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Abstract

Drawing ideas from differential geometry and optimization, this thesis presents novel

parameterization-based framework to address optimization problems formulated on

a differentiable manifold. The framework views the manifold as a collection of local

coordinate charts. It involves successive parameterizations of a manifold, carrying

out optimization of the local cost function in parameter space and then projecting

the optimal vector back to the manifold. Several algorithms based on this approach

are devised and applied to four computer vision tasks involving recovering pose in-

formation from images. First, we cast 2D-3D pose estimation as an optimization

problem on the intersection of the special orthogonal group and a cone. We move on

to estimate the essential matrix by minimizing a smooth function over the essential

manifold. This is followed by formulating the problem of locating quadratic surfaces

as an optimization problem cast on the special Euclidean group. Last, we demonstrate

how one could simultaneously register multiple partial views of a 3D object within a

common coordinate frame by solving an optimization problem involving the N -fold

product of the special orthogonal group with itself. A mathematical proof establishes

the local quadratic convergent rate of the Newton-like algorithms. Simulation results

demonstrate the robustness of techniques against measurement noise and / or occlu-

sion. New closed form calculations for the problems serve as a good initial estimate

for any iterative algorithm presented, and give exact solution in the noise free case.

The algorithmic technique and mathematical insights developed appear applicable to

many problems in computer vision, as well as in other areas.
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Chapter 1

Introduction

Integrating ideas from differential geometry and optimization, this thesis proposes a

novel geometrical framework to study optimization problems formulated on smooth

manifolds, particularly those which arise in computer vision. In this chapter, we intro-

duce the subject of computer vision and geometric optimization, including motivation

for the study. Developments in the two fields are reviewed and research issues that

arise are highlighted. Building upon these, we state the research goals and describe

the proposed methodology. Finally, the scope and key assumptions of the research

are put forward and an outline of the thesis is presented.

1.1 Computer Vision

As humans, our vision system allows us to understand the world that we see. Can

computers have this capability? This becomes the central challenge of computer vi-

sion. Many years ago, computer vision was not widely used due to expensive hardware

and sophisticated software which could hardly be used for real time applications. In

recent years, computers with high speed processors and larger memories at reduced

prices have emerged. This, together with cheap off-the-shelf digital imaging devices

which can produce good quality images have made computer vision system increas-

ingly used for various real world applications.

In robotics, computer vision have been used by industrial robots for parts assembly
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and by autonomous vehicles (mobile robots) as a sensor to navigate and localize in an

environment. In the area of human computer interaction, computer vision algorithms

are used to create a user friendly computer interface. They also find applications

in the automobile industry. In January 2004, Toyota Motor Corporation offered

an option package for its Prius model (a gas-electric hybrid car) that included a

computer vision system together with steering sensors which could parallel park the

car “automatically”. In the entertainment industry, computer vision techniques are

adopted to construct 3D computer models of real objects or scenes to make animation

in games or movies more natural and realistic.

All applications discussed above involve recovering pose information from images,

one of the classical problems in computer vision. Pose refers to the knowledge about

“what is the location of the object and how is the object oriented relative to the

camera?” For example, mobile robots and intelligent cars need to know where the

obstacle is in order to avoid it. Industrial robot needs to know the pose of the parts

in order to pick them up and assemble them correctly. Computer software needs to

know how the head of the user is oriented in order to decide whether to scroll the

page up or down. To construct a 3D computer model, multiple partial views of the

real object need to be taken and the unknown pose information between the views

need to be recovered. These applications motivate us to revisit the pose estimation

problem using mathematical tools from differential geometry and optimization theory

and thereby develop new enhanced algorithms that carefully exploit the underlying

geometry of the problem.

1.2 Geometric Optimization

Various computer vision problems, including pose estimation can be addressed using

an optimization framework. Optimization is a branch of applied mathematics con-

sisting of two main areas, namely numerical optimization and variational methods.

Numerical optimization, also known as mathematical programming, is concerned with

finding the optimal point that minimizes or maximizes a cost function, possibly sub-

ject to constraints. It can be classified further depending on the nature of the cost
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function and its constraints. On the other hand, variational methods are devoted

to finding the optimal function that minimizes or maximizes a functional, possibly

subject to constraints.

Traditionally, researchers have focused on developing techniques for unconstrained

optimization problems, or equivalently those formulated on Euclidean space. When

the problem is constrained, as often occurs in many computer vision tasks, the widely

used strategy is to transform the constrained problem into an unconstrained problem

using the method of Lagrange multipliers [68]. This approach is relatively simple

and allows one to exploit the wealth of existing Euclidean optimization techniques.

However, it merely treats constrained problem as a ‘black box’ and solves it using

algebraic manipulation. Algorithms developed using this strategy only preserve the

constraint assymptotically. Any premature termination of the algorithm may fail to

satisfy the constraint set. Also, this approach always increases the dimensionality of

the optimization.

An alternative strategy, known as geometric optimization, which we adopt in

this thesis, is to exploit the geometry of the underlying parameter space. If the

underlying parameter space is the Euclidean space, then Euclidean geometry such as

distance and angle are exploited. This has been the main principle behind developing

classical optimization techniques. On the other hand, if the underlying parameter

space is non-Euclidean, as often occurs in constrained problems, then there can be

advantage in exploiting the geometric structure of this space. That is, develop a

strategy which views constrained problems as equivalent to unconstrained problems

posed on the constraint sets. Unlike the traditional Lagrange multiplier method, this

approach deals with the original problem directly and ensures that the constraints

are fulfilled at every iteration. Philosophically, this approach is geometrically more

intuitive, conceptually simpler and mathematically more elegant. From a practical

perspective, geometric optimization ensures that the constraints are satisfied at every

iteration. Thus, any premature termination still gives a meaningful solution.

In this thesis, we focus on optimization problems formulated on manifolds. Gener-

ically, a manifold is a space which ‘locally looks like’ Euclidean space but does not

do so globally. For example, Euclidean space is itself a manifold, spheres are mani-
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folds, as is the surface of the earth on which we live. Since often a manifold can be

implicitly defined by a set of equality constraints, it deals with a rather large class of

optimization problems, for background theory of manifolds, see [47].

1.3 Literature Review

The development of numerical optimization on manifolds can be traced back more

than a century ago when the Rayleigh Quotient Iteration, or essentially the Newton’s

iterate on a sphere was first introduced to compute eigenvectors of a symmetric matrix

[19]. In this section, we first review the classical Riemannian approach of generalizing

Euclidean optimization techniques to a manifold setting before turning our attention

to the relatively recent non-Riemannian approach.

Riemannian Approach

Recall that manifolds are ‘locally’ Euclidean but not globally so. Hence, it is not

surprising that some nice Euclidean mathematical objects such as a straight line,

gradient and Hessian of the cost function have their counterparts in a manifold set-

ting. The Riemannian approach proposes the concept of endowing manifolds with a

metric structure. This gives rise to the corresponding mathematical objects such as

a geodesic, Riemannian gradient and Riemannian Hessian. Most existing numerical

algorithms on manifolds have been proposed based on this approach. Each varies

from others based on the type of manifold for which the algorithms is formulated and

the Euclidean optimization technique that is being generalized, as discussed below.

Gradient method on manifolds. The gradient method is one of the most popular

Euclidean optimization techniques to be generalized to a manifold due to its nice

global convergence properties. The method was first conceptually extended to man-

ifolds by Luenberger [56, 57] in 1972, see also the work by Gabay [26]. In the early

1990s, gradient methods on manifolds were popularized by researchers in the area

of systems and control theory to address problems which arise in linear algebra and

linear systems theory using a calculus approach. Some fundamental work in this area
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were carried out by Brockett [11], Helmke and Moore [32], Smith [78], and Mahony

[59]. See also independent work by Udriste [83].

Newton’s method on manifolds. The gradient method on manifolds, as for its

Euclidean counterpart has a slow (linear) local convergence rate. Thus, it is not always

suited for applications requiring online computation. As a result, many researchers

turn their attention to the classical Newton’s method which is well known for its fast

(quadratic) local convergence rate. In 1982, Gabay [26] proposed Newton’s method

formulated on a submanifold of Euclidean space and each update is carried out along

a geodesic. There is independent work by Shub [76] who defined Newton’s method

for finding the zeros of a vector field on a manifold. Other independent work to

extend Newton’s method for general optimization problems on Riemannian manifolds

has been carried out by Smith [78] and Mahony [59, 60] restricting to compact Lie

group, and by Udriste [83] restricting to convex optimization problems on Riemannian

manifold. Edelman, Arias and Smith [20] developed Newton’s method specific to

orthogonality constraints, being then Stiefel and Grassmann manifolds. This method

was later adapted by Ma, Košecká and Sastry [58] for solving the structure from

motion problem in computer vision. There is also a recent paper by Adler and Dedieu

[3] which studied Newton’s method to find zero of a vector field defined on general

Riemannian manifolds with applications in medicine.

Quasi-Newton method on manifolds. Newton’s method requires computation of

the inverse of a symmetric matrix containing second order local information of the cost

function, known as the Hessian. However, in certain applications, it is time consuming

to evaluate the Hessian inverse. To overcome this problem, in Euclidean space, a

variant of Newton’s method, known as the quasi-Newton method was introduced by

Davidon [18] in late 1950s. The technique approximates Hessian inverse using first

order gradient information and has a fast (superlinear) local convergence rate. To the

best of our knowledge, the paper by Gabay [26] is the first and only published work

focusing on generalizing the quasi-Newton method to a manifold.

Conjugate gradient method on manifolds. Quasi-Newton’s method faces difficulties

when there are large scale optimization problems with sparse Hessian matrices. This

problem can be overcome using the conjugate gradient method. In Euclidean space,
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this technique was originally introduced by Hestenes and Stiefel [35] in the 1950s

to solve large scale systems of linear equations. In 1960s, Fletcher and Reeves [24]

extended the method to solve general unconstrained optimization problems. It was

about 30 years later Smith [78] first generalized the method to manifolds. Since then,

he also collaborated with Edelman and Arias [20] to study the method specifically on

Grassmann and Stiefel manifolds.

Others. In Euclidean space, it is well known that there is a trade off between

gradient methods (good global convergence properties but slow local convergence

rate) and Newton’s method (fast local convergence rate but poor global convergence

properties). Two strategies have been presented to either globalize the Newton’s

method or speed up the gradient method, namely the line search and the trust region

methods. Since both methods also exhibit similar properties in a manifold setting,

Absil [1] has extended the trust region strategy to a manifold, while line search

strategies on manifold can be found in the work of Udriste [83] and Yang [85].

Non-Riemannian Approach

The traditional Riemannian approach is somewhat natural and intuitive, and has

since established its dominance in the field. Problems arise when it is difficult to

find Riemannian metrics such as in the case for non-compact Lie groups [61]. As

pointed out in [63], the Riemannian approach is justified when the cost function is

somewhat related to the Riemannian geometry and works best when the cost function

is convex with respect to Riemannian geometry. Moreover, many algorithms proposed

based on this approach are either abstract conceptually and difficult to implement

on a computer, or are computationally inefficient. Consequently, it is not suitable for

many computer vision tasks which require online processing.

At the beginning of this research, we are unaware of any framework other than the

Riemannian approach and those that exploits Lie group structures [61, 69]. Later, we

became aware of two independent prior works which present a similar framework as

ours: The unpublished report by Taylor and Kriegman [82] and the paper by Manton

[62] to address problems arise in computer vision and signal processing, respectively.
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Since our work, Hüper and Trumpf also present a related approach in a recent paper

[41]. Since all these works, including the one proposed here, are somewhat similar,

detailed discussions and comparisons will be deferred to a later chapter.

1.4 Research Issues

Having introduced the areas of study and reviewed its development, several research

issues naturally arise. First, there exists a gap between mathematical development of

the geometric optimization and its practical application. On the one hand, researchers

develop rigorous abstract mathematical concepts using tools from differential geom-

etry and optimization, that is less accessible to engineers and computer scientists.

On the other hand, computer scientists and engineers are rather sceptical about the

practicality of these concepts. Notice that the development of geometric optimization

starts with theory in early 1970s. Abstract algorithms started to appear in the 1980s

but its practical applications start only in early 1990s, mainly in the areas of linear

algebra and linear systems theory [11, 32]. Later, only a handful of these algorithms

find applications in robotics [12, 33], signal processing [20, 79], computer vision [58]

and the medical area [3]. Although algorithms on manifolds have evolved from ab-

stract notions [26, 78, 59] to concrete implementable recursions [20, 2, 58], it is still

not suitable for many real time applications.

Second, the majority of iterative computer vision algorithms simply adopt stan-

dard optimization techniques without exploiting the geometric structure of the un-

derlying parameter space.

1.5 Aims and Methodology

The aim of this thesis is to address the research issues just highlighted, giving rise to

three specific objectives,

• To devise new iterative computer vision algorithms that exploits the geometric

structure of the underlying parameter space, and explicitly preserve constraints
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at every iteration,

• To explore and extend a relatively new geometrical framework for optimization

on manifolds that is simpler and more accessible to computer scientists and

engineers,

• To develop the practical importance of geometric optimization algorithms as a

tool that is not only implementable, but also suitable for real time applications,

particularly in the area of Computer Vision.

To achieve these, we present and develop further a relatively new parameterization-

based framework, focussing on the special class of problems arising in computer vision.

Since a manifold ‘locally looks like’ Euclidean, this approach views a manifold as a

collection of local coordinate charts. It works as follow: At each iterate, a local

parameterization of the manifold at a point is constructed, the point is pulled back

to Euclidean space via the parameterization. The optimal vector that maximizes or

minimizes the cost function expressed in local parameter space is then pushed forward

to the manifold via the same parameterization. Various classical optimization tech-

niques are extended to manifolds using this framework and implemented to address

four problems arising in computer vision under the theme of pose recovery.

1.6 Scope and Key Assumptions

In this report, we are mainly interested in recovering pose information from two

commonly used sensor modalities in computer vision, namely the 2D intensity image

and the 3D range image. The sensors are assumed to be calibrated. The input

data from the sensors is modelled as a set of points. The proposed algorithms work

with real-valued cost functions with at least twice continuous differentiability and the

constraint set is a smooth manifold.
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1.7 Outline of the Thesis

The thesis consists of an introduction, four technical chapters and a conclusion chap-

ter. Aligned with our goal to make the subject of geometric optimization more ac-

cessible to readers with a background in engineering and computer science, we do

not offer a systematic mathematical treatment of the proposed framework, rather we

demonstrate the approach by practical problems arising in computer vision.

Chapter 2: 2D-3D Pose Estimation. In this chapter, we are interested in estimat-

ing the relative position and orientation between a 3D object and its projection on

a 2D image plane from a set of corresponding points. The task is formulated as an

optimization problem on the intersection of a rotation group and a cone constraint.

Newton-type iterations based on a proposed geometrical framework are devised. A

key feature of the proposed algorithms, not used in earlier studies, is an analytic

geodesic search. This increases the probability of escape from local minima and con-

vergence to a global minimum without the need to reinitialize the algorithm. For

the case of finite number of local minima on the manifold, including periodically ran-

dom line search directions then as the iterations become infinite, such escape can be

achieved with probability one. We also present a new analytical method which in the

noise free case, gives the exact solution and a good initial estimate for any iterative

algorithm. The proposed algorithm is proved to be locally quadratically convergent.

Simulations also suggests that the algorithms give lower parameter estimation errors

than earlier methods and convergence to a global minimum occurs in typically 5–10

iterations.

Chapter 3: Estimation of Essential Matrix. It is well known in the computer vi-

sion literature that relative pose information between a pair of calibrated 2D images

is encapsulated by the essential matrix. In this chapter, we focus on recovering this

matrix by minimizing a smooth function over the essential manifold. We have imple-

mented Newton-like optimization techniques using the proposed parameterization-

based framework. The algorithm is proved to be locally quadratically convergent.

The efficiency is demonstrated by means of computer simulations, where convergence

typically occurs in 5–20 iterations.
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Chapter 4: 3D Localization of Quadratic Surfaces. Quadratic surfaces are com-

monly occurring shapes in man made objects. This chapter addresses the problem of

locating quadratic surfaces from 3D range image data as minimizing a smooth func-

tion over the special Euclidean group. The optimization is based on locally quadrati-

cally convergent Newton-type iterations on this constraint manifold. To achieve this,

analysis of the underlying geometric constraint is required. Analysis shows that the

proposed algorithm is relatively robust against additive Gaussian noise and occlusion.

Chapter 5: Global Registration of Multiple 3D Point Sets. To construct a 3D

computer model of a real object, multiple partial views of the object need to be taken

and relative pose between these partial views need to be recovered. This chapter

demonstrates how one can simultaneously register multiple 3D point sets. We formu-

late the task as an unconstrained optimization problem on N -fold product of special

orthogonal groups. The optimization is based on locally quadratically convergent

Newton-type iterations on this constraint manifold. The proposed algorithm is fast,

converges at a local quadratic rate, computation per iteration is low since the itera-

tion cost is independent of the number of data points in each view. In addition, we

present a new closed form calculation for the simultaneous registration of multiple

point sets. In the noise free case, it gives correct registrations in a single step. In the

presence of noise an additional projection step to the constraint manifold is required.

This analytical solution is a useful initial estimate for any iterative algorithm.

The final chapter revisits the parameterization-based approaches, draws conclu-

sions from the development and implementation of the proposed framework and iden-

tifies continuing research themes that have arisen out of this work. To avoid disturb-

ing the flow of the report, most of the proofs, derivations and details of problems for

future work have been relegated to Appendix.

1.8 Summary

This chapter outlines the basis of the thesis. It provides an overview of computer

vision and geometric optimization, including the thrusts behind the study. Develop-

ments in the fields have been reviewed and research issues identified. Building on this,
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research goals has been stated and the proposed methodology briefly described. This

has been followed by discussion of the research scope and summary of each chapter.

Based on these, we are now ready to proceed to detailed descriptions of the thesis

research.
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Chapter 2

2D-3D Pose Estimation

As pointed out in the previous chapter, recovering the pose information from images

plays a fundamental role in many computer vision tasks and its subsequent applica-

tions ranging from robotics to the entertainment industry. In this chapter, we are

mainly interested in estimating the relative position and orientation between a 3D

object and its 2D image from a set of point correspondences. With an appropriate

choice of reference frame, the problem can be viewed as either determining the cam-

era pose with respect to a known object frame or as estimating the object pose with

respect to a known camera frame. It is also known as absolute orientation or extrinsic

camera calibration. Most of the material in this chapter has been published in [48].

Existing Work There are many algorithms, but perhaps only two approaches for

solving this problem presented in the literature. The first approach adopts linear

methods that yield closed-form solutions [23, 73, 4]. These linear methods are very

sensitive to noise because the orthonormality constraint of the rotation matrix is not

taken into account, yet are simple enough to implement in online computation. The

second approach is to formulate the task as a constrained nonlinear optimization

problem [30, 53, 54, 55]. As opposed to linear methods, these iterative techniques

provide numerical solutions that are more accurate and robust to measurement noise.

Also, when Newton-based recursions are used, fast (quadratic) local convergence rate

can be achieved. However, the methods rely on a good initial pose estimate. Also,
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without random reinitializations and selection of the lowest cost function outcome,

such methods might converge to a local minimum which is not the global minimum,

or converge to an infeasible solution, for which the object, or part thereof, is estimated

to be behind the camera. Among the existing recursive algorithms, only the tech-

nique proposed by Lu, Hager and Mjolsness [55] adopts the geometric optimization

framework.

Our Work In this chapter, the 2D-3D pose recovery task is formulated as minimiz-

ing a smooth function over the intersection of a rotation group and a cone, as depicted

in Fig. 2.1. To address the problem, we introduce a novel framework based on suc-

cessive parameterization of the constraint manifold. In contrast to the ‘fast’ linearly

convergent geometric algorithm of [55], the Newton-like recursions devised based on

this framework is locally quadratically convergent. The main novelty of our approach

is the use of closed-form global geodesic search step, requires only the solution of a

quartic equation. It assists in escaping local minimum and infeasible domain, as well

as converges to a global minimum without the need to reinitialize the algorithm. The

Newton decrement or its estimate is used as an indicator for selecting the optimal

directions for a geodesic search, assists in the decision for selecting Newton step, and

for algorithm termination. We also put forward a method for algorithm initialization,

which leads to an exact solution in the noise free case, and a good initial estimate

in the presence of noise. Simulation results suggests the proposed algorithms achieve

significantly lower parameter estimation errors than techniques presented by [55] and

convergence to a global minimum occurs in typically 5–10 iterations.

Chapter Outline In Section 2.1, the 2D-3D pose estimation task is formulated as

an unconstrained optimization problem cast on a constraint manifold. We propose

a parameterization-based geometric optimization algorithm to address the problem

in Section 2.2. The analytical noise free solution and noisy initialization procedures

are presented in Section 2.3. This is followed by an implementation summary in

Section 2.4. Simulation studies is presented in Section 2.5. A modified version of

the algorithm which takes into account outliers is described in Section 2.6. This is
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followed by a chapter summary in Section 2.7.

SO3

SO3

K

K

∩
SO3 ∩ K

Figure 2.1: The special orthogonal group SO3, the cone constraint K, and the result-
ing constraint manifold SO3 ∩ K, which is the intersection between SO3 and K.

2.1 Problem Formulation

In this section, we provide definitions of relevant terms before formulate the pose

recovery task as an optimization problem on a constraint manifold.

2.1.1 Definitions

Model The model of a known 3D object is a set of points described in an object

centered frame that lie within the field of view of a camera, as

{mi}i=1,··· ,n, mi := [xi yi zi]
⊤ ∈ R

3.

Transformed model To represent each model point in the camera centered frame

m′
i := [x′i y

′
i z

′
i]
⊤, a rigid body transformation is performed as follows,

m′
i = Rmi + t,
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camera frame 

Pose (R,t)

image plane 

object frame

focal length, f =1

y

z

x

m2
m3

u2

u4

u1 u3

x'

m4

m1

optical axis

z'

y'

Figure 2.2: The 2D-3D pose estimation problem: given the model {m1, · · · , m4}
expressed in object frame, and its corresponding image {u1, · · · , u4} expressed in
camera frame, find the relative pose (R, t) between the object frame and the camera
frame.

where R ∈ SO3, i.e. R⊤R = I, det(R) = 1, representing the rotation, and t ∈ R
3 is

the translation vector.

Image Each transformed model point m′
i is observed by a camera. The origin of

the camera frame coincides with the center of projection, and the optical axis is along

the positive z′-axis, as illustrated in Fig. 2.2. The point m′
i on the image plane is

described in pixel coordinates, denoted pi. Such an image point is then normalized

by the camera calibration matrix F , assumed known, to obtain the corresponding

normalized image point ui, as

ui = F−1pi.

The camera calibration matrix F is an upper triangular matrix consisting of intrinsic

camera parameters, details can be found in [31]. Under full perspective projection,
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each point in the model mi is related to its corresponding normalized image point by

the following equation,

ui =
Rmi + t

z′i
, z′i = e⊤3 (Rmi + t), e3 := [0 0 1]⊤. (2.1)

Here, {z′i}i=1,··· ,n are depth parameters which must satisfy the cone constraint K, that

is {z′i > 0}i=1,··· ,n to ensure that the estimated pose always locates the object in front

of the camera.

2.1.2 Object Space Error

object frame

z

y

y'

z'

x'

camera frame 

Object space error

Image space error 

x

image plane 

Figure 2.3: The image space error and the object space error.

Instead of recovering the pose {R, t} using a least squares cost function penalizing the

classical image space collinearity error via (2.1), we adopt the object space collinearity

error introduced in [55], as depicted in Fig. 2.3. Let Ui be the projection operator,

Ui = U⊤
i :=

uiu
⊤
i

u⊤i ui

, U2
i = Ui. (2.2)
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For object space collinearity, the orthogonal projection of m′
i = Rmi+t on to the line-

of-sight of the corresponding image point ui should be equal to m′
i itself, as described

by the following equation,

Rmi + t = Ui(Rmi + t), i = 1, · · · , n. (2.3)

In the presence of pixel noise, the cost function penalizing the object space collinearity

error is given as,

φ : SO3 × R
3 → R,

φ(R, t) =
1

2

n∑

i=1

‖(I − Ui)(Rmi + t)‖2. (2.4)

Observe that the cost function is quadratic in terms of errors, which are linear in

the unknown pose parameters R, t. It is zero if and only if (2.3) is satisfied. The

optimization is made nontrivial by the constraints that R is an element of the manifold

SO3 and the presence of a cone constraint K resulting from the requirement that the

object must be in front of the camera. Actually optimizing quadratic cost functions

on SO3 is well studied, as is optimization on cones. What is interesting here from an

optimization point of view is to tackle the much harder problem of optimizing a cost

function on the intersection of SO3 and a cone.

We have also applied the proposed algorithm to more conventional image space

cost functions, but our simulations suggest that the pose estimates are not as good

as those obtained using the object space cost function (2.4). It is of interest to

ask: why does this cost function yield estimates of R, denoted R̂, which are better

estimates than obtained using other indices? Our conjecture is that it is as close as

we can reasonable work with an index penalizing the term ‖R− R̂‖2 or equivalently

maximizing the term tr(RR̂⊤).

2.1.3 Optimal Translation

We eliminate the translation vector t from the cost function (2.4) via least squares

optimization to reduce the number of parameters for optimization. Note that this

is not a noise-free elimination. It might appear that we formulate the problem as
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two-stage optimization, first optimize R then optimize t. However, by eliminating t

via least squares, this two stage optimization actually gives optimal solutions as if we

have solve it in one stage. Exploiting the fact that (I −Ui)
⊤(I −Ui) = (I −Ui), cost

function (2.4) can be re-expressed as,

φ =
1

2

n∑

i=1

m⊤
i R

⊤(I−Ui)Rmi+t
⊤

n∑

i=1

(I−Ui)(m
⊤
i ⊗I)vec(R)+

1

2
t⊤

n∑

i=1

(I−Ui)t. (2.5)

Denoting

Ũ :=
n∑

i=1

(I − Ui), U = Ũ−1
n∑

i=1

(I − Ui)(m
⊤
i ⊗ I), (2.6)

with R fixed, an optimal t that minimizes (2.5) is given by

t = −Uvec(R), (2.7)

Substituting (2.7) into (2.1), the depth parameters z′i can be reformulated as,

z′i = Bi vec(R), Bi := e⊤3 ((m⊤
i ⊗ I) − U). (2.8)

The cone constraint K can now be expressed in terms of R ∈ SO3 as

K := {R | {Bivec(R) > 0}i=1,2,··· ,n}. (2.9)

2.1.4 Cost Function Independent of Translation

Substituting (2.7) into (2.4), the cost function can be reformulated as,

f : SO3 → R, f(R) =
1

2
‖Dvec(R)‖2, (2.10)

where

D =
[
D⊤

1 D⊤
2 · · · D⊤

n

]⊤
, Di = (I − Ui)

(
(m⊤

i ⊗ I) − U
)
. (2.11)

Remark 2.1.1 Note that the function

g : R
3×3 → R, g(X) =

1

2
‖Dvec(X)‖2, (2.12)

is quadratic in the Euclidean space R
3×3. However, the cost function f = g|SO3, which

is the restriction of g to manifold SO3 is no longer a quadratic function. Also, we

do not linearize this cost by using earlier estimates of R and t in the optimization

process as in [55].
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Shifted Centroid It turns out to be useful to refer all measurements to the cen-

troids. Thus, denoting m̄ := 1
n

∑n

i=1mi, (2.3) can be rewritten as follows,

(I − Ui)(R(mi − m̄) + (t+Rm̄)) = 0, i = 1, · · · , n.

The shifted model {mi − m̄} has created a new object frame at its centroid and a

new translation vector (t+ Rm̄). Once the translation vector (t+ Rm̄) is estimated

from the algorithm, it needs to be transformed back into the original object frame.

Without loss of generality, we assume subsequently that m̄ = 0, and the desired

translation parameter is t.

2.2 Optimization on the Special Orthogonal Group

Having mathematically formulated the problem as minimizing a smooth function over

the intersection of the manifold SO3 and a cone K, we turn attention to developing

numerical algorithm that exploits the geometric structure of this constraint manifold.

2.2.1 Geometry of the Special Orthogonal Group

Rotational motion in R
3 can be represented by the special orthogonal group SO3,

which consists of 3 × 3 orthogonal matrices with determinant +1. It is a Lie group

and its associated Lie algebra so3 is the set of 3×3 skew symmetric matrices. There is

a well known isomorphism from the Lie algebra (R3,×) to the Lie algebra (so3, [., .]),

where × denotes the cross product and [., .] denotes the matrix commutator. This

allows one to identify so3 with R
3 using the following mapping,

Ω : R
3 → so3, ω =




ωx

ωy

ωz


 7→




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (2.13)

Notice that Ω can be written as,

Ω(ω) = Qxωx +Qyωy +Qzωz, (2.14)
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where

Qx :=




0 0 0

0 0 −1

0 1 0


 , Qy :=




0 0 1

0 0 0

−1 0 0


 , Qz :=




0 −1 0

1 0 0

0 0 0


 . (2.15)

Tangent Space of SO3

Consider the tangent space of SO3 at point R,

TRSO3 = {RΩ | Ω ∈ so3}, (2.16)

and the affine tangent space of SO3 at the point R is given as,

Taff
R SO3 = {R +RΩ | Ω ∈ so3}. (2.17)

Local Parameterization of SO3

Recall that a manifold is as a collection of local coordinate charts. Computations on

a manifold are often conveniently carried out in these local parameter spaces. Let

R ∈ SO3, there exist a smooth exponential map

µR : R
3 → SO3, ω 7→ ReΩ(ω), (2.18)

which is a local diffeomorphism around the origin in R
3.

2.2.2 Cost Function

Cost Function on the Manifold SO3

Recall D in (2.11) and the smooth function from (2.10),

f : SO3 → R, f(R) =
1

2
‖Dvec(R)‖2.

In the noise free case, the value of this function is zero if and only if there is a rotation

matrix which aligns all object points with the line-of-sight of the corresponding image

points exactly. In the presence of noise, the value of the cost function is no longer zero.

Thus, we are seeking for the minima of this cost function, which can be interpreted

as the least squares approximation to the true rotation.
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R
3

RSO3
fµR

f ◦ µR

R

Figure 2.4: The mapping µR is a local parameterization of SO3 around the point R
such that R = µR(0), f is the smooth function defined on SO3 and f ◦ µR is the
function f expressed in local parameter space R

3.

Local Cost Function

Consider the mappings as in Fig. 2.4. The cost function f at R ∈ SO3 expressed in

local parameter space using the smooth local parameterization µR defined in (2.18)

is given by,

f ◦ µR : R
3 → R, f ◦ µR(ω) =

1

2
‖Dvec(ReΩ(ω))‖2. (2.19)

Quadratic Model of Local Cost Function

The second order Taylor approximation of f ◦ µR about 0 ∈ R
3 in direction ω is

j
(2)
0 (f ◦ µR) : R

3 → R,

ω 7→
(

(f ◦ µR)(tω) +
d

d t
(f ◦ µR)(tω) +

1

2

d2

d t2
(f ◦ µR)(tω)

)∣∣∣∣
t=0

.

This expansion contains three terms:

(i) A constant

(f ◦ µR)(tω)|t=0 =
1

2
‖Dvec(R)‖2,
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(ii) A term linear in ω

d

d t
(f ◦ µR)(tω)

∣∣∣∣
t=0

= vec⊤(RΩ(ω))D⊤Dvec(R) = ω⊤∇f◦µR
(0),

recall Ω from (2.13), and let vec(Ω) := Qω, Q := [vec(Qx) vec(Qy) vec(Qz)],

then we have the Euclidean gradient of the local cost function evaluated at zero,

∇f◦µR
(0) = Q⊤(I ⊗ R⊤)D⊤Dvec(R), (2.20)

(iii) A quadratic term consists of a sum of two terms. The first term is given as,

vec⊤(RΩ(ω))D⊤Dvec(RΩ(ω)) = ω⊤Ĥf◦µR
(0)ω. (2.21)

Denoting vec(C) := D⊤Dvec(R), the second term is,

vec⊤(R)D⊤Dvec(RΩ2(ω)) = vec⊤(R)D⊤D(Ω⊤(ω) ⊗R)vec(Ω(ω)),

= vec⊤(R⊤CΩ⊤(ω))vec(Ω(ω)),

= ω⊤H̃f◦µR
(0)ω.

Thus, the Hessian matrix of f ◦ µR evaluated at 0 ∈ R
3 is,

Hf◦µR
(0) = Ĥf◦µR)(0) + H̃f◦µR

(0), (2.22)

where

Ĥf◦µR
(0) = Q⊤(I ⊗ R⊤)D⊤D(I ⊗ R)Q ≥ 0,

H̃f◦µR
(0) = −Q⊤(I ⊗R⊤C), (2.23)

and since H̃f◦µR
(0) is always symmetric, we have

H̃f◦µR
(0) = −1

2
Q⊤ ((I ⊗ R⊤C) + (I ⊗ C⊤R)

)
Q. (2.24)

Remark 2.2.1 Recall f from (2.10), the element R = µR(0) is a critical point of f

if and only if the following holds,

Q⊤(I ⊗ R⊤)D⊤Dvec(R) = 0.

A positive definite Hessian, Hf◦µR
(0) > 0 indicates that R is a local minimum. In

the noise free case, H̃f◦µR
(0) = 0 and hence Hf◦µR

(0) = Ĥf◦µR
(0) ≥ 0. For generic

objects we expect that the number of critical points is finite, and that each is isolated.
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2.2.3 Newton Decrement

The Newton decrement δ is defined in terms of the gradient ∇f◦µR
(0) and the Hessian

Hf◦µR
(0), as

δ :=
√

[∇f◦µR
(0)]⊤[Hf◦µR

(0)]−1∇f◦µR
(0). (2.25)

This decrement δ approaches zero as the algorithm converges to a local or global min-

imum. It features in the work of Nesterov [67] for optimizing convex self-concordant

functions in Euclidean space. Recall that self concordant functions are those where

the second derivative terms to the power 3
2

dominate third derivatives. A key result

is that there is a domain of attraction for the Newton step using a unity step size if

δ < 3−
√

5
2

, a global constant.

Although the theory of [67] does not apply immediately for optimization on a

manifold, yet since manifolds are locally Euclidean, it can be used as a guideline. In

[42], the notion of convex self-concordant functions is explored in a manifold setting.

Here after some manipulations, it can be shown that on SO3, in the neighbourhood

of a minimum, the cost function f is locally convex and self-concordant. Thus here

we conservatively estimate a domain of attraction as δ ≪ 3−
√

5
2

. Here as curvature

of the manifold increases, it makes sense to use more conservative values. We use

Newton decrement as an indicator on selecting the appropriate direction of geodesic

search as,

Gradient direction : δ ≥ ǫ1 (eg. 10−1),

Gauss direction : ǫ1 > δ > ǫ2 (eg. 10−2),

Newton direction : δ ≤ ǫ2. (2.26)

It is also used to assist in the decision for using a Newton step size instead of carrying

out geodesic search and for algorithm termination, as

Newton step size=‖ωNewton‖ : δ < ǫ3 (eg. 10−3),

Terminate : δ < ǫ4 (eg. 10−6). (2.27)
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2.2.4 Algorithm

The proposed algorithm is iterative in nature. Each iteration consists of three map-

pings as,

s = π3 ◦ π2 ◦ π1 : (SO3 ∩ K) → (SO3 ∩ K). (2.28)

SO3

π1

π2

π3

SO3 ∩ K

SO3 ∩ K

Taff
R SO3

R

Figure 2.5: Each iteration of the proposed algorithm consists of three mapings, namely
π1 maps a point R ∈ (SO3 ∩ K) to an element of the affine tangent space Taff

R SO3,
followed by π2 which projects that vector back to the manifold and π3 which carries
out geodesic search on SO3 in the direction of the projected vector.

At each iteration, a local parameterization µR of the manifold around R ∈ (SO3 ∩K)

is constructed. The point R is pulled back to the Euclidean space via µR. The

optimal vector that minimizes the quadratic model of the local cost function f ◦ µR,

achieved by the operation π1, is then pushed forward to the manifold via the mapping

π2. Finally, in operation π3, a one dimensional search along the geodesic on SO3

in the direction of this projected vector is carried out to ensure cone constraint is

satisfied. By appropriately identifying the local parameter space R
3 with the affine

tangent space Taff
R SO3, the first two steps of the algorithm can also be interpreted



25

geometrically as carrying out an optimization procedures defined on Taff
R SO3, followed

by a nonlinear projection back to the manifold to give a geodesic search direction, as

illustrated in Fig. 2.5.

Optimization in Local Parameter Space

Consider the optimization step,

π1 : (SO3 ∩ K) →
(
SO3 ∩ K, TaffSO3

)
(2.29)

R 7→ (R, R +RΩ(ωopt(R))) ,

where ωopt as a function of R = µR(0) is a suitable descent direction of f expressed

in local parameter space. Actually, three possibilities for the ωopt calculation are of

interest to our algorithm.

1. Newton direction. First, we have the Newton direction, which minimizes the

quadratic model of the local cost function,

ωNewton
opt (R) = arg min

y∈R3
j
(2)
0 (f ◦ µR)(y) (2.30)

= −[Hf◦µR
(0)]−1∇f◦µR

(0).

2. Gauss direction. Consider the restriction of the function g defined in (2.12) to

the affine tangent bundle TaffSO3,

h : TaffSO3 → R, h(ξ) = g|TaffSO3
=

1

2
‖Dvec(ξ)‖2,

and the function h expressed in the local parameter space,

νR : R
3 → TaffSO3, y 7→ R +RΩ(y),

h ◦ νR : R
3 → R, h ◦ νR(y) =

1

2
‖Dvec(R +RΩ(y)‖2.

The Gauss direction is the minimizer of the function h ◦ νR,

ωGauss
opt (R) = arg min

y∈R3
(h ◦ νR)(y), (2.31)

= −[Hh◦νR
(0)]−1∇h◦νR

(0),

= −[Ĥf◦µR
(0)]−1∇f◦µR

(0).
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3. Gradient direction. The third descent direction of interest to us is in the negative

gradient direction,

ωgradient
opt (R) = −∇f◦µR

(0). (2.32)

Remark 2.2.2 When Hf◦µR
(0) or Ĥf◦µR

(0) is singular, pseudo inverse replaces in-

verse in the above equations.

Projecting Back via Local Parameterization

The mapping π2 projects the optimal affine tangent vector back to the manifold by

means of the local parameterization µR,

π2 :
(
(SO3 ∩ K), TaffSO3

)
→ SO3 (2.33)

(R, R +RΩ(ωopt(R))) 7→ ReΩ(ωopt(R)).

Analytic Geodesic Search on SO3

The mapping π3 involves a one dimensional search along the geodesic curve,

π3 : SO3 → SO3 ∩ K, (2.34)

ReΩ(ωopt(R)) 7→ ReθoptΩ(ωopt(R)),

where θopt is the optimum step size which minimizes cost function along the geodesic,

as well as satisfying the cone constraint.

Certain Newton-type algorithms use a heuristic line search in a particular direction

to ensure that the cost function decreases at every step. When the optimization is

on a manifold, the line search translates to a geodesic search, and in the case of

manifold SO3, a finite range search. In ill-conditioned problems, as arise in high

noise, the number of trial step sizes can be very large for many iterations until the

optimization path steers clear of the boundary or saddle point or other sources of ill-

conditioning. This is one motivation for us to use an analytic geodesic search, since

this is possible for the manifold SO3. The other motivations are to avoid violating

the cone constraint K and to assist in achieving the global minimum, rather than

some other local minimum. The proposed analytic geodesic search is described on
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an arbitrary geodesic on SO3. It involves the solution of a quartic equation. An

important result for us, which does not generalize to matrices higher order than

3 × 3, is as follows.

Lemma 2.2.1 Given a vector ω ∈ R
3, a 3 × 3 skew symmetric matrix Ω ∈ so3, and

a step size θ ∈ [0, 2π), with ω̄ := ω
‖ω‖ , ‖ω‖ :=

√
(ω⊤ω), then

vec(eθΩ(ω̄)) = G




cos(θ)

sin(θ)

1


 , G :=

[
−vec(Ω(ω̄)2) vec(Ω(ω̄) vec(I3 + Ω(ω̄)2)

]
. (2.35)

Moreover, the function (2.35) is 2π periodic in θ, so that for any integer k,

e2πkΩ(ω̄) = I.

Proof 2.2.1 The proof follows from application of Rodrigues’ rotation formula [66],

eθΩ(ω̄) = I + Ω(ω̄) sin(θ) + Ω2(ω̄)(1 − cos(θ)).

To apply the results of Lemma 2.2.1, consider the cost function f restricted to the

geodesic ReθΩ(ω̄opt(R)) given as,

ϕ(θ) = f |
ReθΩ(ω̄opt(R)) =

1

2
‖D vec(ReθΩ(ω̄opt(R)))‖2, (2.36)

=
1

2
‖D(I ⊗R)G

[
cos(θ) sin(θ) 1

]⊤
‖2.

Now, the task is to ‘walk’ along the geodesic on the manifold SO3 and search for a

step size θ that minimizes the cost function ϕ(θ) and satisfies the cone constraint. To

achieve this, we find all critical step sizes {θ∗} by setting the first derivative of the

cost function (2.36) to zero. Denoting G⊤(I ⊗ R⊤)D⊤D(I ⊗ R)G as (aij),

d

d θ
ϕ(θ) =

[
cos(θ) sin(θ) 1

]
(aij)




sin(θ)

cos(θ)

0


 = 0,
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by eliminating sin(θ) from the above equation using trigonometric formula cos2(θ) =

1 − sin2(θ), we obtain a quartic equation,

4∑

j=0

bj(cos(θ))j = 0, (2.37)

b0 := a12
2 − a13

2, b1 := −2 (a12a23 + a13(a11 − a22)) ,

b2 := a23
2 + a13

2 − (a11 − a22)
2 − 4a12

2,

b3 := 2 (2a12a23 + a13(a11 − a22)) , b4 := 4a12
2 + (a11 − a22)

2.

Next, the critical step size that gives minimum cost and fulfills the cone constraint

K, denoted the optimum step size θopt is given as,

θopt = arg min
θ

ϕ(θ), where θ ∈ {θ∗ | Reθ∗Ω(ω̄opt(R)) ∈ (SO3 ∩ K)}. (2.38)

Figure 2.6 shows the plots of cost function ϕ(θ) vs. step size θ in the range

[−π, π]. It illustrates the idea of an analytic geodesic search. The black dot in each

plot indicates a Newton step, θ = ‖ωopt‖ in the search direction. The darkened

portion of the curves represents the infeasible region where the cone constraint fails.

In Fig. 2.6(a), there is no infeasible region. If a Newton step is taken, one will be

trapped in the local minimum. However, the analytic geodesic search will select the θ

corresponding to the minimum cost in the search direction and hence escapes from the

local minimum and heads towards the global minimum. In Fig. 2.6(b), the minimum

cost lies in the infeasible region, so the geodesic search will select the θ corresponding

to the second minimum cost value that is in the feasible region. Also, the search

directions might not yield any feasible local minimum, as depicted in Fig. 2.6(c). In

this case, no parameter update is made. Nevertheless, by carrying out a search in a

random direction periodically, the probability of achieving a feasible local minimum,

or indeed a global minimum, is increased.

2.2.5 Convergence Analysis of Algorithm

Global Convergence

The algorithm is such that the non-negatively valued cost function f decreases mono-

tonically at each iteration, and thus converges. Consequently, point iterate Rk con-
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(a) No infeasible region, but if Newton

step is taken, one will be trapped in local

minimum.

(b) Both minimum cost and Newton

step lie in infeasible region.

(c) All minima lie in infeasible region.

Figure 2.6: Analytic geodesic search: plots of cost function f restricted to the geodesic
on SO3 for various step size in the range [−π, π], the black dot indicates Newton step,
darkened portion of the curves represents the infeasible region, i.e., object behind
camera.

verges to {R ∈ SO3 | f(R) = c} for non-negative scalar c. However, since f is smooth

on SO3, the algorithm step given by the gradient or Gauss or Newton direction is

downhill on f and zero when the gradient is zero. Thus Rk converges to a critical

point of f , when its gradient is zero.

Of course, critical points of f where the gradient is zero are fixed points of the

algorithm. However, critical points other than local minima are unstable fixed points.

That is, small random perturbations of the algorithm from these points will result in

further iterations which give cost reductions.

The algorithm is designed to escape local minima that are not the global minima
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by virtue of the geodesic searches including periodic geodesic searches in a random

direction. Even so for practical purposes, since the algorithm is only implemented for

say 5–10 iterations, there may well be a low probability that there is ‘convergence’ to

a local minima which is not a global minimum. Given this background, we provide

only a rigorous quadratic convergence analysis in the vicinity of a global minimum,

and for simplicity assume that the global minimum is unique and isolated, as we

expect in the case of generic objects located in front of the camera.

Local Quadratic Convergence at Global Minimum

Theorem 2.2.1 Let R∗ ∈ SO3 be the unique and nondegenerate global minimum of

the smooth function f : SO3 → R defined in (2.10). Let Rk be a point in an open

neighbourhood of R∗. Consider the proposed iteration on SO3,

Rk+1 = s(Rk), s = π3 ◦ π2 ◦ π1, (2.39)

where π1 is given by the Newton direction defined in (2.30), π2 involves projection back

to SO3 via the smooth exponential map of (2.33), and π3 is an analytic geodesic search

described in (2.34). Then the point sequence generated by s converges quadratically

to R∗.

Proof 2.2.2 See Appendix A.1.

2.3 Algorithm Initialization

Noise Free Solution

In the noise-free case, the optimal value of the cost function (2.10) is zero. That is

there exists an R 6= 0 such that

D⊤Dvec(R) = 0. (2.40)

This clearly indicates that D⊤D ≥ 0 cannot be full rank. Subsequently, the rank of

D is of interest. For the generic case,

rank(D) ≤ min{(2n− 3), 9}. (2.41)
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Derivation of this inequality can be found in Appendix A.2.

Let Y be the set of right singular vectors that span the null space of D, with

Y ⊤Y = Iq with q ≥ 1, we express vec(R) linearly in Y as follows,

vec(R) = Y α, R =
[
Y1α Y2α Y3α

]
, (2.42)

where Y is a 9 × q matrix,

Y :=
[
Y ⊤

1 Y ⊤
2 Y ⊤

3

]⊤
, α :=

[
α1 α2 . . . αq

]⊤
.

Here Yi is a 3 × q matrix. Based on R from (2.42) and the fact that R⊤R = I, then

α⊤Y ⊤
k Yl α =

{
1, if k = l,

0, otherwise.
(2.43)

Hence, we can solve for α from (2.43). A lower bound for q, the dimension of α, is

calculated using (2.41) as

q := (9 − rank(D) ≥ max(1, 9 − (2n− 3)), (2.44)

with equality holding in the generic model case. This is consistent with the known

result that a unique solution (2.40) in the generic noise-free case for n = 6, since then

q = 1.

In the generic case for n ≥ 6 then q = 1. There are six possible α solutions from

(2.43) as follows,

α = ± 1√Y11

= ± 1√Y22

= ± 1√Y33

. (2.45)

Each solution is tested to achieve a feasible parameter estimate which yields a zero

cost. For n = 5 in generic case, q = 2. In this case, we can obtain the two elements

of α by solving a pair of quadratic equations. Based on (2.43), there are 9 pairs of

quadratic equations to be solved. To illustrate, consider the following pair,

α⊤Y33α = 1, (2.46)

α⊤Y12α = 0. (2.47)

We proceed as follow,
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Step 1: Let α = Sα[α1 1]⊤, Sα is a scaling factor, solve for α1 from (2.47).

Step 2: Solve for Sα by substituting α1 into α⊤Y33α = 1 and finally solve for α.

Here we can obtain up to 4 possible solutions for α. Among all possible solutions,

half of them are numerically equivalent but associated with opposite signs.

For n = 4 and n = 3, the details of solutions for R and t (not unique for n = 3)

can be found in [73] and [23] respectively. The cases n = 1 and n = 2 yield an infinite

set of solutions. Once α is known, we can solve for R(α), z′i, t from (2.42), (2.8)

and (2.7) respectively. There may be multiple solutions, including possibly complex

solutions for α. Only the real α that results in z′i > 0 and R(α) associated with

minimum cost will be accepted.

Low Noise Initialization

We solve for α as in the noise-free case. However, now Y is chosen from the set of

right singular vectors associated with the q smallest singular values, which may not

be zero. The singular vectors might not result in a special orthogonal matrix R based

on (2.42). Hence, a reasonable approach is to look for an optimum Ropt(α) as

Ropt(α) = arg min
R∈SO3

‖vec(R) − Y α‖,
= arg min

R∈SO3

‖R− [Y1α Y2α Y3α]‖,

= arg max
R∈SO3

tr(R⊤G(α)), (2.48)

where G(α) := [Y1α Y2α Y3α]. By applying an SVD on G(α), we obtain

G(α) = URSRV
⊤
R ,

Ropt(α) := UR

[
I2 0

0 det(URV
⊤
R )

]
V ⊤

R . (2.49)

Observe that det(Ropt(α)) = 1. Subsequently, t can be obtained from (2.7). Only

Ropt(α) associated with minimum cost and fulfilling the cone constraint K will be

accepted. If there is no estimates Ropt(α) such that the cone constraint is satisfied

or there is no real solution for α at all, then we refer to this situation as a high noise
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case, the following high noise initialization is adopted. Such an optimization as in

(2.48) is the basis of the Orthogonal Iteration (OI) proposed in [55], and indeed the

SVD based solutions of (2.49) which ensures that det(Ropt) = +1, could be used to

strengthen the robustness of the OI algorithm.

High Noise Initialization

Select any random R ∈ SO3 which also satisfies the cone constraint K of (2.9).

Alternatively, one can start with an arbitrary initialization on SO3, perhaps not

feasible in that the cone constraint is not satisfied, and achieve feasibility using the

geodesic search.

2.4 Implementation of Algorithm

Start with R = R0 using initialization procedures described in Section 2.3.

Step 1: Carry out the optimization step,

• Compute the gradient ∇f◦µR
(0) and the Hessian matrix, Hf◦µR

(0) via

(2.20) and (2.22) respectively.

• Calculate the Newton decrement δ from (2.25). If δ < ǫ4, go to Step 5,

• Compute the optimal direction in the local parameter space,

ωopt(R) =





ωgradient
opt = −∇f◦µR

(0), if δ ≥ ǫ1

ωGauss
opt = −[Ĥf◦µR

(0)]†∇f◦µR
(0), if ǫ2 < δ < ǫ1

ωNewton
opt = −[H(f◦µR

(0)]†∇f◦µR
(0), if δ < ǫ2

ωrand
opt , periodically, or if any of the above direction

ends up in an infeasible region

Here, ωrand
opt ∈ R

3 is a random vector with elements, in the range [0, 1],
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• Form the normalized direction ω̄opt(R) = ωopt(R)
‖ωopt(R)‖ .

Step 2: Projecting back to the manifold SO3 via πµR

2 or πsvd
2 ,

Step 3: Carry out a one dimensional search along the geodesic ReθΩ(ω̄opt(R)),

• Solve the quartic equation in (2.37) to obtain all critical step sizes {θ∗},

• For each θ ∈ {θ∗}, calculate the corresponding rotation ReθΩ(ω̄opt(R)), its

cost via (2.36) and the depth parameter estimates via (2.8).

• Obtain the critical rotation angle θopt that gives minimum cost and fulfills

the cone constraint K via (2.38).

• Compute R̂ = ReθoptΩ(ω̄opt(R)),

Step 4: Set R = R̂, go back to Step 1,

Step 5: The pose estimates are R and t = −Uvec(R) respectively.

2.5 Simulations

A set of 3D points that are generated uniformly within a cube of size [-5,5] are chosen

as the model. The model is rotated and translated randomly within the field of view

of the camera and then projected onto an image plane. Gaussian noise of mean

zero and varying standard deviations σ is added to both image plane coordinates

independently. The different standard deviations in the Gaussian noise corresponds

to various noise levels. All simulations are repeated for 1000 times. A CCD camera

with focal length of 600, aspect ratio of 1.0 and principal point of (256,256) is used.

All simulations are carried out in MATLAB. Throughout the simulation, we define

the relative pose error as the normalized distance between the actual pose and its

estimate. That is, EA := 2 ‖A−Â‖
‖A‖+‖Â‖ , A ∈ {R, t}. The performance of the proposed

algorithm, denoted Gauss-Newton-on-manifold is compared against the Orthogonal

Iteration (OI) algorithm of [55].
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Relative Pose Error vs. Noise level Points and poses are generated as described

earlier. With the number of matched points fixed at 12, we vary the noise level

between 0.5 to 5.0 pixels. It is clear from Fig. 2.7 that the proposed algorithm
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Figure 2.7: Relative pose error vs. noise level.

(without reinitialization) performs significantly better than the OI algorithm in

terms of relative pose error, even after the OI algorithm has been reinitialized

5 times. This is particularly the case for noise level greater than 1.5 pixel.

Relative Pose Error vs. Number of Points Here, we vary the number of point

correspondences from 5 to 50 and add 1.0 x 1.0 pixel Gaussian noise to the

images. Figure 2.8 indicates that the performance of both algorithms improve

as the number of point matches increase. However, the proposed recursions

(without reinitialization) gives better pose estimates than the OI algorithm,

even after 5 reinitialization, for point correspondences less than 15.

Number of Iterations Figure 2.9 shows the average number of iterations (without

reinitialization) required by each method to achieve the performance shown in

Fig. 2.7 and Fig. 2.8. It is clear that our approach always converges in 5–10

iterations as opposed to the OI algorithm that requires at least 10 iterations.

Rate of Local Convergence Figure 2.10 shows that the proposed algorithm con-
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Figure 2.8: Relative pose error vs. number of point correspondences.

verges to a fixed point R∗ at a quadratic rate as opposed to the OI algorithm

which converges at a fast linear rate.

Remark 2.5.1 The cost per iteration of the proposed algorithm is small since im-

plementing the Newton step with 3 × 3 Hessian matrices in not onerous, nor is the

solution of a quartic equation for the optimal step size selection. We observe the

computational cost per iteration of OI algorithm is much less than ours when imple-

mented using Matlab. But we expect that when implemented in C/C++, the relative

computational cost of our algorithm will improve significantly.

2.6 Algorithm Robust to Outliers

Recall that the proposed algorithm minimizes the sum of squared residuals,

1

2

n∑

i=1

r2
i , ri = ‖Divec(R)‖,

and gives accurate fitting of data when the underlying noise in the data is Gaussian

but is very vulnerable to outliers.

To avoid this, a robust version of the algorithm which adapt the M-estimator

technique proposed by Huber [40] is presented. The M-estimator technique is based
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Figure 2.9: Number of iterations (mean) vs. noise level and number of corresponding
points.

on the idea of reducing the effect of outliers by replacing the squared residuals, r2
i ,

with another function of the residuals, yielding the cost function

1

2

n∑

i=1

ρ(ri), (2.50)

where ρ is a symmetric, positive function with a unique minimum at zero and is

chosen to be growing slower than the squared function. The solution to this problem

can be found by setting its derivative with respect to the unknown parameter vector

θ to zero,
n∑

i=1

dρ

dri

∂ri

∂θj

= 0 (2.51)

Defining a weight function

wi = ri

dρ

dri

,

then (2.51) becomes
n∑

i=1

wiri

∂ri

∂θj

= 0.

Observe that this is the solution to the following problem

min
n∑

i=1

wir
2
i .
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Figure 2.10: Rate of local convergence.

In practice, instead of solving (2.50), it is more efficient to solve a sequence of

reweighted least squares problem. Thus, to increase the robustness of the proposed

algorithm against outlier, we proceed to minimize the following weighted cost function

fw : SO3 → R,

fw(R) =
1

2

n∑

i=1

wi‖Divec(R)‖2 =
1

2
‖Dvec(R)‖2

W ,

where W = diag(w1, · · · , wn) ⊗ I3.

Among the weighting function proposed in the statistics literature, Huber’s weight

function is given as

wi =

{
1 if |ri| ≤ cs

cs
|ri| otherwise

, (c = 1.345),

and Tukey’s biweight function is

wi =





(
1 −

(
ri

cs

)2)2

if |ri| ≤ cs

0 otherwise
, (c = 4.6851).

Here the scale

s =
mediani|ri|

0.6745
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is introduced to give a scale invariant version of an M-estimator and the value 0.6745

is one half of the interquartile range of the Gaussian normal distribution N(0, 1).

To evaluate the robustness against outliers, the algorithm which minimizes a least

squares cost function (LS) is compared against the algorithm which minimizes the

reweighted least squares cost function (RLS) using Huber and Tukey weights. Data

are generated as in earlier simulation, but now the number of point correspondences

is fixed at 20. The outliers are generated by shifting certain image points at least

50 pixels from their actual location. In addition, Gaussian noise of mean zero and

σ pixel standard deviation is added to the rest of the point correspondences. 1000

trials were carried out.
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(a) Mean relative rotation error vs. percentage

of outliers with σ = 1 pixel.
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(b) Mean relative rotation error vs. noise level

with 5% outliers.

Figure 2.11(a) shows the plot of mean relative rotation error vs. percentage of

outliers with σ = 1 pixel. In the absence of outliers, both LS and RLS give similar

performance. In the presence of less than 20% of outliers, RLS gives significantly

better performance than LS but when the percentage of outliers is greater than 25%,

we observe no advantage of using RLS against LS. Figure 2.11(b) shows the plot of

mean relative rotation error vs. noise level with 5% outliers. This plot indicates

that even in the presence of a small relative number of outliers, RLS outperforms LS

significantly regardless of the noise level. Also among RLS methods, Tukey’s biweight

functions seems to give better performance than Huber’s weight function.
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2.7 Summary

In this chapter, the task of determining position and orientation of a 3D object from

single 2D image have been formulated as an optimization problem cast on the inter-

section of a rotation group and a cone constraint. Newton-like algorithms based on

the proposed parameterization-based geometrical framework has been developed. The

techniques take into account the underlying geometry of the constraint manifold to

achieve a quadratic convergence rate. Unlike most existing numerical procedures, the

proposed algorithms evolve on the constraint manifold and thus preserve constraint

sets at every iteration. The key differentiating features, each adding measurable value

to the algorithm, concern

• A new approach of obtaining noise-free solutions for n ≥ 5, which can be used

for low noise initializations,

• The use of 3 × 3 Hessian inversion, as opposed to the conventional Newton

approach that works with a 6 × 6 Hessian matrix [53],

• The analytic geodesic search for step size selection, requiring a solution of a

quartic, and facilitating escape from a local minimum but not from the global

minimum,

• Achieving local quadratic convergence by means of simulations and mathemat-

ical proof,

• No need to reinitialize the algorithm to achieve global minimum within the

feasible region,

• Introduction of the Newton decrement as an indicator for selection of gradient,

Gauss, or Newton directions and for algorithm termination,

• For a prescribed number of iterations, the proposed algorithm achieves signifi-

cantly lower pose estimation errors than earlier methods and it converges to a

global minimum in typically 5–10 iterations.
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• To increase robustness against outliers, the proposed algorithm adapting the M-

estimator technique is also presented. It is not easy to derive analytical results

on this robustness, but simulations appear convincing.

These features suggest that as digital signal processing hardware becomes more pow-

erful, the algorithm can be conveniently applied to on-line pose recovery tasks, and

can be a basic tool for more sophisticated tasks involving adaptive object recognition

and pose tracking.
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Chapter 3

Estimation of Essential Matrices

Chapter 2 demonstrates that the task of estimating the pose of an object from a single

intensity image is equivalent to solving an optimization problem cast on a manifold.

In this chapter, we focus on determining the relative pose information between a pair

of calibrated images, also known as 2D-2D pose estimation. Part of the material in

this chapter has been published in [34].

The seminal work of Longuet-Higgin [51] in 1981, showed that the pose information

between a pair of calibrated images is algebraically captured by an essential matrix.

Many techniques have been developed for estimation of this matrix.

Existing Work Techniques for estimating essential matrices can be categorized

into three main groups: linear, iterative and robust methods. Linear methods are

mainly based on least-squares and eigenvalue minimization. Iterative methods are

based on optimizing linear methods by means of iteration. Robust methods are

based on accurate geometry detection and the removal of false matchings. Excellent

reviews on the estimation of the essential matrix are presented in [39, 38].

Our Work In this chapter, the task of determining the essential matrix is addressed

as minimizing a smooth function over the manifold of all essential matrices, called the

essential manifold. Locally quadratically convergent Newton-like techniques exploit-

ing the geometric structure of the constraint manifold were presented. The proposed
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algorithm is compared with the recent geometric optimization techniques presented

by Ma, Sastry and Košecká [58], which are adapted from [20]. The efficiency of the

proposed techniques are demonstrated by means of computer simulations, where con-

vergence typically occurs in 5–20 iterations, with complexity per iteration much less

than in the work of [58].

Chapter Outline We begin with the problem formulation in Section 3.1. This is

followed by presentation of our iterative algorithm in Section 3.2. Algorithm imple-

mentation steps are outlined in Section 3.3 and simulation results are presented in

Section 3.4. A chapter summary can be found in Section 3.5.

3.1 Problem Formulation

Two images of the same scene are related by epipolar geometry as illustrated in Figure

3.1. The images can be taken by two cameras or the images can be taken by a mobile

camera at two different positions. Given an object point M and its two dimensional

projections m1 and m2 on both image planes with camera centers C1 and C2, the five

points define an epipolar plane Π, which intersects both image planes I1 and I2 at

the epipolar lines l1 and l2. The image of the camera centers C1 ,C2 are captured on

the image planes I2, I1 at epipoles e2, e1, respectively.

C1 C2

x1

y1

z1 x2
y2

z2

M

I1 I2

m1

e1

m2

e2

l1 l2

Figure 3.1: The epipolar geometry
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If the internal camera parameters are known, the epipolar constraint can be rep-

resented algebraically in terms of a 3 × 3 matrix, called the essential matrix E, as

m⊤
2 Em1 = 0. (3.1)

The essential matrix encapsulates both the rotation and translation parameters, thus

it plays a crucial role in motion analysis.

It is known that with 8 or more generic point correspondences in the noise-free

case, the essential matrix is uniquely determined. For 5 generic point correspondences,

there are up to 20 such solutions [37], with a certain symmetry so that they are all

determined from 10 solutions. We are not aware of references for the case of 6 or 7

point correspondences.

Thus, given a set of point correspondences between a pair of calibrated intensity

images, the task is to estimate the essential matrix which encapsulates the relative

pose between the images.

3.2 Optimization on the Essential Manifold

3.2.1 Geometry of the Essential Manifold

Recall, that an essential matrix is a real (3 × 3)-matrix in factored form

E = ΩR, (3.2)

where R ∈ SO3 is a rotation matrix and Ω ∈ so3, as defined in (2.13) represents the

translation vector between two views. Once E is known, then the factorization (3.2)

can be made explicit as shown below. It is well-known, that the essential matrices

are characterized by the property that they have exactly one positive singular value

of multiplicity two, consequently E must be rank 2 [31]. In particular, normalized

essential matrices are those of Frobenius norm equal to
√

2 and which are therefore

characterized by having the set of singular values {1, 1, 0}.
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Characterization of Normalized Essential Manifold

The normalized essential manifold is defined as

E :=
{
ΩR

∣∣Ω ∈ so3, R ∈ SO3, ‖Ω‖2 = tr(ΩΩ⊤) = 2
}
. (3.3)

This is the basic nonlinear constraint set on which the proposed algorithms are de-

fined.

First, we show that a non-zero (3 × 3)-matrix E is essential if and only if there

exists a decomposition

E = UΣV ⊤, Σ =




s 0 0

0 s 0

0 0 0


 , s > 0, U, V ∈ SO3. (3.4)

Note that, E is a normalized essential matrix when s = 1. Assuming E = ΩR with

Ω ∈ so3 and R ∈ SO3, the equality E = ΩR implies

EE⊤ = ΩRR⊤Ω⊤ = −Ω2,

with a corresponding set of eigenvalues

λ(EE⊤) =
{
s2, s2, 0

}
, where s :=

√√√√
3∑

i=1

ω2
i .

The set of singular values of E is then σ(E) = {s, s, 0}. For the converse, consider

Ψ :=




0 −s 0

s 0 0

0 0 0


 ∈ so3 and Γ :=




0 1 0

−1 0 0

0 0 1


 ∈ SO3.

One has

Ψ⊤ = Γ




s 0 0

0 s 0

0 0 0


 .
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Hence for the singular value decomposition of E,

E = U




s 0 0

0 s 0

0 0 0


V

⊤ = UΓ⊤Γ




s 0 0

0 s 0

0 0 0


ΓU⊤UΓ⊤V ⊤,

= (UΓ⊤Ψ⊤ΓU⊤)︸ ︷︷ ︸
Ω

(UΓ⊤V ⊤)︸ ︷︷ ︸
R

= ΩR. (3.5)

as required.

The next result characterizes the normalized essential manifold E as the smooth

manifold of (3 × 3)-matrices with a fixed set of singular values {1, 1, 0}.

Proposition 3.2.1 Let us denote

E0 :=

[
I2 0

0 0

]
, E :=

{
UE0V

⊤ ∣∣ U, V ∈ SO3

}
. (3.6)

Then, E is a smooth five-dimensional manifold diffeomorphic to RP
2 × SO3.

Proof 3.2.1 Recall that the real projective plane RP
2 can be identified with the isospec-

tral manifold {
U

[
I2 0

0 0

]
U⊤

∣∣∣∣∣U ∈ SO3

}
.

Therefore the map

φ : E → RP
2 × SO3, U

[
I2 0

0 0

]
V ⊤ 7→

(
U

[
I2 0

0 0

]
U⊤, UV ⊤

)
,

is smooth and bijective. Moreover, the inverse

φ−1(X, Y ) = XY,

is smooth as well. Therefore, φ is a diffeomorphism. Since RP
2 is of dimension 2,

and SO3 is of dimension 3, then RP
2 × SO3 is of dimension 5.

The orthogonal matrices appearing in the above SVD of a given essential matrix

are not uniquely determined. However, the possible choices are easily described,

leading to an explicit description of factorizations.
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Remark 3.2.1 Let S
2 :=

{
Ω ∈ so3

∣∣‖Ω‖ =
√

2
}

denote the two-sphere in so3 with

radius equal to
√

2. The map

π : S
2 × SO3 → E , (Ω, R) 7→ ΩR,

is a two-to-one covering map with preimages

π−1

(
U

[
I2 0

0 0

]
V ⊤
)

=


U




0 ε 0

− ε 0 0

0 0 0


U

⊤, U




0 −ε 0

ε 0 0

0 0 1


V

⊤


 ,

with U, V ∈ SO3 and ε ∈ {+1,−1}.

Tangent Space of Essential Manifold

Theorem 3.2.1 The tangent space at the normalized essential matrix E = UE0V
⊤

is

TEE =
{
U (ΩE0−E0Ψ)V ⊤∣∣Ω,Ψ ∈ so3

}
,

=




U




0 ω12 − ψ12 −ψ13

−(ω12 − ψ12) 0 −ψ23

−ω13 −ω23 0


V

⊤
∣∣∣ωij, ψij ∈ R, i, j ∈ {1, 2, 3}




,

(3.7)

with usual notation Ω = (ωij) and Ψ = (ψij).

Proof 3.2.2 For any E = UE0V
⊤ ∈ E . Let αE : SO3×SO3 → E be the smooth map

defined by αE(Û , V̂ ) = ÛEV̂ ⊤. The tangent space TEE is the image of the linear map

DαE(I3, I3) : so3 × so3 → R
3×3, (Ω̂, Ψ̂) 7→ Ω̂E −EΨ̂,

i.e., the image of the derivative of αE0 evaluated at the identity (I3, I3) ∈ SO3 ×SO3.

By setting Ω := U⊤Ω̂U and Ψ := V ⊤Ψ̂V the result follows, see [32], pp 89 for details.

Corollary 3.2.1 The kernel of the mapping DαE0(I3, I3) : so3 × so3 → R
3×3 is the

set of matrix pairs (Ω,Ψ) ∈ so3 × so3 with

Ω = Ψ =




0 x 0

−x 0 0

0 0 0


 , x ∈ R. (3.8)
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Proof 3.2.3 Let Ω = (ωij),Ψ = (ψij) with Ω,Ψ ∈ so3 and E0 as defined in (3.6),

then

ΩE0 − E0Ψ = 0

⇐⇒




0 ω12 − ψ12 −ψ13

−(ω12 − ψ12) 0 −ψ23

−ω13 −ω23 0


 = 03

⇐⇒ ω12 = ψ12 and ω13 = ψ13 = ω23 = ψ23 = 0.

Setting ω12 = ψ12 = x gives the result.

The affine tangent space at E = UE0V
⊤ ∈ E can be identified with tangent space

TEE via translating TEE by E, as

T aff
E E =




U




1 −x3 −x5

x3 1 x4

−x2 x1 0


V

⊤
∣∣∣x1, . . . , x5 ∈ R




. (3.9)

Parameterization of Essential Manifold

Computations on a manifold are often conveniently carried out in terms of a local

parameterisation. For our later convergence analysis we therefore need a local pa-

rameterisation of the essential manifold, as depicted in Figure 3.2.

E

R
5

RµE f

f ◦ µE

E

Figure 3.2: The mapping µE is the local parameterization of essential manifold E
around point E such that E = µE(0), f is the smooth function defined on E and
f ◦ µE is f expressed in local parameter space R

5.
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Lemma 3.2.1 Let U, V ∈ SO3 be arbitrary, let x⊤ =
[
x1, . . . , x5

]
∈ R

5, and let E0

be defined as in (3.6). Consider the mappings

Ω1 : R
5 → so3,

[
x1, . . . , x5

]⊤
7→ 1√

2




0 − x3√
2

x2

x3√
2

0 −x1

−x2 x1 0


 (3.10)

and

Ω2 : R
5 → so3,

[
x1, . . . , x5

]⊤
7→ 1√

2




0 x3√
2

x5

− x3√
2

0 −x4

−x5 x4 0


 . (3.11)

Consider also

µE : R
5 → E , x 7→ U eΩ1(x)E0 e−Ω2(x) V ⊤. (3.12)

Then the mapping µE is a local diffeomorphism around 0 ∈ R
5.

Proof 3.2.4 Smoothness of µE is obvious. We will show that µE is an immersion at

0. To see that µE is an immersion it is sufficient to show that the derivative

DµE(0) : R
5 → TµE(0)E ,

is injective. For arbitrary h⊤ =
[
h1, . . . , h5

]
∈ R

5 we get

DµE(0)h = U




1√
2




0 − h3√
2

h2

h3√
2

0 −h1

−h2 h1 0


E0 − E0

1√
2




0 h3√
2

h5

− h3√
2

0 −h4

−h5 h4 0





V ⊤,

=
1√
2
U




0 −
√

2h3 −h5√
2h3 0 h4

−h2 h1 0


V

⊤,

which implies injectivity in an obvious manner. The result follows..

Remark 3.2.2 In this chapter we consider the essential manifold as an orbit of the

group SO3×SO3 acting on E0 by equivalence. By the differential of this group action
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the usual canonical Riemannian metric on SO3 × SO3 induces a Riemannian metric

on the essential manifold which is called the normal Riemannian metric on E , see e.g.

[32] for details about this construction. Moreover, by exploiting Corollary 3.2.1 one

can show that by this group action geodesics on SO3 × SO3, namely one parameter

subgroups, are mapped to geodesics on E . We refer to [59], Theorem 5.9.2, for a proof

of this fact in a more general context. It turns out that the curves on E we will use

in the sequel, i.e.

γ : t 7→ U etΩ1(x)E0 e−tΩ2(x) V ⊤, x ∈ R
5 (3.13)

are indeed geodesics on E with respect to the normal Riemannian metric. In addition,

the inverse µ−1
E defines a so-called normal Riemannian coordinate chart. Such a chart

has the feature that the Riemannian metric expressed in this chart evaluated at zero

is represented by the identity.

3.2.2 Cost Function

Cost Function on the Essential Manifold

Let M (i) := m
(i)
1 m

(i)⊤

2 , where m
(i)
1 , m

(i)
2 ∈ R

3 correspond to the normalized ith point

image pair in the left and in the right camera, respectively, for which the correspon-

dence is assumed to be known. Consider the smooth function

f : E → R, f(E) =
1

2

n∑

i=1

(
m

(i)⊤

2 Em
(i)
1

)2

=
1

2

n∑

i=1

tr2(M (i)E). (3.14)

The value of this cost function attains zero if and only if there is an essential matrix

which fulfills the epipolar constraint for each image point pair. That is, in the noise

free case the global minimum value is zero. In the noisy case the zero value will in

general not be attained. It nevertheless makes sense to search for mimima of this

cost function even in the presence of noise. The minima then can be interpreted as

least squares approximations to the true essential matrix, ignoring for the moment

any statistical interpretations or refinements.
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Local Cost Function

The cost function f at E ∈ E expressed in local parameter space using the smooth

local parameterization µE defined in (3.12) is given by,

f ◦ µE : R
5 → R, f ◦ µE(x) =

1

2

n∑

i=1

tr2(M (i)UeΩ1(x)E0e
Ω2(x)⊤V ⊤). (3.15)

Quadratic Model of the Local Cost Function

The second order Taylor expansion of f ◦ µE around the point E = UE0V
⊤ ∈ E is

defined as

j
(2)
0 (f ◦ µE) : R

5 → R,

x 7→
(
f ◦ µE(tx) +

d

dt
f ◦ µE(tx) +

1

2

d2

dt2
f ◦ µE(tx)

)∣∣∣∣
t=0

(3.16)

As expected the 2-jet contains three terms:

(i) A constant term is,

(f ◦ µE)(tx)|t=0 =
1

2

n∑

i=1

tr2M (i)E, (3.17)

(ii) The linear term is,

d

d t
f ◦ µE(tx)

∣∣∣∣
t=0

=
n∑

i=1

(
trM (i)E

) (
trM (i)U

(
Ω1(x)E0 − E0Ω2(x)

)
V ⊤
)
,

= (∇f◦µE
(tx))|⊤

t=0 · x,
=
〈
grad f(UE0V

⊤), U(Ω1(x)E0 −E0Ω2(x))V
⊤〉

n.RM
,

which can be interpreted as either (I) the transposed Euclidean gradient of

f ◦ µE : R
5 → R evaluated at zero acting on x ∈ R

5, or (II) as the Riemannian

gradient of f : E → R evaluated at E ∈ E paired by the normal Rieman-

nian metric with the tangent element U(Ω1(x)E0 − E0Ω2(x))V
⊤ ∈ TEE . Let

vec(Ω1(x)) := Q1x, vec(Ω2(x)) := Q2x, where

Q1 :=
[
vec( 1√

2
Qx) vec( 1√

2
Qy) vec(1

2
Qz) 0 0

]
∈ R

9×5,

Q2 :=
[
0 0 vec(1

2
Qz) vec( 1√

2
Qx) vec(1

2
Qy)
]
∈ R

9×5, (3.18)
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and Qx, Qy, Qz from (2.15). Then, the explicit formula for the Euclidean gra-

dient of the local cost function evaluated at zero is,

∇f◦µE
(0) = J⊤Mvec(E), (3.19)

where

J := M(V ⊗ U)
[
(E0 ⊗ I) −(I ⊗ E0)

] [Q1

Q2

]
, M :=




vec⊤(M (1)⊤)
...

vec⊤(M (n)⊤)


 .

(3.20)

(iii) A quadratic term in x, which consists of a sum of two terms. The first one,

n∑

i=1

tr2M (i)U
(
Ω1(x)E0 −E0Ω2(x)

)
V ⊤ = x⊤ · Ĥf◦µE

(0) · x,

is a quadratic form on R
5 with the corresponding matrix Ĥf◦µE

(0) being positive

(semi)definite for all U, V ∈ SO3. The second term is given as,

n∑

i=1

(
trM (i)E

) (
trM (i)U

(
Ω2

1(x)E0 + E0Ω
2
2(x) − 2Ω1(x)E0Ω2(x)

)
V ⊤
)
,

= x⊤ · H̃f◦µE
(0) · x.

Hence, the Hessian matrix of the local cost function evaluated at zero is,

Hf◦µE
(0) = Ĥf◦µE

(0) + H̃f◦µE
(0), (3.21)

where

Ĥf◦µE
(0) = J⊤J ≥ 0, (3.22)

and by denoting vec(D) := (V ⊤ ⊗ U⊤)M⊤Mvec(E), we have

H̃f◦µE
(0) =

[
Q⊤

1 Q⊤
2

] [−(DE0 ⊗ I) (D ⊗ E0)

(D⊤ ⊗ E0) −(E0D ⊗ I)

][
Q1

Q2

]
. (3.23)

For the quadratic term in (3.16) there is then a further interpretation:

d2

d t2
f ◦ µE(tx)

∣∣∣∣
t=0

= Hf(γ(t))(γ̇(t), γ̇(t))
∣∣
t=0

, (3.24)

i.e., Hf(γ(t)) is the Hessian operator of f : E → R represented along geodesics γ : R →
E , γ(t) = µE(tx), γ(0) = E, see e.g. [46], pp 342.
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Remark 3.2.3 Recall f : E → R defined by (3.14), the element E ∈ E is a critical

point of f if and only if

J⊤Mvec(E) = 0.

3.2.3 Algorithm

We consider the algorithm as the self map

s = π2 ◦ π1 : E → E (3.25)

consisting of an optimization step followed by a projection. As explained in more

detail below our algorithms are iterative in nature. Each algorithmic step consists

of two partial steps, the first one being an optimization procedure defined on an

appropriate affine tangent space to E (by identifying R
5 with T aff

E E appropriately),

and the second one is a nonlinear projection back to the manifold.

Optimization in Local Parameter Space

The mapping π1 constitutes the optimization step. Depending on the type of projec-

tion in the subsequent step, there are two versions of this mapping, namely

• Mapping πsvd
1 :

πsvd
1 : E → TaffE ⊂ R

3×3, (3.26)

E = UE0V
⊤ 7→ U

(
E0 + Ω1(xopt(E))E0 − E0Ω2(xopt(E))

)
V ⊤,

• Mapping πµE

1 or πcay
1 :

πµE

1 or πcay
1 : E → (E , TaffE), (3.27)

E = UE0V
⊤ 7→

(
E, U

(
E0 + Ω1(xopt(E))E0 − E0Ω2(xopt(E))

)
V ⊤) ,

where xopt ∈ R
5 as a function of E = µE(0) can be given by the Newton direction

when Hf◦µE
(0) > 0,

xNewton
opt (E) = arg min

x∈R5
j
(2)
0 (f ◦ µE)(x) = −[Hf◦µE

(0)]−1∇f◦µE
(0), (3.28)
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or a Gauss direction otherwise,

xGauss
opt (E) = −[Ĥf◦µE

(0)]−1∇f◦µE
(0), (3.29)

Projecting onto the Essential Manifold

The mapping π2 involves one of the projections discussed below,

• Orthogonal Projection. The orthogonal projection with respect to the Frobe-

nius norm is achieved via singular value decomposition,

πsvd
2 : TaffE ⊂ R

3×3 → E , (3.30)

X = UΣV ⊤ 7→ UE0V
⊤,

where U, V ∈ O3, Σ = diag(σ1, σ2, σ3) such that the singular values σ1 ≥ σ2 ≥
σ3 ≥ 0 and σ3 is simple. Readers who are interested in the mathematical details

of this projection can refer to [32].

• Projecting back via local parameterization. Let Ω1 and Ω2 be defined

as in (3.10) and (3.11), respectively. For fixed xopt ∈ R
5 consider the smooth

mapping

πµE

2 :
(
E , T affE

)
→ E , (3.31)

(
E,U

(
E0 + Ω1(xopt(E))E0 − E0Ω2(xopt(E))

)
V ⊤)

7→ U eΩ1(xopt(E))E0 e−Ω2(xopt(E)) V ⊤.

Obviously, for fixed xopt the mapping πµE

2 maps straight lines in TEE going

through E = UE0V
⊤ such as

lE : t 7→ U
(
E0 + tΩ1(xopt)E0 −E0tΩ2(xopt)

)
V ⊤, (3.32)

to smooth curves πµE

2

(
lUE0V ⊤(t)

)
⊂ E . As mentioned above the resulting curves

on E , namely

πµE

2

(
lE(t)

)
= U etΩ1(xopt)E0 e−tΩ2(xopt) V ⊤ = U eΩ1(txopt)E0 e−Ω2(txopt) V ⊤,

(3.33)
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are geodesics on E with respect to the so-called normal Riemannian metric

on E . One therefore can think of the projection πµE

2 defined by (3.31) as a

Riemannian one. Moreover, the parameterisation µE given by (3.12) defines a

so-called Riemannian normal coordinate chart µ−1
E sending a suitably chosen

open neighborhood of E ∈ E diffeomorphically to an open neighborhood of the

origin of R
5.

• Cayley-like projection. As a further alternative one might approximate the

matrix exponential of skew-symmetric matrices by its first order diagonal Padé

approximant, or more commonly called the Cayley transformation:

cay : so3 → SO3,

Ω 7→
(
I +

1

2
Ω

)(
I − 1

2
Ω

)−1

. (3.34)

The Cayley mapping on so3 is well known to be a local diffeomorphism around

0 ∈ so3. Moreover, it approximates the exponential mapping exp : so3 → SO3

defined by Ω 7→ exp(Ω) = eΩ up to second order. We therefore consider in the

sequel the smooth projection mapping

πcay
2 :

(
E , T affE

)
→ E , (3.35)

(
E,U (E0 + Ω1(xopt(E))E0 − E0Ω2(xopt(E)))V ⊤)

7→ U cay(Ω1(xopt(E)))E0 cay(−Ω2(xopt(E)))V ⊤.

In summary, one algorithmic step of s consists of two partial steps, namely π1

sending a point E on the essential manifold E to an element of the affine tangent

space T aff
E E , followed by π2 projecting that element back to E .

3.2.4 Convergence Analysis of Algorithm

Local Quadratic Convergence

Theorem 3.2.2 Let E∗ ∈ E be a nondegerate minimum of the smooth function f :

E → R defined in (3.14). Let Ek be a point in an open neighbourhood of E∗. Consider
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E

π1πsvd
2

πcay
2

πµE

2

Figure 3.3: Three different projection steps.

the proposed iteration on E ,

Ek+1 = s(Ek), s = π2 ◦ π1

where π1 is given by the Newton step, defined in (3.28), and π2 involves projection

back to the manifold. Then the point sequence generated by s converges quadratically

to E∗.

Proof 3.2.5 See Appendix A.3.

3.2.5 Discussions

If πµE

2 is used for the second algorithmic step π2 then one can show that the overall

algorithm is nothing other than a Riemannian manifold version of Newton’s method,

the Riemannian metric being the so-called normal one. Despite the well-known fact

that under mild assumptions, the Riemannian manifold version of Newton’s method

is locally quadratically convergent, see [78], Theorem 3.4, p. 57, our results are appar-

ently more than just an application of this nice result. We would like to mention that
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the latter version of our algorithm is also different from the approach taken in [58].

The Riemannian metric those authors use is different, therefore also their geodesics

are not in accordance with ours. Whereas in [58] the local structure of the essential

manifold being a product of Stiefel manifolds is exploited we here prefer to think

of this manifold as an orbit of SO3 × SO3 acting on R
3×3 by equivalence, i.e., the

manifold of all (3 × 3)-matrices having the set of singular values equal to {1, 1, 0}.
Some features about these different approaches are summarised as follows.

Manifold Structure

• Ma et al.: The essential manifold E is locally diffeomorphic to the product of

two Stiefel manifolds

E ∼=local S
2 × SO3 (3.36)

• Our approach: We exploit the global diffeomorphism of E to the set of matrices

having singular values {1, 1, 0}

E ∼= SO3 ·




1 0 0

0 1 0

0 0 0


 · SO3 (3.37)

Geodesics Emanating from E = ΩR = UE0V
⊤ ∈ E

• Ma et al.:

t 7→
(
e∆t Ω e−∆t, R eΓt

)
(3.38)

where ∆,Γ ∈ so3 and [∆, [∆,Ω]] = −1
2
‖∆‖2Ω.

• Our approach:

t 7→ U e∆tE0 e−Γt V ⊤ (3.39)

where ∆ =

[
0 −x3 x2

x3 0 −x1

−x2 x1 0

]
and Γ =

[
0 x3 x5

−x3 0 −x4

−x5 x4 0

]
and x1, . . . , x5 ∈ R.
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Riemannian Metric g : TEE × TEE → R

• Ma et al.: The Euclidean Riemannian metric induced by the canonical subman-

ifold structure of each factor

S ⊂ R
3 and SO3 ⊂ R

3×3, (3.40)

or equivalently, the normal one induced by the similarity group action on the

first factor

SO3 × S → S, (U,Ω) 7→ UΩU⊤ (3.41)

and right translation on the second factor

SO3 × SO3 → SO3, (V,R) 7→ RV ⊤. (3.42)

Explicitly, for two elements of the tangent space ξ1, ξ2 ∈ T(Ω,R)E with ξi =

([∆i,Ω], RΓi)

g
((

[∆1,Ω], RΓ1

)
,
(
[∆2,Ω], RΓ2

))
= tr

(
∆1

⊤∆2

)
+ tr

(
Γ1

⊤Γ2

)
(3.43)

with ∆i,Γi ∈ so3, [∆i, [∆i,Ω]] = −1
2
‖∆i‖2Ω for i = 1, 2.

• Our approach: The normal Riemannian metric induced by the equivalence

group action

SO3 × SO3 × R
3×3 → R

3×3, ((U, V ), E) 7→ UEV ⊤. (3.44)

Explicitly, for two elements of the tangent space ξ1, ξ2 ∈ TUE0V ⊤E with ξi =

U(∆iE0 −E0Γi)V
⊤

g
(
U(∆1E0 − E0Γ1)V

⊤, U(∆2E0 − E0Γ2)V
⊤
)

= tr
(
∆1

⊤∆2

)
+ tr

(
Γ1

⊤Γ2

)

(3.45)

where for i = 1, 2: ∆i =

[
0 −x

(i)
3 x

(i)
2

x
(i)
3 0 −x

(i)
1

−x
(i)
2 x

(i)
1 0

]
and Γ =

[
0 x

(i)
3 x

(i)
5

−x
(i)
3 0 −x

(i)
4

−x
(i)
5 x

(i)
4 0

]
and

x
(i)
1 , . . . , x

(i)
5 ∈ R. In fact, the tangent map of µE defined by (3.12) maps frames
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{e1, . . . , e5} in R
5, orthonormal with respect to the Euclidean metric, into frames

of TEE , orthonormal with respect to the normal Riemannian metric:

ei 7→ Dµ(0) · ei = U


Ω1(ei)E0 −E0Ω2(ei)︸ ︷︷ ︸

=:ξi


V ⊤, (3.46)

with

〈
UξiV

⊤, UξjV
⊤〉

n.RM
= tr Ω⊤

1 (ei)Ω1(ej) + tr Ω⊤
2 (ei)Ω2(ej) = e⊤i ej = δij . (3.47)

One might argue that the Riemannian metric we use is induced by a restriction

from another Riemannian metric defined on the embedding R
3×3. This is actu-

ally not the case, moreover, one can show that such a metric on R
3×3 does not

exist.

3.3 Implementation of Algorithm

Start with an initial estimate of Essential matrix E = UE0V
⊤ obtained from the

standard 8-point algorithm.

Step 1. Carry out the optimization step π1,

• Compute the gradient ∇f◦µE
(0) and the Hessian matrix Hf◦µE

(0) via (3.19),

(3.21) respectively.

• If Hf◦µE
(0) > 0, compute the Newton step xopt = −[Hf◦µE

(0)]−1∇f◦µE
(0),

otherwise compute the Gauss step xopt = −[Ĥf◦µE
(0)]−1∇f◦µE

(0).

Step 2. Carry out the projection step π2. There are three alternative projections,

• πsvd
2 : Let xopt = [x1 x2 · · · x5], form the optimal affine tangent vector,

ξopt ∈ T aff
E E ,

ξopt = U




1 −x3 −x5/
√

2

x3 1 x4/
√

2

−x2/
√

2 x1/
√

2 0


V

⊤ = Û




σ1 0 0

0 σ2 0

0 0 σ3


 V̂

⊤,

and compute the projected estimate of the essential matrix Ê = ÛE0V̂
⊤.
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• πµE

2 : Û = U eΩ1(xopt), V̂ = V eΩ2(xopt), Ê = ÛE0V̂
⊤.

• πcay
2 : Û = U cay(Ω1(xopt)), V̂ = V cay(Ω2(xopt)), Ê = ÛE0V̂

⊤.

Step 3. Set E = Ê, U = Û , V = V̂ , go back to Step 1 if ‖∇f◦µE
(0)‖ > ε, a

prescribed accuracy.

3.4 Simulations

All simulations are carried out in Matlab. Each trial

• Generates 3D points randomly in a field of view (FOV) 60◦ and depth varying

from 100 to 400 units of focal length,

• Computes the first projection matrix P = K[I3 0], where K is the camera

calibration matrix,

• Randomly generates a rotation R and a translation t,

• Computes the second projection matrix P ′ = K[R t],

• Projects the 3D points onto the two 512 × 512 image planes using P and P ′.

Only visible points will be used in the algorithm,

• Adds Gaussian noise of mean zero and standard deviation σ to the image points,

• Normalizes the image points with K and solves for essential matrix E,

• Stops when ‖∇f◦µ(0)‖ < 10−12,

• Computes the mean Euclidean distance between image points and the corre-

sponding epipolar lines on both images.

In the following simulations, ‘alg’ denotes the algorithm which minimizes the cost

function (3.14), ‘dist’ denotes the algorithm which minimizes the Euclidean distance

between image points and the corresponding epipolar lines,

fD(E) =
n∑

i=1

w2
i tr2(M (i)E), (3.48)
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Figure 3.4: Distance between points and epipolar lines vs. noise level for 8p algorithm
(dotted line) and other algorithms (PNsvd,PNexp,PNcay,MKS).

where, denoting previous estimate of E as Ê and ei as the ith column of the identity

matrix,

wi =

(
1

tr2(m(i)e⊤1 Ê) + tr2(m(i)e⊤2 Ê)
+

1

tr2(e1m(i)Ê) + tr2(e2m(i)Ê)

) 1
2

, (3.49)

and ‘grad’ denotes the algorithm which minimizes a weighted version of the gradient

based nonlinear cost function,

fG(E) =
n∑

i=1

tr2(M (i)E)

g2
i

(3.50)

where gi =

√
tr2(m(i)e⊤1 Ê) + tr2(m(i)e⊤2 Ê) + tr2(e1m(i)Ê) + tr2(e2m(i)Ê).

Also, ‘8p’ denotes the standard 8-point algorithm, which is a least squares method

followed by an orthogonal projection onto the essential manifold via singular value

decomposition, ‘MKS’ stands for the Riemannian-based Newton method published in

[58], and ‘PNsvd’, ‘PNexp’, ‘PNcay’ stand for the proposed parameterization-based

Newton-like algorithms with πsvd
2 , πµE

2 , πcay
2 projection respectively.
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Sensitivity Analysis The number of point correspondences is fixed at 20, and Gaus-

sian noise of varying standard deviation σ ∈ [0.5, 5] is introduced and the sim-

ulation is repeated 500 times. In Fig. 3.4, we observe that the standard 8 point

method (dotted line) is relatively sensitive to noise compared to other methods

in minimizing the cost function (3.14). The figure shows that all three proposed

algorithms and MKS have similar sensitivity properties.

Rate of Local Convergence Figure 3.5 illustrates the typical convergence rate of

various algorithms. It is clear that all three proposed techniques, together with

the MKS method converge at a local quadratic rate. This is parallel with the

mathematical proof presented in the appendix and as claimed by [58].
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Figure 3.5: Log(‖E − E∗‖) vs. iterations

Computing Time Figure 3.6 shows the average computing time using different al-

gorithms and minimizing different cost function. For cost function ‘alg’, the
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standard 8-point method is the quickest technique. Although all three pro-

posed methods are slightly slower than the standard 8-point method, they are

at least 25 times faster than MKS proposed in [58]. Both gradient based and

distance based criteria solved using the proposed methods are at least 3 times

faster than MKS. Note that although the MKS method is locally quadratically

convergent as is ours, its computational effort per iteration is huge, because

each iteration is data dependent. The plot also suggests that πsvd
2 projection is

slightly faster than the other two projections.

Figure 3.6: Computing time for various methods:(1) alg-8p, (2) alg-MKS, (3) alg-
PNsvd, (4) alg-PNexp, (5) alg-PNcay,(6) grad-PNsvd, (7) grad-PNexp, (8) grad-
PNcay, (9) dist-PNsvd, (10) dist-PNexp, (11) dist-PNcay

3.5 Summary

This chapter put forward a new geometric optimization framework to compute the

essential matrix between two calibrated intensity images, which subsequently allows

the pose information to be determined. The approach is based on successive local
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parameterization of the constraint manifold. The following summarizes research con-

tributions,

• The algorithm requires relatively little computational effort per iteration, and

is independent of the number of point correspondences used.

• Our algorithm achieves the same rate of local convergence as Ma et al. [58] but

is computationally simpler with effort per iteration being significantly lower.

• Our proof of local quadratic convergence is independent of the chosen cost

function.

• We have proposed algorithms with three different projections: the exponential

map, the Cayley transformation and the orthogonal projection.
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Chapter 4

3D Localization of Quadratic

Surfaces

In prior chapters, geometric optimization methods have been adopted to recover the

pose information from 2D intensity images. Now, we are interested in applying the

same framework to locate 3D quadratic surfaces using range images. Quadratic sur-

faces, also known as quadrics, are commonly occurring shapes in man made objects.

Accurate and fast localization of quadrics or surfaces consists of quadric patches from

measurement data is important in many industrial robotics and machine vision tasks

as well as a step towards developing a flexible manufacturing system. Material in this

chapter has appeared in [49].

Existing Work Two main approaches to solving this problem in the literatures are

the feature based method and the model based method. The feature based method is

based on the geometric relation between a set of 3D feature correspondences extracted

from the actual surface data and the surface model stored in the database. This ap-

proach has been well studied in the literature, [5, 30, 36]. The model based approach,

which we adopt in this chapter, minimizes the error between the data measured on

an actual surface and the CAD model of that surface, see [9, 22, 29, 65, 6, 10, 28]. As

opposed to the feature based method, this approach does not require 3D data prepro-

cessing such as feature extraction and explicit correspondences. The only information
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required from the database are the equations of the surface.

Our Work In this chapter, the 3D localization of quadratic surfaces is addressed as

an unconstrained optimization problem cast on the special Euclidean group. The opti-

mization is based on locally quadratically convergent Newton-type iterations evolving

on this constraint manifold. Simulation results suggest the proposed algorithms are

relatively robust against additive Gaussian noise and occlusions.

Chapter Outline In Section 4.1, the task of locating quadrics from single range im-

age is formulated as finding an element on the special Euclidean group that minimizes

a certain smooth cost function. In Section 4.2, we present the proposed Newton-like

iterative algorithms evolving on the constraint manifold. This is followed by algo-

rithm initialization in Section 4.3 and an outline of the algorithm implementation in

Section 4.4. Simulation studies are described in Section 4.5 and a summary of the

main results and research contributions is presented in Section 4.6.

4.1 Problem Formulation

4.1.1 Quadric

A quadric, also known as quadratic surface, is defined by the zero set of degree 2

polynomials in 3 variables, as {m̃ ∈ R
3 | m̃⊤Q11m̃+2m̃⊤Q12+Q22 = 0}. Equivalently,

using homogeneous coordinates, a quadric is given by

m⊤Qm = 0, m :=

[
m̃

1

]
, Q :=

[
Q11 Q12

Q⊤
12 Q22

]
, (4.1)

where Q is the symmetric surface coefficient matrix. Without loss of generality, we

take tr(Q⊤
11Q11) = 1. Examples of quadrics are illustrated in Fig. 4.1.
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(a) (b) (c) (d) (e)

Figure 4.1: Examples of quadratic surface: (a) Elliptic Paraboloid, (b) Hyperbolic
Paraboloid, (c) Elliptic Hyperboloid of One Sheet, (d) Elliptic Hyperboloid of Two
Sheets, (e) Ellipsoid.

4.1.2 Transformed Quadric

Now, consider the quadric being rotated by a matrix R ∈ SO3 and translated by a

vector t ∈ R
3. Each point on the transformed quadric p̃ ∈ R

3 is given by,
{
p =

[
p̃

1

]
∈ R

4

∣∣∣∣∣ p
⊤A(R, t)p = 0

}
. (4.2)

Here A(R, t) := T (R, t)⊤QT (R, t) is the surface coefficient of the transformed quadric,

and

T (R, t) :=

[
R t

0 1

]
∈ SE3. (4.3)

which represents 3D rigid body transformation is an element of special Euclidean

group, SE3. Thus, given surface measurement data pi ∈ R
4 and known surface

coefficient Q, the task is to find the transformation matrix T (R, t) ∈ SE3 satisfying

(4.2).

4.2 Optimization on the Special Euclidean Group

To address the task as an unconstrained optimization problem on SE3, we begin by

reviewing some of the relevant geometrical properties of SE3. We then identify the

cost function, propose an iterative algorithm evolving on this manifold and study the

convergence analysis of the proposed algorithm.



68

T = (R, t)

Figure 4.2: Given noisy measurement data of a quadric (ellipsoid) and its CAD model,
find the position and orientation of the transformed quadric.

4.2.1 Geometry of the Special Euclidean Group

Rigid body motions in R
3 can be represented by the special Euclidean group, SE3,

SE3 :=
{
(R, t)

∣∣R ∈ SO3, t ∈ R
3
}

= SO3 × R
3,

where SO3 is the group of 3 × 3 rotation matrices, as introduced in Section 2.2.1,

and t is the translation vector. The special Euclidean group is a Lie group and its

associated Lie algebra is denoted se3. Due to isomorphism, one can identify se3 with

R
6 using the following mapping,

ζ : R
6 → se3, ζ(x) =

[
Ω(ω) v

0 0

]
, x :=

[
ω

v

]
, (4.4)

where Ω(ω) as defined in (2.13) and v ∈ R
3.

Tangent Space of SE3

The tangent space of SE3 at T is

TTSE3 = {Tζ | ζ ∈ se3}, (4.5)
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and the affine tangent space of SE3 at T is

Taff
T SE3 = {T + Tζ | ζ ∈ se3}. (4.6)

Local Parameterization of SE3

For every point T ∈ SE3, there exists a smooth exponential map

µT : R
6 → SE3, x 7→ Teζ(x), (4.7)

which is a local diffeomorphism around origin in R
6. Such a map will be known as a

local parameterization of SE3 around T .

4.2.2 Cost Function

Cost Function on the Manifold SE3

We work with the cost function that penalizes the algebraic distance of the measure-

ment data to the quadric,

f : SE3 → R,

f(T ) =
1

n

n∑

i=1

(p⊤i T
⊤QTpi)

2 =
1

n

n∑

i=1

tr(pip
⊤
i T

⊤QT )2.
(4.8)

Exploiting the relationship between the trace and vec operators, (4.8) can be re-

expressed as,

f(T ) = ‖Bvec(T⊤QT )‖2, B :=
1√
n




vec⊤(p1p
⊤
1 )

...

vec⊤(pnp
⊤
n )


 . (4.9)

Local Cost Function

Consider the mappings as in Fig. 4.3. The cost function f at T ∈ SE3 expressed in

local parameter space using the smooth local parameterization µT defined in (4.7) is

given by,

f ◦ µT : R
6 → R, f ◦ µT (x) = ‖Bvec(eζ(x)⊤T⊤QTeζ(x))‖2. (4.10)
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R
6

SE3

µT
f

f ◦ µT

R

T

Figure 4.3: The mapping µT is the local parameterization of SE3 around point T such
that µT (0) = T , f is the smooth function defined on SE3 and f ◦ µT is f expressed
in local parameter space R

6.

Quadratic Model of the Local Cost Function

The second order Taylor approximation of f ◦ µT about 0 ∈ R
6 in direction x is

j
(2)
0 (f ◦ µT ) : R

6 → R,

x 7→
(

(f ◦ µT )(tx) +
d

dt
(f ◦ µT )(tx) +

1

2

d2

dt2
(f ◦ µT )(tx)

)∣∣∣∣
t=0

.
(4.11)

The expansion consists of three terms,

(i) a constant term,

(f ◦ µT )(tx)|t=0 = ‖Bvec(A)‖2,

(ii) a linear term,

d

dt
(f ◦ µT )(tx)

∣∣∣∣
t=0

= 2vec⊤(Aζ(x) + ζ⊤(x)A)B⊤Bvec(A),

= 2x⊤∇f◦µT
(0).

Denoting vec(ζ(x)) := Gx, vec(ζ⊤(x)) := Jx, then G, J are 16 × 6 matrices

consisting of 1, -1, 0, the explicit formula for the gradient of f ◦ µT evaluated

at 0 ∈ R
6 is given as,

∇f◦µT
(0) = C⊤Bvec(A), C := B[(I ⊗ A) (A⊗ I)]

[
G

J

]
. (4.12)
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(iii) a quadratic term which itself consists of the sum of two terms. The first term

is given as

‖Bvec
(
Aζ(x) + ζ⊤(x)A

)
‖2 = x⊤Ĥf◦µT

(0)x,

and the second term is

vec⊤(A)B⊤Bvec
(
Aζ2(x) + 2ζ⊤(x)Aζ(x) + ζ⊤

2

(x)A
)

= x⊤H̃f◦µT
(0)x.

Thus, the Hessian of f ◦ µT evaluated at 0 ∈ R
6 is

Hf◦µT
(0) = Ĥf◦µT

(0) + H̃f◦µT
(0), (4.13)

and denoting vec(D) := B⊤Bvec(A), we have

Ĥf◦µT
(0) = C⊤C ≥ 0,

H̃f◦µT
(0) =

[
G⊤ J⊤

] [(D⊤ ⊗ A) (D⊤A⊗ I)

(AD ⊗ I) (A⊗D⊤)

][
G

J

]
.

(4.14)

4.2.3 Algorithm

The proposed algorithm consists of the iteration,

s = π2 ◦ π1 : SE3 → SE3, (4.15)

where π1 maps a point T ∈ SE3 to an element in the affine tangent space (by

identifying R
6 with Taff

T SE3 appropriately) and π2 projects that element back to

SE3 by means of the local parametrization µT , as illustrated in Fig. 4.4.

Optimization in Local Parameter Space, π1

The current iteration point T ∈ SE3 is pulled back to local coordinates R
6 via the

local parameterization µT . An optimization step is performed in the local parameter

space, which involves two partial steps,

π1 = πb
1 ◦ πa

1 : SE3 →
(
SE3,T

affSE3

)
. (4.16)
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SE3

Tk Tk+1

πa
1

π1

π2

Figure 4.4: The proposed algorithm first maps a point T ∈ SE3 to an element of the
affine tangent space via π1 = πb

1 ◦ πa
1 , followed by step π2 to project that vector back

to manifold.

The first partial step πa
1 is used to compute a suitable descent direction for a

quadratic model of the local cost function defined in (4.10)

πa
1 : SE3 →

(
SE3,T

affSE3

)
, (4.17)

T 7→ (T, T + ζ(xopt(T ))),

where xopt ∈ R
6 as a function of T = µT (0) can be given by the Newton direction

when Hf◦µT
(0) > 0, as

xNewton
opt (T ) = arg min

y∈R6
j
(2)
0 (f ◦ µT )(y) (4.18)

= −[Hf◦µT
(0)]−1∇f◦µT

(0),

or a Gauss direction otherwise, as

xGauss
opt (T ) = −[Ĥf◦µT

(0)]−1∇f◦µT
(0). (4.19)

Once an optimal direction is computed, the second partial step πb
1 is used to

carry out an approximate one dimensional line search along this descent direction.

We proceed with a search on the scalar λ > 0 which ensures that the cost function

f ◦ µT (λxopt) is reduced at every step, giving rise to the mappings,

πb
1 :
(
SE3,T

affSE3

)
→

(
SE3,T

affSE3

)
,

(T, T + Tζ(xopt(T ))) 7→ (T, T + Tζ(λoptxopt(T ))), (4.20)

where λopt is the step length that reduces the cost function in direction xopt, and

is found using the simple backtracking line search. Since we are using a descent

direction, for sufficiently small step size, the cost function will go downhill.
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Remark 4.2.1 Given a descent direction xopt for function f ◦ µT at 0 ∈ R
6,

• An exact line search is,

λopt = arg min
λ>0

f ◦ µT (λxopt), (4.21)

• A backtracking line search with parameters α ∈ (0, 0.5), β ∈ (0, 1), then starting

at λ := 1, we proceed as follows,

While f ◦ µT (λxopt) > f ◦ µT (0) + αλ[∇f◦µT
(0)]⊤xopt,

do λ := βλ,

and λopt := λ.

Projecting Back via Local Parametrization, π2

Once the descent direction and downhill step size has been obtained, it is projected

back to the manifold via the local parametrization µT ,

π2 : (SE3,T
affSE3) → SE3, (4.22)

T + Tζ(λoptxopt(T )) 7→ Teζ(λoptxopt(T )).

4.2.4 Convergence Analysis of the Algorithm

Local Quadratic Convergence

Theorem 4.2.1 Let T∗ ∈ SE3 be a nondegerate minimum of the smooth function

f : SE3 → R defined in (4.9). Let Tk be a point in an open neighbourhood of T∗.

Consider the proposed iteration on SE3,

Tk+1 = s(Tk), s = π2 ◦ π1

where π1 is given by the Newton step, defined in (4.18), and π2 involves projection

back to the manifold via the smooth local parameterization of (4.22). Then the point

sequence generated by s converges quadratically to T∗.

Proof 4.2.1 See Appendix A.4.
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Global Convergence

The proposed algorithm achieves local quadratic convergence rates. However, the

algorithm does not address the issue of escaping local minima. From implementation

of the algorithm, convergence to local minima is particularly frequent for elliptic hy-

perboloid, hyperbolic paraboloid and hyperboloid of two sheets. Simulations suggest

that the simplest approach is to initialize the algorithm randomly at different points

on the manifold, and select the one with lowest cost.

4.3 Algorithm Initialization

For initialization of the algorithm, we use a two steps least squares approach that

gives closed form solution. In this approach, the pose estimation problem is split

up into two subproblems, namely the surface fitting problem to recover the surface

coefficient followed by pose estimation. Details of this strategies can be found in [6].

We summarize the steps used to estimate the pose in closed form and add in few new

results that help in pose computation.

Recovering the Surface Coefficient

Consider the transformed surface coefficient A := T⊤QT . This belongs to the class

of symmetric matrices S
4×4. Consider the function

φ : S
4×4 → R, S 7→ ‖Bvec(S)‖2. (4.23)

and the mapping,

ν : R
10 → S

4×4, a =




a1

a2

...

a10



7→




a1 a2 a3 a7

a2 a4 a5 a8

a3 a5 a6 a9

a7 a8 a9 a10



. (4.24)

It is clear that this mapping is bijective. Now,

φ ◦ ν : R
10 → R, a 7→ ‖Bvec(ν(a))‖2 = ‖BKa‖2, (4.25)
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whereK is a matrix consisting of elements 1 and 0 such thatKa = ν(a). The vector a∗

that minimizes the function (4.25) subject to constraint ‖a‖ = 1 is the right singular

vector corresponding to the zero singular value of the matrix BK. Of course, when

the data has noise, then a∗ is the right singular vector associated with the minimum

singular value of matrix BK. However, to achieve Euclidean invariance, it is usual

to constrain solution such that tr(A⊤
11A11) = tr(Q⊤

11Q11) = 1, i.e

ā⊤Cā = 1, ā = [a1 · · ·a6], C := diag(1, 2, 2, 1, 2, 1). (4.26)

Once a∗ is obtained, and since the map ν is bijective, the optimum A ∈ S is A∗ =

ν(a∗).

Recovering Motion Parameters

Once the surface coefficient of the transformed quadric A is determined, we can obtain

R ∈ SO3 and t ∈ R
3 as follows. We know that

κT (R, t)⊤QT (R, t) = A, for some scalar κ, (4.27)

and since Q11, A11 are symmetric, singular value decomposition of both matrices will

give,

Q11 = VQΣQV
⊤
Q , A11 = VAΣAV

⊤
A , (4.28)

where VQ, VA ∈ O3 and ΣQ,ΣA are diagonal matrices with diagonal elements decreas-

ing in magnitude, then we have

{Ri = VQΓiV ⊤
A ∈ SO3}, (4.29)

where Γi is a diagonal matrix with diagonal elements ±1. There are 23 = 8 possible

Γi matrices. We claim here that the optimal rotation is the one associated with

minimum cost and minimum distance from the original position, i.e.,

i∗ = argmini‖Ri − I‖2 = argmaxi tr(Ri). (4.30)

Once optimal R∗ := Ri∗ is found, we can compute an optimal t∗ from,

t∗ = Q−1
11 (κ−1RA12 −Q12), κ =

1

3
tr(ΣAΣ−1

Q ). (4.31)

Note that when Q11 is singular, such as in the case of paraboloid surfaces, the solution

is not unique, so a pseudo inverse is used to recover one optimal solution t∗.
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4.4 Implementation of Algorithm

Start with T = T0 ∈ SE3 using the initialization procedure described in Section 4.3.

Step 1: Carry out the optimization step,

• Compute the gradient vector ∇f◦µT
(0) and the Hessian matrix Hf◦µT

(0)

via (4.12), (4.13) respectively,

• If Hf◦µT
(0) > 0,

compute the Newton step, xopt(T ) = −[Hf◦µT
(0)]−1∇f◦µT

(0),

otherwise compute the Gauss step xopt(T ) = −[Ĥf◦µT
(0)]−1∇f◦µT

(0),

• Compute the optimum step size λopt in direction xopt(T ) using backtrack-

ing line search, as described in Remark 4.2.1.

Step 2: Carry out the projection step, T̂ = Teζ(λoptxopt(T )),

Step 3: Set T = T̂ , go back to Step 1 if ‖∇f◦µT
(0)‖ > ǫ, a prescribed accuracy.

4.5 Simulations

A series of simulations were performed on artificially generated uniformly distributed

points on quadric surface. Our proposed geometric approach (GA) has been com-

pared with the 2 steps closed form least squares solutions presented under algorithm

initialization (LS) and the cyclic coordinate descent method (CCD).

Cyclic coordinate descent is a variant of our proposed approach. It exploits the

property that SE3 is the product manifold SO3 × R
3. At each iteration, we first

freeze the rotation and optimize only the translation, then next freeze the translation

and optimize only the rotation. The motivation for this is that we can carry out

analytic geodesic searches in SO3, requiring the solution of an 8th order polynomial.

Likewise, in a line search for t ∈ R
3 a 3rd order polynomial is solved. The advantage

of this approach is that it can potentially escape from a local minimum, not the global

minimum in a few iterations, without any random reinitializations. The algorithm is
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not useful after the first few iterations since it converges only linearly and the analytic

line search has not then add value.

Performances of the different techniques are evaluated by comparing the relative

Euclidean distance between the pose parameters. All simulations are implemented

using Matlab.
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(a) Relative pose error vs. noise level for ellipsoid.
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(b) Relative pose error vs. noise level for elliptic paraboloid.

Figure 4.5: Robustness against additive Gaussian noise for closed form least squares
approach (solid line), geometric approach without restart (◦), geometric approach
with 5 random restart (×).

Robustness against Additive Gaussian Noise We investigate the robustness of

the algorithms as the measured data are corrupted with increasing amount of

additive Gaussian noise and when only partial views of the surface are available.
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Simulations show both CCD and GA have the same performance accuracy when

the noise level and size of the surface are varied. Thus, only results for GA and

LS are plotted. Figure 4.5 indicates that GA is far less sensitive to additive

Gaussian noise and than LS. Interestingly, for an ellipsoid, the initialization

achieves the global minimum in the presence of high noise level (Fig. 4.5(a))

since random restart converges to the same minimum. Similar results are also

observed for an elliptic hyperboloid of one sheet. However, for elliptic paraboloid

(Fig. 4.5(b)), hyperboloid of two sheets and hyperbolic paraboloid, we observe

the presence of many local minima, thus random reinitializations of the algo-

rithm or initial CCD iterations are required to achieve the ‘global’ minimum.

Robustness against Occlusion Figure 4.6 shows the performance of GA and LS

when part of the surface are occluded. It clearly indicates that GA is far more

robust to occlusion than LS. Likewise, for relative translation error.
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(a) Least squares approach
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(b) Geometric approach

Figure 4.6: Robustness against occlusion: whole surface (solid line), half surface (◦),
quarter surface (△), small patch (�).

Rate of Local Convergence Figure 4.7 illustrates that GA converges at a local

quadratic rate and CCD always converges very quickly at its first few itera-

tions, but then converges linearly. It may make sense to use CCD for the first

few iterations then switch to the Newton method. Also, the local quadratic
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convergence rate GA is also better than the approach presented in [65] which

claims to converge at an exponential rate.
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Figure 4.7: Rate of local convergence.

Remark 4.5.1 For symmetric quadrics such as sphere and cylinder, the estimated

pose is no longer belonging to SE3 of 6 dimension, rather it belongs to the reduced

space (sphere – 3 dimension, cylinder – 4 dimension). A similar algorithmic approach

applies with a minor modification. For a cylinder, we have

Ω : R
2 → so3, Ω(ω) =




0 0 ω2

0 0 −ω1

−ω2 ω1 0


 , (4.32)

and the Lie algebra of SE3, denoted se3 is the set of 4 × 4 matrix of the form

ζ : R
4 → se3 ζ(x) =

[
Ω(ω) v

0 0

]
, x :=

[
ω,

v

]
(4.33)

where Ω(w) ∈ so3 and v ∈ R
3, results in a 4 × 4 Hessian.

For a sphere, due to symmetry, we only need to find the relative translation, thus
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reduce the dimension from 6 to 3.

ζ(v) =

[
0 v

0 1

]
(4.34)

Thus, each Newton step requires only inversion of a 3 × 3 Hessian matrix. Similarly

for other symmetric quadrics.

4.6 Summary

This chapter presents a novel geometric algorithm capable of locating quadratic sur-

faces quickly and accurately, even in the presence of measurement noise and occlu-

sions. The main contributions of this chapter can be summarized as follows,

• We derive a novel parameterization-based framework for minimizing a smooth

function on the special Euclidean group,

• We devise efficient algorithms that are data independent at each iteration and

converge at a local quadratic rate,

• We have algorithms that explicitly preserve constraints at every iteration,

• We compare the proposed algorithms with existing two steps least squares meth-

ods,

• We introduce the notion of parallel random initializations to assist in escaping

local minima,

• We prove the local quadratic convergence rate of the devised Newton-like algo-

rithms.
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Chapter 5

Global Registration of Multiple 3D

Point Sets

In earlier chapters our focus has been the estimation of pose information from single

or stereo images. In this part of the thesis, we extract pose information from multiple

range images. Most of the material in this chapter has been published in [45].

Constructing a 3D computer model of a real object from 3D surface measurement

data has various applications in computer graphics, virtual reality, computer vision

and reverse engineering. To construct such a model, a single view of the object is

often not sufficient due to self occlusion, presence of shadow and the limited field

of view of the 3D scanner. Thus multiple partial views of the object from different

viewpoints are needed to describe the entire object. Typically the views are obtained

from multiple scanners or a single scanner being stationed at different locations and

orientation, or a fixed scanner taking time-sampled images of an object on the moving

turntable. The images are often simplified as a set of features, such as points and

the relative position and orientation (pose) between views are unknown. Thus, these

partially overlapping views need to be registered within a common reference frame to

determine the unknown relative pose.

Two-view (pairwise) registration has been well studied in the literature. It is

usually performed using feature matching [22], Iterative Closest Point (ICP) [9] or

its variant [13]. Several analytical methods for registration of two 3D point sets with
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known correspondences have been proposed. An overview of these techniques can be

found in [44] and a comparison of these analytical methods have been presented in

[52].

Multiview registration is a more difficult problem. There are two strategies to-

wards solving the problem, local (sequential) registration and global (simultaneous)

registration. The sequential registration involves the alignment of pairs of overlapping

views followed by an integration step to ensure all views are combined [64, 13]. This

widely used approach does not give an optimal solution because errors are accumu-

lated and propagated as pointed out in [7, 8]. On the other hand, global registration

aligns all scans at the same time by distributing the registration error evenly over all

overlapping views, see [21, 72, 75, 77].

We restrict attention to the registration of multiview 3D point sets with known

correspondences between overlapping images. Relatively little has been published on

global registration of multiple point sets. Some work in this area can be found in

[7, 81, 70]. These techniques have been compared in [17]. Recently, Williams and

Bennamoun [84] have proposed an algorithm that generalizes the well known pairwise

solution to global registration by iteratively optimizing individual rotation matrices

using singular value decomposition.

The particular problem of multiview registration is that the function to be mini-

mized is a nonconvex function of a set of rotations. By elementary operations, trans-

lations can be eliminated to simplify the optimization. Any algorithm that minimizes

the resulting function on rotation matrices must also maintain the rotation matrix

constraints during the course of an iterative procedure. Other approaches have been

proposed; Pottmann et al. [71] suggest using the underlying affine space, applying the

rigidity constraints only towards the end. Thus, standard optimization approaches ei-

ther use Lagrange constraints or have to perform projection steps after each iteration

to ensure that the (nonlinear)rotation matrix constraints are maintained.

Our Work In this paper, we consider the simultaneous registration of multiview 3D

point sets with known correspondences between overlapping scans. We address the

global registration task as an unconstrained optimization problem on a constraint
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manifold. Our novel algorithm involves iterative cost function reduction on the

smooth manifold formed by the N -fold product of special orthogonal groups. The op-

timization is based on locally quadratically convergent Newton-type iterations on this

constraint manifold. The proposed algorithm is fast, converges at a local quadratic

rate, computation per iteration is low since the iteration cost is independent of the

number of data points in each view. The Newton or Gauss steps only involve the

inverse of 3 × 3 Hessian matrices, one for each view. In addition, we present a new

closed form solution based on a singular value decomposition to achieve simultaneous

registration of multiple point sets. In the noise free case, it gives correct registrations

in a single step. In the presence of noise additional 3×3 singular value decompositions

for projection to the constraint manifold are required. This analytical solution is a

useful initial estimate for any iterative algorithm. Part of this chapter has appeared

in a conference paper [45].

Chapter Outline We start with a review of prior art in the area in Section 5.1. The

global point registration problem is formulated as an unconstrained optimization on a

constraint manifold in Section 5.2. This is followed by a presentation of our iterative

scheme in Section 5.3. Next we describe our analytic noise-free solution and our noisy

initialization steps in Section 5.4. A summary of the implementation is presented

in Section 5.5. Experimental evaluation and conclusions follow in Section 5.6 and

Section 5.7.

5.1 Related Work

The first work on pairwise scan alignment is that of Faugeras and Herbert [22],

Horn [36], and Arun et al. [5]. In all cases, the authors obtained simple closed form

expressions for the single transformation minimizing the least squares error between

the registered scans. Such pairwise schemes are used as modules in general multiview

approaches such as in the Iterative Closest Point (ICP) [9] and the work of Chen and

Medioni [13]. Simultaneous multiview registration schemes algorithm is considered by

numerous researchers [13], [8], [21], [72], [75], [77]; among the more recent are papers
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by Benjemaa and Schmitt [7] and Williams and Bennamoun [84], the former group

formulating the optimization in quaternion space, and the latter deriving a similar

approach using matrix representations. A comparative study of simultaneous multi-

view registration schemes is carried out by Cunnington and Stoddart [17]; however

this comparison predates the work of Williams and Bennamoun.

The ICP algorithm has become the most common method for aligning three-

dimensional models based purely on the geometry. The algorithm is widely used for

registering the outputs of 3D scanners, which typically only scan an object from one

direction at a time. ICP starts with two meshes and an initial guess for their relative

rigid-body transform, and iteratively refines the transform by repeatedly generating

pairs of corresponding points on the meshes and minimizing an error metric. Gen-

erating the initial alignment can be done by a variety of heuristics, such as tracking

scanner position, identification and indexing of surface features [22, 80], ”spin-image”

surface signatures [43], computing principal axes of scans [25], exhaustive search for

corresponding points [14, 15], or via user input.

Registration of corresponding points is not the only approach to solving multiview

registration in general. ICP itself uses other heuristics to align surfaces, and in many

cases matching a point to a surface can provide a better fit than simple point-point

matching [74]. Due to space limitations, we will not discuss these approaches further.

The most directly relevant prior art is a paper by Adler et al. [3] that considers

the problem of spine realignment. There, the problem is to determine correct poses

for individual vertebrae on the spinal cord such that misalignment between adjacent

vertebrae is minimized and a balance criterion (expressed as an affine condition over

the poses) is maintained. They demonstrate that a good solution to this problem

closely resembles a healthy spinal alignment. Their approach, like ours, is to view the

problem as a minimization over a product manifold of SO3, and use a Newton-type

method to solve it. The specifics of their approach are different in that they derive

an iterative scheme from first principles by using the covariant derivative ∇X on the

manifold; our approach uses the Lie-algebraic representation of the tangent space to

yield an more direct approach.

It may be viewed that our requirement for apriori knowledge of point correspon-
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dences from overlapping scans is a major limitation, since this is usually not the case

in practice. However, our algorithm is meant to work in conjunction with methods

like ICP which provide a general framework for model registration. The crucial inner

step of the ICP algorithm is to refine the transform such that it minimizes an error

metric. It is this step that we consider in this paper.

5.2 Problem Formulation

Given possibly noisy surface measurements from multiple 3D images and point cor-

respondences among overlapped images, the registration process is to find the rigid

body transformations between each image coordinate frame in order to align sets of

surface measurements into a reference frame.

5.2.1 3D Object Points and Multiple Views

Figure 5.1 illustrates the global multiview registration problem. Consider a 3D object

as a set of 3D points W := {wk ∈ R
3 | k = 1, 2, · · · , n} in a ‘world’ reference frame

(Fig. 5.1(a)). Throughout the paper we indicate the kth point in a set by a superscript

k.

Now consider multiple views of the object as depicted in Fig. 5.1(b). Each view

being from a different vantage point and viewing direction and each viewing being of

possibly only a subset of the n 3D points. For N views, let us denote the relative

rotations and translations as (R1, t1), · · · , (RN , tN), that is, relative to the ‘world’

reference frame, where Ri is a 3×3 rotation matrix, satisfying R⊤
i Ri = I3, det(Ri) =

+1, and ti ∈ R
3 is a translation vector.

As illustrated in Fig. 5.1(c) and Fig. 5.1(d), the ith view is limited to ni points

Wi = {wk
i ∈ R

3 | k = 1, 2, · · · , ni} ⊂ W and is denoted Vi = {vk
i ∈ R

3 | k =

1, 2, · · · , ni} and consists of the images of the ni points in Wi with relative rotation

matrices and translation vectors given by (Ri, ti). Thus in the noise free case,

wk
i = Riv

k
i + ti, k = 1, 2, · · · , ni.
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(a) 3D object points in ‘world’ reference frame,

W .

(b) Multiple views of the 3D object.

(c) Overlapping region between views, Wij . (d) Registration of view i into world frame.

(e) Registration of view i and view j into world frame.

Figure 5.1: Global registration of multiple 3D point sets: given multiple 3D point sets,
each represents a partial view of a 3D object. Assuming that point correspondences
between overlapping views are known, the task is to register all views into a single
reference frame simultaneously.
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Let Wij = Wi∩Wj be the set of nij points in Wi for which there are corresponding

points in Wj, for i, j = 1, · · · , N . That is, Wij = Wji consists of nij = nji points

wk
ij = wk

ji ∈ R
3, k = 1, · · · , nij. In view Vi the set of images of these points is denoted

Vij := {vk
ij ∈ R

3 | k = 1, 2, · · · , nij} ⊂ Vi and of course for view Vj it is denoted

Vji := {vk
ji ∈ R

3 | k = 1, 2, · · · , nij} ⊂ Vj . In the noise free case, it is immediate that

wk
ij = Riv

k
ij + ti = Rjv

k
ji + tj , ∀ i, j = 1, 2, · · · , N, k = 1, 2, · · · , nij, (5.1)

as depicted in Fig. 5.1(e).

5.2.2 Global Registration Error

When there is measurement noise, it makes sense to work with a cost function that pe-

nalizes the error (Riv
k
ij+ti)−(Rjv

k
ji+tj) for all i, j = 1, 2, · · · , N and k = 1, 2, · · · , nij .

Trivially the error is zero for i = j. The cost index for all the registrations which first

comes to mind is given by the sum of the squared Euclidean distances between the

corresponding points in all overlaps,

g =

N∑

i=1

N∑

j=i+1

nij∑

k=1

‖(Riv
k
ij + ti) − (Rjv

k
ji + tj)‖2,

=

N∑

i=1

N∑

j=i+1

nij∑

k=1

(‖Riv
k
ij −Rjv

k
ji‖2 + 2(ti − tj)

⊤(Riv
k
ij − Rjv

k
ji) + ‖ti − tj‖2).

(5.2)

Before optimizing this index, we first reformulate the index in a more convenient

notation. Let ei := ith column of N ×N identity matrix, IN , eij := ei − ej ,

R :=
[
R1 R2 · · · RN

]
∈ R

3×3N , T :=
[
t1 t2 · · · tN

]
∈ R

3×N , (5.3)

then we have

Ri = R(e⊤i ⊗ I3), ti = T ei, ti − tj = T eij.

Also define,

[
A B

B⊤ C

]
=

N∑

i=1

N∑

j=i+1

nij∑

k=1

[
ak

ij

eij

] [
ak⊤

ij e⊤ij

]
≥ 0, ak

ij := (ei ⊗ I3)v
k
ij − (ej ⊗ I3)v

k
ji.
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Now, simple manipulations show that the registration error cost function (5.2) can

be rewritten in convenient matrix notation as

g(R, T ) = tr(RAR⊤ + 2RBT ⊤ + T CT ⊤) = tr

([
R T

] [ A B

B⊤ C

][
R⊤

T ⊤

])
≥ 0,

(5.4)

or equivalently, as

g(R, T ) = tr(RAR⊤) + 2vec⊤(T )vec(RB) + vec⊤(T )(C ⊗ I3)vec(T ), (5.5)

since tr(X⊤Y ) = vec⊤(X)vec(Y ).

5.2.3 A More Compact Reformulation

Optimal Translation

Observe that (5.5) is readily minimized over all vec(T ) ∈ R
3N , or T ∈ R

3×N . Thus,

T ∗(R) := arg min
T
g(R, T ), (5.6)

satisfies

vec(T ∗(R)) = −(C† ⊗ I3)vec(RB) = −vec(RBC†) ⇔ T ∗(R) = −RBC†. (5.7)

Note that the data matrix C is singular, since C1N = 0, where 1N is the N × 1

vector consisting of unity elements. Thus the pseudo inverse C† is used. Clearly,

the absolute transformations can not be recovered. Since rotating each view by R0

and then translating it by t0 does not change the value of the cost function, as now

indicated,

‖
(
R0(Riv

k
ij + ti) + t0

)
−
(
R0(Rjv

k
ji + tj) + t0

)
‖ = ‖(Riv

k
ij + ti) − (Rjv

k
ji + tj)‖,

it makes sense to estimate the rigid body transformations relative to (say) the first

reference frame, by fixing (R1, t1) as (I3, 03) where 03 denotes the 3 × 1 zero vector.
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Global Registration Error Independent of Translation

From the previous subsection, we see that optimizing the translation can be decoupled

from optimizing the rotation. Substituting T ∗(R) from (5.7) into (5.4) leads to a

registration error cost function depending only on rotations,

f(R) := g(R, T (R)) = tr(RMR⊤) = vec⊤(R⊤)(I3 ⊗M)vec(R⊤), (5.8)

where M := A− BC†B⊤.

Problem Statement Given data matrix M, recover the rotation matrices R and

subsequently T , that allow one to register all scan data simultaneously.

5.3 Optimization on the N-fold Product of Special

Orthogonal Group

5.3.1 Geometry of the N-fold Product of Special Orthogonal

Group

Here we review the geometry of the special orthogonal group and its product manifold.

Let SO3 denote the group of 3× 3 orthogonal matrices with determinant +1. Recall

that SO3 is a Lie group and its associated Lie algebra so3 is the set of 3 × 3 skew

symmetric matrices of the form,

Ω =




0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


 . (5.9)

There is a well known isomorphism from the Lie algebra (R3,×) to the Lie algebra

(so3, [., .]), where × denotes the cross product and [., .] denotes the matrix commuta-

tor. This allows one to identify so3 with R
3 using the mapping in (5.9), which maps
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a vector ω =
[
ωx ωy ωz

]
∈ R

3 to a matrix Ω ∈ so3. Denoting

Qx :=




0 0 0

0 0 −1

0 1 0


 , Qy :=




0 0 1

0 0 0

−1 0 0


 , Qz :=




0 −1 0

1 0 0

0 0 0


 , (5.10)

note that

Ω = Qxωx +Qyωy +Qzωz.

Our interest here is a product manifold of SO3 which is a smooth manifold of dimen-

sion 3N , given by

SON
3 =

N times︷ ︸︸ ︷
SO3 × · · · × SO3 .

Tangent Space of SON
3

Recall that the tangent space of SO3 at Ri for i = 1, 2, · · ·N is given as TRi
SO3 =

{RiΩi | Ωi ∈ so3} and the corresponding affine tangent space is Taff
Ri
SO3 = {Ri +

RiΩi | Ωi ∈ so3}. Note that direct sum ⊕ of matrices is equal to a block diagonal

matrix with the individual matrices as the diagonal blocks and define

Ω̃ := Ω1 ⊕ Ω2 ⊕ · · · ⊕ ΩN , Ωi ∈ so3. (5.11)

Due to isomorphism, the tangent space of SON
3 at R = [R1 R2 · · · RN ] ∈ SON

3 can

be identified as,

TRSO
N
3 = RΩ̃, (5.12)

and the affine tangent space is

Taff
R SO

N
3 = R + RΩ̃. (5.13)

Local Parameterization of SON
3

For every point Ri ∈ SO3, there exists a smooth exponential map

µRi
: R

3N → SO3, ωi 7→ Rie
Ω(ωi),
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SON
3

R
3N

RϕR f

f ◦ ϕR

R

Figure 5.2: The mapping ϕR is the local parameterization of SON
3 around point R

such that ϕR(0) = R, f is the smooth function defined on SON
3 and f ◦ ϕR is f

expressed in local parameter space R
3N .

which is a diffeomorphism about the origin in R
3. Due to isomorphism, every point

R ∈ SON
3 can be locally parameterized by the smooth map

ϕR : R
3N → SON

3 , (5.14)

ω =




ω1

ω2

...

ωN




7→ R
(
eΩ(ω1) ⊕ eΩ(ω2) ⊕ · · · ⊕ eΩ(ωN )

)
= ReeΩ(ω).

5.3.2 Cost Function

Cost Function on SON
3

Recall M from (5.8), consider the smooth function,

f : SON
3 → R, f(R) = tr(RMR⊤) = vec⊤(R⊤)(I3 ⊗M)vec(R⊤). (5.15)

Minimization of this function penalizes the alignment error among all range images

simultaneously.

Local Cost Function

The cost function f at R ∈ SON
3 expressed in local parameter space using the smooth

local parameterization ϕR defined in (5.14) is given by,

f ◦ ϕR : R
3N → R, f ◦ ϕR(ω) = tr(ReeΩ(ω)Me

eΩ(ω)⊤R⊤). (5.16)
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Quadratic Model of Local Cost Function

The second order Taylor approximation of f ◦ ϕR about 0 ∈ R
3N in direction ω is

j
(2)
0 (f ◦ ϕR) : R

3N → R,

ω 7→
(

(f ◦ ϕR)(tω) +
d

dt
(f ◦ ϕR)(tω) +

1

2

d2

dt2
(f ◦ ϕR)(tω)

)∣∣∣∣
t=0

.

The mapping consists of three terms,

(i) a constant term,

(f ◦ ϕR)(tω)|t=0 = tr(RMR⊤).

(ii) a linear term,

d

dt
(f ◦ ϕR)(tω)

∣∣∣∣
t=0

= 2 tr(RΩ̃MR⊤) = 2ω⊤∇f◦ϕR
(0),

Recall (5.9)–(5.11) and let vec(Ω̃⊤) := Q̃ω, the explicit formula for the gradient

of f ◦ ϕR evaluated at 0 ∈ R
3N is

∇f◦ϕR
(0) = J⊤vec(MR⊤), (5.17)

where

J := (R⊗ I3N )Q̃, Q̃ := Qe1 ⊕Qe2 ⊕ · · · ⊕QeN
, Qei

:=




ei ⊗Qx

ei ⊗Qy

ei ⊗Qz


 . (5.18)

(iii) a quadratic term which consists of a sum of two terms. The first term is given

as

tr(RΩ̃MΩ̃⊤R⊤) = ω⊤Ĥf◦ϕR
(0)ω,

and the second quadratic term is

tr(RΩ̃2MR⊤) = vec⊤(Ω̃⊤)vec(MR⊤RΩ̃) = ω⊤H̃f◦ϕR
(0)ω

Thus the Hessian of f ◦ ϕR evaluated at zero is

Hf◦ϕR
(0) = Ĥf◦ϕR

(0) + H̃f◦ϕR
(0), (5.19)

where

Ĥf◦ϕR
(0) = J⊤(I3 ⊗M)J ≥ 0, H̃f◦ϕR

(0) = −Q̃⊤(I3N ⊗MR⊤R)Q̃. (5.20)
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5.3.3 Algorithm

The proposed algorithm consists of the iteration,

s = π2 ◦ π1 : SON
3 → SON

3 , (5.21)

where π1 maps a point R ∈ SON
3 to an element in the affine tangent space Taff

R SO
N
3

that minimizes j
(2)
0 (f ◦ ϕR)(0) and π2 projects that element back to SON

3 by means

of the parametrization ϕR, as illustrated in Fig. 5.3.

SON
3

Rk Rk+1

πa
1

π1

π2

Figure 5.3: The proposed algorithm first maps a point Rk ∈ SON
3 to an element of

the affine tangent space Taff
Rk
SON

3 via π1, followed by step π2 to project that vector

back to the manifold.

Optimization in Local Parameter Space, π1

Optimization in local parameter space consists of two steps, first calculate a suitable

descent direction and then search for a step length that ensures reduction in cost

function, as described by the mapping

π1 = πb
1 ◦ πa

1 : SON
3 → TaffSON

3 . (5.22)

Here πa
1 is used to obtain a descent direction,

πa
1 : SON

3 → TaffSON
3 , R 7→ R + RΩ̃(ωopt(R)), (5.23)

where ωopt ∈ R
3N as a function of R = ϕR(0) can be given by the Newton direction

when Hf◦ϕR
(0) > 0 as,

ωNewton
opt (R) = −[Hf◦ϕR

(0)]−1∇f◦ϕR
(0), (5.24)
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or by a Gauss direction otherwise, as

ωGauss
opt (R) = −[Ĥf◦ϕR

(0)]−1∇f◦ϕR
(0). (5.25)

Once an optimal direction is computed, an approximate one dimensional line

search is carried out in this direction. We proceed with a search on the scalar λ > 0

which ensures that the cost function f ◦ ϕR(λωopt) is reduced at every step, giving

rise to the mappings,

πb
1 : TaffSON

3 → TaffSON
3 ,

R + RΩ̃(ωopt(R)) 7→ R + RΩ̃(λoptωopt(R)), (5.26)

where λopt is the step length that reduces the cost function in direction ωopt, and

is found using the simple backtracking line search. Since we are using a descent

direction, for sufficiently small step size, the cost function will go downhill.

Remark 5.3.1 Given a descent direction ωopt for function f ◦ ϕR at 0 ∈ R
3N ,

• An exact line search is,

λopt = arg min
λ>0

f ◦ ϕR(λωopt), (5.27)

• A backtracking line search with parameters α ∈ (0, 0.5), β ∈ (0, 1), then starting

at λ := 1, we proceed as follows,

While f ◦ ϕR(λωopt) > f ◦ ϕR(0) + αλ[∇f◦ϕR
(0)]⊤ωopt,

do λ := βλ,

and λopt := λ.

Projecting Back via Parametrization

Once the descent direction and downhill step size is obtained, we project it back to

the manifold via the parametrization,

π2 : TaffSON
3 → SON

3 ,

R + Ω̃(λoptωopt(R)) 7→ ReeΩ(λoptωopt(R))

= R
(
eΩ(λoptω

opt
1 (R1)) ⊕ · · · ⊕ eΩ(λoptω

opt
N

(RN ))
)
, (5.28)
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since ωopt(R) =
[
ωopt

1 (R1)
⊤ · · · ωopt

N (RN)⊤
]⊤

.

5.3.4 Convergence Analysis of the Algorithm

Local Quadratic Convergence of the Algorithm

Theorem 5.3.1 Let R∗ ∈ SON
3 be a nondegenerate minimum of the smooth function

f : SON
3 → R defined in (5.8). Let Rk be a point in an open neighbourhood of R∗.

Consider the proposed iteration on SON
3 ,

Rk+1 = s(Rk), s = π2 ◦ π1, (5.29)

where π1 is given by the Newton direction defined in (5.24), π2 involves projection

back to SON
3 via the smooth exponential map of (5.28). Then the point sequence

generated by s converges quadratically to R∗.

Proof 5.3.1 See Appendix A.5.

5.4 Algorithm Initialization

Here we present a new closed form solution based on singular value decomposition

that simultaneously registers all range images. This is used as the initial estimate

for the proposed iterative algorithm of the previous section. In the noise free case,

it gives optimal estimates of the rotation matrices in a single step. Moreover, these

are the desired (exact) rotation matrices. In the presence of noise, this step leads to

an ‘optimal’ matrix R ∈ R
3×3N but such that Ri /∈ SO3 for some or all i typically.

Thus, an additional projection step to the manifold is required.

Noise Free Solution

In the noise free case, for R ∈ SON
3 , the optimal value of the cost function (5.8) is

zero, as

vec⊤(R⊤)vec(MR⊤) = 0 ⇒ vec(MR⊤) = 0 ⇒ MR⊤ = 0. (5.30)
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Since M is symmetric, a singular value decomposition gives

M = UΣU⊤ =
[
Ua Ub

] [Σa 0

0 0

][
U⊤

a

U⊤
b

]
⇒ MUb = 0. (5.31)

To obtain R such that R1 = I3, let Û :=
[
I3 0

]
Ub, then the closed form solution is

R = Û−⊤U⊤
b . (5.32)

Initialization for Noisy Case

In the presence of noise, the optimal cost function is no longer equal to zero. In this

case, Ub is chosen to be the set of right singular vectors associated with 3 least singular

values of M, which may not be zero. These singular vectors might not be on SON
3 .

Thus, an additional projection step is required. Denoting Gi := Û−⊤Ub(ei ⊗ I3), we

have

Ropt
i = arg min

Ri∈SO3

‖Ri −Gi‖ = arg max
Ri∈SO3

tr(R⊤
i Gi). (5.33)

By applying a singular value decomposition on Gi, we obtain

Gi = WΛZ⊤, Ropt
i = W

[
I2 0

0 det(WZ⊤)

]
Z⊤, (5.34)

where det(Ropt
i ) = +1.

5.5 Implementation of Algorithm

Start with an initial estimate of the rotation matrices R = [R1 R2 · · · RN ] ∈ SON
3

obtained from the initialization algorithm of the previous section.

Step 1: Carry out the optimization step,

• Compute the gradient ∇f◦ϕR
(0) and the Hessian Hf◦ϕR

(0) via (5.17), (5.19)

respectively.

• If Hf◦ϕR
(0) > 0,

Compute the Newton step, ωopt = −[Hf◦ϕR
(0)]−1∇f◦ϕR

(0),

otherwise compute the Gauss step ωopt = −[Ĥf◦ϕR
(0)]−1∇f◦ϕR

(0).
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• Compute the optimum step size λopt in direction ωopt using a backtracking

line search, as described in Remark 5.3.1.

Step 2: Carry out the projection step, R̂ = R
(
eΩ(λoptω

opt
1 ) ⊕ · · · ⊕ eΩ(λoptω

opt
N

)
)
.

Step 3: Set R = R̂, go back to Step 1 if ‖∇f◦ϕR
(0)‖ > ǫ, a prescribed accuracy.

Remark 5.5.1 To reduce computational effort per iteration of the algorithm, the

sparse matrix J (5.18) for Hessian and gradient computation can be manipulated

further as follows. Recalling Ω from (5.9), then

J =
[
(R1 ⊗ I3N)Qe1 (R2 ⊗ I3N )Qe2 · · · (RN ⊗ I3N)QeN

]

=




Ω(ē⊤1 R1) ⊕ Ω(ē⊤1 R2) ⊕ · · · ⊕ Ω(ē⊤1 RN )

Ω(ē⊤2 R1) ⊕ Ω(ē⊤2 R2) ⊕ · · · ⊕ Ω(ē⊤2 RN )

Ω(ē⊤3 R1) ⊕ Ω(ē⊤3 R2) ⊕ · · · ⊕ Ω(ē⊤3 RN )


 . (5.35)

5.6 Experimental Evaluation

We now present an experimental study of our algorithm, focusing primarily on the

quality of the registrations it produces, and the convergence rate of the method.

Methods We will compare our algorithm (which we will refer to as Manifold-based

registration, MBR) to the schemes proposed by Benjemaa and Schmitt [7] (QUAT)

and Williams and Bennamoun [84] (MAT). MBR and MAT are matrix based and

are written in MATLAB. MAT, which uses quaternions in its formulation, is written in

C. We used a maximum iteration limit of 1000 for all the methods. Our method of

comparison between various algorithms will be based on both visual quality as well

as iteration counts and error convergence rates (we will not use clock time).

Data Our first data set consists of actual 3D models from the Stanford 3D Scanning

Repository. For each of three models, we generated a collection of views as follows:

we first generate a unit vector (representing a view) and extracted the points on

all front-facing triangles with respect to this view. Next, each view is randomly
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rotated and translated into a local coordinate system. Finally, each point in each

view is randomly perturbed using a Gaussian noise model. This yields a collection of

views that possess a global noisy registration. With this data, we have ground truth

(exact correspondences) since we have the original model. Table 5.1 summarizes the

statistics of this data.

Our second data set consists of 3D range scan data from the Digital Michelangelo

Project [50]. The individual scans come with an original alignment (stored in .xf

files). We perform ICP on pairs of scans, using the routines built into scanalyze,

and retain all pairs of scans that have at least three points in common as determined

by ICP. In each instance, we run ICP five times and take the best alignment thus

generated (each instance of ICP runs for ten iterations). The model of correspondence

used is point-point.

Model Number of Number Total size Number of Time (in secs.)
vertices of scans of all scans view pairs per iteration

generated (MBR)
DRILL 1961 20 23298 77 0.015

DRAGON 100250 20 1142487 98 0.016
BUDDHA 32328 50 252580 526 0.093

Table 5.1: Statistics for the synthetic 3D models used for global registration

5.6.1 3D Models

We have run the three algorithms on the view pairs obtained from the three 3D

models. In Figure 5.4 (a)–(c), we show the output registrations obtained by MBR.

For these examples, the other two schemes produced similar registrations, although

with higher error. In Table 5.2, we compare the performance of the three schemes on

the models, in terms of both the number of iterations till convergence, and the final

error. The final error is computed by evaluating the function defined in (5.5).

What is striking about the numbers is that although mostly the other approaches

yield comparable error (except for DRILL), their iteration counts are orders of magni-

tude higher than that of our scheme. This is a clear demonstration of locally quadratic
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(a) Drill (b) Dragon (c) Buddha

(d) David Head (e) David Head and Bust

Figure 5.4: Registrations produced by our Optimization-on-a-Manifold algorithm,
MBR, on synthetic and real data sets. The real data set was obtained from the
Digital Michelangelo project at Stanford University.

convergence properties of our scheme.

Factors that influence iteration counts We investigated other factors that

might affect algorithm performance. Some of the parameters that influence itera-

tion counts are the density of the correspondence graph i.e. how many view pairs are

provided, and the strength of match for each pair (average number of points in each

view pair).

In all cases, the number of iterations required by our method to converge was

unaffected by these parameters. However, for the other methods, we noticed a fairly

weak correlation between the density of the correspondence graph and the number of

iterations needed; as the graph got denser, implying a more constrained system, the

number of iterations needed to converge reduced. For example, the iteration counts
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MBR MAT QUAT
Iter. Error Iter. Error Iter. Error

Drill 2 3.5e-7 47 3.5e-7 48 7e-7
Dragon 4 5e-3 933 1e-2 1000 1e-2
Buddha 2 2e-4 534 2e-3 718 3e-3

Table 5.2: Performance of the three registration methods - our Optimization-on-a-
Manifold method MBR, Williams and Bennamoun’s SVD-based method MAT and
Benjemaa and Schmitt’s Quaternion-based method QUAT on the synthetic data sets

for MAT and QUAT went from close to 1000 (for a sparse graph in the Dragon) to

47 (for a dense graph in the Drill).

Cost per iteration We do not provide a comparison of actual time per iteration

for the three methods because they have been implemented on different platforms.

However, MBR and MAT exhibit cubic dependence on the number of scans (for

N scans, each iteration takes O(N3) time), while QUAT take quadratic time per

iteration at the expense of many more iterations. There is no running time dependence

on the actual size of the model or size of each scan; there is however a preprocessing

cost dependent on the total size of the corresponding points. Using our Matlab code,

we measured the time per iteration only for our algorithm, MBR, and is shown in the

last column of Table 5.1. All timing measurements were performed on a PC running

Windows XP with a 2.8 GHz Pentium IV processor and 512 MBytes of RAM. For the

models we tried in this paper, we roughly had anywhere from 8 to 80 corresponding

points between pairs of scans.

5.6.2 Range Scan Data

Having evaluated the performance of our scheme in relation to prior art in a

controlled setting where ground truth (exact correspondences) are known, we now

present the results of running the schemes on range scan data. We focus on the

model of David, specifically the views corresponding to the head and bust region.

After implementing the view generation procedure described earlier, we obtain a

10-scan instance of the bust and a 38-scan instance of the head. We also use a 21-
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scan instance that has bad starting alignment. The registration produced by our

algorithm for 10-scan instance of the bust and a 38-scan instance of the head are

shown in Figure 5.4 (d) and (e) respectively.

Figure 5.5 shows the registrations obtained by MBR, MAT, and QUAT. In

all cases, the registration produced by our algorithm is quite plausible. The other

methods do not fare so well; a typical problem is that the two halves of David’s face

do not register properly, creating the false effect of two heads. Table 5.3 summarizes

the performance of the three algorithms in terms of iteration counts. For absolute

times per iteration, our algorithm, MBR, took 9 milliseconds for the 10-scan instance

of the bust, 47 milliseconds for the 38-scan instance of the head and 20 milliseconds

for the 21-scan instance of the bust with bad initial alignment.

MBR MAT QUAT
Iter. Iter. Iter.

Head 48 247 1000
Bust 12 1000 1000

Bust - Bad
Alignment 81 1000 1000

Table 5.3: Performance of the three registration methods - our Optimization-on-a-
Manifold method MBR, Williams and Bennamoun’s SVD-based method MAT and
Benjemaa and Schmitt’s Quaternion-based method QUAT on the David model -
courtesy of the Digital Michelangelo project

5.7 Summary

This chapter presented two novel algorithms for simultaneous registration of multiple

3D point sets. The first algorithm is iterative in nature, based on an optimization

on manifolds approach while the second is a new analytic method based on singular

value decomposition. Main research contributions can be summarized as follows,

• We propose new geometric optimization framework for minimizing smooth func-

tion over N -product manifold of special orthogonal group,
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• We derived Newton-like algorithms based on the suggested framework. It is

is locally quadratically convergent as demonstrated by rigorous mathematical

proof and simulation results.

• The algorithm gives better estimates than a recent iterative method proposed

by Williams and Bennamoun [84] in the case when correspondence pairs are in

chain-like structure and only limited number of match points are present for

each pair.

• We put forward a new analytic method that gives exact solutions in the noise

free case in a single step and can be used as a good initial estimate for any

iterative algorithm.

In this chapter, we have presented a novel algorithm for simultaneous registra-

tion of multiple 3D point sets. The algorithm is iterative in nature, based on an

optimization-on-a-manifold approach. The algorithm is locally quadratically conver-

gent as demonstrated by rigorous mathematical proof and simulation results. It also

converges much faster than prior methods for simultaneous registration. We also pro-

pose a new analytic method that provides a closed form solution based on singular

value decomposition. It gives exact solutions in the noise free case and can be used

as a good initial estimate for any iterative algorithm.

Acknowledgements We acknowledge Prof. Marc Levoy and the Digital Michelan-

gelo Project at Stanford University for providing access to the raw scan data used in

this chapter.
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(a) The head of David (detailed: 38 scans)

(b) The head and bust of David (10 scans)

(c) Head and bust: Bad initial alignment (21 scans)

Figure 5.5: This figure shows the results of three algorithms for simultaneous regis-
tration of multiple 3D point sets - our Optimization-on-a-Manifold method MBR,
Williams and Bennamoun’s SVD-based method MAT, and Benjemaa and Schmitt’s
Quaternion-based method QUAT (from left to right) on different instances of the
David model. In all cases, the registration produced by our algorithm is quite plausi-
ble. The other methods do not fare so well; a typical problem is that the two halves
of David’s face do not register properly, creating the false effect of two heads.
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Chapter 6

Conclusions

This research has been motivated by the fundamental role of pose estimation in

many computer vision tasks and the benefit of exploiting the geometric structure of

optimization problems. At the beginning of this report, we introduced the subject of

computer vision and geometric optimization, reviewed its development, highlighted

the research issues and presented research goals together with a strategy as to how

the problems can be tackled. This was followed by four technical chapters, mainly

focused on the development of proposed parameterization-based framework and its

implementation in recovering pose information from images. In this final chapter, we

revisit the parameterization-based framework proposed by others in the literature as

to put our approach in perspective. We then wrap up the thesis with a summary of

research contributions and some remarks for future research.

6.1 Parameterization-based Framework

To the best of our knowledge, there are only two pieces of research based on the

parameterization approach we adopt prior to ours, as discussed below.

Taylor and Kriegman [82]: We came across this unpublished technical report dur-

ing the writing of the thesis. Taylor and Kriegman proposed minimization techniques

based on successive parameterization of Lie groups such as the rotation group, the

group of rigid body transformation, the sphere and set of infinite straight lines to
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avoid the singularities problem arising in global parameterization. Unlike our work

which present alternative projections such as exponential map, Cayley and orthogo-

nal projection, the report adopted only the exponential map. The report also claimed

local quadratic convergence of the proposed algorithms but provide neither mathe-

matical proof nor simulation results. Unlike our algorithms which incorporate one

dimensional search strategy to globalize Newton’s method, the report focused only

on pure Newton method.

Manton [62]: This piece of work was brought to our attention by the author

during a workshop presentation. The parameterization-based framework proposed

in this paper focused on addressing problems with unitary constraints. While we

propose same mapping for both pull back and push forward, [62] introduced the

concept of varying parameterization, i.e, the pulled back and push forward can be

done by various types of parameterization. The varying parameterization might be

attractive from computational viewpoint. It would be interesting to see if the varying

parameterization framework does improve computation efficiency of the algorithms

proposed in this thesis.

Since our work, Hüper and Trumpf [41] provided a proof of local quadratic conver-

gence of Newton-like method for optimizing a smooth function over a smooth manifold

based on global analysis and exemplified their approach to the Rayleigh quotient on

the Grassmann manifold.

6.2 Conclusions

Bridging the gap between the abstract mathematical concept of geometric optimiza-

tion and its practical applications, as well as emphasizing the importance of iterative

computer vision algorithms which exploit the geometry of the underlying parameter

space have been the objectives of this thesis. This section summarizes the research

contribution by re-evaluating their relevance with respect to the research goals.
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New Theory for Geometric Optimization

At first glance our technical approach appears little different from what can be

achieved using earlier theory, particularly the Riemannian approach. However, it

is not at all clear that there is local quadratic convergence of the proposed algorithm

unless one sets up the appropriate mathematical objects and mappings. This thesis,

along with other independent work, opens up the possibility to develop even more gen-

eral classes of algorithms evolving on manifolds with different mathematical objects

and mappings which achieve the same guaranteed convergence results. This works il-

lustrate convincingly that there is a simpler way of generalizing Euclidean techniques

to manifolds, which is more accessible to readers with background in engineering and

computer science. Furthermore, it is simpler to implement, computationally more

efficient and thus make its suitable for real time applications.

New Computer Vision Algorithms

Again at first glance numerical algorithms proposed for the four pose estimation tasks

investigated in the report, appear very little different from what has been around

a long time or in recent refinements. However, the differences lead to improved

local convergence properties. By developing numerical algorithms directly on the

constraint set, we end up with algorithms that explicitly preserve the constraint set

at very iteration. Also, by exploiting the geometry of the underlying parameter

space such as the curvature of the manifold, faster convergence rate can be achieved.

The proposed geometric algorithms are conceptually simpler and intuitive, allow the

designer to keep track of what is happening in the algorithm rather than simply

using standard optimization packages and solve the problem in the dark (‘blackbox’

concept). Moreover, the door is opened to develop related advanced algorithms in

other contexts. Although it is unreasonable to claim that our algorithms will be

the definitive ones in the field, which is what we have sought, it is reasonable to

challenge the next generation of researchers to come up with algorithms that take

less computational effort to achieve the same accuracy and preserve the constraints

at each iteration.
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Our current results suggest that there is a fruitful interplay between addressing

practical challenges in the area of computer vision and advancing mathematical re-

sults in more abstract settings. On the theoretical side, this thesis has shown how to

fully exploit the concept of local coordinate charts in differential geometry for solving

nonlinear constrained optimization problems in the area of computer vision. As it

happens other researchers have independently shown similar results in other applica-

tion domains. On the practical side, we have introduced the geometric optimization

as new tool to design new computer vision algorithms that requires both accuracy

and real time computation.

6.3 Future Work

We are convinced that there will be active research in this areas in the next 10 years.

This is based on the observation of increasing number of workshops and special ses-

sions in major conferences in diverse areas such as computer vision, pattern recog-

nition, signal processing, machine learning, neural network and so on. We hope this

thesis have or will motivate further research in this area, not just from mathematics

community, but also from engineering and computer science.

It will be interesting to investigate the effectiveness of geometric optimization

framework versus its traditional counterpart, transform method in solving equality

constrained optimization problems. We hope this framework can be further extended

to inequality constraint sets, instead of the surface of a sphere, we have a ball. There

are a few open problems that could be pursued after this thesis, in areas related and

unrelated to computer vision. We now discussed a further computer vision task as

an example.

Estimation of Fundamental Matrix

This problem is parallel to the estimation of the essential matrix discussed in Chap-

ter 3. Here, we will focus on estimating the fundamental matrix from a set of point

correspondences between a pair of uncalibrated images. Both the essential matrix
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and fundamental matrix are 3 × 3 singular matrices. The essential matrix encapsu-

lates the epipolar geometry between two calibrated images whereas the fundamental

matrix algebraically represents the epipolar geometry between two uncalibrated im-

ages. Unlike the essential matrix which is characterized by an algebraic constraint,

the only constraint on fundamental matrix is that it is of rank 2.

One can apply similar techniques as in this thesis to estimate fundamental ma-

trix although it is not a straightforward generalization from essential matrix case.

Algebraically, epipolar geometry relates two uncalibrated images is represented by a

fundamental matrix F , as

m⊤
2 Fm1 = 0,

Here, image points m1 and m2 are described in pixel image coordinates. The funda-

mental manifold is defined as

F := {F ∈ R
3×3| rank(F ) = 2} (6.1)

A key issue here will be the particular factorization of the fundamental matrix which

will be the one that leads to the most useful and general results. There are several

equivalent product representations of rank two matrices known. Both of them are

related to the fact that F is a homogeneous space. The first standard result charac-

terizes fundamental matrices in terms of the well known singular value decomposition,

as

F =




U




1 0 0

0 σ 0

0 0 0


V

⊤

∣∣∣∣∣∣∣∣
U, V ∈ O3, 0 ≤ σ ≤ 1




. (6.2)

Thus F is seen as the smooth manifold of (3 × 3)-matrices with singular values

{1, σ, 0}, see [32] for details on the geometry of such manifolds.

A second description of fundamental matrices is as follows, any fundamental ma-

trix F has a factorization

F = XY,

where X, Y are full rank (3 × 2) and (2 × 3) matrices, respectively.

Finally, we mention a third factorization, that is derived from a generalization of

the classical Bruhat factorization from Lie groups to singular matrices. For details see
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the preprint [Manthey and Helmke]. A generic fundamental matrix F has a unique

factorization as

F = XY,

where X, Y are full rank (3 × 2) and (2 × 3) matrices, respectively, of the forms

X =




x1 0

x2 x3

x4 x5


 , Y =

[
1 y1 y2

0 1 y3

]
, (6.3)

where x1, x5 are nonzero entry and the rest of the element of the X and Y matrix

can be arbitrary entry.

Consider now the tangent spaces to F using the fundamental matrix characteri-

zation in (6.2).

Proposition 6.3.1 The tangent space TFF at the fundamental matrix

F = U




1 0 0

0 σ 0

0 0 0


V

⊤

provided σ 6= 1 is

TFF =





ΩF − FΨ + U




0 0 0

0 δ 0

0 0 0


V

⊤

∣∣∣∣∣∣∣∣
Ω,Ψ ∈ so3, δ ∈ R






= U




0 −ω3σ + ψ3 −ψ2

ω3 − ψ3σ δ ψ1σ

−ω2 ω1σ 0


V

⊤,

= U




0 a b

c 0 d

e f 0


V

⊤. (6.4)

If σ = 1, then c = −a in the above description, and equality with the tangent space is

no longer true.
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Proof 6.3.1 For the first equality see [32]. The second is a straightforward compu-

tation.

The above result shows that by using the SVD description we run into a problem.

In fact, the SVD parametrization is not submersive at equal singular values and

therefore does not yield the full tangent space. Thus this would force us to distinguish

in each step of the subsequent analysis between the cases of distinct and equal singular

values. It makes sense to work with the third parametrization. We could approach

this problem using the technique we propose in this report.
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Appendix A

Appendix

A.1 Proof of Theorem 2.2.1

Fixed Point of the Algorithm Let R∗ ∈ SO3 be a fixed point of s = π3 ◦ π2 ◦ π1,

we have

s(R∗) = R∗ ⇔ π3 ◦ π2 ◦ π1(R∗) = R∗ ⇔ R∗e
Ω(θoptωopt) = R∗ ⇔ eΩ(θoptωopt) = I.

If the exponential map in the projection step π2 is within its injectivity radius, then

only ωopt = 0 satisfies the above equation (since θopt is a positive scalar). Thus, the

only fixed points of the algorithm are critical points. However, as noted in the text

only local minima are stable fixed points. Indeed with our geodesic search feature,

only global minimum is a stable fixed point. Notice that ωopt = 0 is the (unique)

minimum of j
(2)
0 (f ◦µR∗

)(ω) if and only if µR∗
(0) = R∗ is a non-degenerate minimum

of f : SO3 → R.

Smoothness Properties of the Algorithm Under the assumption that the cost

function f is smooth and Hessian of f ◦µR is invertible everywhere, the optimization

step π1 is smooth. The projection step π2 which involves only the exponential map-

pings is also smooth. Although the operation π3 is designed to be discontinuous to

escape local minima not a global minimum, yet in a sufficiently small neighbourhood

of R∗, the operation π3 is continuous since all critical points other than R∗ have a
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higher cost than the current cost. It is then more than twice differentiable since it

concerns the isolated minimal cost solution of a polynomial equation.

Local Quadratic Convergence of the Algorithm Let R∗ denote a stable fixed

point of s = π3 ◦ π2 ◦ π1, being also the unique and non-degenerate global minimum

of the function f , as already established under our assumptions. We will compute

the first derivative of s at this fixed point. Applying the chain rule to the algorithmic

mapping s = π3 ◦ π2 ◦ π1, and using the fact that π1(R∗) = π2(R∗) = π3(R∗) = R∗,

for all elements ξ ∈ TR∗
SO3, the first derivative of s at fixed point R∗ is,

Ds(R∗) · ξ = Dπ3(R∗) · Dπ2(R∗) · Dπ1(R∗) · ξ. (A.1)

Considering s in the local parameter space, we have the self map

µ−1
R∗

◦ s ◦ µR∗
: R

3 → R
3. (A.2)

Thus, rewriting (A.1) in terms of local parameterization defined by

µR∗
: R

3 → SO3, ω 7→ R∗e
Ω(ω), (A.3)

with Ω as in (2.13), we have

Dµ−1
R∗

◦ s ◦ µR∗
(0) · h

= Dµ−1
R∗

(R∗) · Ds(R∗) · DµR∗
(0) · h,

= Dµ−1
R∗

(R∗) · Dπ3(R∗) · Dπ2 ◦ π1 ◦ µR∗
(0) · h. (A.4)

Consider the composite function

π2 ◦ π1 ◦ µR∗
: R

3 → SO3, ω 7→ µR∗
(ω)eΩ(ωNewton

opt (µR∗
(ω))). (A.5)

where

ωNewton
opt ◦ µR∗

(ω) = ωNewton
opt (µR∗

(ω)) = −[Hf◦µR∗
(ω)]−1∇f◦µR∗

(ω). (A.6)

Exploiting linearity of the mapping Ω, using the well known formula for differentiating

the matrix exponential and the fact that

µR∗
(0) = R∗, ωNewton

opt (R∗) = 0,
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we have

DµR∗
(0) · h = R∗Ω(h), (A.7)

and

DωNewton
opt ◦ µR∗

(0) · h (A.8)

= −[Hf◦µR∗
(0)]−1D∇f◦µR∗

(0) · h− D[(Hf◦µR∗
(0)]−1 · h∇f◦µR∗

(0),

= −[Hf◦µR∗
(0)]−1Hf◦µR∗

(0)h, since ∇f◦µR∗
(0) = 0

= −h.

Now, we compute the first derivative of the composite function (A.5) in the limit as

ω approaches zero as,

Dπ2 ◦ π1 ◦ µR∗
(0) · h = R∗Ω(h) +R∗Ω(DωNewton ◦ µR∗

(0) · h) (A.9)

= 0.

Substituting (A.9) into (A.4) shows that for all h ∈ R
3

Dµ−1
R∗

◦ s ◦ µR∗
(0) · h = 0. (A.10)

Since the iterate Rk is in an open neighbourhood of R∗, then by inverse mapping, ωk =

µ−1
R∗

(Rk) stays in a sufficiently small open neighborhood of the origin in R
3. Vanishing

of the first derivative then implies local quadratic convergence by the Taylor-type

argument, for some positive κ

∥∥µ−1
R∗

◦ s ◦ µR∗
(ωk)

∥∥ ≤ sup
y∈N (0)

κ
∥∥D2µ−1

R∗
◦ s ◦ µR∗

(y)
∥∥ · ‖ωk‖2 (A.11)

with N (0) the topological closure of a sufficiently small open neighbourhood of origin

in R
3.

Remark A.1.1 The result holds for π3 being an identity operation as for a Newton

step, or is given by a smooth geodesic search. Notice that if the geodesic search is

switched off in the neighbourhood of R∗, so that π3 is an identity operator, then the

assumption of uniqueness of R∗ can be relaxed for this proof to still hold.
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A.2 Rank of D.

Consider D as defined in (2.11). In order to evaluate rank(D), observe that D can

be reformulated as

D = Û(M⊤ ⊗ I),

where M :=
[
m1 m2 · · · mn

]
, and denoting 1n as n× 1 vector consists of 1,

Û := diag(Ũ1, · · · , Ũn)(I − (1n ⊗ Ā)), Ũi := I − Ui,

Ā := (A⊤A)−1A⊤
[
Ũ1 · · · Ũn

]
.

Then,

rank(D) ≤ min{rank(Û), rank(M⊤ ⊗ I)}

To analyze the minimum rank of Û , observe that

ÛX = 0, (A.12)

where

X :=




I Ũ1 I · · · I
... I Ũ2

...
. . .

I · · · Ũn



.

Elementary row and column operations on X gives that rank(X) = (n + 3) in the

generic case when {ui}{i=1,...,n} are linearly independent. Since Û has full rank of 3n

and it can loose at most (n + 3) rank, then rank(Û) = 3n − (n + 3). The necessary

conditions for such existence is that 3n − (n + 3) ≥ 0 or n ≥ 2. For generic models

when rank(M) = 3, then

rank(D) ≤ min{(3n− (n + 3)), (3 × rank(M))}
≤ min{(2n− 3), 9}.
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A.3 Proof of Theorem 3.2.2

Fixed Points of the Algorithm

If the projection step is either πcay
2 or πsvd

2 , but not πµE

2 , then the only fixed points of

the corresponding algorithm s = π2 ◦π1 are those elements of E which are the critical

points of the objective function f : E → R. Indeed, the only stable fixed points are

the local minima of f .

To justify this, notice that E∗ = U∗E0V
⊤
∗ ∈ E is a fixed point of s if it is al-

ready a fixed point of π1, because π2 following π1 is a projection. Let xopt(E∗) :=[
x1 · · · x5

]⊤
, a fixed point of π1 in turn is characterised by

π1(U∗E0V
⊤
∗ ) = U∗E0V

⊤
∗ ,

⇐⇒ U∗
(
E0 + Ω1(xopt(E∗))E0 − E0Ω2(xopt(E∗))

)
V ⊤
∗ = U∗E0V

⊤
∗ ,

⇐⇒ Ω1(xopt(E∗))E0 − E0Ω2(xopt(E∗)) = 0,

⇐⇒




0 −
√

2x3 −x5√
2x3 0 x4

−x2 x1 0


 = 0,

⇐⇒ xopt(E∗) = 0.

Notice that xopt(E∗) = 0 happens to be the (unique) minimum of j
(2)
0 (f ◦ µE∗

)(x) if

and only if µE∗
(0) = E∗ is a non-degenerate local minimum of f : E → R.

It remains to show that s(E) = E together with π1(E) 6= E is not possible

irrespective of the type of projection π2 we use in our algorithm, i.e., πsvd
2 or πcay

2 . Let

E = UE0V
⊤. Assume x ∈ R

5 \ {0}, i.e., we assume

π1(E) = U(E0 + Ω1(x)E0 − E0Ω2(x))V
⊤ 6= E.

(i) πsvd
2 : There exist H,K ∈ SO3 such that

π1(E) = H




σ1 0 0

0 σ2 0

0 0 σ3


K

⊤, σ1 ≥ σ2 ≥ σ3. (A.13)



116

The projection π2 = πsvd
2 maps then π1(E) to HE0K

⊤, and is well defined in

the generic case σ2 > σ3, as

π2(π1(E)) = HE0K
⊤. (A.14)

Now suppose that π2 = πsvd
2 maps π1(E) back to E, i.e.,

HE0K
⊤ = UE0V

⊤ (A.15)

holds. It is easily seen that Eq. (A.15) forces the special orthogonal matrices

H⊤U and K⊤V to be of the following form

H⊤U = K⊤V =




ε cos t ε sin t 0

− sin t cos t 0

0 0 ε


 , ε ∈ {±1}, t ∈ R.

Using (A.13), H⊤U and K⊤V of this form already diagonalise U⊤ · π1(E) · V ,

i.e.,

H⊤U
(
E0 + Ω1(x)E0 −E0Ω2(x)

)
V ⊤K

=
1√
2
H⊤U




1 −
√

2x3 −x5√
2x3 1 x4

−x2 x1 0


V

⊤K =




σ1 0 0

0 σ2 0

0 0 σ3


 .

Multiplying out and equating terms implies x = 0, a contradiction.

(ii) πcay
2 : We will show that

E0 = cay(Ω1(x))E0 cay(−Ω2(x)) (A.16)

implies x = 0, a contradiction. Rewriting (A.16) gives
(
I − 1

2
Ω1(x)

)
E0

(
I +

1

2
Ω2(x)

)
=

(
I +

1

2
Ω1(x)

)
E0

(
I − 1

2
Ω2(x)

)

⇐⇒
Ω1(x)E0 = E0Ω2(x)

⇐⇒
x = 0.
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Unfortunately, the situation is more involved if the projection we use is πµE

2 .

Consider the following example. For arbitrary U, V ∈ SO3 let E = UE0V
⊤ and

suppose

xopt =
√

2
[
0 π 0 0 π

]⊤
, (A.17)

therefore

Ω1(xopt) = Ω2(xopt) =




0 0 π

0 0 0

−π 0 0


 and eΩ1(xopt) = eΩ2(xopt) =




−1 0 0

0 1 0

0 0 −1


 .

(A.18)

Then

π1(E) = U




1 0 −π
0 1 0

−π 0 0


V

⊤ 6= E, (A.19)

but

πµE

2 (π1(E)) = UE0V
⊤ = E. (A.20)

One can easily find other examples, but the reason that one can construct such

examples is that the injectivity radius of the exponential map exp : so3 → SO3 is

finite, namely equal to π.

Smoothness Properties of the Algorithm

The optimization step π1 is smooth under the assumption of the Hessian of f ◦ µE

being everywhere invertible. Indeed, under this assumption the linear system to be

solved in each optimization step has a unique solution. For the projection step π2,

both πµE

2 and πcay
2 are smooth mappings. For detailed proofs on the smoothness of

the mapping πsvd
2 , see [34].

Local Quadratic Convergence of the Algorithm

Let E∗ denote a stable fixed point of s = π2◦π1, being also a non-degenerate minimum

of the function f . Also, π1(E∗) = E∗, π2(E∗) = E∗ and let ξ ∈ TE∗
E . By chain rule,



118

we have

Ds(E∗) · ξ = Dπ2(E∗) · Dπ1(E∗) · ξ. (A.21)

Now, re-express s in local parameter space give

µ−1
E∗

◦ s ◦ µE∗
: R

5 → R
5.

Since E∗ = µE∗
(0), rewriting (A.21) in terms of local parameterization gives

Dµ−1
E∗

◦ s ◦ µE∗
(0) · h = Dµ−1

E∗
(E∗) · Ds(E∗) · DµE∗

(0) · h,
= Dµ−1

E∗
(E∗) · Dπ2(E∗) · Dπ1 ◦ µE∗

(0) · h.

where

xNewton
opt ◦ µE∗

(x) = xNewton
opt (µE∗

(x)) = −[Hf◦µE∗
(x)]−1∇f◦µE∗

(x) (A.22)

Exploiting linearity of the mapping Ω1, Ω2, using the well known formula for differ-

entiating the matrix exponential and the fact that

DµE∗
(0) · h = U∗[Ω1(h)E0 −E0Ω2(h)]V

⊤
∗ , xNewton

opt (µE∗
(0)) = 0,

and consider the derivative of xNewton
opt ◦ µE∗

at 0 ∈ R
5,

DxNewton
opt ◦ µE∗

(0) · h
= −[Hf◦µE∗

(0)]−1D∇f◦µE∗
(0) · h− D[(Hf◦µE∗

(0)]−1 · h∇f◦µE∗
(0),

= −[Hf◦µE∗
(0)]−1Hf◦µE∗

(0)h, since ∇f◦µE∗
(0) = 0

= −h. (A.23)

Consider three composite functions and its first derivative at the fixed point E∗ =

U∗E0V
⊤
∗ . Each function is relevant when different projection step is used,

• Orthogonal projection, πsvd

π1 ◦ µE∗
: R

5 → T affE ,
x 7→ µE∗

(x) + U∗e
Ω1(x)Ω1

(
xNewton

opt (µE∗
(x))

)
E0e

Ω2(x)⊤V ⊤
∗

−U∗e
Ω1(x)E0Ω2

(
xNewton

opt (µE∗
(x))

)
eΩ2(x)⊤V ⊤

∗ ,
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and derivative of this composite function at fixed point E∗ is

Dπ1 ◦ µE∗
(0) · h = DµE∗

(0) · h+ U∗Ω1

(
DxNewton

opt ◦ µE∗
(0) · h

)
E0V

⊤
∗

− U∗E0Ω2

(
DxNewton

opt ◦ µE∗
(0) · h

)⊤
V ⊤
∗ ,

= 0.

• Exponential map, πµE

πµE∗
◦ π1 ◦ µE∗

: R
5 → E ,

x 7→ U∗e
Ω1(x)eΩ1(xNewton

opt (µE∗
(x)))E0e

Ω2(xNewton
opt (µE∗

(x)))
⊤

eΩ2(x)⊤V ⊤
∗ ,

and first derivative of this composite function at E∗ is

DπµE∗
◦ π1 ◦ µE∗

(0) · h (A.24)

= U∗Ω1(h)E0V
⊤
∗ + U∗Ω1

(
DxNewton

opt ◦ µE∗
(0) · h

)
E0V

⊤
∗ +

U∗E0Ω2

(
DxNewton

opt ◦ µE∗
(0) · h

)⊤
V ⊤
∗ + U∗E0Ω2(h)

⊤V ⊤
∗ ,

= 0.

• Cayley-like projection, πcay

πcay ◦ π1 ◦ µE∗
: R

5 → E ,

x 7→ U∗e
Ω1(x)cay

(
Ω1(x

Newton
opt (µE∗

(x)))
)
E0cay

(
−Ω2(x

Newton
opt (µE∗

(x)))
)
eΩ2(x)⊤V ⊤

∗

and its derivative at E∗ is

Dπcay ◦ π1 ◦ µE∗
(0) · h = DπµE∗

◦ π1 ◦ µE∗
(0) · h = 0. (A.25)

Substituting (A.24), (A.24) or (A.25) into (A.22) shows that for all h ∈ R
5

Dµ−1
E∗

◦ s ◦ µE∗
(0) · h = 0 (A.26)

irrespective of whether π2 is an orthogonal projection, a Cayley-like projection or

an exponential map on E . Let Ek denote a point in an open neighbourhood of E∗,

generated by s. By inverse mapping, xk = µ−1
E∗

(Ek) stays in a sufficiently small open
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neighbourhood of the origin in R
5. Vanishing of the first derivative then implies local

quadratic convergence by the Taylor-type argument, for some positive κ,

∥∥µ−1
E∗

◦ s ◦ µE∗
(xk)

∥∥ ≤ sup
y∈N (0)

κ
∥∥D2µ−1

E∗
◦ s ◦ µE∗

(y)
∥∥ · ‖xk‖2 , (A.27)

with N (0) the topological closure of a sufficiently small open neighborhood of 0 in

R
5.

A.4 Proof of Theorem 4.2.1

Fixed Point of the Algorithm Let T∗ ∈ SE3 be a fixed point of s = π2 ◦ π1, we

have

s(T∗) = T∗ ⇔ π2 ◦ π1(T∗) = T∗ ⇔ T∗e
ζ(λoptxopt) = T∗ ⇔ eζ(λoptxopt) = I.

If the exponential map in the projection step π2 is within its injectivity radius, then

only xopt = 0 satisfies the above equation (since λopt is a positive scalar). Thus all

critical points are fixed points, although only local minima are stable fixed points.

Notice that xopt = 0 is the (unique) minimum of j
(2)
0 (f ◦µT∗

)(x) if and only if µT∗
(0) =

T∗ is a non-degenerate local minimum of f : SE3 → R.

Smoothness Properties of the Algorithm Under the assumption that the cost

function f is smooth and Hessian of f ◦ µT is invertible everywhere, the optimiza-

tion step π1 is smooth. The projection step π2 which involves only the exponential

mappings is also smooth.

Local Quadratic Convergence of the Algorithm Let T∗ denote a stable fixed

point of s = π2 ◦π1, being also a non-degenerate minimum of the function f . We will

compute the first derivative of s at this fixed point. Applying chain rule and using

the fact that π1(T∗) = π2(T∗) = T∗, we have for all tangent elements ξ ∈ TT∗
SE3,

Ds(T∗) · ξ = Dπ2(T∗) · Dπ1(T∗) · ξ. (A.28)
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Consider s in the local parameter space, we have the self map

µ−1
T∗

◦ s ◦ µT∗
: R

6 → R
6. (A.29)

Thus, rewriting (A.29) in terms of local parameterization defined by

µT∗
: R

6 → SE3, x 7→ T∗e
ζ(x) (A.30)

with µT∗
(0) = T∗ and ζ defined in (4.4), we have for all h ∈ R

6,

Dµ−1
T∗

◦ s ◦ µT∗
(0) · h = Dµ−1

T∗
(T∗) · Ds ◦ µT∗

(0) · h. (A.31)

Next, consider the composite function,

s ◦ µT∗
: R

6 → SE3, x 7→ µT∗
(x)eζ(xNewton

opt (µT∗
(x))), (A.32)

since in the neighbourhood of T∗, the algorithm uses the Newton step with λopt = 1

and

xNewton
opt ◦ µT∗

(x) = xNewton
opt (µT∗

(x)) = −[Hf◦µT∗
(x)]−1∇f◦µT∗

(x). (A.33)

Exploiting linearity of the mapping ζ , using the well known formula for differentiating

the matrix exponential and the fact that,

µT∗
(0) = T∗, xNewton

opt ◦ µT∗
(0) = 0,

we have

DµT∗
(0) · h = T∗ζ(h), (A.34)

and

DxNewton
opt ◦ µT∗

(0) · h
= −[Hf◦µT∗

(0)]−1D∇f◦µT∗
(0) · h− D[Hf◦µT∗

]−1(0) · h∇f◦µT∗
(0),

= −[Hf◦µT∗
(0)]−1Hf◦µT∗

(0)h, since ∇f◦µT∗
(0) = 0

= −h. (A.35)

Now, using (A.34) and (A.35), we compute the first derivative of the composite func-

tion in (A.32),

Ds ◦ µT∗
(0) · h = T∗ζ(h) + T∗ζ

(
DxNewton

opt ◦ µT∗
(0) · h

)
= 0. (A.36)
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Substituting (A.36) into (A.31) shows that for all h ∈ R
6

Dµ−1
T∗

◦ s ◦ µT∗
(0) · h = 0 (A.37)

Let Tk denote a point in an open neighbourhood of T∗, generated by s. By inverse

mapping, xk = µ−1
T∗

(Tk) stays in a sufficiently small open neighbourhood of the origin

in R
6. Vanishing of the first derivative then implies local quadratic convergence by

the Taylor-type argument, for some positive κ,

∥∥µ−1
T∗

◦ s ◦ µT∗
(xk)

∥∥ ≤ sup
y∈N (0)

κ
∥∥D2µ−1

T∗
◦ s ◦ µT∗

(y)
∥∥ · ‖xk‖2 , (A.38)

with N (0) the topological closure of a sufficiently small open neighbourhood of origin

in R
6.

A.5 Proof of Theorem 5.3.1

The proof of this theorem follows exactly that of Theorem 4.2.1, except several re-

placements: constraint manifold SE3 → SON
3 , local parameter space R

6 → R
3N ,

fixed point T∗ → R∗, mapping µT∗
→ ϕR∗

, element ζ → Ω̃, and parameters x→ ω.
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[58] Y. Ma, J. Košecká, and S. Sastry, “Optimization Criteria and Geometric Algo-

rithms for Motion and Structure Estimation”, International Journal of Computer

Vision, vol. 44, no. 3, pp. 219–249, 2001.

[59] R. Mahony, Optimization Algorithms on Homogeneous Spaces, PhD thesis,

Australian National University, Canberra, March 1994.

[60] R. Mahony, “The Constrained Newton Method on a Lie Group and the Sym-

metric Eigenvalue Problem”, Linear Algebra and Its Applications, pp. 248–267,

1996.

[61] R. Mahony, and J. H. Manton, “The Geometry of the Newton Method on Non-

Compact Lie Groups”, Journal of Global Optimization, 309–327, vol. 23, 2002.

[62] J. H. Manton, “Optimization Algorithms Exploiting Unitary Constraints”, IEEE

Transactions on Signal Processing, vol. 50, no. 3, pp. 635–650, March 2002.

[63] J. H. Manton, “On the Various Generalisations of Optimisation Algorithms to

Manifolds”, Proceedings of the 16th International Symposium on Mathematical

Theory of Networks and Systems, Leuven, Belgium, 2004.

[64] T. Masuda, and N. Yokoya, “A Robust Method for Registration and Segmen-

tation of Multiple Range Images”, Computer Vision and Image Understanding,

vol. 61, no. 3, pp. 295–307, 1995.



130

[65] J. B. Moore, M. Baeg, and U. Helmke, “Gradient Flow Techniques for Pose

Estimation of Quadratic Surfaces”, Proceedings of the World Congress in Compu-

tational Methods and Applied Mathematics, Atlanta, Georgia, pp. 360–363, 1994.

[66] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic

Manipulation, CRC Press, 1994.

[67] Y. Nesterov, Introductory Lectures on Convex Optimization - A Basic Course,

Kluwer Academic Publishers, 2004.

[68] J. Nocedal, and S. J. Wright, Numerical Optimization, Springer Series in Oper-

ation Research, Springer Verlag, New York, 1999.

[69] B. Owren, and B. Welfert, “The Newton Iterations on Lie Groups”, BIT, vol.

40, no. 1, pp. 121–145, 2000.

[70] X. Pennec, “Multiple Registration and Mean Rigid Shapes: Application to the

3D Case”, Proceedings of 16th Leeds Annual Statistical Workshop, Leeds, U. K.,

pp 178–185, 1996.

[71] H. Pottmann, Q. X. Huang, Y. L. Yang, and S. M. Hu, “Geometry and Conver-

gence Analysis of Algorithms for Registration of 3D Shapes”, Technical Report,

no. 117, Technical University Wien, 2004.

[72] K. Pulli, “Multiview Registration for Large Data Sets”, Proceedings of the

International Conference on 3D Digital Imaging and Modeling, Ottawa, Canada,

pp. 160–168, 1999.

[73] L. Quan, and Z. Lan, “Linear N-Point Camera Pose Determination”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 8, pp.

774–780, 1999.

[74] S. Rusinkiewicz, and M. Levoy, “Efficient Variant of the ICP Algorithm”, Pro-

ceedings of the International Conference on 3D Digital Imaging and Modeling,

2001.



131

[75] G. C. Sharp, S. W. Lee, and D. K. Wehe, “Multiview Registration of 3D Scenes

by Minimizing Error between Coordinate Frames”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 26, no. 8, pp. 1037–1050, 2004.

[76] M. Shub, “Some Remarks on Dynamical Systems and Numerical Analysis”,

Dynamical Systems and Partial Differential Equations, Proceedings of VII ELAM,

Caracas: Equinoccio, Universidad Simon Bolivar, pp. 69–92, 1986.

[77] L. Silva, O. R. P. Bellon, and K. L. Boyer, “Enhanced, Robust Genetic Algo-

rithms for Multiview Range Image Registration”, Proceedings of the International

Conference on 3D Digital Imaging and Modeling, Banff, Canada, pp. 268–275,

2003.

[78] S. T. Smith, Geometric Optimization Methods for Adaptive Filtering, PhD

Thesis, Harvard University, Cambridge Massachusetts, 1993.

[79] Special Session on Applications of Differential Geometry to Signal Process-

ing, IEEE International Conference on Acoustics, Speech, and Signal Processing,

Philadelphia, United States, 2005

[80] F. Stein, and G. Medioni, “Structural Indexing: Efficient 3D Object Recogni-

tion”, IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 14,

no. 2, pp. 125–145, 1992.

[81] A. Stoddart, and A. Hilton, “Registration of Multiple Point Sets”, Proceedings

of the International Conference on Pattern Recognition, Vienna, pp. 40–44, 1996.

[82] C. J. Taylor, and D. J. Kriegman, “Minimization on the Lie Group SO(3) and

Related Manifolds”, Yale University Technical Report no. 9405, April 1994.

[83] C. Udriste, Convex Functions and Optimization Methods on Riemannian Mani-

folds, Kluwer Academic Publishers, 1994.

[84] J. Williams, and M. Bennamoun, “Simultaneous Registration of Multiple Cor-

responding Point Sets”, Computer Vision and Image Understanding, vol. 81, no.

1, pp. 117–142, 2001.



132

[85] Y. Yang, “Optimization on Riemannian Manifold”, Proceedings of the 38th

Conference on Decision and Control, pp. 888–893, 1999.

[86] N. Yokoya, and M. D. Levine, “Range Image Segmentation Based on Differential

Geometry: A Hybrid Approach”, IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 11, no. 6, pp. 643–649, 1989.


