and j, ¥ |= —t;; if and only if
5ij = —t;j, and from the definition of T'oprel. O

Lemma 9. Let © be a consistent set of constraints in RCC-8, X a consistent
set of QS constraints over the variables of ©, t;; the relation between i and j in
O, and s;; the relation between size(i) and size(j) in X.

- tz'j |= 845 Zf and only Zf Sij |= Ttij;
— O = 8;; if and only if X |= —t;;.

Proof Sketch. 1t follows from Table 1. O

In the next lemma ¢;; indicates the basic relation between 4 and j in a con-
sistent scenario O, for a set @ of topological relations.

Lemma 10. Let O, be a consistent scenario for a (consistent) set © of topo-
logical constraints in ﬁg. It is possible to construct a model of © that is also
a model for the set of size constraints obtained in the following way. For each
variable ¢ and j,

(1) if Sizerel(t;;) is one of <, >, =, then size(i) < size(j), size(i) > size(j),
and size(i) = size(j), respectively, is in X;

(2) if Sizerel(t;;) is the universal relation (“<=>7), then one of size(i) <
size(j) or size(i) > size(j) can be arbitrarily chosen to be added to X (pro-
vided that X remains consistent).



Proof. Let s;; be the relation between size(i) and size(j) in X. We show that
it is possible to construct a model € for @, in which the values (spatial regions)
assigned to the variables satisfy Y. Suppose that this were not true. We would
have that (a) there would exist & and k such that @ = —spi, or (b) there would
exist b’ and k' such that X' |= —tpp (i.e., there is no model of O, satisfying spg,
or there is no model of X' consistent with ¢px.) Since by construction of @;, for
any pair of variables in ©, the strongest entailed relation between ¢ and j is ¢;5,
(a) can hold only if (a’) tpr = —spr holds. For analogous reasons we have that
(b) can hold only if (b’) spr = —tpg holds. But both (a’) and (b’) cannot hold.
In fact, since for any i, j Sizerel(t;;) € {<,>,=,<=>} (because t;; is basic), by
(1) and (2) it cannot be the case that tp; = —spk, and hence by Lemma 9 also
Spgr |E —tpp cannot hold. O

5 Reasoning about Size and Topology Relations

A natural method for deciding the consistency of a set of RCC-8 constraints
and a set of QS constraints, would be to first extend each set of constraints
with the constraints entailed by the other set, and then independently check the
consistency of the extended sets by using a path-consistency alggrithm. However,
as the example below shows, this method is not complete for Hg constraints.

Another possibility, would be to compute the strongest entailed relations
(minimal relations) between each pair of variables before propagating constraints
from one set to the other. However, this method has the disadvantage that it is
computationally expensive.”

Finally, a third method could be based on iteratively using path-consistency
as a preprocessing technique and then propagating the information from one set
to the other.® The following example shows that the information would need
to be propagated more than once, and furthermore it is not clear whether in
general this method would be complete for detecting inconsistency.’

Example. Consider the set © formed by the following ’;Qg constraints
2o{TPP,EQ}z2, 1 {TPP,EQ,PO}xq, 21 {TPP,EQ}z2, z4{TPP,EQ}x3,
and the set X' formed by the of following QS constraints
size(xg) < size(xa), size(xs) < size(z1), size(x2) < size(zy).

" The best known algorithm for computing the minimal network of a set of ’iqg con-
straints requires O(n®) time.

8 Not/g that imposing a path-consistency algorithm is sufficient for consistency checking
of Hs and QS constraints, but is incomplete for computing the minimal relations
[17, 16].

® A similar method is used by Ladkin and Kautz to combine qualitative and metric
constraints in the context of temporal reasoning [9].



We have that © and X are independently consistent, but their union is not
consistent. Moreover, the following propagation scheme does not detect the in-
consistency: (a) enforce path-consistency to X' and @ independently; (b) extend
X with the size constraints entailed by the constraints in ©; (c) extend © with
the topological constraints entailed by the constraints in X; (d) enforce path-
consistency to © and X again. In order to detect that © U X is inconsistent,
we need an additional propagation of constraints from the topological set to the
size set.

Instead of directly analyzing the complexity and completeness of the propa-
gation scheme illustrated in the previous example, we propose a new method for
dealing with combined topological and qualitative size constraints. In particular,
we propose an O(n?) time and O(n?) space algorithm, BIPATH-CONSISTENCY, for
imposing path-consistency to a set of constraints in RCC-8 U Q8. We prove that
BIPATH-CONSISTENCY solves the problem of deciding consistency for any input
set © of topological constraints in Hg combined with any set of size constraints
in 9S8 invo/l\ving the variables of @. Thus, despite this framework is more expres-
sive than Hg (and therefore has a larger potential applicability), the problem of
deciding consistency can be solved without additional worst-case cost.

BIPATH-CONSISTENCY is a modification of Vilain and Kautz’s path-consistency
algorithm [18] as described by Bessiére [3], which in turn is a slight modification
of Allen’s algorithm [1]. The main novelty of our algorithm is that BIPATH-
CONSISTENCY operates on a graph of pairs of constraints. The vertices of the
graph are constraint variables, which in our context correspond to spatial regions.
Each edge of the graph is labeled by a pair of relations formed by a topological
relation in RCC-8 and a size relation in Q8. The function BIREVISION(i, k, j) has
the same role as the function REVISE used in path consistency algorithms for
constraint networks (e.g., [12]). The main difference is that BIREVISION(Z, k, j)
considers pairs of (possibly interdependent) constraints, instead of single con-
straints.

Note that BIPATH-CONSISTENCY is a general algorithm, in the sense that it
can be applied not only to spatial reasoning. For example, it can be applied to
pairs of temporal relations, where each pair is formed by a relation in the Allen’s
Interval Algebra [1] and a qualitative constraint on the duration of the intervals.
Of course, different classes of relations might need different completeness and
complexity proofs.

A formal description of BIPATH-CONSISTENCY is given in Figure 2, where R;;
is a pair formed by a relation ¢;; in RCC-8 and a relation s;; in QS; R;; = 0
when ¢;; = 0 or s;; = 0; U indicates the universal relation in RCC-8 and Uy the
universal relation in Q8.

Theorem 2. Given a set © of constraints in ’;flg and o set X of constraints in
QS involving variables in ©, BIPATH-CONSISTENCY applied to X and O decides
the consistency of X' U 6.

Proof. 1t is clear that, if the algorithms returns fail, then X’ U® is inconsistent.
Otherwise (the algorithm does not return fail) both the output set of size

10 As in the function REVISE given in [3], this step is used to avoid processing the triple
i, j, k when it is known that R;; would not be revised.



Algorithm: BIPATH-CONSISTENCY
Input: A set @ of RCC-8 constraints, and a set X' of QS constraints over the variables
L1,T2,...,Tn of O.
Output: fail, if X U O is not consistent; path-consistent sets equivalent to X' and O,
otherwise.

1. Q « {(4,7) | : < j}; (¢ indicates the i-th variable of @. Analogously for j)
2. while Q # 0 do

3. select and delete an arc (7, j) from Q;

4 fork#i,k#j (ke {l.n}) do

5 if BIREVISION(4, 7, k) then

6. if Rir, = 0 then return fail

7. else add (i, k) to Q;

8 if BIREVISION(k, i, j) then

9. if Rkj = 0 then return fail

10. else add (k, j) to Q.

Function: BIREVISION(%, k, )

Input: three region variables i, k and j

Output: true, if R;; is revised; false otherwise.

Side effects: R;; and Rj; revised using the operations N and o over the constraints
involving ¢, k, and j.

1. if one of the following cases hold, then return false:'°
(a) Toprel(sir) Nt = Uy and Sizerel(tix) N sk, = Us,
(b) Toprel(sk;) Ntr; = Us and Sizerel(tr;) N sk; = Us
. oldt := t;;; olds := s45;
. tij = (tij N Toprel(si;)) N ((tix N Toprel(sik)) o (tx; N Toprel(sk;)));
. 8i5 := (si5 N Sizerel(ti;)) N ((sik N Sizerel(tir)) o (sk; N Sizerel(tr;)));
. tij 1= (ti; N Toprel(s:;));
. if (oldt = t;;) and (olds = s;;) then return false;
. tji := Converse(ti;); sji := Converse(ss;);
. return true.

OO O Wi

Fig. 2. BIPATH-CONSISTENCY

constraints X, and the output set ©,, of topological constraints are independently
path-consistent. Hence, Ey Proposition 1 and the fact that a path-consistent set
of constraints either in Hg or in a Point Algebra is consistent [16,10], X' and @
are independently consistent.

Let ©, be the path-consistent set of topological constraints given as output
of BIPATH-CONSISTENCY applied to X and @, and X, the path-consistent set
of the size constraints. We show that X, U @, is consistent (and therefore that
XY U6 is consistent). In order to do that, we show that it is possible to construct
a consistent scenario 6, for @, in which the region variables can be consis-
tently interpreted as regions satisfying the constraints of X' (i.e., it is possible to
construct a model of X' U 9).

Let ©; be a consistent scenario for @, in which, for any pair of variables ¢
and j, the (basic) relation r;; between ¢ and j is



— EQif i{EQ}j € 6),
— one of DC, EC, PO, if RN {DC,EC,PO} # 0, where iRj € O,
— one of TPP, NTPP, TPP~!, NTPP !, otherwise.

Note that one of EQ, TPP, NTPP, TPP~* NTPP™', is chosen only if one of
them must be chosen, and that Lemma 7 guarantees the existence of O;.

From O we can derive an assignment to the variables of ©, satisfying the
constraints of X, (and the topological constraints of @;) in the following way.
Let X7, be the set of size constraints derived from X, by applying the five trans-
formation rules of Lemma 8, and let o, be a consistent scenario for X. By
Lemma 8 o, is also a consistent scenario for X, (and hence for X).

For each pair of variables ¢ and j, consider the size relation Sizerel(r;;) be-
tween ¢ and j. By construction of @ and steps 3—7 of BIREVISION (the subroutine
used by BIPATH-CONSISTENCY to revise topological and size constraints), it is

clear that if Sizerel(r;;) is one of “<”, “>” “=”_then the relation between ¢
and j in ¥} (and in 0,) is the same as Sizerel(r;;). So, any assignment satisfying

r;j satisfies also the size relation between i and j in X}, (and in o7,).

Consider now the case in which Sizerel(r;;) is the indefinite relation (“<=>").
(Note that since r;; is a basic relation it cannot be the case that Sizerel(r;;) €
{<,>,#} — see Table 1.) By construction of ©, we have that r;; must be one
of {DC}, {EC}, {PO}, and by construction of o, that either size(i) < size(j) or
size(j) < size(i). Since X, is consistent, by construction of o;, and by Lemma 10
we can consistently assign regions to ¢ and j satisfying r;; and the size relation
between 7 and j in o], (and hence in X7). Consequently, since from O, we can
derive a consistent assignment satisfying the relations in X7, by Lemma 8 we can
also derive a consistent assignment satisfying the relations in X, (i.e., a model
for O, U Xp). O

Theorem 3. Given a set @ of constraints over RCC-8 and a set X of con-
straints in QS involving variables in O, the time and space complexity of BIPATH-
CONSISTENCY applied to X and © are O(n®) and O(n?) respectively, where n is
the number of variables involved in © and X.

Proof. Since any relation in QS can be refined at most three times, any relation
in RCC-8 can be refined at most eight times, and there are O(n?) relations,
the total number of edges that can enter into Q is O(n?). For each arc in Q,
BIPATH-CONSISTENCY runs BIREVISION 2n times. BIREVISION has a constant
time complexity. The quadratic space complexity is trivial. O

Theorem 4. Given a set © of constraints in ﬁg and o set X of constraints
in QS involving variables in ©, the consistency of X U © can be determined in
O(n?®) time and O(n?) space, where n is the number of variables involved in ©
and X.

Proof. It follows from Theorems 2 and 3. O

Theorem 5. Given a set © of constraints in ﬁg and a set X of QS constraints
involving variables in ©, a size-consistent consistent scenario O4 for O U X can
be computed in O(n®) time and O(n?) space, where n is the number of variables
involved in © and X.



Proof. From Theorem 1, the proof of Theorem 2 and Theorem 3, it follows that
O, can be computed by first applying BIPATH-CONSISTENCY to @ and X, and
then running the algorithm described in the proof of Theorem 1 on the set of
the topological constraints in the output of BIPATH-CONSISTENCY. O

6 Conclusions

In this paper we have addressed the problem of integrating a basic class of
spatial relations, expressing information about the relative size of spatial regions,
with RCC-8, a well known class of topological relations. We developed an O(n®)
time algorithm for processing a set of combined topological and relative size
constraints, and we proved the correctness and completeness of theAalgorithm
for deciding consistency when the topological constraints are in the Hg class.

We have also presented an O(n®) time method for computing a consistent
scenario both for combined topological and relative size constraints, and for
topological constraints alone.

Future work includes extending the class of size relations to (relative) quanti-
tative size constraints, such as “the size of a certain region is at least two times,
and at most six times, the size of another region”.
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