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Question: How can we list the 2n bit strings of length n in
such a way that succesive strings differ in only one place?

If L is a list, then L denotes the reversal of L

L · x is the list formed by appending x to each member of L

L1 ⊕ L2 denotes the concatenation of two lists

The binary reflected gray code is:

B(n) =

{
φ if n = 0

B(n − 1) · 0⊕ B(n − 1) · 1 if n > 0

The reversing of sublists will be crucial later!
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Figure: Herbert Wilf
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The General Problem

Given a class of combinatorial objects and a definition of what it
means for two objects to be close, produce a list of all the objects
in that class in such a way that succesive elements are close.
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First Solution

Find a neat recursive description of the class and use the reversing
and gluing procedure.

Jon Cohen Gray Code Sequences of Partitions



Background
Set Partitions

Integer Partitions

Binary Gray Codes
Combinatorial Gray Codes

Combinatorial Gray Codes

Second Solution

Define the Gray Graph:
Vertices: Objects

Edges: Two vertices are joined if they are close.
Find a Hamiltonian path through this graph.
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Figure: Partitioning the Cake Set
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Set Partitions

Definition

Let X be a set. A partition of X is a family of pairwise disjoint
subsets of X which together contain all of the elements of X .
These subsets are called blocks.

Given a positive integer n, we use [n] to denote the set
{1, 2, . . . , n}.
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Moving Elements

There are two ways of defining “close” for a set partition:

First way: Two partitions are close if one element has been
moved between blocks.
Eg: {{1, 2}, {3}} and {{1}, {2, 3}} are close partitions of [3].

Gray code listing: Gideon Ehrlich (1973) - using Restricted
Growth Tails!
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Restricted Growth Tails

Define the Restricted growth tail (RGT) of a partition of [n]
by:

Step 1: Lex Order the Partition
Step 2: Number the blocks 0, 1, ...
Step 3: Form a string of length n where the i ’th

entry in this string is the block that i appears in.

Eg: {{1, 3, 5}, {2, 4}} ↔ “01010”

If (x1, x2, . . . , xn) is a RGT then
0 ≤ xi ≤ 1 + max{x1, x2, . . . , xi−1}
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Inequivalence of Representations

Two RGT’s are close if exactly one element is different.

Obvious bijection between standard representation and RGT
representation

This bijection only preserves gray codes in one direction!

Standard representation → RGT representation fails

Eg: {{1, 3}, {2}} is close to {{3}, {1, 2}} but:

RGT of: {{1, 3}, {2}} → “010”

RGT of: {{3}, {1, 2}} - need to reorder

{{1, 2}, {3}} → “001”

Finding a Gray Ordering in the RGT rep was solved by Ehrlich
- giving a gray code ordering for standard rep!
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A Stirling Formula

{n
k

}
- the number of partitions of [n] into blocks of size k.

This is the Stirling number of the second kind

Lemma {n
k

}
=

{n−1
k−1

}
+ k

{n−1
k

}
Proof.

Done by Gordon in Lecture 6. But we make an observation. Let
x1x2 . . . xn be the RGT of a partition into k blocks and
m = max{x1, x2, . . . , xn−1}. Then, if xn = k − 1 then m = k − 1 or
k − 2 because xn ≤ 1 + m. If 0 ≤ xn < k − 1 then m = k − 1,
because the partition must have k blocks.
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Back and Forth

Using a slightly more complicated reversing and gluing procedure,
Ruskey (1993) managed to use this formula to construct a Gray
listing of RGT’s of partitions into k blocks.

We construct two Gray lists: S(n, k, 0) and S(n, k, 1)

The construction of one depends on the other.

Also need to consider k even and odd cases seperately.
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The construction

First we do it for even k:

S(n, k, 0) even k S(n, k, 1) even k

S(n − 1, k − 1, 0).(k − 1)⊕ S(n − 1, k − 1, 1).(k − 1)⊕
S(n − 1, k, 1).(k − 1)⊕ S(n − 1, k, 1).(k − 1)⊕
S(n − 1, k, 1).(k − 2)⊕ S(n − 1, k, 1).(k − 2)⊕
...

...

S(n − 1, k, 1).1⊕ S(n − 1, k, 1).1⊕
S(n − 1, k, 1).0 S(n − 1, k, 1).0
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The construction

And now for odd k:

S(n, k, 1) odd k S(n, k, 0) odd k

S(n − 1, k − 1, 0).(k − 1)⊕ S(n − 1, k − 1, 1).(k − 1)⊕
S(n − 1, k, 1).(k − 1)⊕ S(n − 1, k, 1).(k − 1)⊕
S(n − 1, k, 1).(k − 2)⊕ S(n − 1, k, 1).(k − 2)⊕
...

...

S(n − 1, k, 1).1⊕ S(n − 1, k, 1).1⊕
S(n − 1, k, 1).0 S(n − 1, k, 1).0

Jon Cohen Gray Code Sequences of Partitions



Background
Set Partitions

Integer Partitions
Gray Graphs

A Little Game

Figure: Dr Evil
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A Little Game

Two integer partitions are close if they differ by the move of
one dot in the Ferrer’s diagram

Find Gray listing for:

1 All partitions
2 Partitions into parts of size at most k (Denoted P(n, k))
3 Partitions into distinct parts
4 Partitions into odd parts
5 . . .
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A Little Game

Carla Savage (1989) found a gray code construction for
P(n, k)

More complicated reversing/gluing procedure

David Ramussen, Douglas West and Savage (1993):

Gray Code for Partitions into distinct/odd parts

Bijection between these does not preserve Gray Codes!

We concentrate on the Gray Graphs for P(n, n).
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Gray Graph for P(6, 6)

Finding a Hamiltonian path “by eye” is not hard in this case.
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Figure: n = 7
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Figure: n = 12
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Enumerating Edges

We can count some things associated with the Gray graph of order
(n, n):

n 1 2 3 4 5 6 7 8 9 . . .

#Edges 0 1 2 5 9 17 28 47 73 . . .
#HP 1 1 1 1 1 1 52 652 298,896 . . .

Where HP stands for Hamiltonian Paths.
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