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Chapter 1

Qualitative Spatial Representation and
Reasoning

Anthony G Cohn and Jochen Renz

1.1 Introduction

The need for spatial representations and spatial reasoningis ubiquitous in AI – from robot
planning and navigation, to interpreting visual inputs, tounderstanding natural language
– in all these cases the need to represent and reason about spatial aspects of the world
is of key importance. Related fields of research, such as geographic information science
(GIScience) [71], have also driven the spatial representation and reasoning community to
produce efficient, expressive and useful calculi.

Whereas there has been considerable research in spatial representations which are
based on metric measurements, in particular within the vision (e.g. [62, 138]) and robotics
communities (e.g. [198]), and also on raster and vector representations in GIScience (e.g.
[214]), in this chapter we concentrate on symbolic, and in particularqualitativerepresenta-
tions. Chapter 9 is devoted to qualitative reasoning (QR) more generally, whereas here we
limit our attention specifically to qualitative spatial, and spatio-temporal reasoning (hence-
forth QSR).

1.1.1 What is Qualitative Spatial Reasoning ?

Chapter 9 concentrates on linear quantities; in some cases this suffices to reason about
space in a qualitative way, for example when reasoning aboutthe position of a sliding
block, or the level of a tank. However, space is multidimensional, and is not in general ad-
equately represented by a single scalar quantity. Considerusing Allen’s interval calculus,
briefly mentioned in chapter 12, which distinguishes 13 jointly exhaustive and pairwise
disjoint relations that may hold between a pair of convex (one-piece) intervals, see figure
1.1(a). Now we consider using this representation to model two dimensional regions, by
projecting 2D space onto two separate linear dimensions; infigure 1.1(b) this works well,



2 1. Qualitative Spatial Representation and Reasoning

Figure 1.1: (a) The 13 jointly exhaustive and pairwise disjoint Allen interval relations
between a pair of convex intervals (the top thick line and each of the thinner lines below) –
only seven are displayed – the last six are asymmetric and have inverses. Projecting regions
onto axes and using Allen’s interval calculus can give misleading results: in (b) the small
region is discrete from the larger along the x axis, whilst in(c) it is contained in the larger
region along both axes.

but in 1.1(c) it is not so satisfactory – the smaller region appears to be contained in the
larger1.

Early attempts at qualitative spatial reasoning within theQR community led to the
‘poverty conjecture’ [85]. Although purely qualitative representations were quite success-
ful in reasoning about many physical systems [209], there was much less success in devel-
oping purely qualitative reasoners about spatial and kinematic mechanisms and the poverty
conjecture is that this is in fact impossible – there is no purely qualitative spatial reasoning
mechanism. Forbus et al. correctly identify transitivity of values as a key feature of quali-
tative quantity spaces but doubt that this can be exploited much in higher dimensions and
conclude that the space of representations in higher dimensions is sparse and for spatial
reasoning nothing weaker than numbers will do.

The challenge of QSR then is to provide calculi which allow a machine to represent
and reason with spatial entities without resort to the traditional quantitative techniques
prevalent in, for e.g. the computer graphics or computer vision communities.

There has been an increasing amount of research in recent years which tends to refute,
or at least weaken the ‘poverty conjecture’. Qualitative spatial representations addressing
many different aspects of space including topology, orientation, shape, size and distance
have been put forward. There is a rich diversity of these representations and they exploit
the ‘transitivity’ as demonstrated by the relatively sparse composition tables(cf the well
known table for Allen’s interval temporal logic [209]) which have been built for these
representations.

This chapter is an overview of some of the major qualitative spatial representation
and reasoning techniques. We focus on the main ideas that have emerged from research

1In certain domains, containing rectangular objects which are uniformly aligned, this can still be a useful
representation, see for example [208] where the layout of text blocks on envelopes is learned. A theoretical
analysis into the n-dimensional generalisation of the Allen calculus can be found in [9].
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in the area; there is not sufficient space here to be comprehensive and some interesting
approaches have had to be ommitted though we give some pointers to the wider literature2.

In section 1.1.2 we will mention some possible applicationsof qualitative spatial rea-
soning. Thereafter, in section 1.2 we survey the main aspects of the representation of
qualitative spatial knowledge including ontological aspects, topology, distance, orientation
and shape. Section 1.3 discusses qualitative spatial reasoning and section 1.4 reasoning
about spatial change. The chapter concludes with some remarks on cognitive validity in
section 1.5 and a glimpse at future work in section 1.6. This chapter is based on a number
of earlier papers, in particular [47].

1.1.2 Applications of Qualitative Spatial Reasoning

Research in QSR is motivated by a wide variety of possible application areas including Ge-
ographic Information System (GIS), robotic navigation, high level vision, spatial proposi-
tional semantics of natural languages, engineering design, common-sense reasoning about
physical systems and specifying visual language syntax andsemantics. There are numer-
ous other application areas including qualitative document-structure recognition [208], bi-
ology (e.g. [191, 42]) and domains where space is used as a metaphor (e.g. [128, 161]).

Even though GIS are now a commonplace, the major problem is that of interaction.
With gigabytes of information stored either in vector or raster format, present-day GISs do
not sufficiently support intuitive or common-sense oriented human-computer interaction.
Users may wish to abstract away from the mass of numerical data and specify a query in a
way which is essentially, or at least largely, qualitative.Arguably, the next generation GIS
will be built on concepts arising fromNaive Geography[71], wherein QSR techniques are
fundamental. Examples of research employing qualitative spatial techniques in geography
include reasoning about shape in a qualitative way such as [32].

Although robotic navigation ultimately requires numerically specified directions to the
robot to move or turn, hierarchical planning with detailed decisions (e.g. how or exactly
where to move) being delayed until a high level plan have beenachieved has been shown to
be effective [196]. Further, the robot’s model of its environment may be imperfect, leading
to an inability to use standard robot navigation techniques. Under such circumstances, a
qualitative model of space may facilitate planning. One such approach is the development
of a robust qualitative method for robot exploration, mapping and navigation in large-scale
spatial environments described in [126]; another is the work of Liu and Daneshmend [134]
on spatial planning for robotic motion and path planning using qualitative spatial spatial
representation and reasoning. Another example of using QSRfor robotic navigation is
[207]. A qualitative solution to the well known ‘piano mover’s problem’ is [79]. Some
work in cognitive robotics has addressed the issue of building topological maps of the
robot’s environment (rather than metrical ones), e.g. [166, 124].

QSR has been used in computer vision for visual object recognition at a higher level
which includes the interpretation and integration of visual information. QSR techniques
have been used to interpret the results of low-level computations as higher level descrip-
tions of the scene or video input [81, 122]. The use of qualitative predicates helps to ensure

2Much relevant material is published in the proceedings ofCOSIT (the Conference on Spatial Information
Theory), GIScience (the International Conference on Geographical Information Science), the journal Spatial Cog-
nition and Computation, as well as regular AI outlets such asthe AI journal, the Journal of Artificial Intelligence
Research (JAIR) and the proceedings of such conferences as KR, AAAI, IJCAI, PRICAI and ECAI.
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that scenes which are semantically close have identical or at least very similar descriptions.
Work in this area from a cognitive robotics viewpoint includes that of Santos [181, 180].

In natural language, the use and interpretation of spatial propositions tend to be am-
biguous. There are multiple ways in which natural language spatial prepositions can be
used (e.g. [115] cites many different meanings of “in”); this motivates the use of quali-
tative spatial representation for finding some formal way ofdescribing these prepositions
(e.g. [5, 178, 24]).

Engineering design, like robotic navigation, ultimately normally requires a fully metric
description. However, at the early stages of the design process, a reasonable qualitative de-
scription would suffice. The field of qualitative kinematics(e.g. [78]) is largely concerned
with supporting this type of activity.

Finally, visual languages, either visual programming languages or some kind of rep-
resentation language, lack a formal specification of the kind that is normally expected of
a textual programming or representation language. Although some of these languages
make metric distinctions, the bulk of it is often predominantly qualitative in the sense that
the exact shape, size, length etc. of the various componentsof the diagram or picture is
unimportant – rather, what is important is the topological relationship between these com-
ponents [99, 108]. In a similar vein, research continues on the application of qualitative
spatial reasoning for sketch interpretation, e.g. [84, 80,67, 183, 108, 86].

1.2 Aspects of Qualitative Spatial Representation

Representing space has a rich history in the physical sciences – and serves to locate objects
in a quantitative framework. At the other extreme, spatial expressions in natural languages
tend to operate on a loose partitioning of the domain. Representation for this less precise
description of space proliferated, more or less on anad hocbasis until the emergence
of qualitative spatial reasoning; thereafter the partitioning was done more systematically
[143].

There are many different aspects to space and therefore to its representation. Not only
do we have to decide on what kind of spatial entity we will admit (i.e. commit to a par-
ticular ontology of space), but also we can consider developing different kinds of ways
of describing the relationship between these kinds of spatial entities; for example we may
consider just their topology, or their sizes or the distancebetween them, their relative ori-
entation or their shape. In the following sections we will overview the principal techniques
which have emerged to represent these different aspects of qualitative spatial knowledge.

1.2.1 Ontology

In this chapter we concentrate on what might be termed “pure space”, i.e. purely spatial
entities such as points, lines and regions, rather than entities which have spatial extensions,
such as physical objects or geographic regions. ,

Traditionally, in mathematical theories of space, points are considered as the primary
primitive spatial entities (or perhaps points and lines), and extended spatial entities such
as regions are defined, if necessary, as sets of points. A minority tradition (‘mereology’
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or ‘calculus of individuals’ — section 1.2.3) regards this as a philosophical error3. Within
the QSR community, there is a strong tendency to take regionsof space as the primitive
spatial entity – see [206]. Even though this ontological shift means building new theories
for most spatial and geometrical concepts, there are strongreasons for taking regions as
the ontological primitive. If one is interested in using thespatial theory for reasoning
about physical objects, then one might argue that the spatial extension of any physical
object must be region-like rather than a lower dimension entity. Further, one can always
define points, if required, in terms of regions [18]. However, it needs to be admitted that
at times it is advantageous to view a 3D physical entity as a 2Dor even a 1D entity. Of
course, once entities of various dimensions are permitted,a pertinent question would be
whether mixed dimension entities are allowed. Further discussion of this issue can be
found in [43, 44, 101] and also in [156, 158] who argues that ina first order 2D planar
mereotopology4, a region based ontology is not as parsimonious as a point based one, from
a model theoretic viewpoint. Whether points or regions are taken as primitive, it is clear
that regions nevertheless are conceptually important in modelling physical and geographic
objects.

However, even once one has committed to an ontology which includes regions as primi-
tive spatial entities, there are still several choices facing the modeller. For example, in most
meretopologies, the null region is excluded (since no physical object can have the null re-
gion as its extension) though technically it may be simpler to include it [13, 193]. It is
fairly standard to insist that regions are allregular, though this choice becomes harder to
enforce once one allows regions of differing dimensionalities (e.g. 2D and 3D, or even 4D)
since the sum of two regions of differing dimensions will notbe regular. One can also dis-
tinguish between regular-open and regular-closed alternatives. Some calculi [21, 65] insist
that regions are connected (i.e. one-piece). A yet strongercondition would be that they are
interior connected– e.g. a 2D region which pinches to a point is not interior connected. In
practice, a reasonable constraint to impose would be that regions are all rational polygons
[157].

Another ontological question is what is the nature of the embedding space, i.e. the
universal spatial entity? Conventionally, one might take this to beRn for some n, but one
can imagine applications where discrete (e.g. [72]), finite(e.g. [100]), or non convex (e.g.
non connected) universes might be useful. There is a tensionbetween the continuous-space
models favoured by high-level approaches to handling spatial information and discrete,
digital representations used at the lower level. An attemptto bridge this gap by developing
a high-level qualitative spatial theory based on a discretemodel of space is [92]. For
another investigation into discrete vs continuous space, see [140].

Once one has decided on these ontological questions, there are further issues: in partic-
ular, what primitive “computations” should be allowed? In alogical theory, this amounts to
deciding what primitive non logical symbols one will admit without definition, only being
constrained by some set of axioms. One could argue that this set of primitives should be
small, not only for mathematical elegance and to make it easier to assess the consistency
of the theory, but also because this will simplify the interface of the symbolic system to
a perceptual component because fewer primitives have to be implemented. The converse

3Simons [189] says : “No one has ever perceived a point, or everwill do so, whereas people have perceived
individuals of finite extent”.

4Mereotopology is defined and discussed in detail in section 1.2.4 below.
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argument might be that the resulting symbolic inferences may be more complicated or that
it is more natural to have a large and rich set of concepts which are given meaning by many
axioms which connect them in many different ways [109]. As weshall see below, although
in a full first order theory one can define perhaps surprisingly many concepts from just a
few primitives, if one wishes to restrict the language used to a less expressive language
for computational reasons, then one will need to increase the number of primitives. The
next section considers the most common class of such primitives, relations between spatial
entities.

1.2.2 Spatial Relations

It is one of the basic assumptions of qualitative representation and reasoning that situations
are represented by specifying the relationships between the considered entities. Hence it
is natural to represent qualitative information using relations, and in this chapter spatial
relations. Formally, arelationR is a set of tuples(d1, . . . , dk) of the same arityk, where
di is a member of a correspondingdomainDi. In other words, a relationR of arity k is a
subset of the cross-product ofk domains, i.e.,R ⊆ D1 × . . . ×Dk.

Very often,spatial relationsarebinary relationsand very often the considered domains
are identical, namely, the set of all spatial entities of a particular space. In these cases
spatial relations are of the formR = {(a, b)|a, b ∈ D}. The considered domain is usually
an infinite domain and the spatial relations contain infinitely many tuples.

Given a set of relationsR = {R1, . . . Rn} we can use algebraic operators such as
union, intersection, complement, converse, or composition of relations and in this way
obtain analgebra of relations5. Since the relations contain an infinite number of tuples,
applying these operators might not be feasible. It is therefore a common assumption in
qualitative representation and reasoning to select relations which arejointly exhaustive
and pairwise disjoint (JEPD), i.e., each tuple(a, b) ∈ D × D is a member of exactly one
relation. JEPD relations are also calledatomic, base, or basic relations. Given a set of
JEPD relations, the relationship between any two spatial entities of the considered domain
must be exactly one of the JEPD relations. Indefinite information can be expressed by
taking the union of those base relations that can possibly hold (representing the disjunction
of the base relations). If no information is known and all possible base relations can hold,
we use theuniversal relationwhich is the union of all base relations. The set of all possible
relations is then the powerset of the set of base relations, i.e., all possible unions of the
JEPD relations.

In the following sections we discuss various sets of spatialrelations, and in particular
some different sets of JEPD relations that have been studiedin the literature. These are
usually restricted to one particular aspect of space such astopology, orientation, shape, etc.
How to reason about these relations and more about the consequences of having infinite
domains is covered in section 1.3, while more about general considerations of defining a
qualitative calculus can be found in [133].

5See [59] for a review of the use of relation algebras in spatial and temporal reasoning.
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1.2.3 Mereology

Mereologyis concerned with the theory ofparthood, deriving from the Greekµǫρoς (
part), and forms a fundamental aspect of spatial representation, with practical applications
in many fields, e.g. [187]. The books by Simons[189], and morerecently by Casati and
Varzi [27] are excellent reference works for mereology. Simons proposes a number of
different mereological theories, depending on what properties one wishes to ascribe to.
Perhaps the most widely used theory is hisminimal extensional mereology[189, pp.25-
30]. The proper part relation is taken as primitive, symbolisedPP6. The logical basis of
the system is:

(SA0) Any axiom set sufficient for first-order predicate calculus with identity.
(SA1)∀x, y[PP(x, y) → ¬(PP(y, x)]
(SA2)∀x, y, z[[(PP(x, y) ∧ (PP(y, z)] → PP(x, z)]

SA1 and SA2 simply assert that the system’s basic relation isa strict partial ordering. Si-
mons goes on to define part (symbolised ‘P’). The next step is to require that an individual
cannot have asingleproper part. After defining overlapping (‘O’, having a common part),
Simons gives the 3rd axiom:

(SA3)∀x, y[PP(x, y) → ∃z[PP(z, y) ∧ ¬O(z, x)]].
This axiom he refers to as theWeak Supplementation Principle(WSP), asserting that any
individual with a proper part has another that is disjoint with the first. The axiom set SA0-3
still permits various models Simons regards as unsatisfactory, in which overlapping indi-
viduals do not have a unique product or intersection. Such models are ruled out by adding:

(SA6)∀x, y[O(x, y) → ∃z∀w[P(w, z) ≡ P(w, x) ∧ P(w, y)]],
which ensures the existence of such a unique product. This system of four axioms defines
the system known as minimal extensional mereology. We do nothave space here to present
the many other variations of mereology, but refer the readerto the literature, in particular
[189, 27].

1.2.4 Mereotopology

It is clear that topology must form a fundamental aspect of qualitative spatial reasoning
since topology certainly can only make qualitative distinctions. Although topology has
been studied extensively within the mathematical literature, much of it is too abstract to be
of relevance to those attempting to formalise common-sensespatial reasoning. Although
various qualitative spatial theories have been influenced by mathematical topology, there
are number of reasons why such a wholesale importation seemsundesirable in general
[101], in particular the absence of consideration of computational aspects, such as we
consider below in section 1.3. In fact mereotopology is the most studied aspect of QSR
and for this reason we devote particular attention to it in this chapter.

Although Whitehead tried to define topological notions within mereology[210], this
is not possible, and requires some further primitive notions. Varzi [205, 204] presents a
systematic account of the subtle relations between mereology and topology. He notes that
whilst mereology is not sufficient by itself, there are theories in literature which have pro-
posed integrating topology and mereology (henceforth,mereotopology). There are three
main strategies of integrating the two:

6For the sake of uniformity, in a number of cases we have renamed predicate and other symbols in this
chapter from the original formulation.
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• Generalise mereology by adding a topological primitive. Borgo et al. [21] add the
topological primitiveSC(x), i.e.,x is a self connected (one-piece) spatial entity to
the mereological part relation. Alternatively a single primitive can be used as in
[205]: “x andy are connected parts ofz”. The main advantage of separate theories
of mereology and topology is that it allows collocation without sharing parts7 which
is not possible in the second two approaches below.

• Topology is primal and mereology is a sub theory. For examplein the topological
theories based onC(x, y) (x is connected toy, discussed further below) one defines
P(x, y) from C(x, y). This has the elegance of being a single unified theory, but
collocation implies sharing of parts. These theories are normally boundaryless (i.e.
without lower dimensional spatial entities) but this is notabsolutely necessary [162,
4], as discussed further below.

• The final approach is that taken by [74], i.e. topology is introduced as a specialised
domain specific sub theory of mereology. An additional primitive needs to be in-
troduced. The idea is to use restricted quantification by introducing a sortal pred-
icate,Rg(x), to denote a region.C(x, y) can then be defined thus:C(x, y) =df

O(x, y) ∧ Rg(x) ∧ Rg(y).

In the remainder of this subsection, we concentrate on the first two approaches, which
are largely based on approaches based on work to be found in the philosophical logic com-
munity in particular the work of Clarke [33, 34] which was in turn based on the theory of
extensive connection outlined by Whitehead in Process and Reality [211]. Other work in
this tradition is cited below and more extensively in [49], in each case building axiomatic
theories of space which are predominantly topological in nature, and which take regions
rather than points as primitive – indeed, this tradition hasbeen termed as “pointless geome-
tries” [97]. We concentrate here on overviewing the axiomatic approach to mereotopology;
the reader is referred to [17] for a thorough treatment of thealgebraic and axiomatic ap-
proaches to mereotopology and their relationship.

As has been pointed out [49], not all this work agrees in its basic terms; even where
there is agreement on vocabulary, such as the use of a binaryconnectionpredicate, it is
not always interpreted in the same way. A model-theoretic framework for investigating
the logical space of mereotopological theories and comparing the main options in light of
their intended models has been set out [49]. We now describe this framework further since
it also provides an overview of the various approaches to mereotopology (for details see
[49]).

All the theories are interpreted wrt some topological space, T, on which a closure op-
eratorc(x) is axiomatised in a standard way:

(A0) ∅ = c(∅) (A1) x ⊆ c(x)
(A2) c(c(x)) ⊆ c(x)
(A3) c(x) ∪ c(y) = c(x ∪ y)

Three different notions of connection are then defined (which are illustrated in figure 1.2),
the semantics which are given by:

C1(x, y) ⇔ x ∩ y 6= ∅
C3(x, y) ⇔ c(x) ∩ c(y) 6= ∅

7For further discussion of this issue see [27, 58].
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Figure 1.2: The three C relations (limit cases); a solid lineindicates closure.

C2(x, y) ⇔ x ∩ c(y) 6= ∅ or c(x) ∩ y 6= ∅

However, since some mereotopologies (e.g. see the first of the three strategies outlined
above) have multiple primitives, two further primitives are made available:

Pn(x, y) =df ∀z(Cn(z, x) → Cn(z, y)) (1 ≤ n ≤ 3)

σnxφ =df ιz∀y(Cn(y, z) ↔ ∃x(φ ∧ Cn(y, x))) (1 ≤ n ≤ 3)

Intuitively: x is part (Pn) of y iff whatever is connected (Cn) to x is also connected (Cn)
to y, and the fusion (σn) of all φ-ers (whereφ is some formula withx free) is that thing
(if it exists at all) that connectsn precisely to those things thatφ (i.e. for whichφ holds for
that particular binding ofx). Many theories define these notions in terms of the same con-
nection relation that is assumed as a topological primitive, in which case the above reduce
to ordinary definitions in the object language of the theory.However, this need not be the
case, and in fact an important family of theories stem precisely from the intuition that part-
hood and connection cannot be defined in terms of each other. This effectively amounts to
using two distinct primitives – two notions of connection (one of which is used in defining
parthood), or a notion of connection and an independent notion of parthood. Accordingly,
and more generally, the framework considers the entire space of mereotopological theories
that result from the options determined by the above definitions when1 ≤ n ≤ 3. That is
to say, in the object language all three connection predicates are available as primitives, and
the framework models theories in which some such predicatesare defined in term of others
by adding suitable axioms in place of the corresponding definitions. The choice of which
primitives are used will be indicated with a triple8, which is called atype, τ =< i, j, k >
(where1 ≤ i, j, k ≤ 3), the three components respectively indicating whichCi, Pj andσk

relation is being used in the correspondingτ -theory, thus:

C<i,j,k>(x, y) =df Ci(x, y)

P<i,j,k>(x, y) =df Pj(x, y)

σ<i,j,k>xφ =df σkxφ

There are a great many mereotopological relations which canbe defined using these three
primitives. We list some of the most common here:

8In fact, in [49] a type is quadruple, but we ignore the final component here.
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Oτ (x, y) =df ∃z(Pτ (z, x) ∧ Pτ (z, y)) x τ -overlapsy
Aτ (x, y) =df Cτ (x, y) ∧ ¬Oτ (x, y) x τ -abutsy
Eτ (x, y) =df Pτ (x, y) ∧ Pτ (y, x) x τ -equalsy
PPτ (x, y) =df Pτ (x, y) ∧ ¬Pτ (y, x) x is a properτ -part ofy
TPτ (x, y) =df Pτ (x, y) ∧ ∃z(Aτ (z, x) ∧ Aτ (z, y)) x is a tangentialτ -part ofy
IPτ (x, y) =df Pτ (x, y) ∧ ¬TPτ (x, y) x is an interiorτ -part ofy
BPτ (x, y) =df ∀z(Pτ (z, x) → TPτ (z, y)) x is a boundaryτ -part ofy
POτ (x, y) =df Oτ (x, y) ∧ ¬Pτ (x, y) ∧ ¬Pτ (y, x) x properlyτ -overlapsy
TOτ (x, y) =df ∃z(TPτ (z, x) ∧ TPτ (z, y)) x tangentiallyτ -overlapsy
IOτ (x, y) =df ∃z(IPτ (z, x) ∧ IPτ (z, y)) x internallyτ -overlapsy
BOτ (x, y) =df Oτ (x, y) ∧ ¬IOτ (x, y) x boundaryτ -overlapsy
πτxφ =df στz∀x(φ → Pτ (z, x)) τ−product ofφers
x +τ y =df στz(Pτ (z, x) ∨ Pτ (z, y)) τ -sum ofx andy
x ×τ y =df στz(Pτ (z, x) ∧ Pτ (z, y)) τ -product ofx andy
x −τ y =df στz(Pτ (z, x) ∧ ¬Oτ (z, y)) τ -difference ofx andy
kτ (x) =df στz¬Oτ (z, x) τ -complement ofx
iτ (x) =df στzIPτ (z, x) τ -interior ofx
eτ (x) =df iτ (kτ (x)) τ -exterior ofx
cτ (x) =df kτ (eτ (x)) τ -closure ofx
bτ (x) =df cτ (x) −τ iτ (x) τ -boundary ofx
Uτ =df στzOτ (z, z) τ -universe
Bdτ (x) =df ∃yBPτ (x, y) x is aτ -boundary
Rgτ (x) =df ∃yIPτ (y, x) x is aτ -region
Opτ (x) =df Eτ (x, iτ (x)) x is τ -open
Clτ (x) =df Eτ (x, cτ (x)) x is τ -closed
Reτ (x) =df Eτ (iτ (x), iτ (cτ (x))) x is τ -regular
Cnτ (x) =df ∀y∀z(Eτ (x, y +τ z) → Cτ (y, z)) x is τ -connected (i.e. in one piece)
CPτ (x, y) =df Pτ (x, y) ∧ Cnτ (x) x is aτ -connected part ofy

Depending on the structure ofτ , the notions thus defined may receive different in-
terpretations, hence the gloss on the right should not be taken too strictly. One intended
interpretation of the binary relations relative to the Euclidean planeR2 – an interpretation
that justifies the gloss – is illustrated in Figures 2 and 3 in [49]. However, the exact seman-
tic consequence of these definitions may change radically from one framework to another,
depending on the typeτ and on the constraints in the model theory.

It is easy to see that the following formulas are true in everycanonical model for all
typesτ (i.e. Cτ is reflexive and symmetric), and indeed these formulae are normally
included as axioms in any mereotopology based on a binary connection relation:

(C1τ ) Cτ (x, x) (C2τ ) Cτ (x, y) → Cτ (y, x)

Similarly, the following are always logically true in view of the definition ofPτ (and are
included as axioms if parthood is not defined in terms of connection (i.e. the first and
second indices of the type are different):

(P1τ ) Pτ (x, x) (P2τ ) (Pτ (x, y) ∧ Pτ (y, z)) → Pτ (x, z)

Another important property that is often associated with parthood is antisymmetry. There
are two formulations of this property, depending on whetherwe useτ -equality (Eτ ) or
plain equality (=). The first formulation:

(P3τ ) (Pτ (x, y) ∧ Pτ (y, x) → Eτ (x, y).
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is obviously true by definition. However, the second formulation:
(P3τ=)(Pτ (x, y) ∧ P +τ (y, x) → x = y

is stronger and may fail in some models. Antisymmetry in the sense of (P3τ=) is logically
equivalent to the requirement that parthood be extensionalin the following sense:

(P4τ=) ∀z(Pτ (z, x) ↔ Pτ (z, y)) → x = y,
which in turn is equivalent to the requirement that connection is likewise extensional:

(C3τ=) ∀z(Cτ (z, x) ↔ Cτ (z, y)) → x = y,
These requirements are stronger than the corresponding versions forEτ . These latter are
logically true, but whether a model satisfies (P4τ=) and (C3τ=) depends crucially on the
relevant closure operatorc and on which sets are included in the universeU .
It can easily be shown that for any pair of types t1=< i1, j, k > and t2=< i2, j, k >, the
following holds wheneveri1 ≤ i2:

(C4i1i2) Cτ1
(x, y) → Cτ2

(x, y).
Some mereotopologies include boundaries (i.e. lower dimensional entities) in their domain
of discourse; others do not; these cases are examined separately below.

Boundary-tolerant Theories

It turns out that none of the cases whereτ is uniform(i = j = k) are viable:
(a) The optioni = 1 yields implausible topologies in which the boundary of a region

is never connected to the region’s interior (since the boundary and the interior never share
any points).

(b) The optioni = 2 yields implausible mereologies in which every boundary is part
of its own complement (since anything connected to the former is connected to the latter).

(c) The optioni = 3 yields implausible mereotopologies in which the interior of a
region is always connected to its exterior (so that boundaries make no difference) and in
which the closure of a region is always part of the regions interior.

There is also a sense in which these theories trivialise all mereotopological distinctions
in the presence of boundaries. For (a)-(c) imply that ifτ is uniform, any model that includes
the boundaries of its elements satisfies the conditional:Cτ (x, y) → Oτ (x, y)

Hence, in every such model theτ -abut predicateAτ defines the empty relation, and
so do the predicates of tangential and boundary parthood (TPτ , BPτ ) and tangential and
boundary overlap (TOτ , BOτ ). Thus if boundaries are admitted in the domain, uniformly
typed theories appear to be inadequate. In fact, this applies not only to uniform types, but
to all types where i=j. (See [18, 97] for related material.)

Moving on to non-uniform types, we may note that some theories have been explicitly
proposed in the literature, specifically for the caseτ =< 2, 1, 1 >. An early example is
to be found in [25], though the topological primitive there is Opτ rather thanCτ . (One
gets a definitionally equivalent characterization ofCτ via the definitions above. A similar
warning applies to some other theories discussed below.) Other examples are in [49]. Since
parthoodPτ is not defined in terms of the connection primitiveCτ , these theories need at
least two distinct primitives (corresponding to the parameters 1 and 2 in the type); but since
fusionστ is typically understood using the same primitive as parthood, a third primitive is
not needed (whence the equality of the second and third coordinates in the type). These
theories typically represent an attempt to reconstruct ordinary topological intuitions on
top of a mereological basis. In fact, it is immediate from thedefinition that in this case
Cτ corresponds to the notion of connection of ordinary point-set topology: two regions are



12 1. Qualitative Spatial Representation and Reasoning

connected if the closure of one intersects the other, or viceversa. Moreover,Pτ is typically
assumed to satisfy the relevant extensionality and inclusion principles.

Thus, a minimal theory of this kind is typically axiomatisedusing (C12), (C22), (P11),
(P21), (P31), (P512). If the fusion principle (C41) is added, the result is a mereotopol-
ogy subsuming what is known as classical extensional mereology [189, 27], in whichPτ

defines a complete Boolean algebra with the null element deleted. Further adding:
(A1′) Pτ (x, cτ (x)) (A2′) Pτ r(cτ (cτ (x)), cτ (x))
(A3′) Eτ (cτ (x) +τ cτ (y), cτ (x +τ y))

gives what may be called a full mereotopology, in whichcτ behaves like the standard
Kuratowski closure operator. (A0has no analogue due to the lack of a null element.)

All of these theories, of course, must account in some way forthe intuitive difficulties
that arise out of the notion of a boundary, and correspondingly of the distinction between
open and closed entities. For instance, Smith [57] considers various ways of supplementing
a full mereotopology with a rendering of the intuition that boundaries are ontologically
dependent entities [190], i.e., can only exist as boundaries of some open entity (contrary to
the ordinary set-theoretic conception). In the notation here the simplest formulation of this
intuition is given by the axiom:

(B1) BPτ (x, y) → ∃z(Opτ (z) ∧ BPτ (x, cτ (z)))
It is noteworthy that all theories of this sort have type< 2, 1, 1 >. It is conjectured [49]
that this is indeed the only viable option.

Boundary-free Theories

Though the idea of a uniform type appears to founder in the case of boundary-tolerant
theories, it has been taken very seriously in the context of boundary-free theories, i.e.,
theories that leave out boundaries from the universe of discourse in the intended models.
Theories of this sort are rooted in [210, 56] and have recently become popular under the
impact of Clarke’s formulation [33, 34] (see also [97]). Clarke’s own is a< 1, 1, 1 >-
theory, and some later authors followed this account (e.g. [4, 5, 162]). However, one
also finds examples of theories of type< 2, 2, 2 > (e.g. in [106, 157]) as well as of type
< 3, 3, 3 > (especially in the work of Cohn et al). [43, 48, 101, 164] which has led to
an extended body of results and applications in the area of spatial reasoning; see [82] for
an independent example of a type< 3, 3, 3 > theory. Indeed, all boundary-free theories
in the literature appear to be uniformly typed: this is remarkable but not surprising, since
the main difficulties in reducing mereology to topology liesprecisely in the presence of
boundaries. Now, by definition, a boundary-freeτ -theory admits of no boundary elements.
In axiomatic terms, this is typically accomplished by adding a further postulate to the effect
that everything is a region (i.e., has interior parts):

(R) ∀xRgτ (x)
which implies the emptiness of the relationsBPτ and BOτ , hence ofBdτ . So bτ (x)
is never defined in this case. It is worth noting that such theories typically afford some
indirect way of modelling boundary talk, e.g., as talk aboutinfinite series of extended
regions (cf. [18, 34, 73]). In this sense, these theories do have room for boundary elements,
albeit only as higher-order entities. Note also the discussion of points and regions above in
section 1.2.1.

Consider now the three main options mentioned in the previous section, whereτ is a
basic uniform type of the form< i, i, i >. Unlike their boundary-tolerant counterparts,
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none of these options yields a collapse of the distinction between tangential and interior
parthood (TPτ , IPτ ) or between tangential and interior overlap (TOτ , IOτ ). However, the
three options diverge noticeably with regard to the distinction between open and closed
regions (Opτ , Clτ ). The general picture is as follows.

(a) The casei = 1 allows for the open/closed distinction, yielding theoriesin which
the relation of abutting (Aτ ) is a prerogative of closed regions (open regions abut nothing).
As a corollary, such theories determine nonstandard mereologies that violate the supple-
mentation principle given above in section 1.2.3. This is a feature that some authors have
found unpalatable: as Simons [189] put it, one can discriminate regions that differ by as
little as a point, but one cannot discriminate the point. There are also some topological
peculiarities that follow from the choice ofC1 as a connection relation. For instance, it
follows immediately that no region is connected to its complement, hence that the universe
is bound to be disconnected. This was noted in [4, 34], where the suggestion is made that
self-connectedness should be redefined accordingly:

Cn′

τ (x) =df ∀y∀z(Eτ (x, y +τ z) → Cτ (cτ (y), cτ (z)))

This, however, is just a way of saying that self-connectedness must be defined with refer-
ence to a different notion of connection (namely, the notionobtained by takingi = 3.)

(b) The casei = 2 also allows for the open/closed distinction, but yields theories
in which the relation of abutting may only hold between two regions one of which is
open and the other closed in the relevant contact area. This results in a rather standard
topological apparatus, modulo the absence of boundary elements. However, also in this
case the mereology is bound to violate (WSP). (Again, just takey open andx equal to the
closure ofy.)

(c) The casei = 3 is the only one where the open/closed distinction dissolves: in this
case every region turns out to beτ -equal to its interior as well as to its closure. This follows
from (P3t), i.e., equivalently, from (C3t) or (P4t). This means thatτ -theories of this sort
cannot be extensional – in fact, they yield highly non-standard mereologies. However,
this is coherent with the fundamental idea of a boundary-free approach. For one of the
main motivations for going boundary-free is precisely to avoid the many conundrums that
seem to arise from the distinction between open and closed regions [101]. In addition, and
for this very same reason, such theories can validate (S), thereby eschewing the problem
mentioned in (a) and (b).

The best known case of (c), i.e. a mereotopology with type< 3, 3, 3 > was first
presented in [164], and elaborated subsequently in a seriesof papers including [43, 48,
101, 44], which has been called theRegion Connection Calculus (RCC)9.

In particular, a set of eight JEPD relations has been defined within the RCC mereotopol-
ogy and this is now generally known as RCC-8, see figure 1.310. The relation names used
here differ from the relations defined above, but correspondthus (assuming the type is
< 3, 3, 3 > in each case):DC: ¬C, EC: A, PO: PO, TPP: TP ∧ ¬E, NTPP: IP, EQ:
E; TPPi andNTPPi are simply the inverses ofTPP andNTPP. The definitions of RCC-8
symbols, in particulark(x)

differs from that given above – see [164], and in particular the discussion in [13, section
3.3.3].

9Galton[93] coined this name.
10A simpler, purely mereological calculus (usually called RCC-5), in which the distinctions betweenTPP

andNTPP, TPPi andNTPPi, andDC andEC are collapsed has also been defined and investigated [128, 118].
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Figure 1.3: 2D illustrations of the relations of RCC-8 calculus and their continuous transi-
tions (conceptual neighbourhood).

Examples of non-uniformly typed boundary-free theories are much rarer. However,
one may imagine that such theories could also alleviate someof the unpalatable properties
of the uniformly typed mereotopologies mentioned in (a) and(b). For example, a type of
the form< 1, 3, k > would correspond to a mereotopology in which a type-1 notionof
connection is combined with a type-3 parthood relation thatsatisfies the supplementation
principle (WSP). Similarly with a type of the form< 2, 3, k >. An example of a the-
ory with a type 3 connection relation interpreted in boundary free models and a separate
parthood relation is [129] – influenced by [177] this generalises the RCC system and the
discrete mereotopology of Galton [92] to allow for discretemodels of RCC (not possible
in the standard theory cited above).

Topology via “n-intersections”

An alternative approach to representing and reasoning about topological relations has been
promulgated via a series of papers including [65, 64, 70]. Three sets of points are associ-
ated with every region – its interior, boundary and complement. The relationship between
any two regions can be characterised by a 3x3 matrix11 called the9-intersectionmodel, in
which every entry in the matrix takes one of two values, denoting whether that the inter-
section of the two point sets is empty or not; for example, thematrix in which every entry
takes the non-empty value corresponds to thePO relation above12. Although it would seem
that there are29 = 512 possible matrices, after taking into account the physical reality of
2D space and some specific assumptions about the nature of regions, it turns out that the
there are exactly 8 remaining matrices, which correspond tothe RCC-8 relations. Note,
however, that the 9-intersection model only considers one-piece regions without holes in
two-dimensional space, while RCC-8 allows much more general domains. Therefore, even
though the two sets of relations appear similar, their computational properties differ con-
siderably and reasoning in RCC-8 is much simpler than reasoning in the 9-intersection
model [167]. One can also use the 9-intersection calculus toreason about regions which
have holes by classifying the relationship not only betweeneach pair of regions, but also
the relationship between each hole of each region and the other region and each of its holes
[69].

11Actually, a simpler 2×2 matrix [65] known as the 4-intersection featuring just theinterior and the boundary
is sufficient to describe the eight RCC relations. However the 3×3 matrix allows more expressive sets of relations
to be defined as noted below since it takes into account the relationship between the regions and its embedding
space.

12The RCC-8 relations have different names in the 9-intersection model, in fact English words such as “over-
lap” instead ofPO.
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Different calculi with more JEPD relations can be derived bychanging the underlying
assumptions about what a region is and by allowing the matrixto represent the codimen-
sion of intersection. For example, one may derive a calculusfor representing and reasoning
about regions inZ2 rather thanR2 [72]. Alternatively, one can extend the representation
in each matrix cell by the dimension of the intersection rather than simply whether it ex-
ists or not [36]. This allows one to enumerate all the relations between areas, lines and
points and is known as the “dimension extended method”(DEM). A very large number
of possible relationships may be defined in this way and a way termed as the “calculus
based method”(CBM) to generate all these from a set of five polymorphic binary relations
between a pair of spatial entitiesx andy : disjoint, touch, in, overlap, cross has been pro-
posed [41]. A complex relation betweenx andy may then be formed by conjoining atomic
propositions formed by using one of the five relations above,whose arguments may be
eitherx or y or a boundary or endpoint operator applied tox or y. For the most expressive
calculus (either the CBM or the combination of the 9-intersection and the DEM) there are
9 JEPD area/area relations, 31 line/area relations, 3 point/area relations, 33 line/line rela-
tions, 3 point/line relations and 2 point/point relations giving a total of 81 JEPD relations
[41].

1.2.5 Between Mereotopology and Fully Metric Spatial Representation

Mereology and mereotopology can be seen as perhaps the most abstract and most quali-
tative spatial representations. However, there are many situations where mereotopological
information alone is insufficient. The following subsections explore the different ways in
which other qualitative information may be represented. After this, in section 1.2.6 we
look at how easily a spatial representation with a coordinate system and thus the full power
of a geometry can be defined from qualitative primitives.

Direction and Orientation

Direction relations describe the direction of one object toanother, and can be defined
in terms of three basic concepts: the primary object, the reference object and the frame
of reference. Thus, unlike the mereotopological relationson spatial entities described in
the preceding sections, a binary relation is not sufficient;i.e., if we want to specify the
orientation of aprimary objectwith respect to areference object, then we need to have
some kind of aframe of reference. This characterization manifests itself in the display
of qualitative direction calculi to be found in the literature: certain calculi have an explicit
triadic relation while others presuppose an extrinsic frame of reference (such as the cardinal
directions of E,N,S,W) [87, 113], or assume that objects have an intrinsic front (so that we
can talk, for example, of being to the left of a person or vehicle); in this case we normally
speak oforientationcalculi, being the special case of a direction calculus whenthe primary
object has an intrinsic front.

Of those with explicit triadic relations, a common scheme isto define (assuming at-
tention is restricted to a 2D plane – as is usually the case in the literature) three rela-
tions between triples of points, denoting, clockwise, anti-clockwise or collinear ordering
[184, 186, 176]. Schlieder developed a calculus [185] for reasoning about the relative ori-
entation of pairs of line segments. Another triadic calculus is [117] which first defines
binary relations on directed line segments using left/right relations based on the intrinsic
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directedness of the line, and then defines ternary relationsin terms of these, giving a 24
JEPD relation set, from which relations defining clockwise,anticlockwise and collinear
can be recovered via disjunction.

For those calculi that use an extrinsic frame of reference, it is most common to use a
given reference direction. This allows the orientation between two objects to be represented
with respect to the reference direction using just binary relations. The first approaches
described the directions of points in a 2D space. Frank [87] distinguished different ways
of defining sectors for the different direction relations, cone-based and projection based
(also called the cardinal direction algebra [131]), which both divide the plane into sectors
relative to a point by using lines that intersect at the corresponding point. These calculi
were later generalised for direction sectors generated by an arbitrary number of intersecting
lines and form the STAR algebra [172] shown in Figure 1.4. Interestingly, it turned out
that once more than two intersecting lines are used for defining sectors, it is possible to
generate a coordinate system and thus the distinction between qualitative and quantitative
representation disappears. The solution to this dilemma isnot to consider the lines as
separate relations but to integrate them to with sectors.
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Figure 1.4: Different STAR calculi, the left one is defined using eight intersecting lines
which result in 33 JEPD relations, the right one using four intersecting lines resulting in
17 JEPD relations. The STAR calculus allows any number and orientation of intersecting
lines.

Most calculi for direction and orientation are based on points rather than regions, as
calculi become rather coarse grained in the latter case. There are exceptions, for example
[102] or [136] in which directionswithin regions are considered (London is in the London
is in the south of England). Directions for extended regions have mainly been developed
for objects whose boundaries are parallel to the axes of the frame of reference, for example
the reference direction and the axis orthogonal to the reference direction, or by using a
minimal bounding box which is parallel to the axes [8, 153]. Acalculus which combines
regions, mereotopology and a simple notion of unidimensional direction is the occlusion
calculus of [165].
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Distance and Size

Spatial representations of distance can be divided into twomain groups: those which mea-
sure on some “absolute” scale, and those which provide some kind of relative measure-
ment. Of course, since traditional Qualitative Reasoning [209] is primarily concerned with
dealing with linear quantity spaces, the qualitative algebras and the transitivity of such
quantity spaces mentioned earlier can be used as a distance or size measuring representa-
tion, see chapter 9.

Also of interest in this context are the order of magnitude calculi [141, 159] developed
in the QR community. Most of these traditional QR formalismsare of the “absolute” kind
of representations13, as in the delta calculus of [216] - which introduces a triadic relation:
x(>, d)y to note thatx is larger/bigger thany by an amountd; terms such asx(>, y)y
mean thatx is more than twice as big asy.

Of the “relative” representations specifically developed within the qualitative spatial
reasoning community, perhaps the earliest is the triadicCanConnect(x, y, z) primitive
[56] – which is true if bodyx can connecty andz by simple translation (i.e., without
scaling, rotation or shape change). From this primitive it is easy to define notions such
as equidistance, nearer than and farther than. This primitive allows a metric on the extent
of regions to be defined: one region is larger than another if it can connect regions that
the other cannot. Another method of determining the relative size of two objects relies on
being able to translate regions (assumed to be shape and sizeinvariant) and then exploit
topological relationships – if a translation is possible sothat one region becomes a proper
part of another, then it must be smaller [144]; this idea is exploited in [51] to represent and
reason about object location.

Of particular interest is the framework for representing distance [114] which has been
extended to include orientation [40]. A distance system is composed of an ordered se-
quence ofdistance relationsand a set ofstructure relationswhich give additional in-
formation about how the distance relations relate to each other. Each distance has an
acceptance area; the distance between successive acceptance areas defines sequence of
intervals:δ1, δ2, ... The structure relations define relationships between theseδi. Typical
structure relations might specify a monotonicity property(the δi are increasing), or that
eachδi is greater than the sum of all the precedingδi. The structure relationships can also
be used to specify order of magnitude relationships, e.g. that δi + δj ∼ δi for j < i. The
structure relationships are important in refining thecomposition tables14. In a homoge-
neousdistance system all distance relations have the same structure relations; however this
need not be the case in aheterogeneousdistance system. The proposed system also allows
for the fact that the context may affect the distance relationships: this is handled by having
different frames of reference, each with its own distance system and with inferences in
different frames of reference being composed usingarticulation rules(cf. [116]).

One obvious effect of moving from one scale, or context to another, is that qualitative
distance terms such as “close” will vary greatly; more subtly, distances can behave in
various “non-mathematical” ways in some contexts or spaces: e.g. distances may not be

13Actually it is straightforward to specify relative measurements given an “absolute” calculus: to say that
x > y, one may simply writex − y = +.

14Section 1.3.2 introduces composition tables
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symmetrical15. Another “mathematical aberration” is that in some domainsthe shortest
distance between two points may not be a straight line (e.g. because a lake or a building
might be in the way), or the “Manhattan Distance” found in typical North American cities
laid out in a grid system.

Shape

Shape is perhaps one of the most important characteristics of an object, and particularly
difficult to describe qualitatively. In a purely mereotopological theory, very limited state-
ments can be made about the shape of a region: e.g. whether it has holes, or interior voids,
or whether it is one piece or not. It has been observed [93] that one can (weakly) constrain
the shape of rigid objects by topological constraints usingRCC-8 relations.

However, if an application demands finer grained distinctions, then some kind of semi-
metric information has to be introduced16. For an explicit qualitative shape description one
needs to go beyond mereotopology, introducing some kind of shape primitives whilst still
retaining a qualitative representation. Of course, as [39]note: the mathematical commu-
nity have developed many different geometries which are less expressive than Euclidean
geometry, for example projective and affine geometries, buthave not necessarily investi-
gated reasoning techniques for them (though see [7, 10, 35]).

A dichotomy can be drawn between representations which primarily describe the shape
via the boundary of an object compared to those which represent its interior. Approaches
to qualitative boundary description have been investigated using a variety of sets of prim-
itives. The work of Meathrel and Galton [142] generalises much of this work. The basic
idea is to consider the tangent at each point on the boundary of a 2D shape – it is either de-
fined (D) or undefined (U ) – in this latter case the boundary is at a cusp or kink point. If it
is defined, then the rate of change of the tangent at that pointcan be considered (assuming a
fixed (anticlockwise) traversal of the boundary, as can all the higher order derivatives (un-
til it becomes undefined). Each derivative takes one of the qualitative values+, 0, −, and
at the level of the first derivative denotes whether the shapeis locally convex, straight or
concave. Depending on how many higher order derivatives areconsidered, the description
becomes progressively more and more detailed, and a greatervariety of different shapes
can be distinguished. The values+ and− can only hold over a boundary segment, whereas
0 andU can hold at a single boundary point. Thus the description of aboundary starts at
a particular point, and then proceeds, anticlockwise, to label maximal boundary segments
having a particular qualitative value, and isolated pointsthat may separate these. There
are constraints on what sequences of descriptions are possible, and the rules for construc-
tion aToken Ordering Graph(which is an instance of the continuity networks/conceptual
neighbourhoods discussed in section 1.4 below) have been formulated. For example, a+
segment cannot directly transition to a− segment without passing through aU/0 point or
a0 segment.

Shape description by looking at global properties of the region rather than its boundary
has been investigated too, for example the work of [39] describes shape via properties such

15E.g. because distances are sometimes measured by time takento travel, and an uphill journey may take
longer than a return downhill journey [114].

16 Of course, orientation and distance primitives as discussed above already add something to pure topology,
but as already mentioned these are largely point based and thus not directly applicable to describing shape of a
region.
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as compactness and elongation by using the minimum boundingrectangle of the shape
and the order of magnitude calculus of [141]: elongation is computed via the ratio of the
sides of the minimum bounding rectangle whilst compactnessby comparing the area of the
shape and its minimum bounding rectangle. The medial axis can also used as a proxy for
shape, and has been used extensively in the computer vision community, and within a KR
setting in [179] for distinguishing lakes from rivers. The notion of a Voronoi hull has also
been used (e.g. [63]).

Combinations of different aspects

Although we have attempted to present various aspects of spatial representation separately,
in general they interact with each other. For example, knowing the relative size of two
regions (smaller, larger, equal) can effect which mereotopological relationships are possi-
ble [96]. There is also a relationship between distance and the notion of orientation: e.g.
distances cannot usually be summed unless they are in the same direction, and the distance
between a point and a region may vary depending on the orientation. Thus it is perhaps
not surprising that there have been a number of calculi whichare based on a primitive
which combines distance and orientation information. One straightforward idea [87] is
to combine directions as represented by segments of the compass with a simple distance
metric ( far, close). A slightly more sophisticated idea is to introduce a primitive which
defines the position of a third point with respect to a directed line segment between two
other points [217] (generalised to the 3D case in [151]). Another approach that combines
knowledge about distances and positions in a qualitative way – through a combination of
the Delta-calculus [216] and orientation is presented in [215]. Liu [135] explicitly defines
the semantics of qualitative distance and qualitative orientation angles and formulates a
representation of qualitative trigonometry. A example of acombined distance and position
calculus is [76].

1.2.6 Mereogeometry

Just as mereotopology extends mereology with topological notions, so mereogeometry ex-
tends mereology with geometrical concepts. In principle one could add any of the notions
of orientation or distance/size discussed above to mereology, but most of those are de-
fined on points rather than regions which mereology presumes. In the style of [49] for
mereotopology, Borgo and Masolo [22] compare and contrast arange of mereogeome-
tries. The benchmark system isRegion Based Geometry(RBG) [14, 16] which builds on
the earlier work of Tarski [195]. This usesP(x, y) andS(x) (x is a sphere) as primi-
tives, and captures full Euclidean geometry, in a region based setting. RBG is axiomatised
in second order logic, and has been shown to be categorical [14]. Three other systems
[21, 149, 56, 57] are shown to be equivalent, and all are termed Full Mereogeometries;
these other systems have different sets of primitives, for example theCanConnect prim-
itive mentioned above in section 1.2.5 or the primitiveCG(x, y) (x is congruent toy). A
fifth system [200, 6], which uses the primitiveCloser(x, y, z) (x is closer toy than toz)
reported there to be slightly weaker, is in fact also a full mereogeometry, a result which
follows as an immediate consequence of the results in [54]. It is conjectured in [22] that
the theory obtained by adding a convex hull primitive to mereotopology (as in extensions
of RCC [43]) is strictly weaker. In fact, in [54] it is shown that this is indeed the case since
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such a language is invariant under affine transformations, and thus unable to express prop-
erties such asS(x) which is not invariant. This followed on from an earlier result, in which
it was shown that in a constraint language [55] the primitives for adjacency, parthood and
convexity are sufficient in combination to provide an affine geometry. A similar result is
provided in [157] where it is demonstrated that the first order language with parthood and
congruence of primitives also enables the distinction of any two regions not related by an
affine transformation. Moreover, it is shown that a coordinate system can be defined in this
language, thus raising the question of whether it deserves the labelqualitative– and indeed
this result and question also apply to any full mereogeometry. A similar observation has
already been made above for the STAR calculus [172] described in section 1.2.5, and also
indeed for the affine mereogeometries based on convexity mentioned just above [54].

An application of a mereogeometry based on congruence and parthood to reasoning
about the location of mobile rigid objects is [51]. A simple constraint language whose
four primitives combine notions of congruence and mereology has been definined and
investigated from a computational viewpoint [50] – the primitives areEQ, CGPP, CGPPi
(congruent to a proper part, and the inverse relation), andCNO (where none of the other
relations hold).

1.2.7 Spatial Vagueness

The problem of vagueness permeates almost every domain of knowledge representation.
In the spatial domain, this is certainly true, for example itis often hard to determine a
region’s boundaries (e.g. “southern England”).

Vagueness of spatial concepts can be distinguished from that associated with spatially
situated objects and the regions they occupy. An adequate treatment of vagueness in spa-
tial information needs to account for vague regions as well as vague relationships [46].
Although there has been some philosophical debate concerning whether vague objects can
exist [77], formal theories dealing with vagueness of extent are not well-established.

Existing techniques for representing and reasoning about vagueness such as supervalu-
ation theory have been extended and applied in a spatial context [179] and [15], which also
specifically addresses the issue of the preservation of object identity in the face of loss of
‘small’ parts.

There have also been extensions of existing spatial calculispecifically designed to ad-
dress spatial indeterminacy. In particular there have beenextensions of both the RCC
calculus [45, 46] (called the “egg-yolk” calculus) and the 9-intersection [37]; the broad
approach in each of these is essentially the same – to identify a core region which always
belongs to the region in question (theyolk in the terminology of former, and an extended
region which might or might not be part of it (together forming theegg). It turns out that if
one generalises RCC-8 in this way [46] there are 252 JEPD relations between non crisp re-
gions which can be naturally clustered into 40 equivalence classes, and 46 JEPD relations,
clustered into 13 equivalence classes in the case of the extension to the purely mereological
RCC-5. The axiomatic presentation of the egg-yolk calculusin [46] extends the ontology
of crisp regions with vague (non-crisp) ones and relies on a additional binary relation to
RCC -x is crisper than regiony. An application of the egg-yolk calculus to reasoning about
a non spatial domain – class integration across databases – is [128].

It has been shown [38] that the extension of the 9-intersection model to model regions
with broad boundaries can be used to reason not just about regions with indeterminate
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boundaries but also can be specialised to cover a number of other kinds of regions including
convex hulls of regions, minimum bounding rectangles, buffer zones and rasters. (This last
specialization generalises the application of then-intersection model to rasters previously
undertaken [72].)

Another notion of indefiniteness relates to locations. Bittner [19] deals with the notion
of exact, part and rough location for spatial objects. The exact location is the region of
space taken up by the object. The notion of part location (as introduced by [26]) relates
parts of a spatial object to parts of spatial regions. The rough location of a spatial object
is characterised by the part location of spatial objects with respect to a set of regions of
space that form regional partitions. Consequently, the notion of rough location links parts
of spatial objects to parts of partition regions.

Bittner [19] argues that the observations and measurementsof location in physical
reality yield knowledge about rough location: a vaguely defined objecto is located within
a regional partition consisting of the three concentric regions: ‘core’, ‘wide boundary’ and
‘exterior’. In this context, the notion of rough location within a partition consisting of the
three concentric regions coincides with the notion of vagueregions introduced by [45].

It is worth noting the similarity of these ideas to rough sets[60], though the exact rela-
tionship has yet to be fully explored, though see, for example [155, 20]. Other approaches
to spatial uncertainty are to work with an indistinguishability relation which is not tran-
sitive and thus fails to generate equivalence classes [199,119], and the development of
nonmonotonic spatial logics [188, 3].

1.3 Spatial Reasoning

In the previous section we described some approaches to representing spatial informa-
tion and gave different examples of spatial representations from the vast literature on this
topic. For some purposes it is enough to have a representation for spatial knowledge, but
what makes intelligent systems intelligent is their ability to reason about given knowledge.
There are different reasoning tasks an intelligent system might have to perform. These in-
clude deriving new knowledge from the given information, checking consistency of given
information, updating the given knowledge, or finding a minimal representation. Even
though these reasoning problems are quite different, they can be transformed into each
other, and algorithms developed for one reasoning problem can often easily be modified to
solving other reasoning problems. Much of the research on spatial reasoning has therefore
focused on one particular reasoning problem, theconsistency problem, i.e., given some
spatial information, is the given information consistent or inconsistent.

In principle, reasoning about spatial knowledge given in the form of a logical represen-
tation is not different from reasoning about other kinds of knowledge. However, much of
the qualitative spatial knowledge we are dealing with is of avery particular form and can
be represented as relations between spatial entities. We are usually considering binary and
sometimes ternary relations which can be represented as constraints restricting the spatial
properties of the entities we are describing. This constraint-based representation gives us
the possibility to develop reasoning algorithms which are much more efficient than stan-
dard logical deduction, albeit less powerful.

A constraint-based representation of spatial knowledge takes the form of an existen-
tially quantified first-order logical expression:∃x1 . . . ∃xn

∧
i,j

∨
R∈A

R(xi, xj), where
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x1, . . . xn are variables over the domain of spatial entities,A is the set of available base
relations, andR(xi, xj) is a binary constraint which restricts the possible instantiations of
xi, xj to the tuples ofR. Solving this formula is basically aconstraint satisfaction prob-
lem (CSP)as described in chapter 4. One of the major differences of spatial relations and
spatial constraints to those constraints described in chapter 4 is that the domain of spa-
tial entities is usually infinite, i.e, there is an infinite number of spatial entities that can
be assigned to the variablesx1, . . . xn and which might have to be tested when deciding
consistency of spatial information. While standard CSPs over finite domains are in general
NP-complete, spatial CSPs overinfinite domainsare potentially undecidable.

Spatial reasoning with constraints and relations mainly relies on algebraic operators
on the relations, the most important being thecompositionoperator. Two relationsR and
S are composed according to the following definition:R ◦ S = {(x, y)|∃z : (x, z) ∈
R and(z, y) ∈ S}. Composition has to be computed using the formal semantics of the
relations. Due to the infinite domains, computing composition can be an undecidable
problem. If the compositions of the base relations can be computed, they can be stored
in a composition table and reasoning becomes a matter of table look-ups.

The main research topics in spatial reasoning in the past decade include the follow-
ing:

• determining the complexity of reasoning over different spatial calculi
• proving that a formalism is decidable and if so, possibly identifying tractable

or even maximal tractable subsets of spatial calculi
• finding representations of qualitative spatial knowledge which allow for more

efficient reasoning
• developing efficient algorithms for spatial reasoning as well as approximation

methods and heuristics which lead to faster solutions in practice
• developing methods for proving tractability
• computing composition tables and verifying their correctness
• determining whether a qualitative spatial description isrealizable, i.e. whether

a planar interpretation exists

In this section we give an overview of some of the main achievements in this area. It is
worth mentioning that some of these research questions originated in the area of temporal
reasoning and most methods can be applied to both spatial andtemporal reasoning (see
chapter 12).

1.3.1 Deduction

When spatial relations, properties of the spatial entitiesthat are being used and the re-
quired axioms are represented using logical formalisms, wecan use the standard deduc-
tion mechanisms of the used logics for reasoning over spatial knowledge. As described
in section 1.2.4, the Region Connection Calculus was definedin first-order logic [164].
Even though reasoning in this first order representation of RCC (or indeed any first order
mereotopology) is undecidable [105], first order theorem proving has been used to verify
a number of theorems including those relating to the RCC-8 composition table [163] and
its conceptual neighbourhood[111].
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In order to create a decidable reasoning procedure, Bennettdeveloped encodings of the
RCC-8 relations first in propositional intuitionistic logic [11] and later an advanced encod-
ing in propositional modal logic [12]. The encoding does notreflect the full expressive
power of the first order RCC-8 theory, but does enable a decision procedure to be built. In
the modal encoding, regions are represented as propositional atoms and a modal operator
I is used to represent the interior of a region, i.e., ifX represents a region, thenIX repre-
sents the interior ofX . The interior operator is an S4 modality and goes back to workby
Tarski [194]. The usual propositional operators are used torepresent intersection, union,
or complement or regions. In addition, Bennett divides the propositional formulas into two
types,model constraintswhich have to hold in all models of the encoding, andentailment
constraintswhich are not allowed to hold in any model of the encoding. Themodel and
entailment constraints are combined to a single formula using another modal operator2

which Bennett calls a strong S5 modality.
When encoding spatial relations in different logics, it is important to not only encode

the properties of the relations, but also the properties of the spatial entities that are being
used. Bennett’s initial encodings were missing the regularity property of regions which
was later added to the encoding [173]. The extended modal encoding was shown to be
equivalent to the intended interpretation of the RCC-8 relations [150].

The intuitionistic and modal encodings were not only usefulfor providing a decidable
decision procedure for reasoning about spatial information represented using RCC-8 rela-
tions, but also formed the basis for the subsequent computational analysis of RCC-8. Nebel
[146] used the intuitionistic encoding for showing that theRCC-8 consistency problem is
tractable if only base relations are used17. Renz and Nebel [173] used Bennett’s modal en-
coding and transformed it into a classical propositional encoding. While the propositional
encoding has been used for analysing the computational properties of RCC-8, the encoding
has not been used for actual spatial reasoning yet. Since modern SAT solvers are extremely
efficient, it might be possible that deductive reasoning canbe used for obtaining efficient
solutions to spatial reasoning problems. A similar analysis has been done by Pham et al
[154] who compared reasoning over the interval algebra using constraint-based reasoning
methods with deductive reasoning using modern SAT solvers.First results indicate that
deductive reasoning can be more efficient in some cases than constraint based reasoning.

There have been several extensions of the modal encoding of RCC-8 to deal with
more expressive spatial and also with spatio-temporal information. BRCC-8 generalises
the RCC-8 modal encoding to also cover Boolean combinationsof spatial regions [212].
S4u which is the propositional modal logicS4 extended with the universal modalities is
the most general version and contains both BRCC and RCC-8 as fragments [213]. Several
of these fragments have been combined with different temporal logics and compared with
respect to their expressiveness and their complexity [90].Modal logics are closely related
to Description Logics, and in this context, we note that someresearch has been on spatial
description logics [107].

Some work has also investigated langages more expressive than mereotopology: it has
been shown that the constraint language ofEC(x, y), PP(x, y) andconv(x) is intractable
(it is at least as hard as determining whether a set of algebraic constraints over the reals is
consistent) [55].

17Due to the missing regularity conditions in the intuitionistic encoding, Nebel’s result turned out to be in-
complete.
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1.3.2 Composition

Given a domain of spatial entitiesD, spatial relations are subsets of the cross-product
of D and may contain an infinite number of tuples, i.e,R ⊆ {(a, b)|a, b ∈ D}, since
D may itself be infinite. Having a set of jointly exhaustive andpairwise disjoint base
relationsA and considering the powerset2A of the base relations as the set of possible
relations, the algebraic operations union, intersection,and complement of relations are
straightforward to compute. If the set of base relations is chosen in a way such that the
converse relations of all base relations are also base relations, then the converse operator
is also easy to compute. The most important algebraic operator which is the basis for
reasoning over spatial relations is thecompositionoperator which is defined asR ◦ S =
{(x, y)|∃z : (x, z) ∈ R and(z, y) ∈ S} for two relationsR andS. If composition is
known for all pairs of base relations, then composition of all relations can be computed as
the union of the pairwise compositions of all base relationscontained in the relation, i.e.,
R ◦ S = {Ri ◦ Sj |Ri, Sj ∈ A, Ri ⊆ R, Sj ⊆ S}. Therefore, if the composition and the
converse of all base relations are known and if they are all contained in2A, i.e., if 2A is
closed under composition and converse, then it is possible to reason about spatial relations
without having to consider the tuples contained in the relations. The relations can then be
treated as symbols that can be manipulated using the algebraic operators. In the following
section we describe how this can be done using constraint-based reasoning methods.

The question remains how the composition of base relations can be computed if the
domains are infinite. While it is possible to compute composition in situations where the
domains can be ordered or are otherwise well-structured (for example domains based on
linear orders such as the Directed Interval Algebra [169] orthe rectangle algebra [8]), in
many cases it is not possible to compute composition effectively. This includes RCC-8
where it is possible to find example scenarios which show thatthe given composition table
is not correct. One example given by Düntsch [61] considersthree regionsA, B, C in
two-dimensional space whereA is a doughnut andB its hole. It is not possible to find a
regionC which is externally connected toA andB and therefore the tuple(A, B) which is
contained in the relationEC is not contained inEC ◦ EC. So the composition ofEC with
EC does not containEC even though this is specified in the RCC-8 composition table.
In cases where it is not possible to compute composition or where a set of relations is
not closed under composition, it is necessary to resort to a weaker form of composition in
order to apply constraint-based reasoning mechanisms. Düntsch [61] proposed usingweak
composition. The weak composition of two relationsR, S ∈ 2A is the strongest relation of
2A which contains the actual composition, i.e.,R◦w S = {B|B ∈ A, B∩(R◦S) 6= ∅}. It
is clear that any set2A is always closed under weak-composition and therefore constraint-
based reasoning methods can be applied to these relations. The RCC-8 [163] is actually
a weak composition table (and thus also the the table for the corresponding 9-intersection
set of eight topological relations [66]).

If only weak composition can be used, some of the inferences made by composing rela-
tions are not correct and might lead to wrong results. It has been shown that correctness of
the inferences does not depend on whether composition or only weak composition is used,
but on a different property, namely, whether a set of relations is closed under constraints
[171]. A set of relations2A is closed under constraintsif for none of its base relations
R ∈ A there exists two setsΘ1, Θ2 of constraints over2A which both contain the con-
straintxRy such that the following property holds:Θ1 andΘ2 refine the constraintxRy to
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the constraintsxR1y andxR2y, respectively, whereR1, R2 ⊆ R andR1 ∩ R2 = ∅. That
is none of the atomic relations can be refined to two non-overlapping sub-atomic relations
by using arbitrary sets of constraints.

1.3.3 Constraint-based spatial reasoning

Using constraint-based methods for spatial reasoning gives the possibility to capture much
of spatial reasoning within a unified framework. Even thoughqualitative spatial informa-
tion is very diverse and covers different spatial aspects, it is usually expressed in terms
of spatial relations between spatial entities which can be expressed using constraints. As
mentioned in the introduction of this section, many different spatial reasoning tasks can be
reduced to theconsistency problem, on which we will focus on in this section.

Definition 1 LetA be a finite set of JEPD binary relations and over a (possibly infinite)
domainD andS ⊆ 2A. The consistency problemCSPSAT(S) is defined as follows:

Instance: A finite setV of variables over the domainD and a finite setΘ of
binary constraintsxRy, whereR ∈ S andx, y ∈ V .

Question: Is there an instantiation of all variables inΘ with values fromD
such that all constraints inΘ are satisfied?

Constraint-based reasoning uses constraint propagation in order to eliminate values
from the domains which are not consistent with the constraints (see Chapter 4). Since the
domains used in spatial and temporal reasoning are usually infinite, restricting the domains
is not feasible. Instead, it is possible to restrict the domains indirectly by restricting the
relations that can hold between the spatial entities. This can only be done if there is a
finite number of relations and an effective way of propagating relations, which is the case
if we have a set of relationsS ⊆ 2A which is closed under intersection, converse and weak
composition. These operators are the only means we have for propagating constraints.
While it is possible to use composition of higher arity, usually only binary composition is
used for propagating constraints.

The best known constraint propagation algorithm for spatial CSPs is thepath-consistency
algorithm [137] (see also chapter 4 of this handbook). It is a local consistency algorithm
which makes all triples of variables ofΘ consistent by successively refining all constraints
using the following operation until either a fixed point is reached or one constraint is re-
fined to the empty relation:∀x, y, z.x{R}y := x{R}y ∩ (x{S}z ◦ z{T }y). If the empty
relation occurs, thenΘ is inconsistent, otherwise the resulting set is calledpath-consistent.
If 2A is closed under composition, intersection and converse, then the path-consistency
algorithm terminates in cubic time.

Path-consistency is equivalent to [89] which holds if for every consistent instantiation
of two variables it is always possible to find an instantiation for any third variable such
that the three variables together are consistent. 3-consistency can be generalised tok-
consistencywhich holds if for any consistent instantiation ofk−1 variables there is always
a consistent instantiation for anyk-th variable. In order to computek-consistency, it is
necessary to have(k − 1)-ary composition. In the following we restrict ourselves to3-
consistency and the associated path-consistency algorithm which uses binary composition.
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In many cases, composition cannot be computed and only weak composition is avail-
able. In these cases, the path-consistency algorithm cannot be applied and a weaker algo-
rithm, thealgebraic-closure algorithmmust be used [133]. Both algorithms are identical
except that the path-consistency algorithm uses composition while the algebraic-closure
algorithm uses weak composition. If the algebraic closure algorithm is applied to a set of
constraints and a fixed point is reached, the resulting set iscalledalgebraically closedor
a-closed. It is clear that unless weak-composition is equivalent to composition, an a-closed
set is usually not 3-consistent.

Local consistency algorithms such as path-consistency andalgebraic-closure, and pos-
sible variants of these algorithms which make use of composition of higher arity, are the
central methods that constraint-based reasoning offers tosolving the consistency problem.
It is highly desirable that for a given set of relations2A the consistency problem for the
base relations, i.e.,CSPSAT(A), can be decided using a local consistency algorithm. It
has been shown that algebraic-closure decidesCSPSAT(A) if and only if 2A is closed
under constraints [171]. While this is mainly useful for showing that algebraic closure
does not decideCSPSAT(A), the other direction has to be manually proven for each set
A and for each domainD. If a decision procedure forCSPSAT(A) can be found, then the
consistency problem for the full set of relations is also decidable and can be decided by
backtracking over all sub-instances which contain only base relations.

The basic backtracking algorithm takes as input a set of constraintsΘ over a set of
relationsS ⊆ 2A, selects an unprocessed constraintx{R}y of Θ, splitsR into its base
relationsB1, . . . , Bk, replacesx{R}y with x{Bi}y and repeats this process recursively
until all constraints are refined. If the resulting set of constraints is consistent, which can
be shown using the local consistency algorithm, thenΘ is consistent. Otherwise the al-
gorithm backtracks and replaces the last constraint with the next possible base relation
x{Bj}y. If all possible refinements ofΘ are inconsistent, thenΘ is inconsistent. The
backtracking algorithm spans a search tree where each recursive call is a node and each
leaf is a refinement ofΘ which contains only base relations. IfCSPSAT(A) can be de-
cided in polynomial time, thenCSPSAT(2A) is in NP and the runtime of the backtracking
algorithm is exponential in the worst case.

There are several ways of improving the performance of the backtracking algorithm.
The easiest way is to apply the local consistency algorithm at every recursive step. This
prunes the search tree by removing base relations that cannot lead to a solution. Nebel
[148] has shown that the interleaved application of the path-consistency algorithm does
not alter the outcome of the backtracking algorithm, but considerably speeds up its per-
formance. The performance can also be improved by using heuristics for selecting the
next unprocessed constraint and for selecting the next baserelations. The first choice can
reduce the size of the search tree while the second choice canhelp finding a consistent sub-
instance earlier. While the basic backtracking algorithm refines a setΘ to sets containing
only base relations, it is also possible to use any other set of relationsT which contains
all base relation and for which there is an algorithm which decides consistency for this
set. IfCSPSAT(T ) can be decided in polynomial time,T is a tractable subsetof 2A. A
tractable subset is amaximal tractable subset, if adding any other relation not contained in
the tractable subset leads to an intractable subset. Tractable subsets can be used to improve
backtracking by splitting each constraintx{R}y ∈ Θ into constraintsx{T1}y, x{T2},...,
x{Ts}y such that

⋃
i Ti = R and allTi ∈ T , and by backtracking over these constraints.

This considerably reduces thebranching factorof the search tree. Instead of splitting each
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relation into all of its base relations, they can be split into sub-relations contained inT
[127]. The average branching factor of the resulting searchtree depends on how wellT
splits the relations of2A. The lower the average branching factor, the smaller the search
tree.

It has been shown in detailed empirical analyses [174] that large tractable subsets com-
bined with different heuristics can lead to very efficient solutions of the backtracking prob-
lem. While it is not possible to determine in advance which choice of heuristics will be
most successful for solving an instance of a spatial reasoning problem, it is clear that having
large tractable subsets will always be an advantage. A lot ofresearch effort has therefore
been spent on identifying tractable subsets of spatial calculi.

The methods described above of using constraint propagation for determining local
consistency and using backtracking for solving the generalconsistency problem can be
applied to all kinds of spatial information if the spatial relations used are constructed from
a set of base relations and the information is expressed in the form of constraints over
these relations. This has the advantage that general methods and algorithms can be applied
and that results for one set of spatial relations can be carried over to other sets. One
problem with this approach is that spatial entities are treated as variables which have to be
instantiated using values of an infinite domain. How to integrate this with settings where
some spatial entities are known or can only be from a small domain is still unknown and is
one of the main future challenges of constraint-based spatial reasoning.

1.3.4 Finding Efficient Reasoning Algorithms

As discussed in the previous section, large tractable subsets of spatial calculi are the most
important part of efficient spatial reasoning. In order to find tractable subsets, or even
maximal tractable subsets, several ingredients have to be provided:

1. One ingredient is a method for proving the complexity of a given subset, or slightly
weaker, a sound method for proving that a given subset is tractable.

2. The second ingredient is a way of finding subsets that mightbe tractable subsets
and for which the method described above can be used. A set ofn base relations
contains2n relations and2(2n) different subsets. It is impossible to test all subsets
for tractability, so the number of candidate sets should be made as small as possible.

3. In order to show that a tractable subset is a maximal tractable subset, it must be
shown that any relation which is not contained in the tractable subset leads to an
NP-hard subset when added to the tractable subset. For this it is necessary to have a
method for proving NP-hardness of a given subset.

4. For a complete analysis of tractability, it must be shown that the identified tractable
subsets are maximal tractable subsets and that no other subset which is not contained
in one of the maximal tractable subsets is tractable.

In this section we are interested in finding tractable subsets of2A for efficiently solving
the consistency problemCSPSAT(A). We are therefore only interested in finding tractable
subsets which contain all base relations as only these subsets can be used as split-sets in
our backtracking algorithm. There has been a series of papers on finding tractable subsets
of the Interval Algebra (e.g. [123]) and also of RCC-5 [118] which do not contain all
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base relations and which are mainly interesting for a theoretical understanding of what
properties lead to intractability.

The number of subsets which have to be considered for analysing complexity can be
greatly reduced by applying the closure property [173]: theclosure of a setS ⊆ 2A under
composition, intersection and converse has the same complexity asS itself. For finding
tractable subsets this means that only subsets which are closed under the operators have to
be considered, as all subsets of a tractable set are also tractable. This can only be applied if
a set is closed under composition. Since in many cases only weak composition is known,
it is not obvious that the closure under weak composition hasthe same complexity. It has
only recently been shown [171] that whenever algebraic-closure decides consistency of
CSPSAT(A), i.e., for atomic CSPs, then the closure under weak composition preserves
complexity.

There have been several methods for finding tractable subsets of NP-hard sets of rela-
tions. The most obvious way is to find a polynomial one-to-onetransformation ofCSPSAT
to another NP-hard problem for which tractable subclasses are known. The most popular
problem is certainly the propositional satisfiability problem SAT for which two tractable
subclasses are known,HORNSAT where each clause contains at most one positive literal,
and2SAT where each clause contains at most two literals. IfCSPSAT(2A) can be reduced
to SAT and it is possible to find relations of2A which lead to Horn clauses (HORNSAT)
or Krom clauses (2SAT), respectively, then the set of all these relations is tractable. This
method has first been applied by Nebel and Bürckert [147] forthe Interval Algebra and
later also by Nebel [146] and by Renz and Nebel [173] for RCC-8.

A different method has been proposed by Ligozat [130] who transformed the relations
of the Interval Algebra to regions on a plane and to the lines that separate the regions.
The dimension of a relation is the dimension to which a relation is transformed to, a two-
dimensional region, a one-dimensional line, or a zero-dimensional point (the intersection
of lines). Ligozat showed that the set of those relations that can be transformed to a convex
set are tractable (theconvex relations), and also those relations which do not yield a convex
region but a region for which the convex closure adds only relations of lower dimension
(the preconvex relations). This method has also been applied to other sets of relations, in
particular those which are somehow derived from the interval algebra [132], but it seems
that the preconvexity method cannot be generalised for every algebra.

These methods have in common that they can only be used for proving tractability of
one or maybe two different particular subsets, but not for showing tractability for arbitrary
subsets. Another method that has been proposed, therefinement method[168], is more
general and can be applied to any subset. The refinement method takes as input a refine-
ment strategy, which is a mapping of every relation of the to be tested subsetS to a subset
T for which it is known that algebraic closure decides consistency in polynomial time.
The mapping must be a refinement, i.e., every relationS ∈ S must be mapped to a relation
T ∈ T such thatT ⊆ S. The refinement method then checks every a-closed triple of rela-
tions overS and tests whether making the refinements leads to an inconsistency. If none of
the original refinements nor the new refinements obtained by applying the method result in
an inconsistency, then algebraic closure also decides consistency forS and thereforeS is a
tractable subset. The refinement method relies upon finding asuitable refinement strategy.
It has been shown that using the identity refinement strategy, i.e., removing all identity
relations, was successful for all the tested subsets of RCC-8 and the interval algebra [168].
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Even though the refinement method is very general, it does nothelp with finding can-
didate sets to which it can be applied. All candidates have incommon that they must
be closed under (weak) composition, converse and intersection and they must not contain
any relation which is known to be an NP-hard relation. Therefore we also need methods
for identifying NP-hard relations, i.e., relations that make the consistency problem NP-
hard when combined with the base relations. In order to show NP-hardness of a set of
relationsN ⊆ 2A, it is sufficient to find a known NP-hard problem which can be polyno-
mially reduced toCSPSAT(N ). This is a difficult problem and might require a different
transformation from a different NP-hard problem for each different setN . However, since
CSPSAT has a common structure for all sets of relations, namely, a constraint graph where
the labels on the edges are unions of base relations, it is possible to generate the transfor-
mations with computer assisted methods.

Renz and Nebel [173] proposed a scheme for transforming 3SATvariants toCSPSAT
by translating variables, literals and clauses to a set of spatial constraints and to rela-
tions Rt, Rf ∈ 2A which correspond to variables and literals being true (Rt) or false
(Rf ). For example, each variablep is transformed to the constraintsx+

p {Rt, Rf}y+
p and

x−
p {Rt, Rf}y

−
p where the first constraint is refined to the relationRt if p is true and the

second one toRf if p is true. In order to ensure this, additionalpolarity constraintsbe-
tween the remaining pairs ofx+

p , x−
p , y+

p andy−
p are needed.Clause constraintswhich

ensure that the requirements imposed by the clauses hold forthe spatial variables are also
needed. The relationsRt andRf as well as the relations contained in the polarity and
clause constraints can be found by exhaustive search over all possible relations. If an as-
signment of relations of2A to this constraint schema can be found and if it can be shown
that the transformation preserves consistency, then the set N of all relations used in this
schema is NP-hard.

Based on this NP-hard subsetN , it is possible to identify other NP-hard subsets using
the closure property and a computer assisted enumeration ofdifferent subsets. Every subset
of 2A whose closure containsN is also an NP-hard subset. Easier to compute and more
useful is the property that for a known tractable subsetT and every relationR ∈ 2A which
is not contained inT , T ∪ {R} is NP-hard if its closure contains a known NP-hard set.
This property can be used to compute whether a tractable subset is a maximal tractable
subset, namely, if every extension of the set is NP-hard.

By combining the presented methods, the closure property, the refinement method,
the transformation schema and computer assisted enumerations, a complete analysis of
tractability can be made. This has been demonstrated for RCC-8 [168] where three maxi-
mal tractable subsets were identified. These subsets combined with different backtracking
heuristics lead to very efficient solutions of the RCC-8 consistency problem and most of
the hardest randomly generated instances were solved very efficiently [174].

In a recent paper, Renz [170] extended the refinement method and presented a proce-
dure which automatically identifies large tractable subsets given only the base relationsA
and the corresponding weak composition table. The sets generated by Renz’s procedure
are guaranteed to be tractable if algebraic-closure decides CSPSAT(A). The procedure
automatically identified all maximal tractable subsets of RCC-8 in less than 5 minutes and
for the Interval Algebra in less than one hour.
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1.3.5 Planar Realizability

Given a metric spatial description it is a simple matter to display it. But given a purely
qualitative spatial configuration then finding a metric interpretation which satisfies it is
not, in general, trivial. A particular problem of interest here is whether mereotopological
descriptions have planar realizations, where all the regions are simply connected; clearly
this is not possible in general, since it is easy to specify a 5-clique using a set of externally
connected regions, and a 5-clique graph is not realisable inthe plane. This problem has
been studied, initially in [104]18 which considers an RCC-8 like calculus and two simpler
calculi and determines which of a number of different problem instances of relational con-
sistency and planar realizability are tractable and which are not – the latter is the harder
problem. Planar realizability is of particular interest for the 9-intersection calculus since it
is defined for planar regions. Until recently it was unknown if the consistency problem for
the 9-intersection calculus is decidable at all and it has only recently been shown that the
problem is NP-complete [182].

1.4 Reasoning about Spatial Change

So far we have concentrated purely on static spatial calculi(although we briefly mentioned
the combination of modal spatial and temporal logics above in section 1.3.1). However it
is important to develop calculi which combine space and timein an integrated fashion. We
do not have the space here to deal with this topic in any detail. Galton’s book [94] is an
extended treatment of this topic.

As discussed in Chapter 9, an important aspect of qualitative reasoning is the stan-
dard assumption that change is continuous. A simple consequence is that while changing,
a quantity must pass through all the intermediate values. For example, in the frequently
used quantity space{−, 0, +}, a variable cannot transition from ‘−’ to ‘ +’ without going
through the intermediate value 0. In the relational spatialcalculi we have concentrated on
in this chapter, this requirement manifests itself in knowing which relations are neighbours
in the sense that if the predicate holds at a particular time,then there is some continu-
ous change possible such that the next predicate to hold willbe a neighbour.Continuity
networksdefining such neighbours are often calledconceptual neighbourhoodsin the lit-
erature following the use of the term [88] to describe the structure of Allen’s 13 JEPD
relations [2] according to their conceptual closeness19(e.g. meetsis a neighbour of both
overlapsand before). Most of the qualitative spatial calculi reported in this paper have
had conceptual neighbourhoods constructed for them20, for example figure 1.3 illustrates
the case for RCC-8. Continuity networks have been used as thebasis of qualitative spa-
tial simulations and reasoning about motion [52, 160, 68, 201, 202]. Continuity networks
are presented essentially as axioms in most calculi; however there has been some work on
inferring these from first principles [53, 111, 94].

18Claim 24 in this paper is subsequently admitted not to hold [28]; further work on this problem, generally
known as the “map graph” recognition problem can be found in [29, 30, 197, 31].

19Note that one can lift this notion of closeness from individual relations to entire scenes via the set of relations
between the common objects and thus gain some measure of their conceptual similarity as suggested by [23].

20A closely related notion is that of “closest topological distance” [68] – two predicates are neighbours if
their respective n-intersection matrices differ by fewer entries than any other predicates; however the resulting
neighbourhood graph is not identical to the true conceptualneighbourhood or continuity graph – some links are
missing.
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There are two main approaches to spatio-temporal representation; in one,snapshotsof
the world at different instants of time are considered; alternatively, a true spatio-temporal
ontology, typically a 4D region based representation is used, with time being one of the
dimensions. Grenon and Smith discuss thissnap-scanontology [103] in more detail. Ex-
amples of 4D approaches to spatio-temporal representationinclude [145, 111, 112, 110].

1.5 Cognitive Validity

An issue that has not been much addressed yet in the QSR literature is the issue of cognitive
validity. Claims are often made that qualitative reasoningis akin to human reasoning, but
with little or no empirical justification. One exception to this is the study made of a calculus
for representing topological relations between regions and lines [139]. Another study is
[121] that has investigated the preferred Allen relation (interpreted as a 1D spatial relation)
in the case that the composition table entry is a disjunction. Perhaps the fact that humans
seem to have a preferred model explains why they are able to reason efficiently in the
presence of the kind of ambiguity engendered by qualitativerepresentations. In [120, 175]
they extend their evaluation to topological relations.

1.6 Final Remarks

In this paper we have presented some of the key ideas and results in the QSR literature,
but space has certainly not allowed an exhaustive survey. A handbook on spatial logics
[1] will cover some of the topics briefly described here in much more detail. As in so
many other fields of knowledge representation it is unlikelythat a single universal spatial
representation language will emerge – rather, the best we can hope for is that the field
will develop a library of representational and reasoning devices and some criteria for their
most successful application. What we have outlined here arethe major axes of the space of
qualitative spatial representation and reasoning systems, and in particular the dimensions of
variability, such as the choice of representational formalism (e.g. first order logic, modal
logic, relation algebra), the ontology of spatial entities(e.g. points, lines, regions), the
primitive relations and operators (such as the various JEPDsets of relations discussed
above), and the different kinds of reasoning techniques (such as constraint based spatial
reasoning).

As in the case of non spatial qualitative reasoning, quantitative knowledge and rea-
soning must not be ignored – qualitative and quantitative reasoning are complementary
techniques and research is needed to ensure they can be integrated – for example by devel-
oping reliable ways of translating between the two kinds of formalisms21 – this problem
naturally presents itself when spatial information is acquired from sensors, in particular
image/video data – i.e. how qualitative symbolic spatial representations are grounded in
sensory and sensorimotor experience. Of particular interest is how to automatically learn
appropriate spatial abstractions and representations, for example see [125, 91]. Equally, in-
terfacing symbolic QSR to the techniques being developed bythe diagrammatic reasoning
community [98] is an interesting and important challenge.

In many situations, a hierarchical representation of spaceis desirable, for example in
robotics. Kuipers has promulgated the “Spatial Semantic Hierarchy” [124] as one such

21Some existing research on this problem includes [83, 81, 192].
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hierarchical model which consists of a number of distinct levels. Simply put, the “control
level” is composed of sensor values, from which local 2D geometry and control laws can
be determined. The next level is the “causal level” – a partially determined network in
which actions determine transitions between states identified at the previous control level.
The “topological level” describes space as being composed of paths, regions and places
with relations between them such as we have described in thischapter. Being at a place
corresponds to a distinct state of the causal layer. Finallythe “metrical level” augments the
topological level with metric information such as distanceand orientation. There has also
been work on hierarchical spatial reasoning in the context of a particular kind of spatial
information, such as direction relations [152].

Another important part of future work in this area is to find general ways of com-
bining different spatial calculi and analysing combined calculi. Most applications require
more than just one spatial aspect. Even though many calculi are using constraint-based
reasoning methods, combining constraints over different relations is a difficult problem as
the relations have infinite domains. That means their interactions must be taken care of
on a semantic level. This might require defining new relations which can negatively or
positively affect properties of the combined calculi [96, 95, 75].
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mécanique. Editions Hermes, 1994.

[8] P. Balbiani, J.-F. Condotta, and L. F. del Cerro. A new tractable subclass of the
rectangle algebra. InProceedings of the Sixteenth International Joint Conference
on Artificial Antelligence (IJCAI-99), pages 442–447, 1999.

[9] P. Balbiani, J.-F. Condotta, and L. F. del Cerro. Tractability results in the block
algebra.Journal of Logic and Computations, 12(5):885–909, 2002.
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