Disjunctions, Independence, Refinements

Mathias Broxvall and Peter Jonsson
Department of Computer and Information Science
Linkoping University
S-581 83 Linkoping, Sweden
email: {matbr,petej}@ida.liu.se

Jochen Renz
Institut fur Informationssysteme
Technische Universitat Wien
Favoritenstrasse 9

A-1040 Wien, Austria
email: renzQdbai.tuwien.ac.at

Abstract

An important question in constraint satisfaction is how to restrict the
problem to ensure tractability (since the general problem is NP-hard).
The use of disjunctions has proven to be a useful method for constructing
tractable constraint classes from existing classes; the well-known ‘max-
closed’ and ‘ORD-Horn’ constraints are examples of tractable classes that
can be constructed this way. Three sufficient conditions (the guaranteed
satisfaction property, 1-independence and 2-independence) that each en-
sure the tractability of constraints combined by disjunctions have been pro-
posed in the literature. We show that these conditions are both necessary
and sufficient for tractability in three different natural classes of disjunc-
tive constraints. This suggests that deciding this kind of property is a very
important task when dealing with disjunctive constraints. We provide a
simple, automatic method for checking the 1-independence property—this
method is applicable whenever the consistency of the constraints under
consideration can be decided by path-consistency. Our method builds on
a connection between independence and refinements (which is a way of
reducing one constraint satisfaction problem to another.)

Keywords: Constraint satisfaction, disjunctive constraints, tractability

1 Introduction

The constraint satisfaction problem provides a natural framework for expressing
many combinatorial problems in computer science. Since the general problem
is NP-hard [15], an important question is how to restrict the problem to ensure
tractability. This research has mainly followed two different paths: restricting
the scope of the constraints [10, 11], i.e. which variables may be constrained with
other variables, or restricting the constraints [9, 13, 20], i.e. the allowed values
for mutually constrained variables. In this paper, we will only consider problems
where the constraints are restricted.

Quite a large number of tractable subclasses of the CSP problem has been
identified in the literature. Due to the lack of systematicity in this search, it
is of considerable interest to investigate how tractable constraint types may be
combined in order to yield more general problems which are still tractable. Co-
hen et al. [8] have studied so-called ‘disjunctive constraints’, i.e. constraints which
have the form of the disjunction of two constraints of specified types. They iden-
tified certain properties which allow for new tractable constraint classes to be
constructed from existing classes. Several important classes of tractable con-
straints can be obtained by their method such as the Horn and Krom fragments
of propositional logic, the ORD-Horn class [16] and the classes of max-closed and
connected row-convex constraints [13, 9].

The investigation of disjunctive constraints was continued in Broxvall & Jon-
sson [5b] where all tractable disjunctive classes for reasoning about partially and
totally ordered time were identified. Somewhat surprisingly, all of these tractable
classes can be obtained by using 1-independence. This observation raised the
question whether tractable disjunctive constraints can be completely charac-
terised by these kind of properties. We partially answer this question in this
paper.

We consider three different properties, known as the guaranteed satisfaction
(GS) property, 1-independence and 2-independence [8]. Let I' and A be two sets
of relations such that the CSP problem over I'UA is tractable. In short, we prove
the following:

e Let the set A* contain all possible disjunctive relations over A. The CSP
problem for this set is tractable if and only if A has the GS property.

e Let the set 'VA* contain all disjunctive relations over I'UA where relations
in I are allowed to appear at most once in a disjunction (compare with the
Horn fragment of propositional logic). The CSP problem for this set is
tractable if and only if A is 1-independent of I'.

e Consider the set I' U A? where A? contains all disjunctive relations over
A containing at most two disjuncts (compare with the Krom fragment of

propositional logic). The CSP problem for this set is tractable if and only
if A is 2-independent of I'.

Our results are obtained by using the definition of the disjunction combinator
U proposed in [5] instead of the original definition in [8]. This change makes
the result cleaner since we do not have to take care of a number of pathological
special cases. This issue is discussed in greater detail in the paper.

These results suggest that automatic methods for checking these properties
may be very useful when working with disjunctive constraints. Also, it is hardly
surprising that deciding these properties is highly non-trivial task in many cases.
For classes of binary constraints where satisfiability can be decided by check-
ing path-consistency, we present a fairly simple method for verifying the 1-
independence property. This method builds on a somewhat surprising connection
between 1-independence and refinements [17]. Loosely speaking, a refinement is
a way of reducing one CSP problem to another and it has the property that if
the second problem can be decided by path-consistency, then path-consistency
decides the first problem, too. Refinements were successful in proving tractability
of large subsets of RCC-8 as well as Allen’s Interval Algebra [17]. One impor-
tant aspect of refinements is that their correctness can be easily checked by a
computer-assisted analysis which implies that 1-independence can be automati-
cally checked in many cases. To demonstrate the usefulness of our method, we
show that all previously known independence results for the time point algebras
for partially and totally ordered time [5] can be derived automatically. This raises
the question whether our method is complete or not—unfortunately, we are not
able to answer this question in its full generality.

The paper is organized as follows: In Section 2 we give an overview of the basic
definitions concerning CSPs, disjunctions and refinements. Section 3 contains the
main complexity results for combining constraints with disjunctions. In Section
4 we relate refinements and 1-independence and prove the connection between
them. We also exemplify how the method can be used for identifying tractable
disjunctive constraints. Finally, the last section contains some discussions and
conclusions of the results presented earlier. Some of the results in Section 4 have
previously been presented in a conference paper [6].

2 Preliminaries

This section consists of three parts where we define the constraint satisfaction
problem, provide some background material concerning disjunctions and describe
the refinement method.

2.1 The constraint satisfaction problem

Let S be a set of relations over some domain D (of values) and let V' be a set
of variables. The relations in & may be of arbitrary arity and the domain D is
not necessarily finite. Let R € S be a relation of arity ¢ and =z € V* (where
V@ denotes the a-fold cartesian product of V). We write R(z) (a constraint) to
denote that the variables in z are related by R. This definition allows the use of
repeated variables in the scope of a constraint, e.g. R(z,y,z). For any constraint
¢ = R(z), let Rel(¢) = R. The consistency problem CSPSAT(S) is defined as
follows:

Instance: A tuple (V,C) where V is a set of variables and C is a finite set of
constraints over V| where for each ¢ € C, Rel(c) € S.

Question: Is there a satisfying instantiation of the variables, i.e. a total function

f:V — D such that for all R(z1,...,z,) € C, (f(z1),..., f(zs)) € RT

Given an instance © of CSPSAT(S), let Mods(©) denote the class of models of
© (i.e. the satisfying instantiations) and Vars(©) the variables appearing in ©.
Let 1 denote the empty relation (of arbitrary arity).

2.2 Basics of disjunctions
We begin by introducing operators for combining relations with disjunctions.

Definition 1 Let R;, Ry be relations of arity 7, j and define the disjunction R; V
R, of arity ¢ + j as follows:

R/ VR, = {(l‘l,...,l'i+]‘)GDi+j‘($1,...,l'i)€R1\/
(Tig1y- -, Tij) € Ra}

Thus, the disjunction of two relations with arity 7, j is the relation with arity i+ j
satisfying either of the two relations.

To give a concrete example, let D = {0, 1} and let the relations and = {(1,1)}
and xor = {(0,1),(1,0)} be given. The disjunction of and and xor is given by:

(0,0,0,1),(0,1,0,1),(1,0,0,1),(1,1,0, 1),
and V xor =¢ (0,0,1,0),(0,1,1,0),(1,0,1,0),(1,1,1,0),
(1,1,0,0),(1,1,0,1), (1,1,1,0),(1,1,1, 1)

We see that the constraint (and V xor)(z,y, z, z) is satisfiable when z, y and z
has, for instance, been instantiated to 1, 0,0, respectively.
The definition of disjunction can easily be extended to sets of relations.

Definition 2 Let I';, 'y be sets of relations and define the disjunction I'y¥I'y as
follows:
F15F2 - Fl U FQ U {Rl V R2 ‘ R1 € Fl,RQ € FQ}

The disjunction of two sets of relations I';YI'y is the set of disjunctions of each
pair of relations in I'y, I's plus the sets I'y, I's. It seems sensible to include I'; and
I'; since one wants to have the choice of using the disjunction or not. Thus, our
definition of ¥ differs slightly from the definition given by Cohen et al. [8]; they
define I';13Ty as {R1 V Ry | Ry € T'1, Ry € T's}. The two definitions coincide if L
is included in both I'y and I';. Otherwise, the definitions are different and the
implications of this are pointed out in Subsection 3.1. We will tacitly assume that
1 is not a member of any set of relations that we consider. Note that CsPSAT(T)
has the same complexity as CSPSAT(I'U{L}) up to polynomial-time reductions.

In many cases we shall be concerned with constraints that are specified by
disjunctions of an arbitrary number of relations. Thus, we make the following
definition: for any set of relations, A, define A* = J°, A" where A° = A and
AL = AFA,

For proving tractability of disjunctive constraints, a number of properties have
been proposed in [8]:

Definition 3 Let A be a set of relations. If every instance CSPSAT(A) is satis-
fiable, then we say that A has the guaranteed satisfaction (GS) property.

CsPSAT(A*) is clearly tractable if A has the GS property.

Definition 4 For any sets of relations I' and A, define CSPSATA<x(I' U A) to
be the subproblem of CSPSAT(I' U A) consisting of all instances containing at
most k constraints over the relations in A. We say that A is k-independent of
' if the following condition holds: any set of constraints C' in CspSAT(I' U A)
has a solution provided every subset of C' belonging to CSPSATA<(I'UA) has a
solution.

It is easy to see that if A is k-independent of I', then A is k£ + 1-independent of
I', too. The following result by Cohen et al. [8] demonstrates the usefulness of
the independence property.

Theorem 5 Let I' and A be sets of relations such that CspSAT(I' U A) is
tractable. If A is 1-independent of I', then CSPSAT(I'VA*) is tractable. If T
is 2-independent of @), then CsPSAT(IVT) is tractable.

The notion of 1-independence can alternatively (but equivalently) be defined as
follows: Let C = {e¢1,...,cx} and D = {d,,...,d,} be arbitrary finite sets of
constraints over I' and A, respectively. Then, A is 1-independent of I' iff for
every possible choice of C and D, the following holds: if C U {d;}, 1 <i < n, is
satisfiable, then C'U D is satisfiable. Also note that I is 2-independent of) if and
only if for every constraint problem C over I' having no solution, there exists a
pair of constraints ¢;, ¢; € C such that {¢;, ¢;} has no solution.

2.3 Basics of the refinement method

We review the refinement method as introduced by Renz [17] in this subsection.
For proofs and additional results, see [17] or its forthcoming journal version for
more details [18].

So far the refinement method has been introduced for binary CSPs only. So,
although we deal with m-ary constraints in this paper, the parts dealing with
refinements apply only to binary constraints.

Let A be a finite set of jointly exhaustive and pairwise disjoint binary relations,
also called basic relations, and S C 24. We denote the standard operations
composition, intersection and converse by o, N and - !, respectively. Furthermore,
we define the unary operation — such that =R = A\R for all relations R C A
and let eq denote the binary equality relation.

A set of constraints is path-consistent if for any consistent assignment of two
variables, there exists an assignment for every third variable such that the three
assignments taken together are consistent. Path-consistency can be enforced by
iteratively applying the following operation to every pair of variables z;, z;, until
a fixed point is reached (R;; specifies the relation between z; and z;):

VEk - Rij = RZ‘]‘ N (Rzk o Rk])

If the empty relation occurs during this process, the set is inconsistent, otherwise
the resulting set is path-consistent.

A refinement of a constraint zRy is a constraint zR'y such that R’ C R. A
refinement of a set of constraints © is a set of constraints ©' such that every
constraint of ©' is a refinement of a constraint of ©. It is clear that if ©' has a
solution, then also © has a solution.

In order to handle different refinements, a refinement matriz is used that
contains for every relation S € S all specified refinements.

Definition 6 A refinement matriz M of S has |S| x 24 boolean entries such
that for S € S, R € 24, M[S][R] = true only if R C S, i.e. R is a refinement of
S.

Definition 7 Let A C 8. M? is the A-refinement matriz of S if for every S € S,
MA[S][S"] = true iff

1. there exists a relation R € A such that S’ = SN R and S’ # 0; or
2. §'=8.

The basic idea of the refinement method [17] is to exploit that the path-consistency
algorithm only looks at triples of constraints and that refinements of constraints
are passed from triple to triple. Thus, the possible number of different triples
over a set of relations S as well as the number of refinements of these triples is

Algorithm: CHECK-REFINEMENTS

Input: A set S and a refinement matrix M of S.
QOutput: fail if the refinements specified in M can
make a path-consistent triple of constraints over
S inconsistent; succeed otherwise.

1. changes < true
2. while changes do
3. oldM <+ M

4. for every path-consistent triple
T = (Ry2, Ra3, Ry3) of relations over S do
5. for every refinement 7" = (R}, Rys, R}3) of T

with oldM[Ry5)[R},] = oldM[Rys][Rbs] =
oldM|[Ri3][R3] =true do

6. T" < PATH-CONSISTENCY(T")

7. if T" = (RY,, Ry5, R3) contains the empty
relation then return fail

8. else do M[R;s|[RY,] < true,

M| Ra3][Ry;] < true,

M|Ry3]|RYs] < true
9. if M = oldM then changes < false
10. return succeed

Figure 1: Algorithm CHECK-REFINEMENTS [17]

limited, although there is an infinite number of different sets of constraints ©
over §. Therefore, it is possible to extract properties of a set of relations S by
just analyzing a limited number of triples of constraints over S. This is done by
the algorithm CHECK-REFINEMENTS (see Figure 1) which takes as input a set
of relations & and a refinement matrix M of & and either succeeds or fails. A
triple (R, S, T) of relations denotes the following CSP problem on three variables:
{zRz,xSy,yTz}. Since A is a finite set of relations, M can be changed only a
finite number of times, so the algorithm always terminates.

If CHECK-REFINEMENTS(S, M) returns succeed, we have checked all possible
refinements of every path-consistent triple of variables as given by the refine-
ment matrix M. Thus, applying these refinements to a path-consistent set of
constraints can never result in an inconsistency when enforcing path-consistency.
This is stated in the following theorem.

Theorem 8 (Renz [17]) Let S be a set of relations that can be decided by path-
consistency, M a refinement matrix of S and assume that CHECK-REFINEMENTS(S, M)
returns succeed. For every path-consistent set ® of constraints over S, the follow-

ing holds: for every refinement ©' of © such that z;R'z; € ©' only if z;Rz; € ©
and M[R][R'| = true, © has a solution.

The refinement method, thus, simply consists of running the algorithm CHECK-
REFINEMENTS on a set of relations § and a refinement matrix M. We say that
S can be refined by M, if CHECK-REFINEMENTS(S, M) returns succeed.

Renz [17] used the refinement method in a different way, namely, for showing
that path-consistency decides a set of relations S: Assume that path-consistency
decides consistency for a set of relations 7. If CHECK-REFINEMENTS(S, M) re-
turns succeed and if the resulting refinement matrix M’ contains for each relation
S € S arelation Ts € T, i.e. M'[S|[Ts] = true, then path-consistency decides
consistency of S. It turned out that by using the refinement matrix M7 it was
possible to prove tractability for all maximal tractable subsets of RCC-8 and the
Interval Algebra which contain all basic relations.

3 Tractable Disjunctions

We shall now show the close connections between tractable disjunctive constraints
and the GS/independence properties. Our main results are the following: Let T
and A be two sets of relations such that CSPSAT(I' U A) is tractable. Then,

(1) CspSAT(A*) is tractable iff A has the GS property;
(2) CspSAT(I'WA*) is tractable iff A is 1-independent of I'; and

(3) CsPSAT(T" U A?) is tractable iff A is 2-independent of T.

If these conditions are not met, then CsPSAT(A*), CspPSAT(I' V A*) and/or
CsPSAT(I'UA?) are NP-complete. The proofs of (1)-(3) can be found in Subsec-
tions 3.1-3.3, respectively. An interesting question is whether (3) can be strength-
ened to ensure tractability of CSPSAT(I'VA). We demonstrate that this does not
hold in general at the end of Subsection 3.3.

The NP-completeness results are based on reductions from the following two
NP-complete problems:

3-SAT

INSTANCE: Set U of variables, collection C of clauses over U such that each
clause ¢ € C has |c| = 3.

QUESTION: Is there a satisfying truth assignment for CT

3-COLOURABILITY
INSTANCE: Undirected graph G = (V, E).
QUESTION: Does there exist a function f : V — {0,1,2} such that f(u) # f(v)

whenever {u,v} € ET

Before we proceed, we need to prove that the problems we consider are members

of NP.

Lemma 9 Assume that S is a tractable set of relations. For any set S’ of
relations constructed using U and the relations in S, CSPSAT(S') is in NP.

Proof: Non-deterministically choose one atomic constraint from every disjunc-
tive constraint (we assume, without loss of generality, that there exists polynomial-
time computable decomposition operators for the disjunctive constraints) and
show that the resulting set of constraints is satisfiable. Since CSPSAT(S) is
tractable’, CsPSAT(S') is in NP. 0

3.1 The guaranteed satisfaction property

We begin by studying the (admittedly trivial) GS property. The proof idea will,
however, turn out to be very useful for proving results about the independence
properties.

Theorem 10 The following statements are equivalent:

1. A has the GS property;
2. A is 1-independent of 0;
3. CsPSAT(A*) is tractable;

4. CsPSAT(A?®) is tractable;
Otherwise, CSPSAT(A?) and CSPSAT(A*) are NP-complete.

Proof: We show that (1) = (3) = (4) = (1) and (1) & (2).

The implication (1) = (3) is trivial and (3) = (4) follows from the fact that
A3 C A*. To show that (4) = (1), we assume the opposite, i.e. CSPSAT(A?) is
tractable but A does not have the GS property. This implies that there exists a
set of constraints H = {hy,...,h,} over A such that H is not satisfiable. Note
that |H| > 1 since we do not allow the relation 1. We choose H to be minimal;
i.e. |H| is as small as possible. This implies that every strict subset H' C H is
satisfiable. Finally, consider the set H = {hy;V ho} U (H L {hq, ho}) and note that
in any model of H, either h; or hy hold, but not both.

To prove NP-hardness, we show that 3-SAT can be transformed to CSPSAT(A?)
in polynomial time; membership in NP follows from Lemma 9. Arbitrarily choose

Tt is actually sufficient that CSPSAT(S) is in NP.

a 3-SAT formula F' = ¢; A...Ac, over the variables py, ..., pn. We incrementally
construct an instance of CSPSAT(A?®) that is satisfiable iff F' is satisfiable.

For each variable p;, introduce a fresh copy of the set H (i.e. the copies of H
are over disjoint sets of variables) where we denote the ‘important’ relations hq
and h, as h} and h’}, respectively. As we noted earlier, this will force either hi or
h’% to hold in any model but not both. We interpret h; as ‘p; is true’ and h% as
‘p; is false’.

For each clause c;, it is now easy to add a disjunction corresponding to the
clause: for instance, (p; V —p; V pi) is translated to ht v hgc V h¥. Obviously, the
resulting set of constraints (which trivially can be computed in polynomial time)
is an instance of CSPSAT(A®) and is satisfiable iff F is satisfiable.

Finally, we show that (1) < (2). The only-if direction is obvious so we prove
the other direction. Assume to the contrary that there exists a set of constraints
H over A such that H is not satisfiable. Since A is l-independent of @, this
implies that there must be a single constraint h € H that is not satisfiable—in
other words, Rel(h) is the empty relation and we have a contradiction. O

This result does not hold if the original definition of ¥ [8] is used (see Section 2
for the exact definition). Assume that A has the GS property. Then, 1| ¢
A. Assume furthermore that I' is an arbitrary set of relations (we do not even
require that CSPSAT(I') is tractable). Then, ['WA is tractable! This follows
from the fact that ' € T'VA; every possible member of I'VA is either of the
form R(z1, ..., Zerity(r)) Where R € A or R(z1, ..., Tarity(r)) V S (Y1, - - - Yarity(s))
where R € A and S € I'. Hence, the GS property ensures that every instance
of CsPSAT(I'VA) is satisfiable. It seems counter-intutitive that I' U A can be a
computationally harder problem than I'VA which explains why we have modified
the definition of 7.

There are also technical reasons for defining v the way we have done. For
instance, the result in the next section would be very different. It simply states
that CspSAT(I'VA*) is tractable iff CSPSAT(I' U A) is tractable and A is 1-
independent of I'. With the original definition of ¥, we would need to take care
of several cases; one of them is that CSPSAT(I'VA*) is tractable if A has the GS
property but A is not 1-independent of I' (which once again is a ‘strange’ case
where CsPSAT(I' U A) may be computationally harder than CSPSAT(T'VA*).

3.2 1-Independence

The proof presented here is a slight variation of the proof of Theorem 10 so we
only sketch the proof.

Theorem 11 The following statements are equivalent:

1. A is 1-independent of I';

10

2. CspSAT(I'VA*) is tractable;

3. CspSAT(T' U A?) is tractable;
Otherwise, CSPSAT(I' U A%) and CsPSAT(I'YA*) are NP-complete.

Proof: The implications (1) = (2) follows from Theorem 5 and (2) = (3) is
trivial since T' U A3 C T¥A*. To show that (3) = (1), we assume the opposite,
i.e. CsPSAT(I'U A?) is tractable but A is not 1-independent of . This implies
that there exists a set of constraints X over I' and a set H = {hy,...,h,} over A
such that X U {h;} is satisfiable for every 1 < i < n but X U H is not satisfiable.
Choose X and H such that |H| is as small as possible and note that [H| > 2.
The existence of a set H' C H such that X U H' is not satisfiable contradicts the
minimality of H so X U H' is satisfiable for all H' C H. Finally, consider the set
X = XU{h1Vhy}U(H L{hi, hy}) and note that in any model of X, either h; or
hs hold, but not both. The result can now easily be shown by a reduction from
3-SAT that is analogous to the reduction employed in the proof of Theorem 10. O

By combining Theorems 10 and 11, we see that whenever A is 1-independent of
', A must have the GS property—this observation can significantly simplify the
search for sets of 1-independent relations.

3.3 2-Independence

The proof of this case consists of two parts; the first part strengthens a tractabil-
ity result by Cohen et al. [8] while the second part is a hardness result in the style
of Theorems 10 and 11. The reduction is quite different, though, and is based
on 3-COLOURABILITY instead of 3-SAT. In the end of this subsection (Theo-
rem 14), we complement this positive result with a negative result showing that
2-independence is not sufficient for ensuring tractability of CSPSAT(I'VA).

Theorem 12 CsPSAT(I" U A?) is tractable iff A is 2-independent of I'. Other-
wise, CSPSAT(I" U A?) is NP-complete.

Cohen et al. have shown that CSPSAT(A?) is tractable if A is 2-independent
of (); i.e. an instance I of CSPSAT(A?) has a solution if every I' C I such that
|I'l = 2 has a solution. We begin by generalising this result.

Lemma 13 If A is 2-independent of T', then CsPSAT(T' U A?) is tractable.

Proof: We show that the algorithm 2IND-SOLVABLE defined in Figure 2 suc-
ceeds when applied to C if and only if C' has a solution.

11

only-if: Assume that 2IND-SOLVABLE returns succeed. This implies that there
exists a satisfying truth assignment, u, for AUA'UA". Define the set of constraints
C' as follows:

C' ={c| u(q.) = true}.

We first show that C’ has a solution. If C’ has no solution, there exists ¢;,...,c; €
C' such that Rel(e1),...,Rel(cy) € A and Qr U {c1, ..., cx} is not satisfiable. We
know that Qr has a solution since the algorithm did not fail in line 4. Hence,
the fact that p satisfies A and A" implies that Qr U {c;, ¢} is satisfiable for
1<4,j <ksoQrUf{cy,...,c} is satisfiable since A is 2-independent of I'. So
C' does indeed have a solution.

Now, let f be a model of C'. For each disjunctive constraint in C' we know that
at least one of its disjuncts is a member of C’, because u satisfies the formulae in
A'. We also know that every non-disjunctive constraint is a member of C’ since
 satisfies the formulae in A”. Taken together, this means that C has a model.

if: Assume that C has a model f. Define the truth assignment p : {q. | ¢ €
PUQrUQ@a} — {true, false} as follows:

p(ge.) = true iff ¢ is satisfied by f.

We show that p is a satisfying truth assignment of A U A’ U A” by considering
the elements of A, A’ and A" in turn.

(1) For each formula (=g« V —g.) € A, we know that QrU{c, ¢"} has no model.
Hence, it cannot be the case that u(c') = p(c¢”) = true, which means that
(=qe V —ger) is satisfied by p.

(2) For each formula (g« V gor) € A" we know that there is a constraint ¢ € C
of the form ¢ = ¢’ V ¢”". Since f is a model of C, f satisfies at least one of
¢ and ¢” which means that (g V q.) is satisfied by u.

(3) For each formula g. € A” there exists a constraint ¢ € C that is not a
disjunction. Consequently, f must satisfy ¢ and u satisfies g..

Finally, we have to show that the algorithm 2IND-SOLVABLE runs in polynomial
time. This follows directly from the observation that line 5 can be computed in
polynomial time (since CSPSAT(I'UA) is tractable) and that the test in line 8 can
be performed in polynomial time by using some tractable algorithm for showing
the satisfiability of 2CNF formulae (such as the algorithm by Aspvall et al. [1]). O

Proof: (of Theorem 12) The if direction follows from Lemma 13. To show the
other direction we assume to the contrary that CSPSAT(T" U A?) is tractable but

A is not 2-independent of T'.

12

This implies that there exists a set of constraints X over I' and a set H =
{h1,...,hy,} over A such that X U{h;, h;} is satisfiable for every 1 <1i,j < n but
X U H is not satisfiable. Choose X and H such that |H| is as small as possible
and note that |[H| > 3. The existence of a set H' C H such that X U H' is not
satisfiable contradicts the minimality of H so X U H' is satisfiable for all H' C H.
Thus, we can define the satisfiable set X = XU{h;Vhg, hi\Vhs, hoVhs, he, ..., hy}
which have the following property: In every model of X', exactly one of hq, hsy, hs
is not satisfied.

To prove the result, we show that 3-COLOURABILITY can be transformed to
CsPSAT(I'UA?) in polynomial time. Arbitrarily choose an undirected graph G =
(V, E) such that V = {vy,...,v;}. We will construct an instance of CspSAT(I" U
A?) that is satisfiable iff G is colourable with three colours.

For each vertex wv;, introduce a fresh copy of the set X where we denote the
constraints hy, hy, hs as hi, hi, hi, respectively. As we have already noted, this
will force exactly one of hi, h}, ki not to hold in every model. We interpret that
h; does not hold as ‘vertex v; has colour j’.

For each edge (v;,v;) € E, we add the disjunctions hi V hi, hi V h} and
Y, h} which ensures that v; and v; are not assigned the same colour. The re-
sulting set of constraints can be computed in polynomial time, it is an instance
of CsPSAT(I" U A?) and is satisfiable iff G is 3-colourable which concludes the
proof. 0O

Theorem 14 There exist sets of unary relations I'; A such that CspSAT(TUA)
is tractable, A is 2-independent of I' but CSPSAT(I'VA) is NP-complete.

Proof: Consider the domain D = {0,1,2}. Define unary relations neq; C D,
0 < i < 2, such that neq;(z) holds iff i # z and define eq; C D, 0 < i < 1,
such that eq;(z) holds iff i = z. Let T' = {neq,, neq;, neq,} and A = {eq,,eq, }.
Proving the tractability of CSPSAT(I' U A) and that A is 2-independent of I' are
routine verifications.

We show that CsPSAT(I'VA) is NP-complete by a polynomial-time reduction
from 3-COLOURABILITY. Let G = (V, E) be an arbitrary undirected graph. We
will construct an instance X of CsPSAT(I'WA) that is satisfiable iff G can be
3-coloured.

Assume V = {vq,...,vn}. To simplify our description of the reduction, we
will only consider edges e = (v;,v;) in E such that ¢ < j. Obviously, we can
do this without loss of generality since G is undirected. For each vertex v € V,
introduce a variable 9 and for each edge (v,w) € E, introduce three variables ¢ ,
0 < i < 2. Finally, for each edge (v, w) € E, add the following six constraints to
X:

(1) neqy(2) Vv eqo(egw) (2) neqy(w) Vv eql(egw)
(3) neq, (2) v eq(](ezl/w) (4) neq,(w) Vv GQ1(611m;)
(5) neqy(d) V eqg(el,,) (6) nedy(w) V eqy(e,,)

Algorithm: 2IND-SOLVABLE

Input: A finite set C' of constraints over
I UAZ

Output: succeed if C' is satisfiable; fail other-
wise.

P« {ci,co|ceCandec=c1Ve}
Qa < {c€ C | cisnot a disjunction and Rel(c) € A}
Qr < {c € C | cis not a disjunction and Rel(c) € I' \ A}
if Qr has no solution then return fail
define a set of boolean variables {g. | ¢ € PUQr UQna}
A+ {(=ge V —gq) | " € PUQa and Qr U {c, "} not satisfiable}
A"+ {(ge V qev) | 3c € C such that ¢ =’ v "}
A" {g. | c€ QrUQa)
if AUA"U A" is satisfiable

then return succeed

else return fail

© 00N O W

Figure 2: Algorithm 2IND-SOLVABLE

The value of variables © will equal the colour of the corresponding vertex and
variable el is to be interpreted as follows: if ¢!, = 0, then variable @ does not
have the value i; otherwise, w equals 7. Now, consider constraint (1). It tells us
that either ¢ is not equal to 0 or the variable w is not equal to 0. Hence, the
constraints (1), (3) and (5) ensure that adjacent vertices are not assigned the
same colour. For this to work, it must also be true that a variable w cannot have
a value 7 and at the same time ¢! = 0. This is guaranteed by constraints (2),
(4) and (6).
We can now show that X is satisfiable iff G is 3-colourable.

only-if: Let M be a model of X. We show that M (9) # M (w) whenever there is
an edge between v and w in G. Since the range of M is {0,1,2}, M can easily
be modified into a three-colouring of G.

Assume to the contrary that X has a model M such that M(0) = M(w) =0
(the other two cases are analogous) and (v,w) € E. Constraints (1) and (2)
implies that both eqq(e?,) and eq;(e?,) hold which leads to a contradiction.

if: Let f:V — {0,1,2} be a 3-colouring of G. Construct a model M of X as
follows:

14

M(e,,) = 0if f(w) #
M(el,) =1if f(w) =i

To see that M is a model of X, arbitrarily choose a constraint ¢ in X. Assume
first that c is on the form (1) neqy(?) V eqq(€’,). This constraint is not satisfied
iff M(9) = 0and M(e?,) = 1. By the construction of M, it follows that f(v) = 0
and f(w) = 0 which contradicts the fact that f is a 3-colouring of G.

Assume c is on the form (2) neqy(w) V eq,(e’,) instead. This constraint is
not satisfied iff M (1) = 0 and M(e?,) = 0. By the construction of M, it follows
that f(w) = 0 and f(w) # 0 at the same time. O

4 1-Independence and Refinements

In the previous section we have shown that the 1-independence property is a
necessary and sufficient condition for tractability of a natural class of disjunctive
constraints. However, it is often quite difficult to prove that this property holds
for a certain class, and this has to be proven for each class anew. Recently,
Renz [17] proposed a general method for proving tractability of classes of relations
which is comprised by running a simple algorithm. This refinement method,
which is described in Section 2.3, seems to be related to the 1-independence
property in the following (simplified) way:

The 1-independence property specifies when a constraint can be added to a set
of constraints without changing consistency, while by the refinement method it
can be shown if a relation can be removed from a disjunctive constraint without
changing consistency. Actually, removing a relation R from a disjunctive con-
straint Sy is the same as adding the constraint z—Ry. In Subsection 4.1, we try
to elaborate this similarity and show under which conditions the 1-independence
property corresponds to the refinement method and vice versa. Some successful
examples for using the refinement method for proving 1-independence property
are presented in Subsection 4.2. We stress once again that the results in this
section are only applicable when considering binary relations.

4.1 Connections between 1-Independence and Refinements

We will now show how the refinement method can be used for proving 1-independence.
Let A be a set of basic relations and choose & C 24 such that S can be decided

by path-consistency. Let A be a subset of S. We make the following additional
assumptions about S and A:

1. eq € S;

15

2. A is closed under intersection.

These restrictions can be imposed without loss of generality: First note that since
CsPSAT(S) is tractable, the problem CSPSAT(SU{eq}) is also tractable and can
trivially be reduced to the first problem (by contracting any two variables related
by eq to a single variable). The fact that A can be assumed to be closed under
intersection follows from the next lemma.

Lemma 15 Let I', A be sets of relations such that A is 1-independent of I", then
the closure of A under intersection is also 1-independent of I'.

Proof: Let © be a set of constraints over I' and H = {hy,...,h,} a set
of constraints over A U {R N S} for some R,S € A. Assume that © U {h;},
1 < ¢ < n is satisfiable. Construct the set

H' = (H L{(RNS)(z) € H}) U{R(z),S(z) | (RN S)(z) € H}

and note that © U {h'} is satisfiable for all A" € H'. The constraints in H' are all
based on the relations in A so ® U H' is satisfiable by 1-independence. It follows
from the construction of H' that ® U H is also satisfiable and A U{R N S} is
1-independent of I'. O

From now on, we assume that all relations encountered are members of S. We
need a couple of lemmata before we can establish the main result.

Lemma 16 A triple (R, S,T) is satisfiable iff RN (S o T) # 0.

Proof: The only-if direction is obvious. We show the other direction by choos-
ing some basic relation K € RN (SoT) and arbitrarily picking two values a and ¢
such that aKc. The fact that K € S oT implies that for all possible choices of a
and c, there exists a value b such that aSb and bT'c. By making the assignments
T =a,y=">band z = ¢, we have shown that (R, S,T) is satisfiable. O

Lemma 17 Assume that S can be refined by M2, let R be a relation in S and
Ki,...,K, e AANMfRNK; #0,1<i<n,then RNN™, K; # 0.

Proof: Induction over n. The lemma obviously holds for n = 1 so we assume
that it holds for n = k, k > 1. We show that the claim holds for n = k 4+ 1. The
induction hypothesis tells us that RN ﬂle K; # () and we know that ﬂle K, e A
since A is closed under intersection. Consider the triple (R, R, eq) and note that
it is path-consistent since R= RN (Roeq) and eq=eqN (Ro R).

Since RN K1 # 0, the fact that S can be refined by M* implies that
(RN K1, RNNE, K;,eq) is satisfiable. By Lemma 16, this is equivalent with
(RN EKp) N(RNNEL,K) o eq) # 0 so (RNEKp)N(RNNEK) =
(RN N} K;) # 0 which concludes the induction. O

16

Theorem 18 If S can be refined by M*, then A is 1-independent of S.

Proof: Let © be a set of constraints over S and H = {hy,...,h,} a set of
constraints over A. Let ©' be the set © after enforcing path-consistency and
assume that © U {h;}, 1 <i < n, has a solution.

Arbitrarily choose 7 and assume that h; = zR'y. Since © U{h;} has a solution,
©' U {h;} also has a solution and there is a non-empty relation R that relates
and y in ©'. Note that adding h; to ©' is the same thing as refining the relation
rRy € ©' to z(RN R")y. Certainly, RN R' # () since ©' U {h;} would not have
a solution otherwise. Consequently, M2[R][R N R'| = true since R’ € A and by
Lemma 17, we know that the relation R cannot be refined to the empty relation
by adding more constraints from H. Thus, adding the constraints in H to © are
all refinements according to M2,

Since Check-Refinements(S, M*) succeeds, Theorem 8 tells us that such re-
finements can be made without making ©' inconsistent, i.e. ©'U H has a solution
which trivially implies that ©® U H has a solution. We have thus shown that A is
1-independent of S since ©® and H were arbitrarily chosen. 0

This theorem gives us the possibility to prove 1-independence of A with respect
to S automatically by simply running CHECK-REFINEMENTS(S, M2). If the
algorithm returns succeed, we know that A is independent of S. In order to
make use of a negative answer of the algorithm, we also have to prove the opposite
direction, i.e. independence of A with respect to a set S implies that CHECK-
REFINEMENTS(S, M2) returns succeed. Although this is a highly desirable
property, we have not been able to prove this nor did we find a counterexample.
There are, however, many examples for which this conjecture holds. As we will see
in Subsection 4.2, this includes all 1-independence results for the point algebras
for partially and totally ordered time. We give a proof of a slightly limited version
of this conjecture.

Definition 19 Let S C 24 and R € S. We say that path-consistency makes
R explicit iff for every path-consistent instance © of CSPSAT(S), the following
holds: if M(z)RM(y) for every M € Mods(®), then zSy € © and S C R.

Theorem 20 Let S C 24 and assume that A is independent of S. Then,
CHECK-REFINEMENTS(S, M2) returns succeed if and only if path-consistency
makes — R explicit for every R € A.

Proof: only-if: Assume to the contrary that there exists a path-consistent
instance © of CSPSAT(S), z,y € Vars(©) and relations R € A, S € S such that:

1. zSy € ©;
2. for all M € Mods(©), M(z)-RM/(y); and

17

3. SNR#0.
Since R € A and CHECK-REFINEMENTS(S, M%) returns succeed, the instance
O =0U{uRv |uTveO®and TN R # 0}

has a solution. However, SN R # () so xRy € ©'. We know that all models M
of © have the property M(z)-RM/(y) so every model M' of ®' must also have
this property. This contradicts the fact that ®' has a model and, consequently,
SNR=10and S C —~R. We have thus shown that path-consistency makes =R
explicit.

if: Let © be a path-consistent instance of CSPSAT(S) and arbitrarily choose
a constraint zSy € O such that SN R # @ for some R € A. The fact that
path-consistency makes —R explicit gives that © U {z Ry} has a solution and,
by independence, © = O U {uRv | R € A, vTv € © and TN R # 0} has a
solution. However, ©' is equivalent to © refined by the matrix M2 so CHECK-
REFINEMENTS(S, M%) returns succeed by Theorem 8 O

Corollary 21 Given a set of relations S C 2 for which path-consistency com-
putes minimal labels and a refinement matrix M2, CHECK-REFINEMENTS(S, M®)
returns succeed if and only if A is independent of S.

Proof: If path-consistency computes minimal labels, then it makes =R explicit
for every R € A. O

Examples of when path-consistency computes minimal labels can, for instance,
be found in Deville et al. [9] and Bessiére et al. [3].

4.2 Computational experience

We will demonstrate that many 1-independence results can be obtained by using
the refinement method. We shall show that all independence results for the point
algebras for partially and totally ordered time can be derived using refinements.
This is possible since we know ewvery maximal tractable set of disjunctions of
relations for partially ordered time [5]. This, of course, requires a definition of a
maximal tractable set of disjunctions of relations. Let B be a set of basic relations
and I' C B* such that CsPSAT(T) is tractable. We say that I" is mazimal tractable
(with respect to B) iff for every R € B* such that R ¢ T, TU{R} is not tractable.

The point algebra for partially ordered time is based on the notion of relations
between pairs of variables interpreted over a partially-ordered set. We consider
four basic relations which we denote by <,>,= and ||. If z,y are points in a
partial order (T, <) then we define these relations in terms of the partial ordering
< as follows:

18

| [Pal A4 [Tr | Ap[Tc |Ac | Ap |

< []) []
< ° ° °
<> ° .

<=>) [] []
|| ° ° ° °

|| = ° ° ° °
= . ° ° °
#+ ° ° ° ° ° °

< || []) [])

< ° ° ° °

Table 1: Tractable classes of the point algebra for partially ordered time [5].

l.z<yiffr <yandnot y <z

[N]

.x>yiffy<zandnot z <y

J.x=yife<yandy<z

S

. z||y iff neither x < y nor y < z

The point algebra for partially ordered time has been throughly investigated
earlier and a total classification with respect to tractability has been given in
Broxvall and Jonsson [4]. In Broxvall and Jonsson [5] the sets of relations in
Table 1 are defined and it is proven that 'A%, I'gVA%, I'¢VAYL and A}, are
the unique maximal tractable disjunctive classes of relations for partially ordered
time. The proofs of tractability for those sets relied on a series of handmade
independence proofs. We will now derive these independence results using the
refinement method.

To do so, we need to show that the classes I'4,I'g, I'c and Ap are decidable by
path-consistency. We begin by proving a useful connection (Lemma 22) between
RCC-5 and the point algebra for partially ordered time which in turn will be
needed to prove that path-consistency decides I'4 and I'g.

RCC-5 [2] is based on the notions of regions and binary relations on them. A
region p is a regular open set of a topological space. Regions themselves do not
have to be internally connected, i.e. a region may consist of different disconnected
pieces.

Given two regions, their relation can be described by exactly one of the ele-
ments of the set B of five basic RCC-5 relations. The definition of these relations
can be found in Table 2.

19

X{pr}Y iff XNnY =0

X{P0lY iff Ja,bc:acX,agY,beXbeY,cgd X cecY
X{PPlY iff XCVY

X{pP1}Y iff X DY

X{EQ}Y iff X=Y

Table 2: The five basic relations of RCC-5.

Lemma 22 Let I' be a set of relations in the point algebra for partially ordered
time and define the function o such that

1. o(<) = PP;

2. o(>)=PP}

3. o(=) = EQ; and
4. o(|]) = (DR PO).

Then, I' can be decided by path-consistency if the set

M={Uo(r)|ReT}

rcR

of RCC-5 relations can be decided by path-consistency.

Proof: Let II be an arbitrary CSP instance over the relations in I'. Define
the set ¥ of RCC-5 formulae as follows: for each z; R z; € II, add the formula
z; U,ero(r) z;. Note that 3 is a CSP instance over I" that, by assumption, can
be decided by path-consistency.

We begin by comparing the composition tables for partially-ordered time and
the RCC-5 relations (PP), (PP71), (EQ) and (DR PO):

< > = I
< {<} T {<} {ll <}
> T {>} {>} {> 1}
= {<} {>} {=} {1}
I {Il <} {> 1} {1} T
(PP) (PP 1) (EQ) (DR PO)
(PP) (PP) T (PP) (PP DR PO)
(PP*I) T (PP*I) (PP*I) (PP*1 DR PO)
(EQ) (PP) (PP 1) (EQ) (DR PO)
(DR PO) (PP DR PO) (PP*1 DR PO) (DR PO) T

20

By also noting that < ' =>, > ' =<, PP"! = PPI, PPI"! = PP and that all
other relations are invariant under - !, it is obvious that the empty relation can
be derived from II if and only if it can be derived from ¥. Thus, we only have to
show that whenever X has a model, II also has a model.

Let M be a model that assigns regions to the variables z,, ..., z, that appear
in 3. We define an interpretation N from the variables in IT to the partial order
({M(z;) | 1 <i<n},C) as follows: N(z;) = M(z;) for 1 < i < n. To conclude
the proof, we pick an arbitrary constraint z; Rz; in ¥ and show that it is satisfied
by the interpretation N. Assume now, for instance, that M(z;) (PP) M(z;).
By the definition of o, we know that {<} C R and it follows immediately that
N(z;) < N(z;) and the constraint z; Rz; is satisfied. The remaining cases can be
proved analogously. O

Theorem 23 Path-consistency decides consistency for I'4, I'g, I'c and Ap.

Proof: Let I'' = {U,cpo(r) | R € T4} (where o is defined as in Lemma 22)
and note that I'" C R2® [14]. Since R2® can be decided by path-consistency [19],
Lemma 22 implies that path-consistency decides I'y4.

Similarly, we can verify that path-consistency decides ['g; in this case, [V =
{Urero(r) | R € Tg} C Ri* [14]. Showing that R}* is decided by path-
consistency is straightforward and left as an exercise (hint: compare Ri* and
the point algebra for totally ordered time and recall that the latter is decided by
path consistency).

For I'c the result follows from the fact that it is a subset of I'4y and Ap is
trivially decided by path-consistency. O

By using the algorithm CHECK-REFINEMENTS, we can automatically verify that
A4, Ap,Ac and Ap are valid refinements of I'4,I'g,I'c and Ap, respectively.
Theorem 23 now gives that A4, Ag, A¢c and Ap are independent of I'y, ', I'c
and Ap, respectively, so we have proven tractability of all maximal tractable sets
of disjunctions of relations for the point algebra for partially ordered time.

In Broxvall and Jonsson [5] the point algebra for totally ordered time is also
investigated and the following two classes are defined:

A = {(<), (<=), (<>), F)PA{(<>)}

These two classes are the only two maximal tractable sets of disjunctions of
relations. It is well-known that path-consistency decides the point algebra for
totally ordered time and the independence result can easily be verified using the
refinement algorithm.

21

5 Conclusions and Open Questions

We have studied the complexity of reasoning with disjunctive constraints. We
have shown that three previously presented properties are necessary and sufficient
for tractability of CSPSAT(A*), CsPSAT(I'YA*) and CsPSAT(I' U A?). There is
at least one interesting case that is not covered by our results so we pose the
following problem:

Open question 1. Assume CSPSAT(I' U A) is tractable. What is a necessary
and sufficient condition for tractability of CsPSAT(T'VA).

Ideas taken from Cohen et al. [7] can probably be used for answering this question
if we restrict I' and A to be relations over disjoint domains.

We have provided a method for automatically deciding the 1-independence
property based on refinements. The only requirement for applying this method
is the sufficiency of path-consistency for deciding consistency in the class of con-
straints under consideration. In many cases this can, however, also be shown by
using refinement techniques. We have demonstrated that this method is complete
in two cases (the point algebras for totally-ordered and partially-ordered time)
but we have not been able to prove this in general. We ask the following;:

Open question 2. Assume path-consistency decides CSPSAT(I"). Is it true that
A C T is 1-independent of I if and only if CHECK-REFINEMENTS (T, M?) returns
succeedI’

Even if it turns out that the answer to the previous question is ‘yes’, there is
still room for improving the refinement method since (1) it is restricted to binary
relations only; and (2) path-consistency must decide the underlying CSPSAT

problem.

Open question 3. Given arbitrary sets I',A of relations, is there an algorithm
for deciding whether A is 1-independent of " or notI’

The previous questions naturally suggest our final question.

Open question 4. Given arbitrary sets I',A of relations, is there an algorithm
for deciding whether A is 2-independent of " or notI"

Acknowledgements

We would like to thank Andrei Bulatov, David Cohen, Peter Jeavons, Andrei
Krokhin and the anonymous reviewers for valuable comments. Mathias Broxvall

22

has been supported by the ECSEL graduate student program. Peter Jonsson
has been supported by the Swedish Research Council for the Engineering Sci-
ences (TFR) under grant 97-301 and the Swedish Research Counncil (VR) under
grant 221-2000-361. Jochen Renz has been partially supported by the Deutsche
Forschungsgemeinschaft (DFG) as part of the project FAST-QUAL-SPACE which
is part of the DFG special research effort on ‘Spatial Cognition’, by the Wallen-
berg foundation and by a Marie Curie Fellowship of the European Community
programme “Improving Human Potential” under contract number HPMF-CT-
2000-00667.

References

1]

B. Aspvall, M. F. Plass and R. E. Tarjan, A linear time algorithm for testing
the truth of certain quantified Boolean formulas, Information Processing
Letters 8 (1979) 121-123.

B. Bennett, Spatial reasoning with propositional logics, in: Proceedings of
the 4th International Conference on Principles on Knowledge Representation
and Reasoning (KR-94), Bonn, Germany, 1994, pp. 165-176.

C. Bessiere, A. Isli and G. Ligozat. Global consistency in interval algebra
networks: tractable subclasses, in: W. Wahlster, editor, Proceedings of the
12th European Conference on Artificial Intelligence (ECAI-96), Budapest,
Hungary, 1996, pp. 3-7.

M. Broxvall and P. Jonsson, Towards a complete classification of tractability
in point algebras for nonlinear time, in: Proceedings of the 5th International
Conference on Principles and Practice of Constraint Programming (CP-99),
Alexandria, VA, USA, 1999, pp. 448-454.

M. Broxvall and P. Jonsson, Disjunctive temporal reasoning in partially
ordered time structures, in: Proceedings of the Seventeenth National Con-
ference on Artificial Intelligence (AAAI-2000), Austin, TX, USA, 2000, pp.
464-469.

M. Broxvall, P. Jonsson and J. Renz, Refinements and independence: A sim-
ple method for identifying tractable disjunctive constraints, in: Proceedings
of the 6th International Conference on Principles and Practice of Constraint
Programming (CP-2000), Singapore, 2000, pp. 114-127.

D. Cohen, P. Jeavons and R. Gault, New tractable classes from old, in:
Proceedings of the 6th International Conference on Principles and Practice
of Constraint Programming (CP-2000), Singapore, 2000, pp. 160-171.

23

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

D. Cohen, P. Jeavons, P. Jonsson and M. Koubarakis, Building tractable
disjunctive constraints, Journal of the ACM 47 (5) (2001) 826—853.

Y. Deville, O. Barette and P. van Hentenryck, Constraint satisfaction over
connected row convex constraints, Artificial Intelligence 109 (1-2) (1999)
243-271.

E. C. Freuder. A sufficient condition for backtrack-bounded search. Journal
of the ACM 32 (1985) 755-761.

G. Gottlob, N. Leone and F. Scarcello, A comparison of structural CSP
decomposition methods, in: Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI-99), Stockholm, Sweden, 1999,
pp. 394-399.

R. Hirsch, Expressive power and complexity in algebraic logic, Journal of
Logic and Computation 7 (3) (1997) 309-351.

P. G. Jeavons and M. C. Cooper, Tractable constraints on ordered domains,
Artificial Intelligence 79 (1996) 327-339.

P. Jonsson and T. Drakengren, A complete classification of tractability in
RCC-5, Journal of Artificial Intelligence Research 6 (1997) 211-221.

A. K. Mackworth, Consistency in networks of relations, Artificial Intelligence
8 (1977) 99-118.

B. Nebel and H.-J. Biirckert, Reasoning about temporal relations: A max-
imal tractable subclass of Allen’s interval algebra, Journal of the ACM 42
(1) (1995) 43-66.

J. Renz, Maximal tractable fragments of the region connection calculus: A
complete analysis, in: Proceedings of the 16th International Joint Conference
on Artificial Intelligence (IJCAI-99), Stockholm, Sweden, 1999, pp. 448-
454w.

J. Renz, On the complexity of binary relations, Technical Report, Institut
fiir Informationssysteme, Technische Universitat Wien, forthcoming.

J. Renz and B. Nebel, On the complexity of qualitative spatial reasoning;:
A maximal tractable fragment of the region connection calculus, Artificial
Intelligence 108 (1-2) (1999) 69-123.

P. van Beek and R. Dechter, On the minimality and decomposability of
row-convex constraint networks, Journal of the ACM 42 (3) (1995) 543-561.

24

