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Chapter 1

Qualitative Spatial Representation and
Reasoning

Anthony G Cohn and Jochen Renz

1.1 Introduction

The need for spatial representations and spatial reas@nirfgquitous in Al — from robot
planning and navigation, to interpreting visual inputsutalerstanding natural language
—in all these cases the need to represent and reason abtiat appects of the world
is of key importance. Related fields of research, such asrgpbi information science
(GlScience) [71], have also driven the spatial represemta@nd reasoning community to
produce efficient, expressive and useful calculi.

Whereas there has been considerable research in spatiabeafations which are
based on metric measurements, in particular within therige.g. [62, 138]) and robotics
communities (e.g. [198]), and also on raster and vectoesspttations in GlScience (e.g.
[214]), in this chapter we concentrate on symbolic, and mi@aarqualitativerepresenta-
tions. Chapter 9 is devoted to qualitative reasoning (QR}engenerally, whereas here we
limit our attention specifically to qualitative spatial caspatio-temporal reasoning (hence-
forth QSR).

1.1.1 Whatis Qualitative Spatial Reasoning ?

Chapter 9 concentrates on linear quantities; in some cagesuffices to reason about
space in a qualitative way, for example when reasoning attuposition of a sliding
block, or the level of a tank. However, space is multidimenal, and is not in general ad-
equately represented by a single scalar quantity. Consileg Allen’s interval calculus,
briefly mentioned in chapter 12, which distinguishes 13tJgiexhaustive and pairwise
disjoint relations that may hold between a pair of conveefpiece) intervals, see figure
1.1(a). Now we consider using this representation to mageldimensional regions, by
projecting 2D space onto two separate linear dimensiorfggime 1.1(b) this works well,
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Figure 1.1: (a) The 13 jointly exhaustive and pairwise digjd\llen interval relations
between a pair of convex intervals (the top thick line anchezehe thinner lines below) —
only seven are displayed — the last six are asymmetric arglihaerses. Projecting regions
onto axes and using Allen’s interval calculus can give naidieg results: in (b) the small

region is discrete from the larger along the x axis, whilgcit is contained in the larger
region along both axes.

but in 1.1(c) it is not so satisfactory — the smaller regiopesrs to be contained in the
larger.

Early attempts at qualitative spatial reasoning within @R community led to the
‘poverty conjecture’ [85]. Although purely qualitativepeesentations were quite success-
ful in reasoning about many physical systems [209], ther®wach less success in devel-
oping purely qualitative reasoners about spatial and katermechanisms and the poverty
conjecture is that this is in fact impossible — there is neepuqualitative spatial reasoning
mechanism. Forbus et al. correctly identify transitivitwalues as a key feature of quali-
tative quantity spaces but doubt that this can be exploitednin higher dimensions and
conclude that the space of representations in higher dimesss sparse and for spatial
reasoning nothing weaker than numbers will do.

The challenge of QSR then is to provide calculi which allow achine to represent
and reason with spatial entities without resort to the tiawal quantitative techniques
prevalentin, for e.g. the computer graphics or computéorisommunities.

There has been an increasing amount of research in recastwkih tends to refute,
or at least weaken the ‘poverty conjecture’. Qualitativatish representations addressing
many different aspects of space including topology, odatan, shape, size and distance
have been put forward. There is a rich diversity of theseasgmtations and they exploit
the ‘transitivity’ as demonstrated by the relatively spazemposition tablegcf the well
known table for Allen’s interval temporal logic [209]) whichave been built for these
representations.

This chapter is an overview of some of the major qualitatipatial representation
and reasoning techniques. We focus on the main ideas thatdmgrged from research

1In certain domains, containing rectangular objects whighumiformly aligned, this can still be a useful
representation, see for example [208] where the layoutxiflitocks on envelopes is learned. A theoretical
analysis into the n-dimensional generalisation of therttalculus can be found in [9].
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in the area; there is not sufficient space here to be compseleeand some interesting
approaches have had to be ommitted though we give some poiatidie wider literature

In section 1.1.2 we will mention some possible applicatiohgualitative spatial rea-
soning. Thereafter, in section 1.2 we survey the main aspafcthe representation of
qualitative spatial knowledge including ontological asgetopology, distance, orientation
and shape. Section 1.3 discusses qualitative spatialnmegsand section 1.4 reasoning
about spatial change. The chapter concludes with some ksroarcognitive validity in
section 1.5 and a glimpse at future work in section 1.6. Thégpter is based on a number
of earlier papers, in particular [47].

1.1.2 Applications of Qualitative Spatial Reasoning

Research in QSR is motivated by a wide variety of possibléiegifon areas including Ge-
ographic Information System (GIS), robotic navigatiomgthlevel vision, spatial proposi-
tional semantics of natural languages, engineering des@nmon-sense reasoning about
physical systems and specifying visual language syntaxsanthntics. There are numer-
ous other application areas including qualitative docursémicture recognition [208], bi-
ology (e.g. [191, 42]) and domains where space is used asaphwat(e.g. [128, 161]).

Even though GIS are now a commonplace, the major problematsothinteraction.
With gigabytes of information stored either in vector orteagormat, present-day GISs do
not sufficiently support intuitive or common-sense oriernt@man-computer interaction.
Users may wish to abstract away from the mass of numericalatat specify a query in a
way which is essentially, or at least largely, qualitatiéeguably, the next generation GIS
will be built on concepts arising frofaive Geographji71], wherein QSR techniques are
fundamental. Examples of research employing qualitapreial techniques in geography
include reasoning about shape in a qualitative way such2js [3

Although robotic navigation ultimately requires numeligapecified directions to the
robot to move or turn, hierarchical planning with detailestidions (e.g. how or exactly
where to move) being delayed until a high level plan have lagéreved has been shown to
be effective [196]. Further, the robot’s model of its enwineent may be imperfect, leading
to an inability to use standard robot navigation techniquisder such circumstances, a
qualitative model of space may facilitate planning. Onehsaygproach is the development
of a robust qualitative method for robot exploration, maygand navigation in large-scale
spatial environments described in [126]; another is thekwbt iu and Daneshmend [134]
on spatial planning for robotic motion and path planninghggjualitative spatial spatial
representation and reasoning. Another example of using f@BRobotic navigation is
[207]. A qualitative solution to the well known ‘piano moveproblem’ is [79]. Some
work in cognitive robotics has addressed the issue of mgldopological maps of the
robot’s environment (rather than metrical ones), e.g. [1@8].

QSR has been used in computer vision for visual object rdtograt a higher level
which includes the interpretation and integration of visnéormation. QSR techniques
have been used to interpret the results of low-level contipmsias higher level descrip-
tions of the scene or video input [81, 122]. The use of qualggpredicates helps to ensure

2Much relevant material is published in the proceedings @0Q(the Conference on Spatial Information
Theory), GIScience (the International Conference on Gaalgjcal Information Science), the journal Spatial Cog-
nition and Computation, as well as regular Al outlets sucthasAl journal, the Journal of Atrtificial Intelligence
Research (JAIR) and the proceedings of such conferenceR a8&Al, IJCAI, PRICAI and ECAI.



4 1. Qualitative Spatial Representation and Reasoning

that scenes which are semantically close have identicaleast very similar descriptions.
Work in this area from a cognitive robotics viewpoint inchstthat of Santos [181, 180].

In natural language, the use and interpretation of spat@gsitions tend to be am-
biguous. There are multiple ways in which natural langugmial prepositions can be
used (e.g. [115] cites many different meanings of “in”);sthiotivates the use of quali-
tative spatial representation for finding some formal wagedcribing these prepositions
(e.g. [5, 178, 24]).

Engineering design, like robotic navigation, ultimatetrmally requires a fully metric
description. However, at the early stages of the designgsm@ reasonable qualitative de-
scription would suffice. The field of qualitative kinemat{esg. [78]) is largely concerned
with supporting this type of activity.

Finally, visual languages, either visual programming leages or some kind of rep-
resentation language, lack a formal specification of the kivat is normally expected of
a textual programming or representation language. Althasmme of these languages
make metric distinctions, the bulk of it is often predomithaqualitative in the sense that
the exact shape, size, length etc. of the various compooétie diagram or picture is
unimportant — rather, what is important is the topologietdtionship between these com-
ponents [99, 108]. In a similar vein, research continueshenapplication of qualitative
spatial reasoning for sketch interpretation, e.g. [84,690,183, 108, 86].

1.2 Aspects of Qualitative Spatial Representation

Representing space has a rich history in the physical sesenand serves to locate objects
in a quantitative framework. At the other extreme, spatiglressions in natural languages
tend to operate on a loose partitioning of the domain. Remtasion for this less precise
description of space proliferated, more or less oradrhocbasis until the emergence
of qualitative spatial reasoning; thereafter the panitig was done more systematically
[143].

There are many different aspects to space and thereforenepitesentation. Not only
do we have to decide on what kind of spatial entity we will adfiné. commit to a par-
ticular ontology of space), but also we can consider dewetpgifferent kinds of ways
of describing the relationship between these kinds of apatitities; for example we may
consider just their topology, or their sizes or the distanesveen them, their relative ori-
entation or their shape. In the following sections we wikkoxiew the principal techniques
which have emerged to represent these different aspectsatifajive spatial knowledge.

1.2.1 Ontology

In this chapter we concentrate on what might be termed “ppaees’, i.e. purely spatial
entities such as points, lines and regions, rather thatientvhich have spatial extensions,
such as physical objects or geographic regions. ,

Traditionally, in mathematical theories of space, poimes@nsidered as the primary
primitive spatial entities (or perhaps points and lines)] axtended spatial entities such
as regions are defined, if necessary, as sets of points. Arityitiadition (‘mereology’
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or ‘calculus of individuals’ — section 1.2.3) regards thisaaphilosophical errér Within
the QSR community, there is a strong tendency to take regibapace as the primitive
spatial entity — see [206]. Even though this ontologicaltsheans building new theories
for most spatial and geometrical concepts, there are streagpns for taking regions as
the ontological primitive. If one is interested in using thgatial theory for reasoning
about physical objects, then one might argue that the $patiansion of any physical
object must be region-like rather than a lower dimensioityenfurther, one can always
define points, if required, in terms of regions [18]. Howevtneeds to be admitted that
at times it is advantageous to view a 3D physical entity as @2Bven a 1D entity. Of
course, once entities of various dimensions are permittgabrtinent question would be
whether mixed dimension entities are allowed. Furtherudision of this issue can be
found in [43, 44, 101] and also in [156, 158] who argues tha first order 2D planar
mereotopologl a region based ontology is not as parsimonious as a poiatizase, from
a model theoretic viewpoint. Whether points or regions akem as primitive, it is clear
that regions nevertheless are conceptually important idetiog physical and geographic
objects.

However, even once one has committed to an ontology whidhdes regions as primi-
tive spatial entities, there are still several choicegtgtihe modeller. For example, in most
meretopologies, the null region is excluded (since no masibject can have the null re-
gion as its extension) though technically it may be simpdeintlude it [13, 193]. Itis
fairly standard to insist that regions are @gular, though this choice becomes harder to
enforce once one allows regions of differing dimensioiesife.g. 2D and 3D, or even 4D)
since the sum of two regions of differing dimensions will betregular. One can also dis-
tinguish between regular-open and regular-closed altieasa Some calculi [21, 65] insist
that regions are connected (i.e. one-piece). A yet strocmyadition would be that they are
interior connected- e.g. a 2D region which pinches to a point is not interior @mted. In
practice, a reasonable constraint to impose would be thaine are all rational polygons
[157].

Another ontological question is what is the nature of the edading space, i.e. the
universal spatial entity? Conventionally, one might tdkis to beR™ for some n, but one
can imagine applications where discrete (e.g. [72]), fifétg. [100]), or non convex (e.g.
non connected) universes might be useful. There is a tebsioveen the continuous-space
models favoured by high-level approaches to handling abatiormation and discrete,
digital representations used at the lower level. An attemptidge this gap by developing
a high-level qualitative spatial theory based on a discretelel of space is [92]. For
another investigation into discrete vs continuous spase[40].

Once one has decided on these ontological questions, ttesiigrther issues: in partic-
ular, what primitive “computations” should be allowed? liogical theory, this amounts to
deciding what primitive non logical symbols one will admitkout definition, only being
constrained by some set of axioms. One could argue thatehisf primitives should be
small, not only for mathematical elegance and to make iteedsiassess the consistency
of the theory, but also because this will simplify the indee of the symbolic system to
a perceptual component because fewer primitives have tmpkeimented. The converse

3Simons [189] says : “No one has ever perceived a point, orwilledo so, whereas people have perceived
individuals of finite extent”.
4Mereotopology is defined and discussed in detail in sectiartbelow.
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argument might be that the resulting symbolic inferenceg loeemore complicated or that
itis more natural to have a large and rich set of conceptsiwdnie given meaning by many
axioms which connect them in many different ways [109]. Assivall see below, although
in a full first order theory one can define perhaps surpriginghny concepts from just a
few primitives, if one wishes to restrict the language used tess expressive language
for computational reasons, then one will need to increasenthmber of primitives. The
next section considers the most common class of such prasjtrelations between spatial
entities.

1.2.2 Spatial Relations

Itis one of the basic assumptions of qualitative represiamand reasoning that situations
are represented by specifying the relationships betwesndhsidered entities. Hence it
is natural to represent qualitative information using tietss, and in this chapter spatial
relations. Formally, aelation R is a set of tuplesd,, . . ., dj) of the same arity;, where
d; is a member of a correspondidgmainD;. In other words, a relatio® of arity & is a
subset of the cross-productbtiomains, i.e.R C Dy x ... x Dy.

Very often,spatial relationsarebinary relationsand very often the considered domains
are identical, namely, the set of all spatial entities of dipalar space. In these cases
spatial relations are of the forlR = {(a, b)|a,b € D}. The considered domain is usually
an infinite domain and the spatial relations contain inflpiteany tuples.

Given a set of relation® = {R;,...R,} we can use algebraic operators such as
union, intersection, complement, converse, or compasitibrelations and in this way
obtain analgebra of relation3. Since the relations contain an infinite number of tuples,
applying these operators might not be feasible. It is tliweed common assumption in
qualitative representation and reasoning to select oglativhich argointly exhaustive
and pairwise disjoint (JEPD).e., each tupléa,b) € D x D is a member of exactly one
relation. JEPD relations are also calledomic, baseor basic relations Given a set of
JEPD relations, the relationship between any two spati#tiesof the considered domain
must be exactly one of the JEPD relations. Indefinite infdiomacan be expressed by
taking the union of those base relations that can possibty(nepresenting the disjunction
of the base relations). If no information is known and allgibke base relations can hold,
we use thauiniversal relationwhich is the union of all base relations. The set of all pdssib
relations is then the powerset of the set of base relatioas,all possible unions of the
JEPD relations.

In the following sections we discuss various sets of spatiations, and in particular
some different sets of JEPD relations that have been studit literature. These are
usually restricted to one particular aspect of space sutdpatogy, orientation, shape, etc.
How to reason about these relations and more about the asgrsees of having infinite
domains is covered in section 1.3, while more about generadiderations of defining a
qualitative calculus can be found in [133].

5See [59] for a review of the use of relation algebras in spatid temporal reasoning.
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1.2.3 Mereology

Mereologyis concerned with the theory gfarthood deriving from the Greekluepos (
part), and forms a fundamental aspect of spatial representatitmpractical applications
in many fields, e.g. [187]. The books by Simons[189], and mecently by Casati and
Varzi [27] are excellent reference works for mereology. &% proposes a number of
different mereological theories, depending on what pridgeione wishes to ascribe to.
Perhaps the most widely used theory is imimimal extensional mereolod$89, pp.25-
30]. The proper part relation is taken as primitive, symsediPP®. The logical basis of
the systemis:

(SA0) Any axiom set sufficient for first-order predicate cdils with identity.

(SA1)Vz,y[PP(z,y) — ~(PP(y, )]

(SA2)Vx,y, z[[(PP(z,y) A (PP(y, 2)] — PP(z, 2)]
SA1 and SA2 simply assert that the system’s basic relatiarsisict partial ordering. Si-
mons goes on to define part (symbolisBg. The next step is to require that an individual
cannot have aingleproper part. After defining overlappingd’, having a common part),
Simons gives the 3rd axiom:

(SA3)Vz, y[PP(z,y) — 3z[PP(z,y) A —=O(z, x)]].
This axiom he refers to as thé/eak Supplementation Principf@/SP), asserting that any
individual with a proper part has another that is disjoirttmihe first. The axiom set SA0-3
still permits various models Simons regards as unsat@figan which overlapping indi-
viduals do not have a unique product or intersection. Suatheisare ruled out by adding:

(SA6)Vx, y[O(z,y) — F2Vw[P(w, 2) = P(w,z) A P(w,y)]],
which ensures the existence of such a unique product. Thisrsyof four axioms defines
the system known as minimal extensional mereology. We dbat space here to present
the many other variations of mereology, but refer the re&mlére literature, in particular
[189, 27].

1.2.4 Mereotopology

It is clear that topology must form a fundamental aspect @litative spatial reasoning
since topology certainly can only make qualitative didiimes. Although topology has
been studied extensively within the mathematical litelgtmuch of it is too abstract to be
of relevance to those attempting to formalise common-sspatal reasoning. Although
various qualitative spatial theories have been influengeghthematical topology, there
are number of reasons why such a wholesale importation saadesirable in general
[101], in particular the absence of consideration of corapamhal aspects, such as we
consider below in section 1.3. In fact mereotopology is theshstudied aspect of QSR
and for this reason we devote particular attention to it is thapter.

Although Whitehead tried to define topological notions witmereology[210], this
is not possible, and requires some further primitive natioxarzi [205, 204] presents a
systematic account of the subtle relations between meaggalod topology. He notes that
whilst mereology is not sufficient by itself, there are thiesiin literature which have pro-
posed integrating topology and mereology (hencefartreotopology There are three
main strategies of integrating the two:

8For the sake of uniformity, in a number of cases we have redamnedicate and other symbols in this
chapter from the original formulation.
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e Generalise mereology by adding a topological primitiverdgoet al. [21] add the
topological primitiveSC(z), i.e.,z is a self connected (one-piece) spatial entity to
the mereological part relation. Alternatively a singlenpitive can be used as in
[205]: “z andy are connected parts of. The main advantage of separate theories
of mereology and topology is that it allows collocation with sharing partswhich
is not possible in the second two approaches below.

e Topology is primal and mereology is a sub theory. For exarptae topological
theories based 08(z, y) (z is connected tg, discussed further below) one defines
P(z,y) from C(z,y). This has the elegance of being a single unified theory, but
collocation implies sharing of parts. These theories arenatly boundaryless (i.e.
without lower dimensional spatial entities) but this is absolutely necessary [162,
4], as discussed further below.

e The final approach is that taken by [74], i.e. topology isddticed as a specialised
domain specific sub theory of mereology. An additional ptivei needs to be in-
troduced. The idea is to use restricted quantification bydhicing a sortal pred-
icate, Rg(z), to denote a regionC(z, y) can then be defined thu€(z,y) =4

O(z,y) ARg(z) ARg(y).

In the remainder of this subsection, we concentrate on tietfilo approaches, which
are largely based on approaches based on work to be founel phttosophical logic com-
munity in particular the work of Clarke [33, 34] which was urh based on the theory of
extensive connection outlined by Whitehead in Process aaditiR [211]. Other work in
this tradition is cited below and more extensively in [49] eiach case building axiomatic
theories of space which are predominantly topological turga and which take regions
rather than points as primitive — indeed, this traditionlwasn termed as “pointless geome-
tries” [97]. We concentrate here on overviewing the axiagoepproach to mereotopology;
the reader is referred to [17] for a thorough treatment ofaligebraic and axiomatic ap-
proaches to mereotopology and their relationship.

As has been pointed out [49], not all this work agrees in isidgerms; even where
there is agreement on vocabulary, such as the use of a bipanectionpredicate, it is
not always interpreted in the same way. A model-theoretimBwork for investigating
the logical space of mereotopological theories and comgdhie main options in light of
their intended models has been set out [49]. We now desdrib&amework further since
it also provides an overview of the various approaches teeatepology (for details see
[49)).

All the theories are interpreted wrt some topological spacen which a closure op-
eratorc(x) is axiomatised in a standard way:

(A0) 0 = c(9) (A1) = C c(z)

(42) c(c(x)) C c(x)

(43) c(z) Uc(y) = c(zUy)

Three different notions of connection are then defined (Whie illustrated in figure 1.2),
the semantics which are given by:

Cl(Iay) @Iﬂl]#@

Ca(z.y) & c(z) Ne(y) # 0

“For further discussion of this issue see [27, 58].



Figure 1.2: The three C relations (limit cases); a solid limcates closure.

Co(z,y) & xncly) #Dorclz)Ny £0

However, since some mereotopologies (e.g. see the firsteathtiee strategies outlined
above) have multiple primitives, two further primitiveanade available:

Pn(z,y) =dr V2(Cu(2,2) — Culz,y)) (1 <n<3)
onzd =g 12YY(Cn(y, 2) < Iz(p A Cu(y,v))) (1 <n<3)

Intuitively: z is part @,,) of y iff whatever is connected],,) to « is also connectedd,)

to y, and the fusiond,,) of all ¢-ers (wherep is some formula withe free) is that thing
(if it exists at all) that connecfsprecisely to those things that(i.e. for which¢ holds for
that particular binding of). Many theories define these notions in terms of the same con-
nection relation that is assumed as a topological primitivevhich case the above reduce
to ordinary definitions in the object language of the thebtgwever, this need not be the
case, and in fact an important family of theories stem pedgisom the intuition that part-
hood and connection cannot be defined in terms of each othiereffectively amounts to
using two distinct primitives — two notions of connectioméoof which is used in defining
parthood), or a notion of connection and an independendnati parthood. Accordingly,
and more generally, the framework considers the entiresspiimereotopological theories
that result from the options determined by the above dedimitwhenl < n < 3. Thatis
to say, in the object language all three connection preeicate available as primitives, and
the framework models theories in which some such predieatedefined in term of others
by adding suitable axioms in place of the corresponding diefits. The choice of which
primitives are used will be indicated with a trifjevhich is called aype m =< i, j, k >
(wherel < i, 7, k < 3), the three components respectively indicating wiichP; ando,
relation is being used in the correspondintheory, thus:

C<ijik>(7,y) =ar Ci(z,y)
Peijn>(2,y) =4 Pj(z,y)
0<ijk>T¢ =df OkTP

There are a great many mereotopological relations whictbeatefined using these three
primitives. We list some of the most common here:

8In fact, in [49] a type is quadruple, but we ignore the final poment here.
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O, (x,y) =4 I2(P+(z,2) ANP-(2,y)) x T-overlapsy

A (z,y) =ar Cr(z,y) A =0, (z,y) x T-abutsy

E-(z,y) =4 Pr(z,y) AP (y, 2) z T-equalsy

PP, (z,y) =4 P-(z,y) A -P-(y,x) x is a properr-part ofy
TP, (z,y) =4r Pr(x,y) A Jz(A; (z x) ANA-(z,y)) «is atangentiat-part ofy
IP,(z,y) =4 Pr(z,y) A TP (z,y) x is an interiorr-part ofy
BP,(z,y) =45 V2(P-(2,2) — TP ( Y)) x is a boundary--part ofy
PO, (z,y) =a4r O-(z,y

A =P (z,9) A ﬁPT( x) « properlyr-overlapsy
)

)

TO (z,y) =¢r 32(TP-(2,2) ATP-(2,y) x tangentiallyr-overlapsy
10, (z,y) =ar Fz(IP;(z,2) ANIP-(2,y)) x internally r-overlapsy
BO,(z,y) =a4r O-(z,y) A 10, (z,y ) x boundaryr-overlapsy
Trxp =4 0-2V2(p — Pr(2,2)) T—product ofgers
x4,y =ar 0:2(P-(2,2) VP-(2,9)) 7-sum ofz andy
x X,y =ar 072(P-(2,2) ANP-(2,9)) T-product ofz andy

—y =af 0-2(P-(2,2) A =0, (2,y)) T-difference ofz andy
K;(x) =ar 0-270-(2, ) T-complement oft
ir(z) =qr 0-2IP,(2,2) T-interior of z
e (z) =g ir (K- (2) T-exterior ofx
Cr(z) =ar kr(e-(2)) T-closure ofx
b-(z) =4 C- () —+ ir(2) 7-boundary ofx
U, =g 0-20,(2, 2) T-universe
Bd, (z) =qr JyBP-(z,y) x is aT-boundary
Rg.(z) =4 JyIP,(y,x) x is ar-region
Op, (¢) =ar Er (2,1 (x)) z is r-open
Cl-(z) =4 E+(z,c-(2)) z is r-closed
Re.(z) =4 E;(i;(x),i-(c;(x))) x is T-regular
Cn, (z) =g YyVz(E-(z,y +- 2) — C;(y,2)) x is T-connected (i.e. in one piece)
CP.(x,y) =4 P+ (x,y) ACn () x is ar-connected part of

Depending on the structure ef the notions thus defined may receive different in-
terpretations, hence the gloss on the right should not bentédo strictly. One intended
interpretation of the binary relations relative to the Eadan plang?? — an interpretation
that justifies the gloss — is illustrated in Figures 2 and 3B}, However, the exact seman-
tic consequence of these definitions may change radically dne framework to another,
depending on the typeand on the constraints in the model theory.

It is easy to see that the following formulas are true in exeamonical model for all
typest (i.e. C; is reflexive and symmetric), and indeed these formulae armaity
included as axioms in any mereotopology based on a binanyeztion relation:

(C1:) Cr(z,z) (C2;) Cr(z,y) — Cr(y,z)

Similarly, the following are always logically true in view the definition ofP, (and are
included as axioms if parthood is not defined in terms of cotioe (i.e. the first and
second indices of the type are different):

(P1;) Pr(z,) (P27) (P+(z,y) AP+(y,2)) — P-(,2)

Another important property that is often associated wittitpaod is antisymmetry. There
are two formulations of this property, depending on whetheruser-equality E,) or
plain equality (=). The first formulation:

(P3:) (Pr(z,y) AP+ (y,2) — Er(z,y).
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is obviously true by definition. However, the second forntiola
(P3:=)(Pr(2,y) AP +- (y,2) —z =y
is stronger and may fail in some models. Antisymmetry in #nesg of P3,-) is logically
equivalent to the requirement that parthood be extensioriaé following sense:
(Pdr=) Vz(Pr(z,2) & Pr(2,y)) =z =y,
which in turn is equivalent to the requirement that conrecis likewise extensional:
(C3.2) Vz(Cr(z,2) < Cr(z,y)) m x =y,
These requirements are stronger than the correspondisgrstforE .. These latter are
logically true, but whether a model satisfid34(.—) and (C3.-) depends crucially on the
relevant closure operatorand on which sets are included in the univdise
It can easily be shown that for any pair of types4l#, j, k > and t2=<< iy, j, k >, the
following holds whenevei; < is:
(C4i1i2) CTl (xv y) - CTz (‘T’ y)
Some mereotopologies include boundaries (i.e. lower déo@al entities) in their domain
of discourse; others do not; these cases are examined sdpaelow.

Boundary-tolerant Theories

It turns out that none of the cases whers uniform (i = j = k) are viable:

(a) The option: = 1 yields implausible topologies in which the boundary of aioeg
is never connected to the region’s interior (since the bamndnd the interior never share
any points).

(b) The optioni = 2 yields implausible mereologies in which every boundaryast p
of its own complement (since anything connected to the foimeonnected to the latter).

(c) The optioni = 3 yields implausible mereotopologies in which the interiérao
region is always connected to its exterior (so that bouedariake no difference) and in
which the closure of a region is always part of the regionariot.

There is also a sense in which these theories trivialise@lentopological distinctions
in the presence of boundaries. For (a)-(c) imply thatig uniform, any model that includes
the boundaries of its elements satisfies the conditid®alz, y) — O, (z,y)

Hence, in every such model theabut predicaté\. defines the empty relation, and
so do the predicates of tangential and boundary parthobd,(BP..) and tangential and
boundary overlapTO.., BO.). Thus if boundaries are admitted in the domain, uniformly
typed theories appear to be inadequate. In fact, this apptieonly to uniform types, but
to all types where i=j. (See [18, 97] for related material.)

Moving on to non-uniform types, we may note that some thadrave been explicitly
proposed in the literature, specifically for the case-< 2,1,1 >. An early example is
to be found in [25], though the topological primitive thessQp.. rather tharC.. (One
gets a definitionally equivalent characterizatiorCgfvia the definitions above. A similar
warning applies to some other theories discussed belolgr@kamples are in [49]. Since
parthoodP. is not defined in terms of the connection primiti@e, these theories need at
least two distinct primitives (corresponding to the parter®l and 2 in the type); but since
fusiono is typically understood using the same primitive as parthachird primitive is
not needed (whence the equality of the second and third owies in the type). These
theories typically represent an attempt to reconstrucinargl topological intuitions on
top of a mereological basis. In fact, it is immediate from tigdinition that in this case
C. corresponds to the notion of connection of ordinary poetttapology: two regions are
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connected if the closure of one intersects the other, orsgcga. MoreoveR ., is typically
assumed to satisfy the relevant extensionality and inmfugrinciples.

Thus, a minimal theory of this kind is typically axiomatisesing (C12), (C22), (P11),
(P21), (P31), (P512). If the fusion principle (C41) is addéx result is a mereotopol-
ogy subsuming what is known as classical extensional meggdlL89, 27], in whichP.
defines a complete Boolean algebra with the null elementatkl€&urther adding:

(A1) P~ (z,¢r(z)) (A2') Prr(c,(cr(x)), Cr ()

(A3") E-(Cr(2) ++ C-(y),Cr(z +- ¥))
gives what may be called a full mereotopology, in whichbehaves like the standard
Kuratowski closure operatorAQ has no analogue due to the lack of a null element.)

All of these theories, of course, must account in some wayhieintuitive difficulties
that arise out of the notion of a boundary, and correspoygliighe distinction between
open and closed entities. For instance, Smith [57] consigiious ways of supplementing
a full mereotopology with a rendering of the intuition thatumdaries are ontologically
dependent entities [190], i.e., can only exist as bound@fisome open entity (contrary to
the ordinary set-theoretic conception). In the notatiorellee simplest formulation of this
intuition is given by the axiom:

(B1) BP(z,y) — 32(0p,(2) ABP(,¢.(2)))

It is noteworthy that all theories of this sort have type2, 1,1 >. It is conjectured [49]
that this is indeed the only viable option.

Boundary-free Theories

Though the idea of a uniform type appears to founder in the cddoundary-tolerant
theories, it has been taken very seriously in the contextooihbary-free theories, i.e.,
theories that leave out boundaries from the universe obdise in the intended models.
Theories of this sort are rooted in [210, 56] and have regdr@tome popular under the
impact of Clarke’s formulation [33, 34] (see also [97]). &&'s own is a< 1,1,1 >-
theory, and some later authors followed this account (e4g.5[ 162]). However, one
also finds examples of theories of tyge2,2,2 > (e.g. in [106, 157]) as well as of type
< 3,3,3 > (especially in the work of Cohn et al). [43, 48, 101, 164] whiwas led to
an extended body of results and applications in the areaatiedpeasoning; see [82] for
an independent example of a tyge3, 3,3 > theory. Indeed, all boundary-free theories
in the literature appear to be uniformly typed: this is rekadte but not surprising, since
the main difficulties in reducing mereology to topology ljg®cisely in the presence of
boundaries. Now, by definition, a boundary-fretheory admits of no boundary elements.
In axiomatic terms, this is typically accomplished by adparfurther postulate to the effect
that everything is a region (i.e., has interior parts):

(R) VzRg,_ (z)
which implies the emptiness of the relatioB®, andBO., hence ofBd,. Sob,(z)
is never defined in this case. It is worth noting that such rieedypically afford some
indirect way of modelling boundary talk, e.g., as talk abwmiinite series of extended
regions (cf. [18, 34, 73]). In this sense, these theoriesade hoom for boundary elements,
albeit only as higher-order entities. Note also the disonssf points and regions above in
section 1.2.1.

Consider now the three main options mentioned in the prevéeation, where is a
basic uniform type of the formc ¢,4,7 >. Unlike their boundary-tolerant counterparts,
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none of these options yields a collapse of the distinctidwéen tangential and interior
parthood TP, IP,) or between tangential and interior overldX, 10.). However, the
three options diverge noticeably with regard to the distimcbetween open and closed
regions Op.., Cl;). The general picture is as follows.

(a) The casé = 1 allows for the open/closed distinction, yielding theoriesvhich
the relation of abuttingX.,) is a prerogative of closed regions (open regions abut ng}hi
As a corollary, such theories determine nonstandard megessd that violate the supple-
mentation principle given above in section 1.2.3. This ieatire that some authors have
found unpalatable: as Simons [189] put it, one can disciteimegions that differ by as
little as a point, but one cannot discriminate the point. rEhere also some topological
peculiarities that follow from the choice @&, as a connection relation. For instance, it
follows immediately that no region is connected to its coenpént, hence that the universe
is bound to be disconnected. This was noted in [4, 34], wHeretiggestion is made that
self-connectedness should be redefined accordingly:

Cn;(x) =t YYV2(E;(2,y +7 2) — C;(C:(y), €+ (2)))

This, however, is just a way of saying that self-connectedmeust be defined with refer-
ence to a different notion of connection (namely, the notibtained by taking = 3.)

(b) The case = 2 also allows for the open/closed distinction, but yieldsotis
in which the relation of abutting may only hold between twgioms one of which is
open and the other closed in the relevant contact area. €hidts in a rather standard
topological apparatus, modulo the absence of boundaryegitsm However, also in this
case the mereology is bound to violate (WSP). (Again, just teopen and: equal to the
closure ofy.)

(c) The caseé = 3 is the only one where the open/closed distinction dissolvethis
case every region turns out to beequal to its interior as well as to its closure. This follows
from (P3t), i.e., equivalently, from (C3t) or (P4t). This ames thatr-theories of this sort
cannot be extensional — in fact, they yield highly non-staddnereologies. However,
this is coherent with the fundamental idea of a boundarg-&qgproach. For one of the
main motivations for going boundary-free is precisely toiedvthe many conundrums that
seem to arise from the distinction between open and cloggong[101]. In addition, and
for this very same reason, such theories can validate (&glly eschewing the problem
mentioned in (a) and (b).

The best known case of (c), i.e. a mereotopology with type, 3,3 > was first
presented in [164], and elaborated subsequently in a sefipapers including [43, 48,
101, 44], which has been called tRegion Connection Calculus (RCC)

In particular, a set of eight JEPD relations has been defitiththe RCC mereotopol-
ogy and this is now generally known as RCC-8, see figuré®1The relation names used
here differ from the relations defined above, but correspgbnd (assuming the type is
< 3,3,3 > in each case)DC: —C, EC: A, PO: PO, TPP: TP A —E, NTPP: IP, EQ:

E; TPPi andNTPPi are simply the inverses afPP andNTPP. The definitions of RCC-8
symbols, in particulak(x)

differs from that given above — see [164], and in particliardiscussion in [13, section
3.3.3].

9Galton[93] coined this name.
10A simpler, purely mereological calculus (usually called ®6), in which the distinctions betweérPP
andNTPP, TPPi andNTPPi, andDC andEC are collapsed has also been defined and investigated [18B, 11
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Examples of non-uniformly typed boundary-free theories much rarer. However,
one may imagine that such theories could also alleviate sditie unpalatable properties
of the uniformly typed mereotopologies mentioned in (a) énd For example, a type of
the form< 1,3,k > would correspond to a mereotopology in which a type-1 notibn
connection is combined with a type-3 parthood relation sadisfies the supplementation
principle (WSP). Similarly with a type of the formx 2,3,k >. An example of a the-
ory with a type 3 connection relation interpreted in bouydege models and a separate
parthood relation is [129] — influenced by [177] this genised the RCC system and the
discrete mereotopology of Galton [92] to allow for discratedels of RCC (not possible
in the standard theory cited above).

Topology via “n-intersections”

An alternative approach to representing and reasoningtafyooiogical relations has been
promulgated via a series of papers including [65, 64, 70fe&lsets of points are associ-
ated with every region — its interior, boundary and completn&he relationship between
any two regions can be characterised by a 3x3 métdalled thed-intersectiormodel, in
which every entry in the matrix takes one of two values, diexgoivhether that the inter-
section of the two point sets is empty or not; for example ntiadrix in which every entry
takes the non-empty value corresponds tdRBerelation abov&. Although it would seem
that there ar@® = 512 possible matrices, after taking into account the physieality of
2D space and some specific assumptions about the naturei@fised turns out that the
there are exactly 8 remaining matrices, which corresportdgedrCC-8 relations. Note,
however, that the 9-intersection model only considersmeee regions without holes in
two-dimensional space, while RCC-8 allows much more gdderaains. Therefore, even
though the two sets of relations appear similar, their camatpmnal properties differ con-
siderably and reasoning in RCC-8 is much simpler than reagdn the 9-intersection
model [167]. One can also use the 9-intersection calculusason about regions which
have holes by classifying the relationship not only betweach pair of regions, but also
the relationship between each hole of each region and tlee @hion and each of its holes
[69].

Actually, a simpler % 2 matrix [65] known as the 4-intersection featuring justititerior and the boundary
is sufficient to describe the eight RCC relations. However3k3 matrix allows more expressive sets of relations
to be defined as noted below since it takes into account thgamship between the regions and its embedding
space.

12The RCC-8 relations have different names in the 9-inteim@chodel, in fact English words such as “over-
lap” instead ofPO.
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Different calculi with more JEPD relations can be derivecchgnging the underlying
assumptions about what a region is and by allowing the madriepresent the codimen-
sion of intersection. For example, one may derive a caldolugpresenting and reasoning
about regions irZ? rather thank? [72]. Alternatively, one can extend the representation
in each matrix cell by the dimension of the intersection eatihan simply whether it ex-
ists or not [36]. This allows one to enumerate all the relatibetween areas, lines and
points and is known as the “dimension extended method”(DEMYyery large number
of possible relationships may be defined in this way and a wayed as the “calculus
based method”(CBM) to generate all these from a set of fivgmpotphic binary relations
between a pair of spatial entitiesandy : disjoint, touch, in, overlap, cross has been pro-
posed [41]. A complex relation betweerandy may then be formed by conjoining atomic
propositions formed by using one of the five relations abewese arguments may be
eitherz ory or a boundary or endpoint operator applied:tor . For the most expressive
calculus (either the CBM or the combination of the 9-intetigen and the DEM) there are
9 JEPD area/area relations, 31 line/area relations, 3/podat relations, 33 line/line rela-
tions, 3 point/line relations and 2 point/point relatiorgng a total of 81 JEPD relations
[41].

1.2.5 Between Mereotopology and Fully Metric Spatial Repreentation

Mereology and mereotopology can be seen as perhaps the bsbsta and most quali-
tative spatial representations. However, there are mamgtgins where mereotopological
information alone is insufficient. The following subseatsoexplore the different ways in
which other qualitative information may be representedteAthis, in section 1.2.6 we
look at how easily a spatial representation with a coordisgstem and thus the full power
of a geometry can be defined from qualitative primitives.

Direction and Orientation

Direction relations describe the direction of one objecatmther, and can be defined
in terms of three basic concepts: the primary object, theregfce object and the frame
of reference. Thus, unlike the mereotopological relationspatial entities described in
the preceding sections, a binary relation is not sufficiest; if we want to specify the
orientation of aprimary objectwith respect to aeference objegtthen we need to have
some kind of aframe of reference This characterization manifests itself in the display
of qualitative direction calculi to be found in the literagu certain calculi have an explicit
triadic relation while others presuppose an extrinsic Bafreference (such as the cardinal
directions of E,N,S,W) [87, 113], or assume that objectslavintrinsic front (so that we
can talk, for example, of being to the left of a person or vighjdn this case we normally
speak obrientationcalculi, being the special case of a direction calculus vithemprimary
object has an intrinsic front.

Of those with explicit triadic relations, a common scheméisiefine (assuming at-
tention is restricted to a 2D plane — as is usually the caséanliterature) three rela-
tions between triples of points, denoting, clockwise, -atdickwise or collinear ordering
[184, 186, 176]. Schlieder developed a calculus [185] fasoming about the relative ori-
entation of pairs of line segments. Another triadic calsuiki[117] which first defines
binary relations on directed line segments using lefttrighations based on the intrinsic
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directedness of the line, and then defines ternary relatioterms of these, giving a 24
JEPD relation set, from which relations defining clockwiaeticlockwise and collinear
can be recovered via disjunction.

For those calculi that use an extrinsic frame of referertde,imnost common to use a
given reference direction. This allows the orientatiomiztn two objects to be represented
with respect to the reference direction using just binalgtiens. The first approaches
described the directions of points in a 2D space. Frank [&tindjuished different ways
of defining sectors for the different direction relationene-based and projection based
(also called the cardinal direction algebra [131]), whichhodivide the plane into sectors
relative to a point by using lines that intersect at the gpoading point. These calculi
were later generalised for direction sectors generated bytztrary number of intersecting
lines and form the STAR algebra [172] shown in Figure 1.4edestingly, it turned out
that once more than two intersecting lines are used for aefiséctors, it is possible to
generate a coordinate system and thus the distinction bateggalitative and quantitative
representation disappears. The solution to this dilemmigo consider the lines as
separate relations but to integrate them to with sectors.

16

Figure 1.4: Different STAR calculi, the left one is definedngseight intersecting lines
which result in 33 JEPD relations, the right one using foterisecting lines resulting in
17 JEPD relations. The STAR calculus allows any number aight@tion of intersecting
lines.

Most calculi for direction and orientation are based on omather than regions, as
calculi become rather coarse grained in the latter casereTdre exceptions, for example
[102] or [136] in which directionsvithin regions are considereddndon is in the London
is in the south of England Directions for extended regions have mainly been dewslop
for objects whose boundaries are parallel to the axes oféimedf of reference, for example
the reference direction and the axis orthogonal to the eefs direction, or by using a
minimal bounding box which is parallel to the axes [8, 153]caculus which combines
regions, mereotopology and a simple notion of unidimeradidirection is the occlusion
calculus of [165].
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Distance and Size

Spatial representations of distance can be divided intanhaim groups: those which mea-
sure on some “absolute” scale, and those which provide sontedf relative measure-
ment. Of course, since traditional Qualitative Reason2@9] is primarily concerned with
dealing with linear quantity spaces, the qualitative atgetand the transitivity of such
quantity spaces mentioned earlier can be used as a distasize aneasuring representa-
tion, see chapter 9.

Also of interest in this context are the order of magnitudewa[141, 159] developed
in the QR community. Most of these traditional QR formalisans of the “absolute” kind
of representatiortd, as in the delta calculus of [216] - which introduces a tGagiation:
x(>,d)y to note thatr is larger/bigger thay by an amountl; terms such as(>,y)y
mean that: is more than twice as big as

Of the “relative” representations specifically developdthim the qualitative spatial
reasoning community, perhaps the earliest is the tri@dinConnect(x, y, z) primitive
[56] — which is true if bodyx can connecy andz by simple translation (i.e., without
scaling, rotation or shape change). From this primitives ieasy to define notions such
as equidistance, nearer than and farther than. This pvaratlows a metric on the extent
of regions to be defined: one region is larger than anothérc&m connect regions that
the other cannot. Another method of determining the redagize of two objects relies on
being able to translate regions (assumed to be shape anthgziEnt) and then exploit
topological relationships — if a translation is possibldtsat one region becomes a proper
part of another, then it must be smaller [144]; this idea j[d@&ited in [51] to represent and
reason about object location.

Of particular interest is the framework for representingiaice [114] which has been
extended to include orientation [40]. A distance systemoimposed of an ordered se-
quence ofdistance relationsand a set ofstructure relationswhich give additional in-
formation about how the distance relations relate to eabkrotEach distance has an
acceptance areathe distance between successive acceptance areas defipemnce of
intervals: é1, 9o, ... The structure relations define relationships between thes&ypical
structure relations might specify a monotonicity propdthe §; are increasing), or that
eachd; is greater than the sum of all the preceddpgThe structure relationships can also
be used to specify order of magnitude relationships, eap.éth+ §; ~ §; for j < i. The
structure relationships are important in refining tbemposition tablé$. In a homoge-
neoudistance system all distance relations have the sameugteuetiations; however this
need not be the case infeeterogeneoudistance system. The proposed system also allows
for the fact that the context may affect the distance retetiips: this is handled by having
different frames of reference, each with its own distancgesy and with inferences in
different frames of reference being composed usanticulation rules(cf. [116]).

One obvious effect of moving from one scale, or context talagg is that qualitative
distance terms such as “close” will vary greatly; more syhtistances can behave in
various “non-mathematical” ways in some contexts or spaegg distances may not be

BActually it is straightforward to specify relative measments given an “absolute” calculus: to say that
x > y, one may simply writec — y = +.
143ection 1.3.2 introduces composition tables



18 1. Qualitative Spatial Representation and Reasoning

symmetrical®. Another “mathematical aberration” is that in some domairesshortest
distance between two points may not be a straight line (eegalse a lake or a building
might be in the way), or the “Manhattan Distance” found initgb North American cities
laid out in a grid system.

Shape

Shape is perhaps one of the most important characterigtas object, and particularly
difficult to describe qualitatively. In a purely mereotopgical theory, very limited state-
ments can be made about the shape of a region: e.g. whetlasrhiotes, or interior voids,
or whether it is one piece or not. It has been observed [98Jth@can (weakly) constrain
the shape of rigid objects by topological constraints uSli@{-8 relations.

However, if an application demands finer grained distinttjghen some kind of semi-
metric information has to be introduc@dFor an explicit qualitative shape description one
needs to go beyond mereotopology, introducing some kinti@be primitives whilst still
retaining a qualitative representation. Of course, as f@®: the mathematical commu-
nity have developed many different geometries which are éxpressive than Euclidean
geometry, for example projective and affine geometrieshbue not necessarily investi-
gated reasoning techniques for them (though see [7, 1Q, 35])

A dichotomy can be drawn between representations whichgsifiyrdescribe the shape
via the boundary of an object compared to those which reptéseinterior. Approaches
to qualitative boundary description have been investijaging a variety of sets of prim-
itives. The work of Meathrel and Galton [142] generalisesmaf this work. The basic
idea is to consider the tangent at each point on the boundargb shape — it is either de-
fined (D) or undefined ) — in this latter case the boundary is at a cusp or kink pofiit. |
is defined, then the rate of change of the tangent at that paimibe considered (assuming a
fixed (anticlockwise) traversal of the boundary, as cantallttigher order derivatives (un-
til it becomes undefined). Each derivative takes one of ttaditgtive valuest, 0, —, and
at the level of the first derivative denotes whether the sh&pmeally convex, straight or
concave. Depending on how many higher order derivatives@isidered, the description
becomes progressively more and more detailed, and a greatety of different shapes
can be distinguished. The valugsaand— can only hold over a boundary segment, whereas
0 andU can hold at a single boundary point. Thus the descriptiontadndary starts at
a particular point, and then proceeds, anticlockwise, bellsnaximal boundary segments
having a particular qualitative value, and isolated pothtt may separate these. There
are constraints on what sequences of descriptions arebpmsaind the rules for construc-
tion aToken Ordering Grapliwhich is an instance of the continuity networks/conceptua
neighbourhoods discussed in section 1.4 below) have bepwfated. For example, &
segment cannot directly transition to-asegment without passing througl/g0 point or
a0 segment.

Shape description by looking at global properties of théoregather than its boundary
has been investigated too, for example the work of [39] diessishape via properties such

15E.g. because distances are sometimes measured by timettaamel, and an uphill journey may take
longer than a return downhill journey [114].

16 Of course, orientation and distance primitives as diselabeve already add something to pure topology,
but as already mentioned these are largely point based aschtt directly applicable to describing shape of a
region.
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as compactness and elongation by using the minimum boumdgtgngle of the shape
and the order of magnitude calculus of [141]: elongatioroisiputed via the ratio of the
sides of the minimum bounding rectangle whilst compacthgs®mparing the area of the
shape and its minimum bounding rectangle. The medial axisits®d used as a proxy for
shape, and has been used extensively in the computer vismmanity, and within a KR
setting in [179] for distinguishing lakes from rivers. Thetion of a Voronoi hull has also
been used (e.g. [63]).

Combinations of different aspects

Although we have attempted to present various aspects tbpgpresentation separately,
in general they interact with each other. For example, kngwhe relative size of two
regions (smaller, larger, equal) can effect which merealtugical relationships are possi-
ble [96]. There is also a relationship between distance hachotion of orientation: e.g.
distances cannot usually be summed unless they are in treediegntion, and the distance
between a point and a region may vary depending on the otiemtalhus it is perhaps
not surprising that there have been a number of calculi waighbased on a primitive
which combines distance and orientation information. Omaightforward idea [87] is
to combine directions as represented by segments of theassnwpith a simple distance
metric ( far, closg. A slightly more sophisticated idea is to introduce a ptivei which
defines the position of a third point with respect to a dirddiee segment between two
other points [217] (generalised to the 3D case in [151]). theoapproach that combines
knowledge about distances and positions in a qualitative-wiarough a combination of
the Delta-calculus [216] and orientation is presented Ib]2Liu [135] explicitly defines
the semantics of qualitative distance and qualitativentaiion angles and formulates a
representation of qualitative trigonometry. A example obanbined distance and position
calculus is [76].

1.2.6 Mereogeometry

Just as mereotopology extends mereology with topologim@ns, so mereogeometry ex-
tends mereology with geometrical concepts. In principle could add any of the notions
of orientation or distance/size discussed above to meggpluut most of those are de-
fined on points rather than regions which mereology presurireshe style of [49] for
mereotopology, Borgo and Masolo [22] compare and contraange of mereogeome-
tries. The benchmark systemRgegion Based Geomet(RBG) [14, 16] which builds on
the earlier work of Tarski [195]. This usd¥x,y) andS(z) (x is a sphere) as primi-
tives, and captures full Euclidean geometry, in a regioebtaetting. RBG is axiomatised
in second order logic, and has been shown to be categori¢hl [lhree other systems
[21, 149, 56, 57] are shown to be equivalent, and all are tdriiRell Mereogeometries
these other systems have different sets of primitives,fanmmle theCanConnect prim-
itive mentioned above in section 1.2.5 or the primit¥&(z, y) (z is congruent tgy). A
fifth system [200, 6], which uses the primiti@oser(z, y, z) (z is closer toy than toz)
reported there to be slightly weaker, is in fact also a fulfeegeometry, a result which
follows as an immediate consequence of the results in [34% donjectured in [22] that
the theory obtained by adding a convex hull primitive to noéopology (as in extensions
of RCC [43)]) is strictly weaker. In fact, in [54] it is showndhthis is indeed the case since
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such a language is invariant under affine transformatiordtfaus unable to express prop-
erties such aS(x) which is not invariant. This followed on from an earlier réésim which

it was shown that in a constraint language [55] the prim#tifer adjacency, parthood and
convexity are sufficient in combination to provide an affirmetry. A similar result is
provided in [157] where it is demonstrated that the first otdeguage with parthood and
congruence of primitives also enables the distinction gftaro regions not related by an
affine transformation. Moreover, it is shown that a coortirsystem can be defined in this
language, thus raising the question of whether it desemedabelqualitative— and indeed
this result and question also apply to any full mereogeometrsimilar observation has
already been made above for the STAR calculus [172] destibgection 1.2.5, and also
indeed for the affine mereogeometries based on convexityiomen just above [54].

An application of a mereogeometry based on congruence atidopa to reasoning
about the location of mobile rigid objects is [51]. A simplenstraint language whose
four primitives combine notions of congruence and mereplogs been definined and
investigated from a computational viewpoint [50] — the ptives areEQ, CGPP, CGPPi
(congruent to a proper part, and the inverse relation),GN® (where none of the other
relations hold).

1.2.7 Spatial Vagueness

The problem of vagueness permeates almost every domainoofl&dge representation.
In the spatial domain, this is certainly true, for examplésibften hard to determine a
region’s boundaries (e.g. “southern England”).

Vagueness of spatial concepts can be distinguished fronasisaciated with spatially
situated objects and the regions they occupy. An adequestrient of vagueness in spa-
tial information needs to account for vague regions as weNague relationships [46].
Although there has been some philosophical debate comgpwiiether vague objects can
exist [77], formal theories dealing with vagueness of exéea not well-established.

Existing techniques for representing and reasoning ataguteness such as supervalu-
ation theory have been extended and applied in a spatiadxidi79] and [15], which also
specifically addresses the issue of the preservation otbitjentity in the face of loss of
‘small’ parts.

There have also been extensions of existing spatial calpetifically designed to ad-
dress spatial indeterminacy. In particular there have kegensions of both the RCC
calculus [45, 46] (called the “egg-yolk” calculus) and thénfersection [37]; the broad
approach in each of these is essentially the same — to igentibre region which always
belongs to the region in question (tielk in the terminology of former, and an extended
region which might or might not be part of it (together formiteegg. It turns out that if
one generalises RCC-8 in this way [46] there are 252 JEPRaetbetween non crisp re-
gions which can be naturally clustered into 40 equivaletagses, and 46 JEPD relations,
clustered into 13 equivalence classes in the case of thesateto the purely mereological
RCC-5. The axiomatic presentation of the egg-yolk calcuijd6] extends the ontology
of crisp regions with vague (non-crisp) ones and relies odditianal binary relation to
RCC -xis crisper than region. An application of the egg-yolk calculus to reasoning about
a non spatial domain — class integration across databas4428].

It has been shown [38] that the extension of the 9-intersectiodel to model regions
with broad boundaries can be used to reason not just aboioheegith indeterminate
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boundaries but also can be specialised to cover a numbédrafkinds of regions including
convex hulls of regions, minimum bounding rectangles,dn#bnes and rasters. (This last
specialization generalises the application ofthimtersection model to rasters previously
undertaken [72].)

Another notion of indefiniteness relates to locations.rit{19] deals with the notion
of exact, part and rough location for spatial objects. Thacelocation is the region of
space taken up by the object. The notion of part locationr(@educed by [26]) relates
parts of a spatial object to parts of spatial regions. Thegindocation of a spatial object
is characterised by the part location of spatial object$ waspect to a set of regions of
space that form regional partitions. Consequently, thenatf rough location links parts
of spatial objects to parts of partition regions.

Bittner [19] argues that the observations and measurentdritation in physical
reality yield knowledge about rough location: a vaguelymedi objecto is located within
a regional partition consisting of the three concentriéarg. ‘core’, ‘wide boundary’ and
‘exterior’. In this context, the notion of rough locationthin a partition consisting of the
three concentric regions coincides with the notion of vagggons introduced by [45].

It is worth noting the similarity of these ideas to rough $66, though the exact rela-
tionship has yet to be fully explored, though see, for exanfiph5, 20]. Other approaches
to spatial uncertainty are to work with an indistinguistiéprelation which is not tran-
sitive and thus fails to generate equivalence classes [P, and the development of
nonmonotonic spatial logics [188, 3].

1.3 Spatial Reasoning

In the previous section we described some approaches tesesgiing spatial informa-
tion and gave different examples of spatial representafiimm the vast literature on this
topic. For some purposes it is enough to have a represemfati@patial knowledge, but
what makes intelligent systems intelligent is their apild reason about given knowledge.
There are different reasoning tasks an intelligent systéghtmave to perform. These in-
clude deriving new knowledge from the given informationecking consistency of given
information, updating the given knowledge, or finding a mal representation. Even
though these reasoning problems are quite different, thaybe transformed into each
other, and algorithms developed for one reasoning prob&amotten easily be modified to
solving other reasoning problems. Much of the research atisdpeasoning has therefore
focused on one particular reasoning problem, ¢besistency problem.e., given some
spatial information, is the given information consisteninconsistent.

In principle, reasoning about spatial knowledge given enftirm of a logical represen-
tation is not different from reasoning about other kinds nbkledge. However, much of
the qualitative spatial knowledge we are dealing with is @égy particular form and can
be represented as relations between spatial entities. &\esaally considering binary and
sometimes ternary relations which can be represented atraonts restricting the spatial
properties of the entities we are describing. This constifa@sed representation gives us
the possibility to develop reasoning algorithms which ateimmore efficient than stan-
dard logical deduction, albeit less powerful.

A constraint-based representation of spatial knowledgestéhe form of an existen-
tially quantified first-order logical expressioftz; ... 3z, A, ; V ge 4 R(2s,2;), Where
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x1,...x, are variables over the domain of spatial entitidsis the set of available base
relations, and?(x;, z;) is a binary constraint which restricts the possible instdions of
x;,z; to the tuples ofR. Solving this formula is basically eonstraint satisfaction prob-
lem (CSP)s described in chapter 4. One of the major differences disgpalations and
spatial constraints to those constraints described intehdpis that the domain of spa-
tial entities is usually infinite, i.e, there is an infinitemher of spatial entities that can
be assigned to the variables, . . . z,, and which might have to be tested when deciding
consistency of spatial information. While standard CSRs &énite domains are in general
NP-complete, spatial CSPs ougfinite domainsare potentially undecidable.

Spatial reasoning with constraints and relations mainligseon algebraic operators
on the relations, the most important being toenpositioroperator. Two relation& and
S are composed according to the following definitioR:oc S = {(z,y)|3z : (z,2) €
Rand(z,y) € S}. Composition has to be computed using the formal semantittseo
relations. Due to the infinite domains, computing composittan be an undecidable
problem. If the compositions of the base relations can bepeted, they can be stored
in a composition table and reasoning becomes a matter &f ladik-ups.

The main research topics in spatial reasoning in the pastdgeimclude the follow-
ing:

e determining the complexity of reasoning over differenttgdaalculi

e proving that a formalism is decidable and if so, possiblyntifging tractable
or even maximal tractable subsets of spatial calculi

e finding representations of qualitative spatial knowleddmciv allow for more
efficient reasoning

e developing efficient algorithms for spatial reasoning al e® approximation
methods and heuristics which lead to faster solutions intjp&

e developing methods for proving tractability

e computing composition tables and verifying their correstn

e determining whether a qualitative spatial descriptioreaizable i.e. whether
a planar interpretation exists

In this section we give an overview of some of the main achiexets in this area. Itis
worth mentioning that some of these research questionmategl in the area of temporal
reasoning and most methods can be applied to both spatigkambral reasoning (see
chapter 12).

1.3.1 Deduction

When spatial relations, properties of the spatial entitied are being used and the re-
quired axioms are represented using logical formalismscaveuse the standard deduc-
tion mechanisms of the used logics for reasoning over dgat@vledge. As described
in section 1.2.4, the Region Connection Calculus was defiméiust-order logic [164].
Even though reasoning in this first order representation@ERor indeed any first order
mereotopology) is undecidable [105], first order theoreovimg has been used to verify
a number of theorems including those relating to the RCCrBpmsition table [163] and
its conceptual neighbourhodd11].
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In order to create a decidable reasoning procedure, Betheadtoped encodings of the
RCC-8 relations first in propositional intuitionistic laqil 1] and later an advanced encod-
ing in propositional modal logic [12]. The encoding does reftect the full expressive
power of the first order RCC-8 theory, but does enable a detigiocedure to be built. In
the modal encoding, regions are represented as propadiitoms and a modal operator
| is used to represent the interior of a region, i.eXifepresents a region, théX repre-
sents the interior o. The interior operator is an S4 modality and goes back to wgrk
Tarski [194]. The usual propositional operators are usagpoesent intersection, union,
or complement or regions. In addition, Bennett divides ttoppsitional formulas into two
types,model constraintsvhich have to hold in all models of the encoding, amdailment
constraintswhich are not allowed to hold in any model of the encoding. Wulel and
entailment constraints are combined to a single formulaguanother modal operatar
which Bennett calls a strong S5 modality.

When encoding spatial relations in different logics, itrigportant to not only encode
the properties of the relations, but also the propertieb®fspatial entities that are being
used. Bennett’s initial encodings were missing the regyla@roperty of regions which
was later added to the encoding [173]. The extended modaldémg was shown to be
equivalent to the intended interpretation of the RCC-8tiats [150].

The intuitionistic and modal encodings were not only uséfuproviding a decidable
decision procedure for reasoning about spatial informatpresented using RCC-8 rela-
tions, but also formed the basis for the subsequent conipaghtinalysis of RCC-8. Nebel
[146] used the intuitionistic encoding for showing that REC-8 consistency problem is
tractable if only base relations are usedRenz and Nebel [173] used Bennett’s modal en-
coding and transformed it into a classical propositionabgling. While the propositional
encoding has been used for analysing the computationa¢piep of RCC-8, the encoding
has not been used for actual spatial reasoning yet. Sincerm&aT solvers are extremely
efficient, it might be possible that deductive reasoninglmamsed for obtaining efficient
solutions to spatial reasoning problems. A similar analysis been done by Pham et al
[154] who compared reasoning over the interval algebragusimstraint-based reasoning
methods with deductive reasoning using modern SAT solvenst results indicate that
deductive reasoning can be more efficient in some cases timstraint based reasoning.

There have been several extensions of the modal encodingC6F&Rto deal with
more expressive spatial and also with spatio-temporahinétion. BRCC-8 generalises
the RCC-8 modal encoding to also cover Boolean combinatibsgatial regions [212].
S4,, which is the propositional modal logig€4 extended with the universal modalities is
the most general version and contains both BRCC and RCC+a@sénts [213]. Several
of these fragments have been combined with different teaipmgics and compared with
respect to their expressiveness and their complexity [@i@jdal logics are closely related
to Description Logics, and in this context, we note that soesearch has been on spatial
description logics [107].

Some work has also investigated langages more expresanartbreotopology: it has
been shown that the constraint languag&®@{z, y), PP(z,y) andconv(x) is intractable
(itis at least as hard as determining whether a set of algetoastraints over the reals is
consistent) [55].

17Due to the missing regularity conditions in the intuitidiisencoding, Nebel's result turned out to be in-
complete.
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1.3.2 Composition

Given a domain of spatial entitie®, spatial relations are subsets of the cross-product
of D and may contain an infinite number of tuples, ire,C {(a,b)|a,b € D}, since

D may itself be infinite. Having a set of jointly exhaustive gpairwise disjoint base
relations.A and considering the powerst of the base relations as the set of possible
relations, the algebraic operations union, intersectaon] complement of relations are
straightforward to compute. If the set of base relationshissen in a way such that the
converse relations of all base relations are also baseomdathen the converse operator
is also easy to compute. The most important algebraic opevdtich is the basis for
reasoning over spatial relations is tbempositionoperator which is defined @ o S =
{(z,y)|3z : (z,2) € Rand(z,y) € S} for two relationsR and S. If composition is
known for all pairs of base relations, then composition bfelhtions can be computed as
the union of the pairwise compositions of all base relaticmstained in the relation, i.e.,
RoS ={R;o Sj|R;,S; € A,R; CR,S; C S}. Therefore, if the composition and the
converse of all base relations are known and if they are altatoed in24, i.e., if 24 is
closed under composition and converse, then it is possibrkegison about spatial relations
without having to consider the tuples contained in the i@fat The relations can then be
treated as symbols that can be manipulated using the algeparators. In the following
section we describe how this can be done using constraggeh@asoning methods.

The question remains how the composition of base relatiansbe computed if the
domains are infinite. While it is possible to compute compmsiin situations where the
domains can be ordered or are otherwise well-structuraceffample domains based on
linear orders such as the Directed Interval Algebra [16%herrectangle algebra [8]), in
many cases it is not possible to compute composition effelgti This includes RCC-8
where it is possible to find example scenarios which showthieagiven composition table
is not correct. One example given by Diintsch [61] considerse regionsA, B, C in
two-dimensional space wherkis a doughnut and its hole. It is not possible to find a
regionC which is externally connected t6 and B and therefore the tupled, B) which is
contained in the relatioBC is not contained ifeC o EC. So the composition dtC with
EC does not contaifeC even though this is specified in the RCC-8 composition table.
In cases where it is not possible to compute composition @rava set of relations is
not closed under composition, it is necessary to resort teaker form of composition in
order to apply constraint-based reasoning mechanism#sthii[61] proposed usingeak
composition The weak composition of two relatiods S € 24 is the strongest relation of
24 which contains the actual composition, i.B9,, S = {B|B € A, BN(RoS) # (}. It
is clear that any sé* is always closed under weak-composition and thereforetains
based reasoning methods can be applied to these relatibesRTC-8 [163] is actually
a weak composition table (and thus also the the table forahesponding 9-intersection
set of eight topological relations [66]).

If only weak composition can be used, some of the inferen@eterby composing rela-
tions are not correct and might lead to wrong results. It lenilshown that correctness of
the inferences does not depend on whether composition pymadk composition is used,
but on a different property, namely, whether a set of refetiis closed under constraints
[171]. A set of relation24 is closed under constraini$ for none of its base relations
R € A there exists two set®;, O, of constraints ove2* which both contain the con-
straintz Ry such that the following property hold&!; and©, refine the constraintRy to
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the constraints R,y andx Ryy, respectively, wher®;, Ro C RandR; N Ry = ). That
is none of the atomic relations can be refined to two non-apgihg sub-atomic relations
by using arbitrary sets of constraints.

1.3.3 Constraint-based spatial reasoning

Using constraint-based methods for spatial reasoningdhepossibility to capture much
of spatial reasoning within a unified framework. Even thoaghlitative spatial informa-
tion is very diverse and covers different spatial aspetts, usually expressed in terms
of spatial relations between spatial entities which canXpgessed using constraints. As
mentioned in the introduction of this section, many différgpatial reasoning tasks can be
reduced to theonsistency problepon which we will focus on in this section.

Definition 1 Let.A be a finite set of JEPD binary relations and over a (possibfinite)
domainD andS C 24. The consistency proble@SPSAT (S) is defined as follows:

Instance: A finite setfl of variables over the domaif? and a finite se® of
binary constraintsc Ry, whereR € S andz,y € V.

Question: Is there an instantiation of all variables i® with values frontD
such that all constraints i® are satisfied?

Constraint-based reasoning uses constraint propagationder to eliminate values
from the domains which are not consistent with the consisgsee Chapter 4). Since the
domains used in spatial and temporal reasoning are usuéyte, restricting the domains
is not feasible. Instead, it is possible to restrict the dosandirectly by restricting the
relations that can hold between the spatial entities. Taisanly be done if there is a
finite number of relations and an effective way of propaggt@lations, which is the case
if we have a set of relation$ C 24 which is closed under intersection, converse and weak
composition. These operators are the only means we havedpagating constraints.
While it is possible to use composition of higher arity, uguanly binary composition is
used for propagating constraints.

The best known constraint propagation algorithm for sh&&Ps is theath-consistency
algorithm[137] (see also chapter 4 of this handbook). It is a local stescy algorithm
which makes all triples of variables 6f consistent by successively refining all constraints
using the following operation until either a fixed point ismched or one constraint is re-
fined to the empty relatiovz, y, z.x{ R}y := 2{R}y N (x{S}z o z{T}y). If the empty
relation occurs, the® is inconsistent, otherwise the resulting set is caflath-consistent
If 24 is closed under composition, intersection and converss the path-consistency
algorithm terminates in cubic time.

Path-consistency is equivalent to [89] which holds if foegwvconsistent instantiation
of two variables it is always possible to find an instantiatfor any third variable such
that the three variables together are consistent. 3-densig can be generalised fo
consistencyvhich holds if for any consistent instantiation/of- 1 variables there is always
a consistent instantiation for arkyth variable. In order to compute-consistency, it is
necessary to havg — 1)-ary composition. In the following we restrict ourselves3to
consistency and the associated path-consistency algowtiich uses binary composition.
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In many cases, composition cannot be computed and only waakasition is avail-
able. In these cases, the path-consistency algorithm t@erapplied and a weaker algo-
rithm, thealgebraic-closure algorithnmust be used [133]. Both algorithms are identical
except that the path-consistency algorithm uses compaosithile the algebraic-closure
algorithm uses weak composition. If the algebraic closlgeréhm is applied to a set of
constraints and a fixed point is reached, the resulting setlisdalgebraically closecdr
a-closed Itis clear that unless weak-composition is equivalentimposition, an a-closed
set is usually not 3-consistent.

Local consistency algorithms such as path-consistencyalyatraic-closure, and pos-
sible variants of these algorithms which make use of contiposdf higher arity, are the
central methods that constraint-based reasoning offesslting the consistency problem.
It is highly desirable that for a given set of relatio?$ the consistency problem for the
base relations, i.eCSPSAT(A), can be decided using a local consistency algorithm. It
has been shown that algebraic-closure dec@BBSAT(A) if and only if 24 is closed
under constraints [171]. While this is mainly useful for slirng that algebraic closure
does not decid€SPSAT (A), the other direction has to be manually proven for each set
A and for each domai®. If a decision procedure f@SPSAT(.A) can be found, then the
consistency problem for the full set of relations is alsoidi@isle and can be decided by
backtracking over all sub-instances which contain onlyelyatations.

The basic backtracking algorithm takes as input a set oftca@inss © over a set of
relationsS C 24, selects an unprocessed constraifiR}y of O, splits R into its base
relationsBy, ..., By, replacest{ R}y with 2{B;}y and repeats this process recursively
until all constraints are refined. If the resulting set of stoaints is consistent, which can
be shown using the local consistency algorithm, teis consistent. Otherwise the al-
gorithm backtracks and replaces the last constraint wighnibixt possible base relation
xz{B;}y. If all possible refinements dd are inconsistent, the® is inconsistent. The
backtracking algorithm spans a search tree where eachsieewall is a node and each
leaf is a refinement o® which contains only base relations. GSPSAT(A) can be de-
cided in polynomial time, the@SPSAT(2) is in NP and the runtime of the backtracking
algorithm is exponential in the worst case.

There are several ways of improving the performance of ttoktbacking algorithm.
The easiest way is to apply the local consistency algorithevery recursive step. This
prunes the search tree by removing base relations that tawto a solution. Nebel
[148] has shown that the interleaved application of the {oatisistency algorithm does
not alter the outcome of the backtracking algorithm, butsiderably speeds up its per-
formance. The performance can also be improved by usingdtiesrfor selecting the
next unprocessed constraint and for selecting the nextrieteté@ns. The first choice can
reduce the size of the search tree while the second choideetiafinding a consistent sub-
instance earlier. While the basic backtracking algoritiefines a se® to sets containing
only base relations, it is also possible to use any otherfsetlations7 which contains
all base relation and for which there is an algorithm whichides consistency for this
set. IfCSPSAT(7) can be decided in polynomial tim&, is atractable subseof 24. A
tractable subset ismaximal tractable subsgif adding any other relation not contained in
the tractable subset leads to an intractable subset. btactabsets can be used to improve
backtracking by splitting each constrainfR}y € O into constraints:{T} }y, x{Tz},...,
xz{Ts}y such that J, T; = R and allT; € 7, and by backtracking over these constraints.
This considerably reduces theanching factorof the search tree. Instead of splitting each
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relation into all of its base relations, they can be splibistib-relations contained i
[127]. The average branching factor of the resulting setmexh depends on how well
splits the relations o2. The lower the average branching factor, the smaller thecbea
tree.

It has been shown in detailed empirical analyses [174] tirgeltractable subsets com-
bined with different heuristics can lead to very efficierlusions of the backtracking prob-
lem. While it is not possible to determine in advance whichicé of heuristics will be
most successful for solving an instance of a spatial reaggrioblem, it is clear that having
large tractable subsets will always be an advantage. A lotgdarch effort has therefore
been spent on identifying tractable subsets of spatialitalc

The methods described above of using constraint propagédiodetermining local
consistency and using backtracking for solving the genswakistency problem can be
applied to all kinds of spatial information if the spatialations used are constructed from
a set of base relations and the information is expressedeirfiottm of constraints over
these relations. This has the advantage that general nsedinachlgorithms can be applied
and that results for one set of spatial relations can beezhwier to other sets. One
problem with this approach is that spatial entities aretégdas variables which have to be
instantiated using values of an infinite domain. How to inébg this with settings where
some spatial entities are known or can only be from a smalladiois still unknown and is
one of the main future challenges of constraint-basedapatsoning.

1.3.4 Finding Efficient Reasoning Algorithms

As discussed in the previous section, large tractable ssib§spatial calculi are the most
important part of efficient spatial reasoning. In order talftractable subsets, or even
maximal tractable subsets, several ingredients have todwided:

1. One ingredient is a method for proving the complexity ofvee subset, or slightly
weaker, a sound method for proving that a given subset itatobe

2. The second ingredient is a way of finding subsets that niightractable subsets
and for which the method described above can be used. A sebate relations
contains2” relations an@®(2") different subsets. It is impossible to test all subsets
for tractability, so the number of candidate sets should hdevas small as possible.

3. In order to show that a tractable subset is a maximal toéetsubset, it must be
shown that any relation which is not contained in the trdetaibset leads to an
NP-hard subset when added to the tractable subset. Fot idisdcessary to have a
method for proving NP-hardness of a given subset.

4. For a complete analysis of tractability, it must be sholat the identified tractable
subsets are maximal tractable subsets and that no oth@&tsultish is not contained
in one of the maximal tractable subsets is tractable.

In this section we are interested in finding tractable sigsi* for efficiently solving
the consistency proble@SPSAT(.A). We are therefore only interested in finding tractable
subsets which contain all base relations as only these sub@e be used as split-sets in
our backtracking algorithm. There has been a series of papefinding tractable subsets
of the Interval Algebra (e.g. [123]) and also of RCC-5 [11&jigh do not contain all
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base relations and which are mainly interesting for a themeunderstanding of what
properties lead to intractability.

The number of subsets which have to be considered for anglgsimplexity can be
greatly reduced by applying the closure property [173]:dlosure of a sef C 24 under
composition, intersection and converse has the same cgitypdes S itself. For finding
tractable subsets this means that only subsets which ezeccimder the operators have to
be considered, as all subsets of a tractable set are alsali@cThis can only be applied if
a set is closed under composition. Since in many cases ordi a@mposition is known,
it is not obvious that the closure under weak compositionthasame complexity. It has
only recently been shown [171] that whenever algebraisuri® decides consistency of
CSPSAT(A), i.e., for atomic CSPs, then the closure under weak cortippgireserves
complexity.

There have been several methods for finding tractable sibsbIP-hard sets of rela-
tions. The most obvious way is to find a polynomial one-to{oaesformation o€CSPSAT
to another NP-hard problem for which tractable subclasse&rown. The most popular
problem is certainly the propositional satisfiability pledn SAT for which two tractable
subclasses are knomHORNSAT where each clause contains at most one positive literal,
and2SAT where each clause contains at most two literal€SPSAT(24) can be reduced
to SAT and it is possible to find relations @f* which lead to Horn clause${ORNSAT)
or Krom clausesZSAT), respectively, then the set of all these relations is &falet This
method has first been applied by Nebel and Biirckert [147iHerInterval Algebra and
later also by Nebel [146] and by Renz and Nebel [173] for RCC-8

A different method has been proposed by Ligozat [130] whodfiarmed the relations
of the Interval Algebra to regions on a plane and to the lifeg separate the regions.
The dimension of a relation is the dimension to which a refai$ transformed to, a two-
dimensional region, a one-dimensional line, or a zero-dsi@al point (the intersection
of lines). Ligozat showed that the set of those relationsdha be transformed to a convex
set are tractable (theonvex relationg and also those relations which do not yield a convex
region but a region for which the convex closure adds onligtiahs of lower dimension
(the preconvex relation)s This method has also been applied to other sets of refation
particular those which are somehow derived from the intealgebra [132], but it seems
that the preconvexity method cannot be generalised foyelgebra.

These methods have in common that they can only be used feingrivactability of
one or maybe two different particular subsets, but not fomshg tractability for arbitrary
subsets. Another method that has been proposedetimement methofll68], is more
general and can be applied to any subset. The refinement dhiethes as input a refine-
ment strategy, which is a mapping of every relation of thedddsted subset to a subset
7T for which it is known that algebraic closure decides coesisy in polynomial time.
The mapping must be a refinement, i.e., every relatiehS must be mapped to a relation
T € T such thatl’ C S. The refinement method then checks every a-closed triplelaf r
tions overS and tests whether making the refinements leads to an intensys If none of
the original refinements nor the new refinements obtainegplyang the method result in
an inconsistency, then algebraic closure also decidesstensy forS and therefore is a
tractable subset. The refinement method relies upon findéugtable refinement strategy.
It has been shown that using the identity refinement strategyy removing all identity
relations, was successful for all the tested subsets of B@ad the interval algebra [168].
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Even though the refinement method is very general, it doebelptwith finding can-
didate sets to which it can be applied. All candidates haveoimmon that they must
be closed under (weak) composition, converse and intéoseahd they must not contain
any relation which is known to be an NP-hard relation. Thanefve also need methods
for identifying NP-hard relations, i.e., relations thatkaahe consistency problem NP-
hard when combined with the base relations. In order to sh&whBrdness of a set of
relations\" C 24, it is sufficient to find a known NP-hard problem which can bé/po-
mially reduced taCSPSAT(N). This is a difficult problem and might require a different
transformation from a different NP-hard problem for eadfedént set\'. However, since
CSPSAT has a common structure for all sets of relations, namelynatcaint graph where
the labels on the edges are unions of base relations, it sljj@so generate the transfor-
mations with computer assisted methods.

Renz and Nebel [173] proposed a scheme for transforming 3@Aants totCSPSAT
by translating variables, literals and clauses to a set afi@pconstraints and to rela-
tions R;, Ry € 2 which correspond to variables and literals being tritg) (or false
(Ry). For example, each variableis transformed to the constraintgL{Rt, Rf}y;; and
Ig{Rt, Rf}yg where the first constraint is refined to the relati@nif p is true and the
second one td; if p is true. In order to ensure this, additiormllarity constraintsbe-
tween the remaining pairs off, z,,»," andy, are neededClause constraintsvhich
ensure that the requirements imposed by the clauses hdlldd@patial variables are also
needed. The relation8; and Ry as well as the relations contained in the polarity and
clause constraints can be found by exhaustive search dyavssible relations. If an as-
signment of relations o to this constraint schema can be found and if it can be shown
that the transformation preserves consistency, then th& s all relations used in this
schema is NP-hard.

Based on this NP-hard subs¥t it is possible to identify other NP-hard subsets using
the closure property and a computer assisted enumeratibifierent subsets. Every subset
of 2 whose closure contain§’ is also an NP-hard subset. Easier to compute and more
useful is the property that for a known tractable sutisand every relatiol € 2 which
is not contained ir7, 7 U {R} is NP-hard if its closure contains a known NP-hard set.
This property can be used to compute whether a tractableesidha maximal tractable
subset, namely, if every extension of the set is NP-hard.

By combining the presented methods, the closure propdmyrefinement method,
the transformation schema and computer assisted enuorerati complete analysis of
tractability can be made. This has been demonstrated for-&{168] where three maxi-
mal tractable subsets were identified. These subsets cethbiith different backtracking
heuristics lead to very efficient solutions of the RCC-8 éstienicy problem and most of
the hardest randomly generated instances were solved fiiergraly [174].

In a recent paper, Renz [170] extended the refinement metib@r@sented a proce-
dure which automatically identifies large tractable subgaten only the base relationt
and the corresponding weak composition table. The setgatenieby Renz’s procedure
are guaranteed to be tractable if algebraic-closure de€@@&PSAT(A). The procedure
automatically identified all maximal tractable subsets GfdR8 in less than 5 minutes and
for the Interval Algebra in less than one hour.
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1.3.5 Planar Realizability

Given a metric spatial description it is a simple matter tgpty it. But given a purely
qualitative spatial configuration then finding a metric iptetation which satisfies it is
not, in general, trivial. A particular problem of interesirk is whether mereotopological
descriptions have planar realizations, where all the regare simply connected; clearly
this is not possible in general, since it is easy to specifichdie using a set of externally
connected regions, and a 5-clique graph is not realisalfeeiplane. This problem has
been studied, initially in [104f which considers an RCC-8 like calculus and two simpler
calculi and determines which of a number of different prablestances of relational con-
sistency and planar realizability are tractable and whiehreot — the latter is the harder
problem. Planar realizability is of particular interest floe 9-intersection calculus since it
is defined for planar regions. Until recently it was unknofhé consistency problem for
the 9-intersection calculus is decidable at all and it hdg mcently been shown that the
problem is NP-complete [182].

1.4 Reasoning about Spatial Change

So far we have concentrated purely on static spatial calalttiough we briefly mentioned
the combination of modal spatial and temporal logics abowveection 1.3.1). However it
is important to develop calculi which combine space and tman integrated fashion. We
do not have the space here to deal with this topic in any deGalton’s book [94] is an
extended treatment of this topic.

As discussed in Chapter 9, an important aspect of quaktatasoning is the stan-
dard assumption that change is continuous. A simple coesegus that while changing,
a quantity must pass through all the intermediate values.ekample, in the frequently
used quantity spacg-, 0, +}, a variable cannot transition from-' to ‘ 4+’ without going
through the intermediate value 0. In the relational spatidduli we have concentrated on
in this chapter, this requirement manifests itself in knaywivhich relations are neighbours
in the sense that if the predicate holds at a particular timen there is some continu-
ous change possible such that the next predicate to hold&il neighbourContinuity
networksdefining such neighbours are often cal@hceptual neighbourhoods the lit-
erature following the use of the term [88] to describe thaditire of Allen’s 13 JEPD
relations [2] according to their conceptual closeh¥ssgy. meetss a neighbour of both
overlapsand beforg. Most of the qualitative spatial calculi reported in thisper have
had conceptual neighbourhoods constructed for fefor example figure 1.3 illustrates
the case for RCC-8. Continuity networks have been used asatsis of qualitative spa-
tial simulations and reasoning about motion [52, 160, 68, 202]. Continuity networks
are presented essentially as axioms in most calculi; hawbkeee has been some work on
inferring these from first principles [53, 111, 94].

18Claim 24 in this paper is subsequently admitted not to ho8]; [urther work on this problem, generally
known as the “map graph” recognition problem can be foun@% 80, 197, 31].

19Note that one can lift this notion of closeness from indiabielations to entire scenes via the set of relations
between the common objects and thus gain some measureraddheeptual similarity as suggested by [23].

20A closely related notion is that of “closest topologicaltdizce” [68] — two predicates are neighbours if
their respective n-intersection matrices differ by fewetries than any other predicates; however the resulting
neighbourhood graph is not identical to the true concepte@hbourhood or continuity graph — some links are
missing.
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There are two main approaches to spatio-temporal repegamtin one snapshotsf
the world at different instants of time are considered;ralévely, a true spatio-temporal
ontology, typically a 4D region based representation igluségth time being one of the
dimensions. Grenon and Smith discuss #riap-scarontology [103] in more detail. Ex-
amples of 4D approaches to spatio-temporal represeniatarde [145, 111, 112, 110].

1.5 Cognitive Validity

An issue that has not been much addressed yet in the QSRUitersithe issue of cognitive
validity. Claims are often made that qualitative reasongnagkin to human reasoning, but
with little or no empirical justification. One exception tug is the study made of a calculus
for representing topological relations between regiort lares [139]. Another study is
[121] that has investigated the preferred Allen relationglipreted as a 1D spatial relation)
in the case that the composition table entry is a disjunctiRerhaps the fact that humans
seem to have a preferred model explains why they are ableasmneefficiently in the
presence of the kind of ambiguity engendered by qualitaépeesentations. In [120, 175]
they extend their evaluation to topological relations.

1.6 Final Remarks

In this paper we have presented some of the key ideas andsrastihe QSR literature,
but space has certainly not allowed an exhaustive surveyarfihook on spatial logics
[1] will cover some of the topics briefly described here in fmumore detail. As in so
many other fields of knowledge representation it is unlikbBt a single universal spatial
representation language will emerge — rather, the best wehope for is that the field
will develop a library of representational and reasoningaks and some criteria for their
most successful application. What we have outlined hertharmajor axes of the space of
qualitative spatial representation and reasoning syst@nasn particular the dimensions of
variability, such as the choice of representational forsmal(e.g. first order logic, modal
logic, relation algebra), the ontology of spatial entitiesy. points, lines, regions), the
primitive relations and operators (such as the various JE&® of relations discussed
above), and the different kinds of reasoning techniquesh(sts constraint based spatial
reasoning).

As in the case of non spatial qualitative reasoning, quetivé knowledge and rea-
soning must not be ignored — qualitative and quantitatigsoaing are complementary
techniques and research is needed to ensure they can bafateg for example by devel-
oping reliable ways of translating between the two kindsoofifalisms?! — this problem
naturally presents itself when spatial information is awegifrom sensors, in particular
image/video data — i.e. how qualitative symbolic spatiaresentations are grounded in
sensory and sensorimotor experience. Of particular istésehow to automatically learn
appropriate spatial abstractions and representationsxémple see [125, 91]. Equally, in-
terfacing symbolic QSR to the techniques being developeatidgiagrammatic reasoning
community [98] is an interesting and important challenge.

In many situations, a hierarchical representation of sjgmdesirable, for example in
robotics. Kuipers has promulgated the “Spatial Semantaraichy” [124] as one such

21some existing research on this problem includes [83, 81}, 192
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hierarchical model which consists of a number of distineels. Simply put, the “control
level” is composed of sensor values, from which local 2D geynand control laws can
be determined. The next level is the “causal level” — a pliyt@determined network in
which actions determine transitions between states ifiieshtit the previous control level.
The “topological level” describes space as being compo$gaihs, regions and places
with relations between them such as we have described irchizigter. Being at a place
corresponds to a distinct state of the causal layer. Fitladlymetrical level” augments the
topological level with metric information such as distaaeel orientation. There has also
been work on hierarchical spatial reasoning in the contéxst particular kind of spatial
information, such as direction relations [152].

Another important part of future work in this area is to finchgeal ways of com-
bining different spatial calculi and analysing combinettak. Most applications require
more than just one spatial aspect. Even though many cal@iligsing constraint-based
reasoning methods, combining constraints over differelations is a difficult problem as
the relations have infinite domains. That means their iotemas must be taken care of
on a semantic level. This might require defining new relaiamich can negatively or
positively affect properties of the combined calculi [96, 95].
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