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Abstract

We present algorithms for estimating the epipole or direction of translation of a

moving camera. We use constraints arising from two points that are antipodal on

the image sphere in order to decouple rotation from translation. One pair of an-

tipodal points constrains the epipole to lie on a plane, and two such pairs will

correspondingly give two planes. The intersection of these two planes is an estimate

of the epipole. This means we require image motion measurements at two pairs of

antipodal points to obtain an estimate. Two classes of algorithms are possible and

we present two simple yet extremely robust algorithms representative of each class.

These are shown to have comparable accuracy with the state of the art when tested

in simulation under noise and with real image sequences.

Key words: Egomotion estimation, Omnidirectional cameras, Multi-view

Geometry

∗ Corresponding author.
Email addresses: john.lim@rsise.anu.edu.au (John Lim),

Preprint submitted to Elsevier 9 July 2009



1 Introduction1

A monocular observer moving in a scene of unknown depth undergoes a rigid2

motion that is a combination of translational and rotational motions. We focus3

on estimating these motions using image motion measurements, or optical flow.4

This is a classical problem and the last few decades of research has produced a5

vast number of self-motion estimation methods. These include the well-known6

epipolar geometry formulation of [1,2] which leads to algorithms such as the 8-7

point [3], 6-point [4] and 5-point algorithms [5,6]; methods involving nonlinear8

optimization [7,8]; qualitative search methods [9,10] and the recovery of a ‘flow9

fundamental matrix’ from optical flow [11]. Other approaches of note include10

[12], [13], [14], [15] and a great many others, which can be found in reviews11

such as [16] and [17].12

However, most approaches assume the use of a planar image with a limited13

field-of-view (FOV) such as that found in traditional cameras. Although om-14

nidirectional cameras have become widely available of late, few self-motion15

estimation algorithms actually exploit the large FOV property explicitly in16

order to aid or simplify the task. [9] and [18] are examples of some such prior17

work. However, the method proposed here is significantly more efficient com-18

pared to those algorithms, which solve the problem via a search.19

This paper expands on our recent work in [19], where we presented a method20

for estimating the direction of translation or the epipole of the camera based21

on the geometrical properties of points that are antipodal on the image sphere.22

The image sphere is simply a more natural representation for the images of23

Nick.Barnes@nicta.com.au ( Nick Barnes).
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omnidirectional cameras. From the optical flow at two antipodal points we24

were able to constrain the epipole to lie on a great circle (that is, the inter-25

section of a plane through the camera center with the image sphere). The26

rotational contribution to the measured optical flow was geometrically elim-27

inated, leaving an equation dependent only on the translational component28

of motion. These constraints were then used to estimate the location of the29

epipole.30

Whilst our method does not directly estimate rotational motion, we will show31

that once direction of translation has been found, a least squares estimate of32

rotation that is robust to outliers would not be difficult to recover. Note that33

due to the use of antipodal points, this algorithm is, by its very nature, suited34

for omnidirectional sensors and large FOV cameras.35

A somewhat similar antipodal point constraint was observed in [20]. However,36

significant differences in the theoretical derivation and in the resulting con-37

straint exist between the method of [20] and our work (Section 2.1). Further-38

more, as the authors of [20] noted, the lack of widely available omnidirectional39

sensors at that time (1994) meant that such a constraint was hardly of any40

practical use then. As a result, their constraint was merely observed as an41

equation and was not investigated further. The emergence of omnidirectional42

cameras as a popular tool in computer vision today warrants an investigation43

into methods that specifically exploit the large FOV of these sensors.44

Our constraint is somewhat simpler to derive and use compared to [20] and45

it succeeds in certain scene depth configurations where [20] fails. Both the46

constraint presented here and that of [20] may be thought of as special cases47

of the linear subspace methods investigated by [12].48
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The method proposed here is also related to the approach of [21] which utilizes49

antipodal points as well. However, whereas our approach is based on elimi-50

nating the rotational component of flow in order to constrain translation, the51

method of [21] obtains constraints without eliminating rotation. As a result,52

[21] obtains constraints on translation and on rotation, whilst the method pro-53

posed here constrains translation only (rotation is found via a second step).54

However, this also means that the constraint on translation in [21] is weaker55

than the one proposed here.56

Section 2 begins with recapitulating the theory presented in [19]. In Section57

3, we identify two basic classes of algorithms utilizing the antipodal point58

constraint - point-based algorithms and line/curve-based algorithms. We then59

present two novel algorithms representative of each class. The first is an al-60

gorithm using the derived constraint within a Random Sample and Consen-61

sus (RANSAC) [25,26] framework. The second algorithm performs Hough-62

reminiscent voting [22–24] along the great circles that constrain the direction63

of translation. It runs faster than the first algorithm but is just as robust to64

noise and outliers.65

In Section 4, we compare the performance of our two algorithms with what is66

often considered the state-of-the-art for self-motion estimation in calibrated67

cameras - the 5-point algorithm [5,6] within a RANSAC framework. Compar-68

isons were done using Matlab simulations under noise, and also using noisy69

real image sequences that involved independently moving objects in the scene.70

In Section 5, we show that our method is just as accurate as 5-point with71

RANSAC, with the added advantages of having improved robustness to out-72

liers, constant run-time with increasing noise and outliers (for the voting al-73

gorithm), and a naturally parallelizable framework which makes the method74
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potentially viable for egomotion estimation at high speeds.75

1.1 Background76

For an image sphere, the equation relating the rigid motion of the camera with

image motion is given in Equation 1 [27]. At an image point r (refer Figure 1),

the optical flow ṙ resulting from the translational motion t and the rotational

motion w is given by:

ṙ =
1

| R(r) |((t · r)r− t)−w × r (1)

(a)

Fig. 1. For some translational motion, t and some rotation about the axis w, at

point r on the image sphere, with scene depth R, the optical flow is ṙ and the flow

vector lies on the tangent plane to the sphere at that point.

The self-motion estimation task attempts to recover the translational and77

rotational motions, where it is well-known that the translation can only be re-78

covered up to a scale [2]. A least squares solution is not possible since the scene79

depth, R, is a function of r and the system of equations is under-constrained.80

Without any knowledge of depth, recovering the five unknown motion param-81

5



eters is difficult.82

In this work, the constraints described will recover the direction of translation83

or the epipole. The epipole can be defined as the intersection of the line joining84

the two camera centres with the image sphere [2]. The second camera center85

is related to the first camera center via some translation, so the direction of86

translation and the epipole are equivalent.87

Note that the above equation is an approximation that only holds for small88

baselines and small rotations. This assumption is generally true in image se-89

quence videos, where the motion between frames is small. Section 6 discusses90

how our algorithm can be implemented to give sufficiently real-time, high91

frame rate estimates of translation for such videos.92

In this paper, we use the term ‘optical flow’ to refer to any measurement93

or approximation of image motion. This includes image velocities obtained94

from feature correspondences such as SIFT [28] or Harris corners, as well as95

image velocity fields obtained using methods like Lucas-Kanade [29] or Horn-96

Schunk [30]. For the former, point correspondences are found and matched97

for two images and the velocity vector transforming one point to the other98

is calculated. The method presented here works with both classes of image99

motion measurements.100

2 Removing Rotation by Summing Flow at Antipodal Points101

On the image sphere, the optical flow, ṙ1 and ṙ2, at two antipodal points, r1102

and r2, can be written as:103
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ṙ1 =
1

| R(r1) |((t · r1)r1 − t)−w × r1 (2)

ṙ2 =
1

| R(r2) |((t · r2)r2 − t)−w × r2

=
1

| R(−r1) |((t · r1)r1 − t) + w × r1

(3)

since r2 = −r1 if they are antipodal. By summing Equations 2 and 3, we have

an expression that arises purely from the translational component of motion.

The rotational components cancel out.

ṙs = ṙ1 + ṙ2

= (
1

| R(r1) | +
1

| R(−r1) |)((t · r1)r1 − t)

= K((t · r1)r1 − t)

(4)

From Equation 4, we see that vectors r1, ṙs and t are coplanar. The normal104

of that plane is given by r1 × ṙs where × denotes the vector cross product.105

The epipole or direction of translation, t, lies on that plane. The intersection106

of that plane with the image sphere gives a great circle. See Figure 2(a) for107

an illustration.108

By picking another pair of antipodal points (that do not lie on the first great109

circle) and repeating, we obtain a second such plane or great circle. The in-110

tersection of the two planes or great circles gives an estimate of the epipole,111

t. See Figure 2(b) for an illustration.112

Of course, the intersection of the two great circles actually yields two points113

corresponding to t and −t. To disambiguate between the two, one may pick114

one of the two points and calculate the angle between it and the vector ṙs. If115

the angle is larger than π/2 radians, then that point is t. Otherwise, it is −t.116
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(a) (b)

Fig. 2. (a) Summing the flow ṙ1 and ṙ2 yields the vector ṙs, which, together with

r1 (or r2) , gives rise to a plane on which t is constrained to lie. The intersection

of that plane with the sphere is the great circle C. (b) From two pairs of antipodal

points, two great circles C1 and C2 are obtained. t is the intersection of these two

circles.

2.1 Comparison with the constraint of Thomas & Simoncelli [20]117

The underlying principle here was first observed in [20]. However, major differ-118

ences differentiate this work from that of [20]. The approach used there defined119

angular flow, which is obtained by taking the cross product of optical flow at120

a point with the direction of that point. In effect, a dual representation of flow121

is obtained and [20] shows that if the angular flow at two antipodal points was122

subtracted from each other, the rotational component would vanish.123

Both the constraint developed here and the one in [20] probably stem from a124

similar geometrical property inherent to antipodal points but the methods by125

which they were derived and the final results are quite different. The constraint126

in this paper does not require the transformation of optical flow into angular127
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flow as in [20], a step which incurs an additional cross product.128

Furthermore, the method of [20] requires a subtraction of angular flow at129

antipodal points and thus, that method fails when the world points projecting130

onto the antipodal points on the imaging device are at equal distances from131

the camera centre (subtracting the angular flow in that case yields zero) - a132

problem observed by the authors of that paper. An example of this would133

be the distances to the two opposite walls when the camera is exactly in the134

middle of a corridor. The method presented in this paper sums the optical135

flow at antipodal points and therefore, does not encounter such instabilities136

when antipodal scene points are at equal, or close to being at equal distances.137

Finally, because omnidirectional and panoramic sensors were not widely avail-138

able then, the method of [20] was not fully developed into an algorithm and139

no implementations or experiments were ever conducted. Here two complete140

algorithms are presented, tested on simulations under increasing noise and141

outliers, and demonstrated to work on fairly difficult real image sequences.142

3 Obtaining robust estimates of t143

We now have a method for obtaining some estimate of the direction of t given144

the flow at any pair of antipodal points. In this section, we outline methods145

for doing this robustly. Two classes of approaches are possible and we present146

an algorithm representative of each class in Sections 3.1 and 3.2.147

Class 1: Point-Based - Firstly, the flow at two pairs of antipodal points gives148

a unique (up to a scale) solution for the location of the epipole from the149

intersection of two great circles. Repeatedly picking 2 pairs from a set of N150
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antipodal point pairs can give up to NC2 = N !
2!(N−2)!

possible solutions, where151

each candidate solution is a point on the image sphere. We loosely term the152

class of methods that estimates the best solution from a set of point solutions,153

point-based algorithms.154

Section 3.1 presents an algorithm representative of this class that finds the155

solution point best supported by the optical flow data using the RANSAC156

framework. The maximum-inlier method used in [19] is also a member of this157

class. Moreover, since the points all lie in a Lie-group (which a sphere is),158

[31] shows that the mean shift algorithm [32] may also be used for finding the159

mode of the points. K-means is another possibility for clustering points on a160

sphere [33]. Other algorithms in this class include robust estimators such as161

[34] and variants of RANSAC such as [35–38].162

Class 2: Line/Curve-Based - Alternatively, since the flow at every pair of163

antipodes yields a great circle which must intersect t, the epipole could be164

estimated by simultaneously finding the best intersection of many of these165

great circles. We will later show this can be reduced to the problem of inter-166

secting straight lines. Once again, many algorithms exist, including linear and167

convex programming. We observe that the problem is quite similar to that168

of intersecting many vanishing lines to find the vanishing point [42–44], and169

inspired by a popular solution in this area, we use a Hough-reminiscent vot-170

ing approach. There are of course myriad variations to Hough voting (such as171

[22–24,39–41]) and we present an algorithm representative of the class which172

is not necessarily the optimal solution, but which nevertheless works very well173

in the experiments.174

Algorithms that are a combination of the two classes are also possible, such175
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as finding the best supported solution with RANSAC, and then doing linear176

programming using the inlier flow measurements that have been found.177

3.1 Antipodal constraint + RANSAC178

Algorithm 1 Estimating the epipole - antipodal+RANSAC algorithm
1: Set M = ∞, count = 0

2: while M > count AND count < MAX do

3: Select a pair of antipodes r1, r2 with optical flow ṙ1, ṙ2.

4: ṙs = ṙ1 + ṙ2 and n1 = ṙs × r1

5: Repeat for a different pair of antipodes to obtain n2 such that n1 6= n2

6: Take cross product t̂ = n1 × n2

7: for i = 1 to N do

8: For the ith antipodal pair, find the plane normal ni

9: If π
2
− cos−1(ni · t̂) < θthres, increment support for t̂

10: end for

11: Update M , increment count

12: end while

13: The best supported t̂ is the solution.

In our previous paper, [19], we presented a consensus style algorithm which179

calculated a measure of the density of the ‘cloud’ of candidate solution points180

at each point, and used points with the highest density to obtain the best181

solution. The idea is that the more solutions there are that are ‘close’ to a182

particular candidate solution, the more likely it was that the candidate was a183

good solution.184

Here, we use a different approach, where the quality of a solution is measured185

not by the number of nearby candidate solutions, but by the proportion of186
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data points (i.e. optical flow measurements) that fit the solution. Algorithm187

1 summarizes our use of the constraint within the RANSAC sampling frame-188

work.189

Each pair of antipodal flow vectors yields a plane (or great circle) on which190

the true solution must lie. Step 9 in Algorithm 1 finds the angle between the191

candidate solution and such a plane. If that angle is less than some threshold,192

θthres, we consider that pair of antipodal flow vectors as data which supports193

the candidate.194

M is the number of iterations of the algorithm and is calculated as:195

M =
log(1− p)

log(1− ws)
(5)

where p is the probability of choosing at least one sample of data points free of196

outliers, w is the inlier probability, and s is the number of data points required197

to obtain a candidate solution.198

N is the number of antipodal flow measurements available. MAX is the upper199

limit on number of iterations to guarantee termination of the algorithm. If200

several solutions have the same maximum support, then some mean of their201

directions can be used instead. Details of the RANSAC framework may be202

found in [2,25].203

The method is quite simple but very robust, as the results in Section 5 will204

show. However, some tuning of the parameters is required for best results.205

Furthermore, the processing time increases quite quickly as the probability of206
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outliers and noise in the data increases 1 . If processing time is critical, then a207

more efficient method is necessary, which leads us to the voting approach in208

the next section.209

3.2 Antipodal Constraint + Voting210

Another approach to finding a robust estimate of translation direction, t, was211

to simultaneously find the best intersection of all the great circles arising from212

our method of summing flow at antipodal points. An efficient way of doing213

this is via a Hough-reminiscent voting method as summarized in Algorithm 2.214

Our implementation uses coarse-to-fine voting. First, we pick the flow at215

Mcoarse pairs of antipodes and obtain Mcoarse great circles with the steps de-216

tailed in Section 2. Having divided the image sphere into a two-dimensional217

voting table according to the azimuth-elevation convention, we proceed to vote218

along each great circle. This is the coarse voting stage and the area on the219

sphere represented by a voting bin can be fairly large. The area with maximum220

votes is then found, giving us a coarse estimate of translation, tcoarse.221

For the fine voting stage, a region of the image sphere in the neighborhood222

of the coarse estimate is projected onto a plane that is tangent to a point on223

1 For any estimation technique, the difficulty of finding a high quality solution

increases with the percentage of outliers. If an accurate estimate is sought with

high probability, RANSAC and its variants will show increasing time with large

proportions of outliers, as exemplified in this paper by the standard approach (see

Section 5). This can be mitigated by trading accuracy for processing time to some

extent, but in this paper we seek to compare the ability to find a high quality

solution.
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Algorithm 2 Estimating the epipole - antipodal+voting algorithm

1: for i = 1 to Mcoarse do

2: Select a pair of antipodes r1, r2 with optical flow ṙ1, ṙ2.

3: ṙs = ṙ1 + ṙ2

4: The sphere center, vectors ṙs and r1 (or its antipode, r2) define a great

circle, Ci on the image sphere.

5: The spherical coordinates (θ, φ) of points on great circle Ci are calcu-

lated and coarse voting is performed.

6: end for

7: Find the bin with maximum votes. This is the coarse estimate.

8: Choose a projection plane at or close to coarse estimate.

9: for j = 1 to Mfine do

10: Repeat steps 2 to 4 to obtain a great circle Cj.

11: Project Cj onto the projection plane to obtain a straight line Lj.

12: Perform fine voting by voting along the straight line Lj.

13: end for

14: Find the bin with maximum votes. This is the fine estimate.

the sphere (refer Figure 3). The point can be at the location of the coarse224

estimate, tcoarse, found earlier or anywhere near it. The center of projection225

is the sphere center and the mapping will project points on the surface of the226

sphere onto the tangent plane. Let the sphere centre be the origin and rsph227

be a point that lies on the unit image sphere. If the plane is tangent to the228

sphere at a point n, then n is also a unit normal of that plane. In that case,229

the projection of rsph onto the plane is a point, rpln, that lies on the tangent230

plane and is given by rpln = rsph/(rsph · n).231

This is called a gnomonic projection [45]. This projection will map great circles232
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Fig. 3. Projection of a point rsph which lies on the image sphere, to a point rpln

which lies on the plane that is tangent to the sphere at point n.

on the sphere onto straight lines on the plane. This is an advantageous mapping233

since very efficient algorithms for voting along straight lines exist, such as the234

Bresenham line algorithm [46]. This is the motivation for performing the fine235

voting stage on a projection plane rather than on the image sphere. We vote236

along Mfine straight lines that have been obtained by projecting Mfine great237

circles onto the plane, and the point with maximum votes represents the best238

estimate of the intersection of all the great circles. If necessary, this can be239

repeated for progressively finer scales such as with the schemes proposed by240

[39,41].241

One possible variation to this algorithm involves ‘blurring’ out the votes for242

the straight lines in a Gaussian fashion. This means the highest votes are cast243

along the center of the line, with the votes falling off in a Gaussian manner in244

the direction normal to the line. Furthermore, many optical flow calculation245

methods return a covariance matrix which gives an uncertainty measure of246

the accuracy of the calculated flow. Hence, straight lines resulting from flow247

with high accuracy can be given higher weights during voting compared to248

lines arising from flow of uncertain accuracy. In our experiments however, we249
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found that the unmodified version of the algorithm was sufficiently robust and250

accurate and we did not require any of these extra measures.251

4 Experiments - Simulations and Real Videos252

Both the algorithms presented here were tested in Matlab simulations and with253

real image sequences. We compared the performance of our method against254

the 5-point algorithm within a RANSAC framework [5,6].255

We chose 5-point with RANSAC as a comparison since it is well-known, well-256

studied, widely used and code is widely available. We used the five-point al-257

gorithm of [5] (code available from author) and it was implemented within a258

RANSAC framework using code from [47]. Sampling was adaptive with prob-259

ability p = 0.99 and Sampson distance threshold of 0.01 (see [2] for details).260

The error in an estimate of the translation direction was measured as the261

angle between the recovered motion direction and the true motion (known in262

simulations and measured in the real videos).263

Matlab simulations: We simulated the camera to simultaneously rotate264

and translate such that an optical flow field was generated. Since the imaging265

surface is a sphere and flow is available in every direction, we can fix the266

direction of translation without any loss of generality as the result would be267

the same in any direction. The axis of rotation however, was varied randomly268

from trial to trial since the angle made between the direction of translation and269

axis of rotation does in fact influence the outcome. Baseline was 2 units and270

the rotation angle 0.2 radians. 2 500 pairs of random antipodal scene points271

2 If the motion is too small, 5-point may become less stable. By trial and error, we
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were uniformly distributed in all directions with depth ranging from 10 to 15272

units. Results were averaged over 100 trials.273

In the simulations, 5-point used the point matches as input whilst our method274

took the flow vectors as input. Experiments were conducted for increasing275

probability of outliers (with no Gaussian noise) and also for an increasing276

level of Gaussian noise (with no added outliers). Outliers were simulated by277

randomly replacing matches or flow with errors. To simulate Gaussian noise,278

the position of a matched point was perturbed from its true value by a noise279

vector modeled as a 2D Gaussian distribution with standard deviation σ and280

zero mean. 3
281

Real Videos: Real sequences were captured with a Ladybug camera [49]282

which returns 5 images positioned in a ring. These are mapped onto an image283

sphere according to a calibration method supplied by Point-Grey Research,284

the makers of the camera system. The camera translated along the ground285

with baseline 2cm per frame in the direction of the x-axis, which is parallel to286

the ground plane. It simultaneously rotated about the z-axis, which is perpen-287

picked a motion size for which the operating range of both methods overlap. The

errors observed were small (Figure 6) so both methods appear to be working stably

and properly for the motions used. Also, in the real image experiments for 5-point,

we skipped every alternate frame so that the motion was twice as large compared

to that used for our method.
3 Note that this noise model is different from that used previously in [19]. Previ-

ously, following [48], we modeled noise as a perturbation in only the angle of the

flow vector. In this paper the noise model perturbs both angle and magnitude of

the flow vector. Thus, for the same σ, the level of noise is roughly higher in this

paper compared to in [19].
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dicular to the ground plane. The results in Section 5 are for rotation angles of288

5◦ per frame and 2◦ per frame. The former case involves the camera moving289

in a static scene whilst the latter involves the camera moving in a scene that290

contains multiple independently moving objects.291

For our algorithms, optic flow was calculated using the iterative Lucas-Kanade292

method [29] in pyramids using code available from OpenCV [50]. The iter-293

ative pyramidal scheme is a multi-scale refinement process that calculated294

flow quickly and accurately given a list of antipodal points. An example of295

the typically noisy flow found is shown in Figure 4. Meanwhile, the 5-point296

with RANSAC method obtained point matches using Scale Invariant Feature297

Transform (SIFT) feature matching with code from [51].298

Let us label the ring of 5 cameras on the Ladybug camera rig as cam0, cam1,299

. . . cam4, thus completing the ring. Figure 4 shows two images taken from300

cameras on the Ladybug multi-camera rig that were facing different directions.301

Blue lines pair up antipodes where flow (red vectors) was found stably at both302

points. The blue lines show the pairing of points in cam2 with their antipodes303

in cam4.304

Note that Figure 4 only shows the antipodal pairs for cam2 and cam4. More305

antipodes for the cam2 image exist in cam0, and more antipodes for cam4 exist306

in cam1. Figure 5(a) shows the flow at points in cam2 that had antipodes307

in cam0 and cam4. Figure 5(b) shows the flow at points in cam4 that had308

antipodes in cam1 and cam2.309

Flow vectors with large error (the flow algorithm returns an uncertainty mea-310

sure) were thrown away, but a few obvious mismatches remain. However, most311

of the flow appears reasonably stable. Over the entire view-sphere, for these312
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experiments, flow was found for about 500 - 700 pairs of antipodes, which is313

generally more than our algorithms need for a good estimate.314

Fig. 4. Blue lines indicate corresponding antipodes in two cameras (cam2 and cam4)

facing different directions. Flow vectors shown in red.

(a) (b)

Fig. 5. (a) All the antipodal flow found for the cam2 image using views from cam0

and cam4. (b) All antipodal flow found for the cam4 image using views from cam1

and cam2.

Previously, in [19], we used SIFT matching as an input for the maximum-inlier315

algorithm presented there. However, SIFT can be slower than Lucas-Kanade316

flow and is less suitable for real-time, parallel implementations. Therefore,317

although SIFT tends to be more accurate compared to the noisier, pyramidal318

19



Lucas-Kanade, we chose to use the latter in this paper. In spite of this, Section319

5 will show little degradation of the results compared to that reported in [19],320

which reinforces the point about the robustness of the methods.321

In terms of a comparison on the accuracy of 5-point with RANSAC (using322

SIFT) versus the antipodal point methods (using Lucas-Kanade), this gives a323

slight disadvantage to the antipodal methods since their inputs are noisier, but324

as we shall see in the results of Section 5, the performance of both approaches325

on real images is roughly equivalent.326

5 Results327

The results summarized in Figure 6 demonstrate that the antipodal+RANSAC328

and antipodal+voting algorithms, which are based on the sum of flow at an-329

tipodal points constraint, work accurately and robustly in simulation and with330

real image sequences under a variety of circumstances.331

Outliers: Outliers are large errors in flow data due to causes such as point332

mismatches and the presence of objects moving independently in the scene.333

The RANSAC framework for 5-point is known to be an effective means of334

separating the inliers and outliers in a data set, so that the estimation is335

performed only with inliers. However, the simulation result of Figure 6(a)336

shows that both our algorithms perform better than 5-point with RANSAC337

when faced with an increasing proportion of random outliers in the data. This338

is an interesting result and there are several reasons for it, as discussed in the339

following.340

The Hough-like voting algorithm is extremely resistant to outliers. Figure 6(c)341
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shows the votes cast in a voting table for 60% random outliers in the data. The342

figure shows the straight lines obtained from projecting great circles onto a343

plane during the fine-voting stage of the antipodal+voting algorithm detailed344

in Section 3. Inlier straight lines intersect at a common point whilst the outlier345

straight lines do not. Most of them fall outside the region of the plane shown346

in the figure but quite a few outliers can still be seen. From the figure, it is347

clear that the intersection can easily be found even for this high proportion of348

outliers.349

The antipodal+RANSAC framework worked better because it needed only350

2 points for a constraint as opposed to 5 points for the 5-point-RANSAC351

algorithm. If q is the probability of an inlier, then the probability of obtaining352

a good constraint is q2 for the antipodal method and q5 for 5-point. Therefore,353

both antipodal methods are always more likely to obtain more good constraints354

when flow at antipodal points is available. Here, errors in RANSAC arise355

because some outliers fall within the model distance threshold used (0.01 for356

5-point-RANSAC). Reducing distance threshold improves performance; but357

in general, the antipodal methods tend to outperform 5-point-RANSAC for358

very large outlier proportions.359

Gaussian noise: Figure 6(b) shows the error in estimated translation di-360

rection under increasing Gaussian noise. The trend is that all three methods361

degrade gracefully with increasing noise. For large Gaussian noise, the an-362

tipodal point methods tended to perform better than 5-point-RANSAC since363

outliers would begin to creep into the data at that stage.364

Processing time: An interesting property of the antipodal+voting algorithm365

is its constant processing time. The number of antipodal points considered is366
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predetermined, and the processing time is quite fast and always constant,367

regardless of the probability of outliers or amount of noise in the data.368

This is in contrast to 5-point-RANSAC which runs in approximately cubic369

time for our experiments as outliers increase. Theoretically, increasing outliers370

means that RANSAC will draw more samples from the data according to the371

formula M = log(1 − p)/log(1 − ws) (Equation 5) where s = 5 in this case372

(refer [2] for details). This is illustrated in Figure 6(d). The numbers in 6(d)373

are obviously implementation dependent but the trend will remain the same.374

The antipodal+RANSAC algorithm has similar limitations and since the re-375

sults show only a small difference in accuracy compared to the voting+antipodal376

algorithm, we recommend using voting for applications which are time critical.377

Real Videos: Figure 6(e) shows the error in the estimated translation di-378

rection with respect to measured ground truth. Our algorithms perform with379

accuracy comparable to 5-point-RANSAC. Figure 6(f) shows the error for a380

different scene; one containing multiple independently moving objects. The381

flow arising from these would be outliers whilst the flow arising purely from382

the the egomotion of the camera are the inliers. Once again, our methods383

show excellent results. The differences in the average errors of different meth-384

ods were quite small - around 1◦ to 2◦ - which is within the bounds on the385

accuracy of the ground truth measurements.386

In the supplementary material, refer to “(A)frontal - static scene.mpg” for the387

sequence of Figure 6(e) and “(B)frontal - independently moving objects.mpg”388

for the sequence of Figure 6(f). Those videos show the view from the frontal389

camera of the Ladybug camera system, where antipodal estimates, 5-point+RANSAC390
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estimates and the ground truth are marked as colored crosses.391

6 Discussion392

Improving the Accuracy of the Voting Method: A consequence of the393

voting step was the segmentation of antipodal flow data into inliers and out-394

liers. Inliers are the antipodal flows that gave rise to great circles or straight395

lines (after projection) that intersected at the estimated translation direction.396

If a more accurate translation estimate is desired (one not limited by voting397

bin resolution), a maximum likelihood estimate (assuming Gaussian noise)398

can be found by finding the intersection of the inlier straight lines by linear399

least squares. This additional step incurs little extra effort and we note that400

it is standard practice in motion estimation algorithms to add a linear or401

non-linear (eg: bundle adjustment) optimization step at the end.402

Finding Rotation Robustly: We remind the reader that at this point,403

we have only recovered the epipole or direction of translation. The rotation404

was not estimated directly from our method. However, knowing translation,405

it becomes much easier to then estimate rotation. For instance, taking dot406

products on both sides of Equation 1 with t × r eliminates dependence on407

depth:408

(t× r) · ṙ = (t× r) · ( 1

| R(r) |((t · r)r− t))− (t× r) · (w × r)

(t× r) · ṙ = (t× r) · (w × r)

(6)

The estimated translation direction is substituted into Equation 6, giving us409
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an equation linear in rotation, w. Taking flow at several points, we can build410

a system of over-constrained linear equations which is solvable by the method411

of linear least squares. This would be done using only the inlier flow vectors412

obtained from the antipodal+voting or antipodal+RANSAC algorithms, so413

the rotation estimate would also be independent of outliers. However, whilst414

almost all outlier flow vectors were discarded, it is still possible for a few415

outliers to slip in (called ‘leverage points’ in statistics). This happens if, by416

chance, the noise in two outlier antipodal flow vectors cancel when added,417

giving a great circle that passes through the epipole. Therefore, another layer418

of outlier rejection may be needed in practice. Fortunately, since previous419

steps would have reduced the number of unknowns and weeded out almost all420

outliers, this should converge very quickly.421

Speed: The voting approach is potentially a method for estimating motion at422

high speeds. The flow calculation is typically performed for only a few hundred423

antipodal points (∼200 to 500) and the mathematical operations used in the424

voting algorithm are simple - a few dot products, addition and the casting of425

votes along circles (the coarse-voting stage) or lines (fine-voting). Furthermore,426

since both the pyramidal Lucas-Kanade flow calculation and the voting step427

are naturally parallelizable, it is possible to obtain fast implementations using428

parallel computing architectures such as FPGAs and GPUs. The final step to429

robustly recover rotation via least squares should incur only a small, additional430

processing time.431

Complex Environments: The voting algorithm’s resistance to outliers (Fig-432

ure 6(a)) and its constant processing time with respect to increasing outliers433

(Figure 6(d)) would make this method well suited for certain applications and434

scene environments - for instance, a moving camera in the midst of a crowd435
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of hundreds of pedestrians. Other examples include estimating vehicle self-436

motion in busy traffic scenes, or in a windy forest where constantly waving437

leaves and branches may occupy large sections of the image. Due to the exces-438

sively large proportion of outliers from the independently moving objects in439

the scenes, 5-point-RANSAC would incur a large processing time and may po-440

tentially be less accurate, making the antipodal+voting algorithm preferable441

in such situations.442

7 Conclusion443

In summary, we have presented a constraint on the epipole arising from the444

optical flow at two antipodal points. We demonstrated the validity of the445

constraint and presented two classes of algorithms utilizing it to estimate446

the location of the epipole. We have shown that this method works robustly447

and accurately both in simulations and with noisy, real images, giving results448

comparable to the current state-of-the-art.449

Supplementary videos: For the real image sequence of Figure 6(e), see the450

video “(A)frontal- static scene.mpg” for the frontal camera view of the moving451

Ladybug camera system. Estimates and ground truth are marked with crosses.452

For the sequence of Figure 6(f) which is a scene involving multiple indepen-453

dently moving objects, see “(B)frontal- independently moving objects.mpg”.454

The views from the other cameras on the Ladybug that were also used to455

estimate egomotion are included for the reader’s reference.456
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Fig. 6. (a) Error in estimated epipole as proportion of outliers in data increases.

(b) Error as Gaussian noise increases. (c) The voted lines for the voting algorithm.

Data with 60% outlier probability. (d) Runtime for voting algorithm and 5-point

with RANSAC as outlier proportion increases. (e) Error in estimated epipole for

real sequence - baseline 2cm/frame, rotation 5◦/frame, static scene (f) Error for

real sequence - 2cm/frame, 2◦/frame, multiple independently moving objects in the

scene.
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