Gray Code Sequences of Partitions

Jon Cohen

Combinatorics Day, 27 May 2004

Jon Cohen Gray Code Sequences of Partitions

<ロ> (四) (四) (三) (三) (三)

Binary Gray Codes Combinatorial Gray Codes

Binary Reflected Gray Codes

Figure: Frank Gray (Artist's Impression)

・ロト ・ 日 ・ ・ ヨ ト ・ ・ ヨ ト ・

Binary Gray Codes Combinatorial Gray Codes

Binary Reflected Gray Codes

• *Question:* How can we list the 2ⁿ bit strings of length n in such a way that succesive strings differ in only one place?

(日) (四) (王) (王) (王)

Binary Gray Codes Combinatorial Gray Codes

Binary Reflected Gray Codes

- *Question:* How can we list the 2ⁿ bit strings of length n in such a way that succesive strings differ in only one place?
- If L is a list, then \overline{L} denotes the reversal of L

(日) (四) (王) (王) (王)

Binary Gray Codes Combinatorial Gray Codes

Binary Reflected Gray Codes

- *Question:* How can we list the 2ⁿ bit strings of length n in such a way that succesive strings differ in only one place?
- If L is a list, then \overline{L} denotes the reversal of L
- $L \cdot x$ is the list formed by appending x to each member of L

(日) (周) (王) (王)

Binary Gray Codes Combinatorial Gray Codes

Binary Reflected Gray Codes

- *Question:* How can we list the 2ⁿ bit strings of length n in such a way that succesive strings differ in only one place?
- If L is a list, then \overline{L} denotes the reversal of L
- $L \cdot x$ is the list formed by appending x to each member of L
- $L_1 \oplus L_2$ denotes the concatenation of two lists

Binary Gray Codes Combinatorial Gray Codes

Binary Reflected Gray Codes

- *Question:* How can we list the 2ⁿ bit strings of length n in such a way that succesive strings differ in only one place?
- If L is a list, then \overline{L} denotes the reversal of L
- $L \cdot x$ is the list formed by appending x to each member of L
- $L_1 \oplus L_2$ denotes the concatenation of two lists
- The binary reflected gray code is:

$$\mathbf{B}(n) = \begin{cases} \phi & \text{if } n = 0\\ \mathbf{B}(n-1) \cdot 0 \oplus \overline{\mathbf{B}(n-1)} \cdot 1 & \text{if } n > 0 \end{cases}$$

Binary Gray Codes Combinatorial Gray Codes

Binary Reflected Gray Codes

- *Question:* How can we list the 2ⁿ bit strings of length n in such a way that succesive strings differ in only one place?
- If L is a list, then \overline{L} denotes the reversal of L
- $L \cdot x$ is the list formed by appending x to each member of L
- $L_1 \oplus L_2$ denotes the concatenation of two lists
- The binary reflected gray code is:

$$\mathbf{B}(n) = \begin{cases} \phi & \text{if } n = 0\\ \mathbf{B}(n-1) \cdot 0 \oplus \overline{\mathbf{B}(n-1)} \cdot 1 & \text{if } n > 0 \end{cases}$$

The reversing of sublists will be crucial later!

Binary Gray Codes Combinatorial Gray Codes

Combinatorial Gray Codes

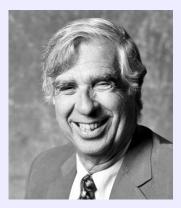


Figure: Herbert Wilf

Jon Cohen Gray Code Sequences of Partitions

<ロ> (四) (四) (三) (三) (三)

Binary Gray Codes Combinatorial Gray Codes

Combinatorial Gray Codes

The General Problem

Given a class of combinatorial objects and a definition of what it means for two objects to be *close*, produce a list of all the objects in that class in such a way that succesive elements are close.

Binary Gray Codes Combinatorial Gray Codes

Combinatorial Gray Codes

First Solution

Find a neat recursive description of the class and use the reversing and gluing procedure.

Binary Gray Codes Combinatorial Gray Codes

Combinatorial Gray Codes

Second Solution

Define the *Gray Graph*: *Vertices*: Objects *Edges*: Two vertices are joined if they are close. Find a Hamiltonian path through this graph.

(日) (四) (王) (王)

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Set Partitions

Figure: Partitioning the Cake Set

Jon Cohen Gray Code Sequences of Partitions

◆□> <圖> <≧> <≧>

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Set Partitions

Definition

Let X be a set. A *partition* of X is a family of *pairwise disjoint* subsets of X which together contain all of the elements of X. These subsets are called *blocks*.

Given a positive integer *n*, we use [n] to denote the set $\{1, 2, ..., n\}$.

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Moving Elements

• There are two ways of defining "close" for a set partition:

イロト イヨト イヨト イヨト

Moving Elements

- There are two ways of defining "close" for a set partition:
- First way: Two partitions are close if one element has been moved between blocks.
 Eg: {{1,2}, {3}} and {{1}, {2,3}} are close partitions of [3].

Moving Elements

- There are two ways of defining "close" for a set partition:
- First way: Two partitions are close if one element has been moved between blocks.
 Eg: {{1,2}, {3}} and {{1}, {2,3}} are close partitions of [3].
- Gray code listing: Gideon Ehrlich (1973) using Restricted Growth Tails!

· 曰 › · (周 › · (日 › · (日 › ·

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Restricted Growth Tails

- Define the *Restricted growth tail* (RGT) of a partition of [n] by:
 - Step 1: Lex Order the Partition
 - Step 2: Number the blocks 0, 1, ...
 - Step 3: Form a string of length *n* where the *i*'th entry in this string is the block that *i* appears in.

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Restricted Growth Tails

- Define the *Restricted growth tail* (RGT) of a partition of [n] by:
 - Step 1: Lex Order the Partition
 - Step 2: Number the blocks 0, 1, ...
 - Step 3: Form a string of length *n* where the *i*'th entry in this string is the block that *i* appears in.
- Eg: $\{\{1,3,5\},\{2,4\}\} \leftrightarrow$ "01010"

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Restricted Growth Tails

- Define the *Restricted growth tail* (RGT) of a partition of [n] by:
 - Step 1: Lex Order the Partition
 - Step 2: Number the blocks 0, 1, ...
 - Step 3: Form a string of length *n* where the *i*'th entry in this string is the block that *i* appears in.
- Eg: $\{\{1,3,5\},\{2,4\}\} \leftrightarrow$ "01010"
- If $(x_1, x_2, ..., x_n)$ is a RGT then $0 \le x_i \le 1 + \max\{x_1, x_2, ..., x_{i-1}\}$

Background Restrict Set Partitions Fixed N Integer Partitions Gray Li

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Inequivalence of Representations

• Two RGT's are close if exactly one element is different.

(日) (四) (王) (王) (王)

 Background
 Restricted Growth Tails

 Set Partitions
 Fixed Number of Blocks

 Integer Partitions
 Gray Listing

Inequivalence of Representations

- Two RGT's are close if exactly one element is different.
- Obvious bijection between standard representation and RGT representation

 Background
 Restricted Growth Tails

 Set Partitions
 Fixed Number of Blocks

 Integer Partitions
 Gray Listing

Inequivalence of Representations

- Two RGT's are close if exactly one element is different.
- Obvious bijection between standard representation and RGT representation
- This bijection only preserves gray codes in one direction!

(日) (周) (王) (王)

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Inequivalence of Representations

- Two RGT's are close if exactly one element is different.
- Obvious bijection between standard representation and RGT representation
- This bijection only preserves gray codes in one direction!
- \bullet Standard representation \rightarrow RGT representation fails

(日) (周) (王) (王)

- Two RGT's are close if exactly one element is different.
- Obvious bijection between standard representation and RGT representation
- This bijection only preserves gray codes in one direction!
- \bullet Standard representation \rightarrow RGT representation fails
- Eg: $\{\{1,3\},\{2\}\}$ is close to $\{\{3\},\{1,2\}\}$ but:

- Two RGT's are close if exactly one element is different.
- Obvious bijection between standard representation and RGT representation
- This bijection only preserves gray codes in one direction!
- \bullet Standard representation \rightarrow RGT representation fails
- Eg: $\{\{1,3\},\{2\}\}$ is close to $\{\{3\},\{1,2\}\}$ but:
- RGT of: $\{\{1,3\},\{2\}\}$ \rightarrow "010"

· 曰 > (何 > (王 >) (王 >)

- Two RGT's are close if exactly one element is different.
- Obvious bijection between standard representation and RGT representation
- This bijection only preserves gray codes in one direction!
- \bullet Standard representation \rightarrow RGT representation fails
- Eg: $\{\{1,3\},\{2\}\}$ is close to $\{\{3\},\{1,2\}\}$ but:
- RGT of: $\{\{1,3\},\{2\}\}$ \rightarrow "010"
- \bullet RGT of: $\{\{3\},\{1,2\}\}$ need to reorder

· 曰 > (何 > (王 >) (王 >)

- Two RGT's are close if exactly one element is different.
- Obvious bijection between standard representation and RGT representation
- This bijection only preserves gray codes in one direction!
- \bullet Standard representation \rightarrow RGT representation fails
- Eg: $\{\{1,3\},\{2\}\}$ is close to $\{\{3\},\{1,2\}\}$ but:
- RGT of: $\{\{1,3\},\{2\}\}$ \rightarrow "010"
- RGT of: $\{\{3\}, \{1,2\}\}$ need to reorder $\{\{1,2\}, \{3\}\} \rightarrow$ "001"

· 曰 › · (周 › · (日 › · (日 › ·

Fixed Number of Blocks

Inequivalence of Representations

- Two RGT's are close if exactly one element is different.
- Obvious bijection between standard representation and RGT representation
- This bijection only preserves gray codes in one direction!
- Standard representation \rightarrow RGT representation fails
- Eg: {{1,3}, {2}} is close to {{3}, {1,2}} but:
- RGT of: $\{\{1,3\},\{2\}\} \rightarrow "010"$
- RGT of: {{3}, {1,2}} need to reorder $\{\{1,2\},\{3\}\} \rightarrow "001"$
- Finding a Gray Ordering in the RGT rep was solved by Ehrlich - giving a gray code ordering for standard rep!

· 曰 › · (周 › · (日 › · (日 › ·

Restricted Growth Tails Fixed Number of Blocks Gray Listing

A Stirling Formula

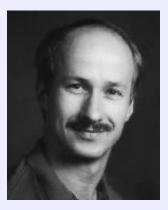


Figure: Frank Ruskey

Jon Cohen Gray Code Sequences of Partitions

(日) (四) (王) (王) (王)

Restricted Growth Tails Fixed Number of Blocks Gray Listing

A Stirling Formula

- $\binom{n}{k}$ the number of partitions of [n] into blocks of size k.
- This is the Stirling number of the second kind

Lemma

$${n \choose k} = {n-1 \choose k-1} + k {n-1 \choose k}$$

Proof.

Done by Gordon in Lecture 6. But we make an observation. Let $x_1x_2...x_n$ be the RGT of a partition into k blocks and $m = \max\{x_1, x_2, ..., x_{n-1}\}$. Then, if $x_n = k - 1$ then m = k - 1 or k - 2 because $x_n \le 1 + m$. If $0 \le x_n < k - 1$ then m = k - 1, because the partition must have k blocks.

<ロ> (四) (四) (三) (三) (三)

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Back and Forth

Using a slightly more complicated reversing and gluing procedure, Ruskey (1993) managed to use this formula to construct a Gray listing of RGT's of partitions into k blocks.

・ロト ・ 日ト ・ モト・

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Back and Forth

Using a slightly more complicated reversing and gluing procedure, Ruskey (1993) managed to use this formula to construct a Gray listing of RGT's of partitions into k blocks.

• We construct two Gray lists: S(n, k, 0) and S(n, k, 1)

Restricted Growth Tails Fixed Number of Blocks Gray Listing

Back and Forth

Using a slightly more complicated reversing and gluing procedure, Ruskey (1993) managed to use this formula to construct a Gray listing of RGT's of partitions into k blocks.

- We construct two Gray lists: S(n, k, 0) and S(n, k, 1)
- The construction of one depends on the other.

Back and Forth

Using a slightly more complicated reversing and gluing procedure, Ruskey (1993) managed to use this formula to construct a Gray listing of RGT's of partitions into k blocks.

- We construct two Gray lists: S(n, k, 0) and S(n, k, 1)
- The construction of one depends on the other.
- Also need to consider k even and odd cases seperately.

The construction

First we do it for even k:

S(n, k, 0) even kS(n, k, 1) even k $S(n-1, k-1, 0).(k-1)\oplus$ $S(n-1, k-1, 1).(k-1)\oplus$ $S(n-1, k, 1).(k-1)\oplus$ $S(n-1, k, 1).(k-1)\oplus$ $S(n-1, k, 1).(k-2)\oplus$ $S(n-1, k, 1).(k-2)\oplus$ \vdots \vdots $S(n-1, k, 1).1\oplus$ $S(n-1, k, 1).1\oplus$ S(n-1, k, 1).0S(n-1, k, 1).0

< 日本 (同本) (日本) (日本)

Restricted Growth Tails Fixed Number of Blocks Gray Listing

The construction

And now for odd k:

S(n, k, 1) odd kS(n, k, 0) odd k $S(n-1, k-1, 0).(k-1)\oplus$ $S(n-1, k-1, 1).(k-1)\oplus$ $S(n-1, k, 1).(k-1)\oplus$ $S(n-1, k, 1).(k-1)\oplus$ $S(n-1, k, 1).(k-2)\oplus$ $S(n-1, k, 1).(k-2)\oplus$ \vdots \vdots $S(n-1, k, 1).1\oplus$ $S(n-1, k, 1).1\oplus$ S(n-1, k, 1).0S(n-1, k, 1).0

イロト イポト イヨト イヨト

Gray Graphs

A Little Game

Figure: Dr Evil

(a) (a) (a) (a) (a) (a)

- Two integer partitions are close if they differ by the move of one dot in the Ferrer's diagram
- Find Gray listing for:
 - All partitions
 - **2** Partitions into parts of size at most k (Denoted P(n, k))
 - O Partitions into distinct parts
 - Partitions into odd parts
 - 5 ...

イロト イポト イヨト イヨト

- Carla Savage (1989) found a gray code construction for P(n, k)
- More complicated reversing/gluing procedure
- David Ramussen, Douglas West and Savage (1993):

(日) (周) (王) (王)

- Carla Savage (1989) found a gray code construction for P(n, k)
- More complicated reversing/gluing procedure
- David Ramussen, Douglas West and Savage (1993):
- Gray Code for Partitions into distinct/odd parts

· 曰 > (何 > (王 >) (王 >)

- Carla Savage (1989) found a gray code construction for P(n, k)
- More complicated reversing/gluing procedure
- David Ramussen, Douglas West and Savage (1993):
- Gray Code for Partitions into distinct/odd parts
- Bijection between these does not preserve Gray Codes!

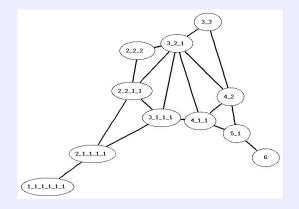
- Carla Savage (1989) found a gray code construction for P(n, k)
- More complicated reversing/gluing procedure
- David Ramussen, Douglas West and Savage (1993):
- Gray Code for Partitions into distinct/odd parts
- Bijection between these does not preserve Gray Codes!
- We concentrate on the Gray Graphs for P(n, n).

(日) (周) (王) (王)

Gray Graphs

Gray Graph for P(6, 6)

Finding a Hamiltonian path "by eye" is not hard in this case.

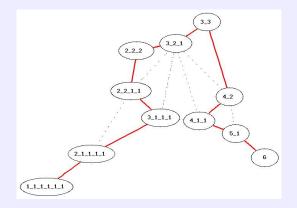


(日) (部) (注) (注) (注)

Gray Graphs

Gray Graph for P(6, 6)

Finding a Hamiltonian path "by eye" is not hard in this case.



Jon Cohen Gray Code Sequences of Partitions

<ロ> (四) (四) (三) (三) (三) (三)

Gray Graphs

Gray Graph for P(n, n)

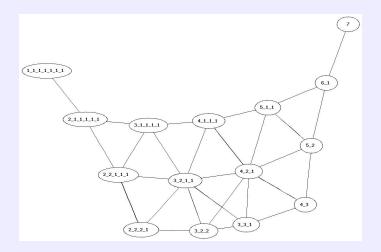


 Figure:
 n = 7
 Image: Imag

Gray Graphs

Gray Graph for P(n, n)

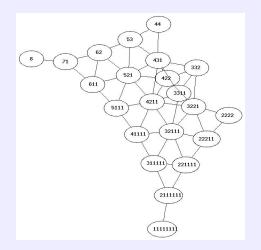


 Figure:
 n = 8
 Image: I

Gray Graphs

Gray Graph for P(n, n)



 Figure:
 n = 10
 Image: Image:

Gray Graphs

Gray Graph for P(n, n)

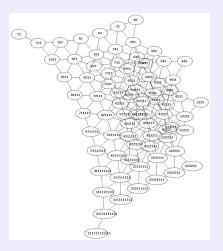


 Figure:
 n = 12
 Image: Image:

Gray Graphs

Enumerating Edges

We can count some things associated with the Gray graph of order (n, n):

(日) (四) (王) (王)

Enumerating Edges

We can count some things associated with the Gray graph of order (n, n):

								8		•••
#Edges	0	1	2	5	9	17	28	47	73	
#HP	1	1	1	1	1	1	52	652	298,896	

Where HP stands for Hamiltonian Paths.

・ロト ・ 日ト ・ モト・

Gray Graphs

Questions

(a) (a) (a) (a) (a) (a)