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Abstract. The constraint satisfaction problem provides a natural frame-
work for expressing many combinatorial problems. Since the general
problem is NP-hard, an important question is how to restrict the prob-
lem to ensure tractability. The concept of independence has proven to
be a useful method for constructing tractable constraint classes from
existing classes. Since checking the independence property may be a dif-
ficult task, we provide a simple method for checking this property. Our
method builds on a somewhat surprising connection between indepen-
dence and refinements which is a recently established way of reducing
one constraint satisfaction problem to another. Refinements have two
interesting properties: (1) they preserve consistency; and (2) their cor-
rectness can be easily checked by a computer-assisted analysis. We show
that all previous independence results of the point algebra for totally
ordered and partially ordered time can be derived using this method.
We also employ the method for deriving new tractable classes.

1 Introduction

The constraint satisfaction problem provides a framework for expressing combi-
natorial problems in computer science and elsewhere. The basic computational
problem is NP-hard [12] so an important question is how to restrict the prob-
lem to ensure tractability. This research has mainly followed two different paths:
restricting the scope of the constraints [8,7], i.e., which variables may be con-
strained with other variables, or restricting the constraints [6,10,17], i.e., the
allowed values for mutually constrained variables. In this paper, we will only
consider problems where the constraints are restricted.
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As we already have noted, quite a large number of tractable subclasses of
the CSP problem has been identified in the literature. Thus, it is of consid-
erable interest to investigate how tractable constraint types may be combined
in order to yield more general problems which are still tractable. Cohen et al.
[5] have studied so-called “disjunctive constraints”, i.e., constraints which are
disjunctions of constraints of specified types. They identified a certain property,
independence, which allows for new tractable constraint classes to be constructed
from existing classes. Several important classes of tractable constraints can be
obtained by their method such as the Horn fragment of propositional logic, the
ORD-Horn fragment [13] of Allen’s Interval Algebra, and the class of max-closed
constraints [10].

It is hardly surprising that deciding the independence property may be a
highly non-trivial task in many cases. The main goal of this paper is to present
a simple method for checking the independence property. Our method builds on
a connection between the independence property and refinements [15]. Loosely
speaking, a refinement is a way of reducing one CSP problem to another and it
has the property that if the second problem can be decided by path-consistency,
then path-consistency decides the first problem, too. Refinements were successful
in proving tractability of large subsets of the Region Connection Calculus as well
as Allen’s Interval Algebra [15]. One important aspect of refinements is that their
correctness can be easily checked by a computer-assisted analysis which implies
that the independence property can be automatically checked in many cases.

Using our method, we show that all previous independence results on the time
point algebra for partially ordered time [4,3,1] and the point algebra for linear
time [4, 5] can be derived using refinements and that this is sufficient to identify
all tractable sets of disjunctions of relations for the partially ordered time-point
algebra as well as for the point algebra for linear time. We also use this method
for deriving new tractable subclasses of the Region Connection Calculus [14].

The paper is organized as follows: In Section 2 we introduce the basic concepts
that are needed in the rest of the paper. In Section 3 we relate refinements and
independence and prove the main result that refinements imply independence.
In Section 4 we apply this result to various tractable sets of relations and derive
independent relations which form large tractable sets of disjunctions of relations.
Finally, the last section contains some concluding remarks.

2 Preliminaries

2.1 CSPs, Disjunctions, and Independence

Let A be a finite set of jointly exhaustive and pairwise disjoint binary relations,
also called basic relations. We denote the standard operations composition, in-
tersection and converse by o, N and ~!, respectively. Furthermore, we define the
unary operation — such that -S = A\S for all S C A.

The consistency problem CSPSAT(S) for sets S C 24 over a domain D is
defined as follows [16]:



Instance: A set V of variables over a domain D and a finite set © of binary
constraints xRy, where R € S and z,y € V.

Question: Is there an instantiation of all variables in © such that all constraints
are satisfied?

Naturally, a set of basic relations is to be interpreted as a disjunction of its
member relations. Given an instance @ of CSPSAT(R), let Mods(6) denote the
class of models of O (i.e. the satisfying instantiations) and Vars(©) the variables
appearing in 6.

Next, we introduce operators for combining relations.

Definition 1 Let R;, R be relations of arity 7,j and define the disjunction
R; V Ry of arity ¢ + j as follows:

Ri VR, = {(:El,...,.'lfi_H') EDi+j|(:II1,... ,:vi)ERlV
(IL‘H_I, .. .,IEH_]‘)ERQ}

Thus, the disjunction of two relations with arity 7, j is the relation with arity i+ j
satisfying either of the two relations. Note that the CSPSAT problem trivially
can be extended to handle disjunctive and non-binary constraints.

To give a concrete example, let D = {0, 1} and let the relations And = {{1,1)}
and Xor = {(0,1),(1,0)} be given. The disjunction of And and Xor is given by:

(0’ 0’ 07 1), <07 1, 0, 1)’ (1, O, 0’ ]‘), <1’ 1, 07 1),
And V Xor = <07 0’ 1’ 0)7 <0’ 17 ]" 0)’ <]" 01 1’ 0)7 <1’ 17 1’ 0)7
<17 170’ 0)’ <1’ 1’07 ]‘)’ <17 ]" 110>, <]" 11 1’ 1)

We see that the constraint £ And y V x Xor z is satisfiable when z, y and z has,
for instance, been instantiated to 1,0, 0, respectively.
The definition of disjunction can easily be extended to sets of relations.

Definition 2 Let I, I5 be sets of relations and define the disjunction I'73¥1%
as follows:
I3y =T1UILU{Ry VR | Ry € IN,Ry € I5}

The disjunction of two sets of relation I1VI% is the set of disjunctions of each

pair of relations in I, I's plus the sets Iy, I's. It is sensible to include I3 and I

since one wants to have the choice of using the disjunction or not. In many cases

we shall be concerned with constraints that are specified by disjunctions of an

arbitrary number of relations. Thus, we make the following definition: for any set

of relations, A, define A* = [J;2, AV¢ where AY® = {1} and AVi*! = AVEFA.
We continue by defining the independence property.

Definition 3 For any sets of relations I' and A, we say that A is independent
with respect to I' if for any set of constraints C' in CSPSAT(I" U A), C has a
solution whenever every C' C C, which contains at most one constraint whose
constraint relation belongs to A, has a solution.



Theorem 4 For any sets of relations I and A, if CSPSAT(I" U A) is tractable
and A is independent with respect to I', then CSPSAT(I'¥ A*) is tractable.

The notion of independence can alternatively (but equivalently) be defined as
follows: Let C = {c1,.-.,cx} and D = {dy,...,d,} be arbitrary finite sets of
constraints over I' and A, respectively. Then, A is independent of I" iff for every
possible choice of C and D, the following holds: if C U {d;}, 1 < i < m, is
satisfiable, then C' U D is satisfiable.

2.2 Refinements

We review the basics of refinements in this subsection. For proofs and additional
results, see Renz [15]. A refinement of a constraint z Ry is a constraint zR'y such
that R’ C R. A refinement of a set of constraints @ is a set of constraints @’
such that every constraint of @’ is a refinement of a constraint of ©@. We assume
that a set of constraints @ contains n ordered variables z1, ..., z,. The following
definition is central.

Definition 5 Let S,7 C 2. S can be reduced by refinement to T, if for every
relation S € S there is a relation Ts € T with Ts C S and every path-consistent
set © of constraints over S can be refined to a set @' by replacing z;Sz; € @
with 2;Tsz; € O for i < j, such that enforcing path-consistency to ' does not
result in an inconsistency.

Lemma 6 If path-consistency decides CSPSAT(T) for a set 7 C 24, and S can
be reduced by refinement to 7, then path-consistency decides CSPSAT(S).

In order to handle different refinements, we introduce a refinement matriz that
contains for every relation S € § all specified refinements.

Definition 7 A refinement matriz M of S has |S| x 24l Boolean entries such
that for S € S, R € 24, M[S][R] = true only if R C S.

M is called the basic refinement matriz if M[S][R] = true if and only if S = R.

The algorithm CHECK-REFINEMENTS (see Figure 1) takes as input a set of
relations S and a refinement matrix M of S and either succeeds or fails. A
similar algorithm, GET-REFINEMENTS, returns the revised refinement matrix
if CHECK-REFINEMENTS returns succeed and the basic refinement matrix if
CHECK-REFINEMENTS returns fail. Since A is a finite set of relations, M can
be changed only a finite number of times, so both algorithms always terminate.

If CHECK-REFINEMENTS returns succeed and GET-REFINEMENTS returns
M', we have pre-computed all possible refinements of every path-consistent triple
of variables as given in the refinement matrix M’'. Thus, applying these refine-
ments to a path-consistent set of constraints can never result in an inconsistency
when enforcing path-consistency.

Theorem 8 Let S,7 C 24, and let M be a refinement matrix of S. GET-
REFINEMENTS(S, M) returns the refinement matrix M'. If for every S € S
there is a T's € T with M'[S][Ts] = true, then S can be reduced by refinement
to 7.



Algorithm: CHECK-REFINEMENTS

Input: A set S and a refinement matrix M of S.

Output: fail if the refinements specified in M can make
a path-consistent triple of constraints over S inconsistent;
succeed otherwise.

1. changes < true
2. while changes do
3. oldM + M

4.  for every path-consistent triple
T = (Ra2, R23, Ri13) of relations over S do
5. for every refinement T' = (Rj},, Ra3, Ri3) of T

with old M[R12][R'5] = oldM[Ra3][R53) =
old M [Ri3][R}3] =true do

6. T" + PATH-CONSISTENCY(T")

7. if T" = (R{s, R3s, RYs) contains the empty
relation then return fail

8. else do M[Ri2][RY>] + true,

M{[R2s][R3s] + true,

M[Rls][Rlll;;] < true
9. if M = oldM then changes < false
10. return succeed

Fig. 1. Algorithm CHECK-REFINEMENTS

Now, the procedures CHECK-REFINEMENTS and GET-REFINEMENTS can be
used to prove tractability for sets of relations.

Theorem 9 Let S,7 C 24 be two sets such that path-consistency decides
CSPSAT(T), and let M be a refinement matrix of S. GET-REFINEMENTS(S, M)
returns M'. If for every S € S there is a Ts € T with M'[S][Ts] = true, then
path-consistency decides CSPSAT(S).

Given this theorem, what is needed for proving a set S to be tractable is a set
T for which path-consistency is known to decide consistency and a refinement
matrix M. Although it might be difficult to find a suitable refinement matrix, the
simple heuristic of eliminating all identity relations from disjunctive relations led
to a suitable refinement matrix for many interesting sets of relations (cf. [15]).
For the scope of this paper we are interested in a particular type of refinement
matrices which we define as follows:

Definition 10 Let R € A. MFE is the R-refinement matriz of a set S C 24 if
for every S € S, ME[S][S'] = true if S'=SNRand §'#Por §' = S.

Definition 11 Let S C 24 such that path-consistency decides CSPSAT(S) and
R € 24. We say that R is a refinement of S if CHECK-REFINEMENTS(S, MF)
returns succeed.



Since the refinement matrix we are interested in, namely M ¥ for a particular
relation R is given, we do not face the difficulty of the refinement method of
finding a suitable refinement matrix.

3 Relating Refinements and Independence

The independence property has been proven for many different relations [5,4],
but there is no general proof schema for proving this property, so it is usually a
matter of luck or intuition if a proof of independence can be found. In contrast to
this, it is possible to verify refinements automatically [15] by merely running the
algorithm given in Figure 1. It would, hence, be a large improvement if the same
could be done for proving independence. In this section, we study the relationship
between the notion of refinements and independence. It turns out that the two
notions are very similar and that the algorithm for verifying refinements can also
be used for proving independence.

When looking at the definitions of refinements and independence one notes
that refinements eliminate labels from given constraints without changing con-
sistency while by the independence property it is possible to add additional
constraints without changing consistency. Eliminating a label R from a given
constraint Ty, however, is equivalent to adding the constraint z—Ry. The cor-
respondence between the two notions is formulated in the following theorem.

Theorem 12 Given a set of relations S C 24 for which path-consistency de-
cides consistency and a refinement matrix M£. If CHECK-REFINEMENTS(S, M &)
returns succeed, then R is independent of S.

Proof. Given a path-consistent set @ of constraints over S. @' is obtained from
© by refining all constraints z;T;y; € © with T; € —R to z;T; N Ry;. Since
CHECK-REFINEMENTS(S, M) returns succeed, all these refinements can be
made without making @' inconsistent. Instead of refining a constraint z;T;y; to
z;T; N Ry; it is equivalent to add the constraint h; = z;Ry; to ©. Unless the
constraint z;Sy; with S C —R is contained in ©, © U {h;} is consistent. Thus,
O UH (H ={hy,...,h,}) is consistent if and only if ©® U {h;} is consistent for
all ¢, and, therefore, R is independent of S. O

This theorem gives us the possibility to prove independence of a relation R
with respect to a set S automatically by simply running CHECK- REFINEMENTS
(8, M®). If the algorithm returns succeed, we know that R is independent of S.
In order to make use of a negative answer of the algorithm, we also have to prove
the opposite direction, i.e., independence of a relation R with respect to a set
S implies that CHECK-REFINEMENTS(S, M) returns succeed. Proving this is
equivalent to saying that ©® U H is consistent if and only if ©® U {h;} is consistent
for all 4 implies that ® U {h;} is always consistent for all i unless —h; € 6.
Although this is a highly desirable property, we have not been able to prove this
nor did we find a counterexample. There are, however, many examples for which



this conjecture holds. As we will see in Section 4, this includes all independence
results for the point algebra for partially ordered time given by Broxvall and
Jonsson [4] as well as those given for the point algebra for linear time. We give
a proof of a slightly limited version of this conjecture.

Definition 13 Let S C 24 and R € S. We say that path-consistency makes
R explicit iff for every path-consistent instance @ of CSPSAT(S), the following
holds: if M(z)RM (y) for every M € Mods(®), then Sy € © and S C R.

Theorem 14 Let S C 24 and assume that R € S is independent of S. Then,
CHECK-REFINEMENTS(S, M%) returns succeed if and only if path-consistency
makes =R explicit.

Proof. only-if: Assume to the contrary that there exists a path-consistent in-
stance © of CSPSAT(S) and there exists z,y € Vars(@) such that for all
M € Mods(0), M(z)-RM(y) but Sy € © and SN R # . Since CHECK-
REFINEMENTS(S, M®) returns succeed, the instance

O =0 U{uRv|uTveO®and TNR #0}

is consistent. However, SN R # 0 so xRy € ©'. We know that all models M
of @ have the property M (z)—RM (y) so every model M’ of ©' must also have
this property. This contradicts the fact that ©' has a model and, consequently,
SNR=0and S C -R. We have thus shown that path-consistency makes =R
explicit.

if: Let © be a path-consistent instance of CSPSAT(S) and arbitrarily choose
a constraint zSy € O such that SN R # (. The fact that path-consistency
makes R explicit gives that @ U {zRy} is consistent and, by independence,
O =0O@U{uRv | uTv € © and TN R # 0} is consistent. However, @' is
equivalent to @ refined by the matrix M® so CHECK-REFINEMENTS(S, M ®)
returns succeed by Theorem 8 o

Corollary 15 Given a set of relations S C 2“4 for which path-consistency com-
putes minimal labels and a refinement matrix M®. Then, CHECK-REFINEMENTS-
(8, M®) returns succeed if and only if R is independent of S.

Proof. Simply note that if path-consistency computes minimal labels, then it
makes —R explicit. O

Examples of when path-consistency computes minimal labels can, for instance,
be found in Bessiére et al. [2].

4 Applications

We will now demonstrate that many known independence results can be obtained
using refinements. We will also employ the method on constraint satisfaction



problems where no independence results has yet been derived. In the following,
we will not discuss the empty relation and the top relation (i.e. the relation
containing all basic relations) since they are always independent of any set of
relations.

4.1 The Region Connection Calculus

A well-known framework for qualitative spatial reasoning is the so-called Re-
gion Connection Calculus (RCC) [14] which models topological relations be-
tween spatial regions using first-order logic. Of particular interest is the RCC-8
calculus which is based on eight basic relations definable in the RCC theory.
The eight basic relations are denoted as DC, EC, PO, EQ, TPP, NTPP, TPP !,
and NTPP !, with the meaning of DisConnected, Externally Connected, Partial
Overlap, EQual, Tangential Proper Part, Non- Tangential Proper Part, and their
converses. RCC-5 is a subclass of RCC-8 where the boundary of spatial regions is
not taken into account. Hence, it is not distinguished between DC and EC and
between TPP and NTPP. These relations are combined to the RCC-5 relations
DR for DiscRete and PP for Proper Part, respectively. Thus, RCC-5 contains
the five basic relations DR, PO, PP, PP~! and EQ. The consistency problem of
both RCC-8 and RCC-5 is NP-complete [16], but large maximal tractable subsets
have been identified [16,11,15]. In the following we demonstrate the usefulness
of our method by identifying tractable disjunctive constraint classes of RCC-8
and RCC-5.

We begin with RCC-5 which contains four maximal tractable subsets, Rog
(the only maximal tractable subset which contains all basic relations [16]),Rz0,
Ry7 (which consists of all relations containing the equality relation) and R4
[11]. We have applied the algorithm CHECK-REFINEMENTS on these sets using all
different R-refinement matrices and found the following refinements (where Asg,
Asg, Ay7 and Aj4 contain all refinements of Rag, Rag, R17 and Ry4, respectively).

The sets Asg, Azp and Ayy are defined by the following graphs where a
relation R is present in Ax iff there exists a path from the initial node @ in the
given graph to some other node such that exactly those relations present in R
are visited, or if such a path exists for R’s converse. A;7 is given by A7y = R'".

Ass: @ — {DR} — {PO} — {PP} — {PP™'}
{EQ} {EQ}
{DR} {PO} - {PP} {PP~"}
Aso: ) — — — — -1
TN~
{PO} {PP} — {PPI}
{PO}

A §— {PP,PP™'} = {DR} — {PO}

In order to apply Theorem 12 and use these refinement results as indepen-
dence results we must show that Rag, Roo, R17 and R14 are decidable by path-



consistency. As shown in [16], Rog is decidable by path-consistency. From the
refinements given above, it can be shown that Ry can be reduced by refinement
to Rag and hence Ry is also decidable by path-consistency by Theorem 9. Sets
of constraints over R;; are trivially consistent, thus R;; also is decidable by
path-consistency. In order to show that Ri4 is decided by path-consistency we
define R ., as the following;:

R..={{PP}, {PP} 1, {PP, PP~1}, {EQ}, {PP, EQ}, {PP L, EQ}}

From the previous refinements it follows that Ri4 can be reduced by refinement
to R .. It is easy to show that R, is equivalent to the point algebra for
linear time [18] by making a straightforward translation of the basic relations
PP, PP~1, EQ into <, >, =, respectively. Since the point algebra for linear time
is decidable by path consistency, Theorem 9 gives that R;4 is also decidable by
path-consistency.

Having proven that Rag, Roo, R17 and Ry4 are decidable by path-consistency,
Theorem 12 gives that Asg, Asg, Ay7, and A;4 are independent of Rag, Rag, Ri7,
and Rj4, respectively. Thus, CSPSAT(R;v4;) is tractable for ¢ € {28,20,17,14}.

RCC-8 contains three maximal tractable subsets ’}:Zs,Cg and Qg which all
contain the basic relations and which are all decidable by path-consistency [16,
15]. By using our method we can easily identify all relations which are refine-
ments of the three sets. We let Aﬁs’ Acg, and Ag, contain all refinements of

the maximal tractable subsets which implies that CSPSAT(I'VAr) is tractable
for I' € {Hs,Cs, Qs}-

The sets A,”_ZS,AQS and Ac, are defined by the following graphs which are
to be interpreted in the same way as the previous graphs for RCC-5.

{NTPP} {EQ} {EQ}
Ag:g > {DC} > {EC} > {PO} > {TPP} > {TPP~1} > {NTPP} > {NTPP~1}

{EQ} {EQ} {EQ} {EQ}
7 — 7

7
Ags§ > {DC} > {EC} > {PO} > {TPP} > {TPP~'} > {NTPP} > {NTPP~!}
~
{NTPP} — {EQ}

{NTPP~1} {EQ}
7 -7
Aci > {DC} > {PO} > {NTPP} —> {TPP} —> {NTPP~'} -~ {TPP~'} - {EC}

~
{EC} — {NTPP} —= {TPP} — {NTPP~'}
~~

{NTPP~!}



| [TA|A%[Ta[Aa[ 5| AB[I's| AB[ 6| AG| o] Ac|Ap)|
{<} .
{<,=} . ° .
{<,>}
{<>,=} oo
{II} oo

{l,=} ||

{=}
{< >0 e | e
{13
{<7||7:}

Table 1. Tractable classes of the point algebra for partially ordered time.

4.2 The point algebra for partially ordered time

After having demonstrated that new independence results can be derived us-
ing refinements we will now show that many previously presented independence
results can also be derived using refinements. We begin by showing that all inde-
pendence results for the point algebra for partially ordered time can be derived
using refinements and, moreover, that every maximal tractable set of disjunc-
tions of relations for partially ordered time can be derived using refinements.
This, of course, requires a definition of a maximal tractable set of disjunctions
of relations.

Let I'" be a set of disjunctive relations constructed from a set B of binary
relations by applying the ¥ operator. We say that I' is a mazimal tractable
subclass iff I' is tractable and for every set X ¢ I of relations which can be
constructed by the relations in B and ¥, I' U X is intractable.

The point algebra for partially ordered time is based on the notion of relations
between pairs of variables interpreted over a partially-ordered set. We consider
four basic relations which we denote by <,>,= and ||. If z,y are points in a
partial order (T, <) then we define these relations in terms of the partial ordering
< as follows:

z{<}yiffz<yandnoty <z
z{>lyiffy<zandnotz <y
z{=}yifz<yandy<z
z{||}y iff neither z <y nory <z

Ll s

The point algebra for partially ordered time has been throughly investigated
earlier and a total classification with respect to tractability has been given in
Broxvall and Jonsson [3]. In Broxvall and Jonsson [4] the sets of relations in Ta-
ble 1 are defined and it is proven that I'4¥ A%, [’V A%, IV AL and A}, are the
unique maximal tractable disjunctive classes of relations for partially ordered
time. The proofs of tractability for those sets rely on several handmade indepen-
dence proofs. We will now derive these independence results using refinements.



To do so, we need to show that the classes I'4,I's,Ic and Ap are decidable
by path-consistency. We begin by proving a useful connection between RCC-5
and the point algebra for partially ordered time which in turn will be needed to
prove that path-consistency decides I'4.

Lemma 16 Let I' be a set of relations in the point algebra for partially ordered
time and define the function o such that

1. o(<) = {PP};

2. o(>) = {PP7'}
3. o(=) ={EQ}; and
4. o(||) = {DR, PO}.

Then, I' can be decided by path-consistency if the set

F':{U o(r)|ReTI}

reER

of RCC-5 relations can be decided by path-consistency.

Proof. Let II be an arbitrary CSP instance over the relations in I'. Define the
set 3 of RCC-5 formulae as follows: for each z; R z; € II, add the formula
z; U,cgo(r)z;. Note that ¥ is a CSP instance over I that can be decided by
path-consistency by our initial assumptions.

We begin by comparing the composition tables for partially-ordered time and
the RCC-5 relations {PP}, {PP'},{EQ}, {DR,PO}:

| [ {<} | {>} | {=} | {1} |
{<} {<} T {<} {1}
{>} T {>} {>} {>, I}
{=} {<} {>} {=} {lI}
{11} {11} {>, 11} {11} T

| [P} [ (PP} [ {EQ} [ {DR,PO} |
{PP} {PP} T {PP} {PP,DR,PO}
{PP~1} T {PP~1} {PP~1} {PP™!DR,PO}
{EQ} {PP} {PP~ 1} {EQ} {DR,PO}
{DR,PO} || {PP,DR,PO} [{PPTIDR,PO}| {DR,PO} T

After having made this comparison, it should be fairly obvious that the empty
relation can be derived from IT by enforcing path-consistency if and only if it can
be derived from X. Thus, we only have to show that whenever X' has a model,
IT also has a model.

Let M be a model that assigns sets to the variables z1,...,z, that appear
in ¥. We define an interpretation IV from the variables in IT to the partial order



{{M(=z;) |1 <i<n},C) as follows: N(z;) = M(z;) for 1 < i < n. To conclude
the proof, we pick an arbitrary constraint z; Rz; in X' and show that it is satisfied
by the interpretation N. Assume now, for instance, that M (z;) {PP} M(z;). By
the definition of o, we know that {<} C R and it follows immediately that
N(z;) < N(z;) and the constraint z;Rz; is satisfied. The remaining cases can
easily be proved analogously.

Theorem 17 Path-consistency decides consistency for I'4, I's, I'c and Ap.

Proof. Let I'" = {U,cgo(r) | R € I'a} (where o is defined as in Lemma 16)
and note that I" C Rays. Since Rag can be decided by path-consistency [16],
Lemma 16 implies that path-consistency decides I'4.

By using CHECK-REFINEMENTS, it can be verified that I's can be reduced
by refinements to I’y which by Theorem 9 gives that I's is decided by path-
consistency. For I'c the result follows from the fact that it is a subset of I'4.
Finally, Ap is trivially decided by path-consistency. O

Using the algorithm CHECK-REFINEMENTS, we can automatically verify that
Ay, Ap,Ac and Ap are valid refinements of I'4, I's, [ and Ap, respectively.
Theorems 17 now gives that A4, A, A¢ and Ap are independent of I'4, I's, I'c
and Ap, respectively and we have proven tractability of all maximal tractable
sets of disjunctions of relations for the point algebra for partially ordered time.

4.3 The point algebra for linear time

In Broxvall and Jonsson [4] the time-point algebra for linear time is also inves-
tigated and the following two classes are defined:

X = {{<}’ {<’ :}’ {<’ >}’ {:}}5{{<’ >}}
X ={{<,=hL{=}}"

Furthermore, proof is also given that these two classes are the only two maximal
tractable sets of disjunctions of relations. Both independence results needed for
that classification can be derived using refinements. In Renz [15] it is noted
that disequality is a refinement in the point algebra for linear time. The other
independence result consisting of all relations containing equality can easily be
verified using the refinement algorithm, and decidability by path consistency is
trivial.

It should thus be noted that both in the case of the point algebra for partially
ordered time and for the point algebra for linear time it is sufficient only to look
at the refinements in order to derive all tractable sets of disjunctions. However,
we have no guarantee that this holds in the general case.



5 Discussion and Conclusions

Independence of relations with respect to tractable sets of relations is a very use-
ful tool for generating expressive tractable disjunctive constraint classes. How-
ever, proving independence is often a highly non-trivial task. In this paper we
proposed a method for proving independence which we obtained by relating the
notion of refinement to the notion of independence. We found that if a relation
R is a refinement of a set of relations S, then R is also independent of S. Since
refinements can be checked by running a simple algorithm, this allows us to au-
tomatically generate independence results. The only requirement for applying
this method is the sufficiency of path-consistency for deciding consistency in S.
In many cases this can, however, also be shown by using refinement techniques.

In order to demonstrate the usefulness of our method, we applied it to the
Region Connection Calculi RCC-5 and RCC-8 and derived many previously un-
known independence results. Furthermore, using our method we were able to
obtain all previously known independence results of the point algebra for par-
tially ordered time as well as for linear time. This is particularly interesting since
in this case refinements are sufficient for identifying all maximal tractable sets of
disjunctions, i.e., in this case independence seems to imply refinement. We have
not been able so far to prove this implication in the general case and instead
specified a certain condition of when independence implies refinements. It would
be very interesting to know whether the correspondence between refinements
and independence holds in the general case or alternatively which restrictions
must be made in order to have this correspondence. Then, refinements can be
used to derive all independence results in a simple way.

So far we have only used a restricted form of refinement matrices, namely,
an R-refinement matrix M% for some relation R. We did this because previously
tractable disjunctive constraint classes formed by two sets I' and A required
that all relations of A are independent of all relations of I'. Using the refine-
ment method it is possible to verify more complex refinement matrices. These
refinement matrices can be used for proving an advanced notion of indepen-
dence such as “A is subset independent of I' iff there are (non-disjoint) subsets
A=AU...UA, and I' = I1 U...UTI, such that A; is independent of I3”.
It might well be possible that this advanced notion of independence allows to
generate new types of tractable disjunctive constraint classes whose tractability
can, again, be proven using refinements techniques.

Another piece of further work which seems to be worthwhile is to analyze the
relationship between the refinement method and a method for proving tractabil-
ity which was developed by Jeavons et al. [9].
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