166 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 8, NO. 2, JUNE 2016

Visual Detection of Unknown Objects in Video
Games Using Qualitative Stability Analysis

Xiaoyu Ge, Jochen Renz, and Peng Zhang

Abstract—Many current computer vision approaches for object
detection can only detect objects that have been learned in
advance. In this paper, we present a method that uses qualitative
stability analysis to infer the existence of unknown objects in cer-
tain areas of the images based on gravity and stability of already
detected objects. Our method recursively searches these areas for
unknown objects until all detected objects form a stable struc-
ture or no new objects can be identified anymore. We evaluate our
method using the popular video game Angry Birds. We only start
with detecting the green pigs and are able to automatically identify
and detect all essential game objects in all 400+ available levels. All
objects can be accurately and reliably detected. Our method can
be applied to other video games where objects obey gravity and
are bound by polygons.

Index Terms—Computer vision, knowledge representation,
object detection, qualitative spatial reasoning, stability reasoning.

I. INTRODUCTION

BJECT detection is an important problem in computer
vision which remains unsolved in its generality. With
sophisticated methods based on edge detection, color cluster-
ing, or key features available, it is possible to achieve rea-
sonable accuracy in detecting previously learned objects [1],
[2]. However, detecting unknown objects that have not been
seen and learned before remains a challenge [3], [4]. Objects
in images, and particularly in real-world images, are often not
uniform in color and do not have unique edges that bound the
object, but typically have a considerable number of detected
edges that are unrelated to the objects’ boundary. Therefore, it
is very hard to identify what defines an object, which pixels are
part of the object, and where the object boundaries are located.
The approach we present in this paper for detecting unknown
objects is not based on any methods typically used in computer
vision, but uses qualitative spatial relations between already
detected objects in order to infer the existence of undetected
objects. Our method relies on a qualitative stability analysis
and is based on the assumption that objects cannot float in the
air without support from other objects. Whenever we detect an
object that appears unsupported, we assume that there must
be a yet undetected object that supports it. Using our qualita-
tive stability analysis, we know where supporting objects could
be located and search these areas for potential new objects
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using existing computer vision methods. As such, our method
is an extension of existing computer vision methods that can be
added to any existing methods and will likely improve detec-
tion of yet unknown or unidentified objects. But this also means
that we suffer from similar weaknesses as the existing methods
and can only detect objects for which we can actually extract
visual cues in the image. Consequently our method works best
in cases where the unknown objects could be reliably detected
if they were known.

The main contribution of this paper lies in providing a novel
method for inferring the existence of undetected objects. We
initially implement and evaluate our method for 2-D video
games, such as the popular games Angry Birds or Candy Crush,
where all foreground activities occur in the same image plane.
Video games have the advantage that all images are generated
and rendered using computer graphics where objects typically
do not have the complexity and diversity that can be found in
real-world images. Therefore, it is possible to detect known
objects in a reliable way. The initial restriction to 2-D video
games serves as a proof of concept and allows us to evaluate
our method on its own, independent of other open computer
vision problems such as reliably detecting the 3-D shape of
objects or dealing with occlusion. While this limits the imme-
diate applicability of our approach to real-world scenes, there
is a considerable interest in developing reliable object detection
in video games [5], [6].

Angry Birds, for example, is a video game that has obtained
increased interest within the Al community in recent years, due
to the challenging nature of the problem despite its simple game
play. There is an ongoing competition [7] with the goal of devel-
oping Al agents that can play new levels better than the best
human players. The competition organizers provide a software
package including a computer vision module that is able to reli-
ably detect and classify known and previously learned objects,
but is unable to detect any unknown objects. In order to be able
to solve new levels, which is the declared aim of the compe-
tition, an Al agent has to be able to detect new and unknown
objects and to learn their physical properties. Using our method,
we are able to reliably detect unknown objects in Angry Birds.
We show that we can detect all objects that the existing
computer vision module can detect and with the same accuracy.

In addition, we can detect a large number of unknown objects
and automatically classify them into new object categories. We
are able to achieve this with minimal prerequisites: We only
assume that we are able to detect the green pigs; everything else
is unknown. Once all relevant game objects are identifiable, we
could then start learning their physical properties, for example,
by shooting birds at them and observing how they behave when
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hit. As such our method is an important step toward building
Al agents that are able to autonomously solve any Angry Birds
level, or other physics-based video games.

The paper is structured as follows. We first introduce the rele-
vant background on computer vision and on qualitative stability
analysis. We then present an improved way of computing stabil-
ity and discuss the effect it has on detecting unknown images.
In Section IV, we present our method of detecting unstable
objects and how to find unknown objects that support unstable
objects. In Section V, we evaluate our method by applying it
to a large number of Angry Birds levels with many new objects
and different backgrounds, as well as to other games. Section VI
summarizes our results.

II. BACKGROUND AND RELATED WORK
A. Object Recognition

Object recognition has two general categories [8]: recog-
nizing a particular object (e.g., John’s face) and recognizing
generic categories (e.g., cars). There are mainly two major
approaches to deal with object recognition, namely appearance-
based methods and feature-based methods [9]. Appearance-
based methods such as [10] basically record known objects as
templates and perform recognition based on the template data
set. Feature-based methods recognize objects based on differ-
ent categories of features such as boundary or size of an object
or its colors [11]. Both methods require prior knowledge to dis-
cover new objects in a scenario, whereas none of them can tell if
the detected objects are interesting key objects or unimportant
objects from the background. For example, the vision system
[12] currently provided for the Angry Birds Al Competition
framework is developed on a feature-based method. It takes
hard-coded colors and shapes of objects as features and can suc-
cessfully detect and classify known objects. Unsurprisingly, it
lacks the ability of discovering new objects whose features are
not included in the existing feature set; however, new objects
occasionally appear in the game.

Detection proposal methods (for a survey, see [13]) have
been widely applied to object detection. The methods gen-
erate proposals based on a diverse set of cues to guide the
search for objects. A proposal is a region in the image that
is likely to contain objects. Guided by the generated propos-
als, the object detection algorithm can avoid the exhaustive
search by first examining the proposed regions, which achieves
computational efficiency. However, the methods are not appli-
cable to our problem. First, detection proposals are based on
the assumption that foreground objects can be distinguished
from background objects by certain common visual properties.
However, it is not always the case in our problem setting where
background objects can share the same visual properties with
foreground objects. Further, the methods cannot be easily gen-
eralized to an unknown environment. Most of the methods rely
on an intensive training procedure. They are unable to deal
with unknown objects of which the visual properties are not
captured by the training data. The proposed method could be
regarded as a detection proposal method in the sense that it
generates proposed regions that are likely to contain unknown

objects based on stability analysis. Another related area is
object localization [14]-[16] that aims at accurately locating the
detected objects and distinguishing foreground objects from the
background clutter.

Discovering unknown objects and object categories (also
known as category learning) is very challenging. The prob-
lem can be tackled by supervised learning that requires man-
ual annotations [17] or unsupervised techniques [18] which
assumes no prior information. The quality of the unsupervised
techniques fundamentally depends on how they determine the
similarity of image regions. Some techniques are based on ana-
lyzing contexts to discover the unseen object categories. For
example, Lee and Grauman [4], [19] use object graphs to model
the topological relations of the regions in an image and group
the regions that have similar topological relations with the
surrounding known objects. However, the accuracy will drop
significantly when multiple unseen objects appear in an image
while there are only a few known objects.

1) Object Recognition in Video Games: There is some
work on developing general intelligent agents to play Atari
2600 games (Atari-GGP) [20]. Identifying game objects is one
important capability for agents to recognize the game envi-
ronment (some agents [21], [22] based on deep reinforcement
learning do not perform objects identification). Hausknecht
et al. [23] implemented an algorithm based on artificial neural
networks and the algorithm uses different state representations.
One state representation relies on a set of game objects that are
identified by template matching. In [24], the agent tracks the
blobs of pixels that have similar colors across video frames and
then obtains game objects by merging the blobs according to
certain cues. Since the method categorizes the detected objects
by their shape, it may group different objects that have similar
shapes but different colors into one category.

B. Structural Stability

Stability of a given structure can be exactly calculated if all
relevant physical parameters of all the involved objects, such
as shape, density, mass, mass distribution, material are known.
Blum et al. [25] developed a force-based method to calculate
the stability of an object by taking detailed quantitative physical
parameters as input. The result is very accurate, however most
of the required input information is unavailable, when the only
information we have about a structure is what a vision system
sees. If less information is available, structural stability can only
be approximated. A recent qualitative approach [26] approxi-
mates structural stability of a 2-D structure based on the center
of mass of rectangular shaped objects. It encodes stability rules
using qualitative spatial relations from the extended rectangle
algebra (ERA). Each rectangular object can be mapped to a
pair of intervals by projecting the rectangle to the z- and y-axes.
Qualitative relations between two objects can then be expressed
as the interval relations between their corresponding intervals.
ERA contains 27 interval relations (Fig. 1) in each dimension
instead of the typical 13 interval relations in the original rectan-
gle algebra [27], [28]. The additional relations are obtained by
also considering the center point of intervals rather than only
their two end points. This extension allows us to consider the
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Fig. 1. The 27 interval relations of ERA.

mass center of rectangles and, therefore, allows for more flex-
ible reasoning under physical constraints [Fig. 2(a) and (b)].
The basic idea to test the stability of an object in [26] is that if
the vertical projection of the objects mass center falls into its
supporting area, the object is determined as stable, where the
support area is defined as the horizontal interval between the
leftmost and rightmost support points of an object or a structure.

Although ERA is useful to determine the areas for searching
new objects when there are few detected objects in the scene, it
only roughly approximates the stability of a single object rather
than a structure.

In contrast, Gupta et al. [29] suggest a method to check the
stability of an object by qualitatively analyzing the forces act-
ing on the object. However, this method is also not applicable
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Fig. 2. Local stability determined with ERA. (a) and (c) Locally stable case.
(b) Locally unstable case.
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Fig. 3. Configuration where an object is lower (in terms of the top point or the
bottom point) than its supporter. C'4 and C'g are mass centers of objects A
and B, and C'4 g is the mass center of the combination of A and B. Area 4 is
the support area of A and Area 4 p is the support area of the combination of A
and B.

for determining structure stability when using only visual input.
Some methods have been developed to deal with the stability of
the whole structure to achieve a better understanding of a scene.
For example, Zheng et al. [30] evaluate the relative structural
stability by comparing the potential energy of different combi-
nations of objects in the structure. As relative stability is used in
this method, it is not helpful for discovering hidden or missing
objects.

Differently, Jia et al. [31] test the stability of the whole struc-
ture by iteratively calculating the mass center of a set of objects
from top to bottom and checking if the vertical projection of
the mass center falls into the set of objects’ supporting area.
This method works in simple scenarios (e.g., a stack of several
books on a desk); however, as it simply uses a top-down strat-
egy, some supporting relations may not be detected correctly,
i.e., not all supporters are lower than their supportees either
in case of top point or center point, hence, sometimes it will
attempt to evaluate an object before its supportee which may
result in an incorrect judgment.

For example, in Fig. 3, object A will be first evaluated using
a top-down schema and determined as unstable; however, due
to the effect of its supportee B, it can actually remain stable. In
Section III-B, we propose an improved method which evaluates
objects in an appropriate sequence in terms of their supporting
relations.

There are also some methods which use probabilistic simu-
lations to solve physical reasoning problems such as predicting
the stability [32]. The method works well when the environment

is fully observable and the physical properties of objects are
completely known. However, it is often the case that the envi-
ronment is partially known and the information about the
objects is incomplete. The stability analysis algorithm proposed
in this paper is a qualitative approach that can effectively deal
with an environment of this nature.

IIT. QUALITATIVE STABILITY ANALYSIS

The basic assumption we make is that the image we analyze
depicts a stable scenario, that is all objects in the image are
stable and none of the objects are currently in flight, falling,
or otherwise unsupported. We also assume that one or more
objects in the image are already known and have been detected.
A major limitation we have is that we do not know the physi-
cal properties of any of the objects in the image. What is most
important in our analysis is that we do not know the density or
mass of objects, neither absolute nor relative to each other. This
means that even if we knew the exact shape and extent of all
objects, it would be impossible to accurately calculate whether
a group of objects is stable. Identifying the exact physical prop-
erties would require us to actively interact with objects, which
is outside the scope of this paper. In the following, we assume
that the density of all objects is the same and uniformly dis-
tributed. Under this assumption, it is possible to calculate the
mass center of an object and approximate the stability of an
object in a structure. The important fact to keep in mind is that
stability can only be approximated. We will now look at ways
to estimate whether a structure is stable.

A. Local Stability

We can use ERA to calculate stability of rectangular objects.
However, as ERA only considers rectangular objects, Zhang
and Renz [26] assume that the center point of the minimum
bounding rectangle (MBR) of an object corresponds to the mass
center of the actual object, which in turn corresponds to the
center point of the intervals. When objects other than rectan-
gles are used, this correlation between the mass center of an
object and center point of its MBR does not hold anymore.
However, even when considering objects other than rectangles,
for example arbitrary polygons, we can still use ERA to reason
about stability of an object. This is because we get the same 27
ERA interval relations if we consider a different point inside
the intervals and not their center point [Fig. 2(c)]. Therefore,
we can use the actual center of mass of an object and use its
corresponding projection to define the ERA relations. Since
this method determines stability of an object only with respect
to how its center of mass relates to its supporting area, and
does not consider what happens above an object, we call this
approximation to the stability of an object Local Stability. Fig. 2
demonstrates two examples of how ERA works on determin-
ing local stability of an object. Specifically, the ERA relation
between block A and B in the z-axis in the left figure is cen-
ter_during which means A is well supported by B and A is
locally stable; in the right figure, the ERA relation between
blocks A and B in the x-axis is left_during which means that
the mass center of block A is not supported, thus it is not locally
stable.
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Fig. 4. (a) Configuration that is globally unstable but locally stable: The center
of mass of B-FE is outside the support area provided by A. (b) Configuration
that is globally stable but locally unstable: The center of mass of B is outside
the support area provided by C.

Although local stability is only a rough approximation, we
can still use it to determine which areas to search for new
objects, because it guarantees to search every area that can
contain supporters of an object. The specific method to decide
searching areas will be introduced in Section IV.

B. Global Stability

It is clear that local stability can give a wrong result depend-
ing on the objects above the object we consider. For example, in
Fig. 4(b), if we only consider block B and its supporter C, then
B is not stable. But if we take the mass of A into account, then
B will probably be stable. In this case, local stability provides
a false negative result, i.e., it judges an object to be unstable
which should be stable. Likewise, we can obtain a false pos-
itive result where an object is considered locally stable when
it should be unstable [see Fig. 4(a)]. Thus, this method may
not be a very good approximation of the real stability of a
structure. We propose a stability method that is able to give a
better approximation of the stability of a structure compared to
local stability by also considering what is above an object. Our
method, which we call global stability takes as input a labeled
directed graph where there is a node for each detected object
and a directed edge to specify the supporting relation between
two connected objects. We call this the support graph (SG) of
a structure (see Fig. 5 for an example). Given an SG, if there
exists node N; with an edge pointing to node No, then Vg
supports Ns.

Definition I11.1 (Support, Support Depth, Supportees, Direct
Supporter): Given an SG, if there is a path from N; to IN;, then
N; supports N;. Support depth SD(NN;, N;) is the length of the
shortest path from IV; to ;. A direct supporter of an object IV
is an object N; such as SD(NV;, N;) = 1. The supportees of N;
are the set of all nodes that are supported by N;.

With a support graph, the supportees of an object O can
be considered when testing its stability. Specifically, when
querying the stability of object O, we will take O and all its
supportees as a substructure S and test if the mass center of S
falls into the support area that includes all direct supporters of
S. Algorithm 6 gives the global stability test.

. O, @@
> f
O
C el f
D

Fig. 5. Globally stable structure and its support graph. G indicates the mass
center of block C, G depicts the mass center of the composite structure
composed of blocks A, B, and C.

The main aim of our stability testing procedure in this
paper is to get information about where to look for potentially
unknown objects. If our stability algorithm is correct and we
identify an unstable object, then we will look for an unknown
supporting object. If we correctly detect an object as stable, we
will not look for an unknown object. What is important is the
impact of wrongly classifying an object as stable or unstable,
and due to the impossibility of correctly evaluating stability of
all situations, wrong stability results are unavoidable. So if we
classify an object as stable even though it is unstable, we will
not look for an unknown supporting object and might miss an
object. The consequences of this might be negligible if we are
running our algorithm on many similar images. Then there is a
good chance that we identify the missed object at a later stage
in a different image.

If we wrongly classify an object as unstable, we will check
for an unknown supporting object. If we find none, then there is
no difference between not looking for one and not finding one
other than increased computation time. However, if we do find
a supporting object, then this could either be a correct find, or
it could be a fake object, for example background. Identifying
a fake object can cause many problems, as it will be added to
our list of known objects and will always be identified as an
object. Therefore, we have to avoid identifying fake objects.
The most important way to avoid fake objects is to be able to
correctly identify background and to make sure that background
can never be considered as an object (discussed in Section V-B).

The global stability algorithm improves the ability to identify
objects as stable or unstable. Many situations that are incor-
rectly classified by the local stability algorithm can be corrected
by our global stability algorithm. Fig. 4(a) gives an example of a
locally stable structure that is detected as unstable by the global
stability algorithm, and Fig. 4(b) demonstrates a situation that
is locally unstable, but globally stable. In addition to the above
two cases, our method can successfully deal with the configu-
ration in Fig. 3 by evaluating the objects in terms of supporting
relations rather than from top to bottom. Specifically, in the sup-
port graph, there is a path from A to B; thus, when checking the
stability of A, the mass center of A and B will be calculated and
the support area will be determined corresponding to the direct
supporters of both A and B.
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1: procedure GLOBALSTABILITYTEST(Ng, SG)
2: Input:
3: Ny the node that refers to the querying object
4: SG  a support graph that contains all objects in the structure including N, as nodes and their support relations as edges
5: Output:
6: GlobalStability ~ boolean value to state if the querying object is stable
7
8: SupporterList + ()
9: SupporteeList < ()
10: for all Node N in SG do
11: if N supports Ny and SD(N, Ny) =1 then
12: Supporter List < SupporterList U N
13: end if
14: if N, support N then
15: SupporteeList <— SupporteeList U N
16: end if
17: end for
18: if SupporterList = () then
19: return false
20: end if
21: for all Node N in SupporteeList do
22: for all Node N’ in SG do
23: if N’ supports N and SD(N’, N) =1 and Ny does not support N then
24: Supporter List < SupporterList U N’
25: end if
26: end for
27: end for
28: if vertical projection of the mass center of the substructure with nodes € SupporteeList U Ny falls into the supporting area built
with nodes € Supporter List then
29: return true
30: else
31: return false
32: end if

33: end procedure

Fig. 6. Global stability test algorithm.

IV. IDENTIFYING UNKNOWN OBIJECTS

We now present a general algorithm (see Fig. 7) that can
automatically identify unknown objects in images obtained
from 2-D video games. We assume that the computer vision
method uses some form of image segmentation and clustering
for detecting known objects. Which ones are used will depend
on the application. In the following part, we use Seg and Clus
to refer to an arbitrary segmentation and clustering algorithm
respectively. Note Seg and Clus are not necessarily separate
modules as segmentation could be done by clustering. The
algorithm has four steps. Detecting known objects. The algo-
rithm (see Fig. 7, lines 10—11) first uses Seg to obtain all the
nonoverlapping regions in the image. Clus then classifies the
regions to one of the known categories according to the selected
visual features. A region will be labeled as unknown if there are
no feasible categories. These are candidates for forming new
objects.

Detecting locally unstable objects and possible areas of sup-
port. After detecting all the known objects, the algorithm (see
Fig. 7, line 13) checks the local stability of each known object
by setting the bottom line of the image as the initial ground.
Once the algorithm detects a locally unstable object, it estimates
the support area where possible supporters can be found. There
are two possibilities that have to be checked for each locally
unstable object (see Fig. 8): a) the area adjacent to the object
that is underneath its center of mass; and b) the area adjacent to
the object to the left of its center of mass up to its leftmost point
(underneath the object and to its left), and the area adjacent to
the object to the right of its center of mass up to its rightmost
point (underneath the object and to its right). If there is already
a known supporting object in one of those two areas we only

need to check the other area. If no locally unstable object is
found, we go to Step 4).

Identifying new objects. The algorithm (see Fig. 7, lines 15—
21) first checks area a) for a new object. This is an unknown
region as defined above that is adjacent to the known object
within the search area. The undetected object should be “touch-
ing” the unstable object, where touching does not necessarily
mean that the objects actually connect, but there could be a
small gap between them which depends on the application. If
none is found, we check areas b) in the same way. If none is
found, we skip this locally unstable object by marking it as
locally stable, go back to Step 2) to the next unstable object.
Once an adequate region is identified, the method will extract
the features of the region and update the Clus with this informa-
tion. The update can be a creation of a new category or a merge
with one of the existing categories. Whenever Clus is updated,
we go back to Step 1).

Detecting globally unstable objects. Once there are no locally
unstable objects, the method (see Fig. 7, lines 25-34) will ver-
ify the global stability of all the identified objects using the
global stability test algorithm (Fig. 6). If there is a globally
unstable object, we estimate the searching area for unknown
regions that can make the object globally stable. To do this,
we take the object and all its supportees and consider it as a
new substructure. Since the object is locally stable, it must be
directly supported, either under its center of mass or to its left
and its right. It can only be globally unstable, if the center of
mass of the whole substructure falls outside the objects sup-
port base, either to its left or its right. If to its right, the area that
needs to be checked for possible support is the area (underneath
the substructure and to its right) that is directly adjacent to the
whole substructure, on the right side of its support base up to its
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1: procedure VISUAL DETECTION ALGORITHM(J, Seg, Clus)
2: Input:
3: J  acollection of images
4: Seg  an image segmentation algorithm
5: Clus  a clustering algorithm
6:
7: for all / in J do
8: repeat
9: repeat
10: Regions < Seg(I) > obtain non-overlapping regions by applying Seg to the image I
11: Unknown_Regions, Known_Objects <— Clus(Regions) > use Clus to classify the regions
12: for all Object O in Known_Objects do
13: check the local stability of O
14: if O is locally unstable then
15: estimate the support areas (local stability)
16: if an unknown region is found in one of the areas then
17: extract the features of the region, update Clus
18: go to Line 10
19: else
20: mark O as locally stable, continue to check the next object in Known_Objects
21: end if
22: end if
23: end for
24: until There are no locally unstable objects
25: for all Object O in Known_Objects do
26: check the global stability of O
27: if O is not globally stable then
28: estimate the support areas (global stability)
29: if an unknown region is found in one of the areas then
30: extract the features of the region, update Clus
31: go to Line 10
32: end if
33: end if
34: end for
35: until There are no more globally unstable objects or there are no more unknown regions that can support the unstable objects
36: end for

37: end procedure

Fig. 7. Visual detection algorithm.

Fig. 8. (Left) Suggested searching areas for the locally unstable object. (Right) Suggested searching areas for the globally unstable object. The red dot indicates
the center mass of B and C' which is to the left of the supporting area provided by A.

rightmost point (see Fig. 8). If to its left, we need to check the
similar area to the left of the support base. We now check the
identified area for a new object in the same way as described in
Step 3).

The method terminates when there are no more globally
unstable objects or there are no more unknown regions that can
support the unstable objects.

V. EXPERIMENTAL EVALUATION

First, we evaluate our method using the popular game Angry
Birds. Angry Birds is a physics simulation game where an
underlying physics simulator ensures that gravity and stability
are enforced. If an object is unstable under gravity, it will fall
until it is stable. In our evaluation, we only use images of stable
situations, where all objects are individually stable and noth-
ing moves. The images we use are the different levels available
on the Chrome version of the game (chrome.angrybirds.com),
in total 444 different levels. We use the initial configuration of

each level, which includes all objects that can possibly occur
in these levels, and all of them are stable. Occasionally, objects
appear to be floating in the air, so not all objects are always
supported. There is an existing computer vision software (Al
Birds 1.3) [12] that detects all relevant objects in the first 21
levels of the Poached Eggs series and identifies their category.
The relevant object categories are hard-coded in the vision soft-
ware, based on the primary colors that must be contained in
these objects. In addition, the algorithm uses the Canny edge
detection with settings that are manually optimized for detect-
ing these objects. This algorithm can reliably detect the real
shapes of all known objects, but is unable to detect any objects
and object categories that are not explicitly hard-coded.

A. Application-Specific Vision Implementation

While we use a specific computer vision method to detect
objects and object boundaries, other computer vision methods
can be used instead. Which computer vision method is best
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(a)

(b)

Fig. 9. (a) Typical POACHED EGGS level. (b) Detected objects. Objects of the same category have the same color.

(a)

(b)

Fig. 10. (a) Level with many new blocks. (b) Newly detected objects; objects of the same category are arranged in the same row.

might depend on the particular application, can be adjusted
accordingly, and is not important here. What is important,
though, is our strategy of identifying unknown object using a
qualitative stability analysis.

The specific computer vision method we use here distin-
guishes objects by colors (we use the RGB color space).
Objects of similar colors will be identified as being of the same
category. Our method maintains a list of entries for known
object categories, with each entry describing the color distri-
bution of a category. An entry contains a set of primary colors,
the proportions of each color, and the total number of pixels that
have been labeled by one of the colors.

We use a modified K-means [33], [34] algorithm for cluster-
ing. It has three parameters: the maximum number of clusters
(M. = 10), the minimum RGB color distance (M, = 40)
between the centroids of the clusters, and the maximum clus-
ter radius (M, = 20). The centroid of a cluster is computed by
averaging the RG B values of the included pixels.

We use edge detection to assist with image segmentation.
While many powerful segmentation algorithms [35], [36] have
been developed recently, we use an early approach, the Canny
edge detector [37], because its performance is sufficiently good
to help us discover real shape of objects and then build cor-
rect support relations to detect potential objects. We apply
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Fig. 11. (Left) A moon is present in the background. (Right) The wooden block with ID 2 is a core supporter of the stone block with ID 1 (remove the wooden
block makes the stone block unstable). The moon segment with ID 3 is not a core supporter of the stone block (the stone will remain stable without the support of

the moon segment).

the Canny edge detector with default settings to identify all
edges in the image, and label each pixel with the most sim-
ilar stored color. The similarity is measured by a weighted
euclidean distance AC' in R'G’'B’, according to the formula
|AC| = V3 x AR? + 4 x AG” + 2 x AB'2 [38]. Two col-
ors are considered as similar if |AC| < M,. The method
will label a pixel as unknown if there is no similar color in
the entries. A connected component is a region enclosed by
detected edges such that all pixels within that region have the
same label. A connected component forms an object of a known
category when most pixels within the component are labeled by
the colors, with the same distribution, of the category.

Once a connected component is identified [in Step 3) of the
visual detection algorithm], we identify its colors and the cor-
responding proportions. The method calculates the averages of
the RG'B values for the top three clusters by the size of the
clusters. Those average RG Bs are taken as primary colors of
that component. The primary colors are further divided into
three groups according to their proportions, namely Dominant:
[40%, 100%], Major: [15%, 50%], Minor: (0%, 20%] ([x,y]
represents an interval between x and y, including both). A
color can be in at most two adjacency groups. If the colors
in the groups Dominant and Major are similar to the colors
of the corresponding groups of any known category, the com-
ponent will be classified to that category otherwise it will be
identified as a new category. In the former case, the method
will adjust the primary colors of the identified category by
weighted average. For example, if one primary color rgb, of
the component is similar to rgb,, of the corresponding category,
then the RGB value of the primary color will be updated by
(ca*rgby + cyxrgby)/(cy + ¢y) where ¢, and ¢, are the total
number of pixels. The color proportion will be updated as well.
In the latter case, the method will create an entry for the new
object category.

B. Evaluation

In our first experiment, we ran our algorithm on the same
21 Poached Eggs levels. The only object we hard-coded is the
green pig; all other objects cannot be detected initially. The only
other game-specific setting we made is the definition of what is

classified as background, namely any object that occurs across
the whole width of the image, not necessarily in one piece.

Our algorithm detected 1194 new objects in these 21 levels.
We clustered these objects according to their primary colors and
their shapes. We used two different clustering methods. The
first method we used is the method described in Section IV,
where objects are clustered based on the primary colors of
group Dominant and Major (2C). In the second method (1C),
we classified objects according to their most prominent col-
ors by considering Dominant only. Other methods could be
used as well. For 1C, we obtained seven different categories
of objects, and for 2C we obtained 12 different categories. The
object shapes formed subcategories of these categories.

The object categories identified by 1C correspond exactly to
the hard-coded object categories of the Al Birds 1.3 vision sys-
tem. Fig. 9 shows the object classifications made by clustering
method 1C after running on the 21 levels. We can detect all the
objects detected by the Al Birds 1.3 vision system and, in all of
the cases, the categories that are the same for Al Birds 1.3 are
also the same in our algorithm. On average, our algorithm took
4 s per level and we did three iterations until we received sta-
ble detections (that is after the second iteration no new object
categories were identified).

Next we applied our algorithm to all 444 available levels.
We loaded them in random order. Fig. 10 shows an example
where many building blocks are different from those in the
Poached Eggs levels. Our algorithm detected all the building
blocks while the Al Birds 1.3 vision system can only detect the
pig and wood blocks. Similar to this example, the 444 levels
have a number of new objects and many different background
settings, some of them with very complicated background struc-
tures. Some levels were particularly difficult as the background
contained similar colors to already detected objects, or it con-
tained objects that did not satisfy our aforementioned criterion
of occurring across the whole width of the image. For example,
one type of background in the treat or trick episodes contains
a moon which is right behind the object structure, and does not
occur anywhere else in the background (see Fig. 11). The moon
can be detected when it is located in the support area of some
unstable objects. We deal with such background objects by
examining the probability of the object being a core supporter
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TABLE 1
APPEARANCE AND CORE SUPPORT NUMBERS OF SOME TYPICAL
OBJECTS IN 200 RANDOM LEVELS #APPEAR: TOTAL NUMBER
OF DETECTED OBJECTS, #CORESUPP: NUMBER OF TIMES
OBJECTS ARE THE CORE SUPPORTERS OF OTHER
OBJECTS. C/A: #CORESUPP / # APPEAR

Object Category #Appear || #CoreSupp C/A
Stone 3278 2423 0.65

Wood 4060 2849 0.70

Moon (Background) 30 2 0.07
Brown Hill 428 1224 2.86

of other objects. A core supporter c of a stable object s is a sup-
porter that makes s unstable if c is removed. In most cases, a
stable object (not floating) “supported” by a background object
is actually supported by other foreground objects. Once those
foreground objects are detected, the background object will no
longer be the core supporter of the object. By making use of
this knowledge, the algorithm filtered most of such background
objects. As Table I shows, the object category Moon appeared
30 times but was core supporter only twice. In contrast, objects
of category Brown Hill were 1224 times core supporters with
only 428 appearances.

We evaluate the method using metrics of precision and recall

|{detected categories} N {actual categories }|

recall = -
|actual categories|

|{detected categories} N {actual categories}|
|detected ecategories| '

precision =

The set actual categories comprises all the categories of fore-
ground objects (which support other objects). We identified 38
categories in the game. As a result of evaluating our method on
all 444 levels, we obtained 25 categories (recall = 0.45, preci-
sion = 0.68) with 1C and 54 categories (recall = 0.79, precision
= 0.55) with 2C. Fig. 12 shows some of the detected objects
through this procedure.

While most of the categories distinguished by 1C are mean-
ingful distinctions, some objects that should form different
categories were clustered together. Those were distinguished
by 2C, which also distinguished object categories that should
be in the same category, for example, some ice blocks (the blue
blocks shown in Fig. 9) are translucent, and their color will
change as background changes.

In our final experiment, we applied our algo-
rithm to two other 2D video games, Candy Crush
(www.candycrushsaga.com) and Super Stacker (www.super-
stacker.com) where a downward gravity is enforced. Our
algorithm started with the green candy (or yellow face in super
stacker) as the only known object, and it detected all the other
objects (see Figs. 13 and 14).

It is clear that by optimizing the clustering method we can
achieve more accurate object categories. However, the actual
object categories strongly depend on the particular applica-
tion we are using and clearly cannot be generalized across
different applications. Additional methods such as supervised
learning could be used to optimize the resulting categories for

a particular application. More important for the scope of our
paper is that our evaluation confirms that in 2-D physics-based
video games unknown objects can be reliably detected based on
a stability analysis of already known objects.

VI. DISCUSSION

Being able to see, identify, and recognize objects visually is
an essential requirement for any Al agent interacting with the
physical world. The current state of the art in computer vision
limits this ability and allows reliable recognition of objects
mainly for previously learned objects. We propose an approach
for combining computer vision methods with methods from
qualitative spatial reasoning, to improve detection of unknown
objects. Our approach relies on the fact that objects typically do
not float in the air, but require physical support to keep them sta-
ble. Once an object is detected that appears to be unsupported,
there is strong evidence that there must be a yet undetected
object that supports it. We use a method developed in the area
of qualitative spatial reasoning to infer whether already detected
objects are stable or unstable and to infer where a possible sup-
port would be located if detected unstable. Standard computer
vision methods can then be used to identify potential objects
in the inferred location, and standard clustering methods to
identify the category of newly identified objects.

Since our approach heavily relies on the performance of
underlying computer vision methods, we evaluated it in some
2-D video games where known objects can be reliably detected
and where other open computer vision problems do not affect
the performance of our method. It turns out that our method can
accurately detect relevant objects and cluster them into relevant
object categories. It achieves the same accuracy and reliability
as existing vision software where all detected object categories
are hard-coded. In addition, we can detect and categorize many
new objects that the existing software fails to detect.

This example provides an important proof of concept that
our method is useful for detecting unknown objects. There are
several directions for future work in order to improve object
clustering and the accuracy of the stability analysis. 1) We
can use supervised learning methods to optimize the clustering
of objects into object categories relevant for a given applica-
tion domain. 2) The current method is a passive method that
is only based on analyzing images. Actively interacting with
the observed environment can further improve the performance.
In the case of Angry Birds, we could shoot a bird at each of
the detected objects and analyze how the object reacts. This
would help in clustering objects, but also in obtaining physical
properties of object categories. The lack of information about
the physical properties of the observed object is also a reason
why the stability analysis we perform is only an approxima-
tion. By interacting with the world we could obtain information
about the actual mass of objects which would improve the
stability calculation. Once game objects can be detected auto-
matically, this opens up a whole range of possible new research
and applications. This goes from building general game playing
agents [24], [39], [40] that can play physics-based video games
to creating intelligent nonplayer characters (NPCs) that are able
to recognize unseen objects.
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Fig. 12. Some of the detected objects in the 444 levels.
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Fig. 13. (Left) The image of a Candy Crush level. (Right) Image segmentation (objects of the same category has the same color composition) after the algorithm

detected all the objects.

Fig. 14. (Left) The image of a super stacker level. (Right) Image segmentation (objects of the same category are shown in the same color) after the algorithm

detected all the objects.

The learning-based agents in Atari-GGP would also benefit
from this method. Since the method could be generally applied
to detect objects in 2-D games where the gravity is present,
learning agents that perform object detection could use this
method to complement their current vision modules. For exam-
ple, Hausknecht et al. [23] could use this method as a replace-
ment of the manual object detection module.

In addition, it is possible to adapt the method to a 3-
D setting. The current rules for the stability analysis extend

naturally to the third dimension. The information about the third
dimension (depth) could be directly extracted from RGBD
images. Therefore, the method has the potential of being
applied to indoor scene understanding. For example, it could
complement the method in [41] on estimating the support
relations. To be able to successfully apply the method in
a real-world setting, one has to devise new rules to cope
with new stable scenarios (e.g., a lamp hanging from the
ceiling).
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